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[1] A series of observing system simulation experiments is
presented in which column averaged dry air mole fractions of
CO, (Xcop) from the Greenhouse gases Observing SATellite
(GOSAT) are made consistent or not with the transport
model embedded in a flux inversion system. The GOSAT
observations improve the random errors of the surface carbon
budget despite the inconsistency. However, we find biases in
the inferred surface CO, budget of a few hundred MtC/a at
the subcontinental scale, that are caused by differences of
only a few tenths of a ppm between the simulations of the
individual Xco, soundings. The accuracy and precision of
the inverted fluxes are little sensitive to an 8-fold reduction in
the data density. This issue is critical for any future satellite
constellation to monitor Xco, and should be pragmatically
addressed by explicitly accounting for transport errors in flux
inversion systems. Citation: Chevallier, F., L. Feng, H. Bosch,
P. I. Palmer, and P. J. Rayner (2010), On the impact of transport
model errors for the estimation of CO, surface fluxes from GOSAT
observations, Geophys. Res. Lett., 37, L21803, doi:10.1029/
2010GL044652.

1. Introduction

[2] The global distribution of CO, arises from atmospheric
transport acting on sources and sinks. Reversing causality,
we can use concentration measurements to improve our
knowledge about surface fluxes by adopting a probabilistic
approach, usually called ‘flux inversion’. Flux inversion is
mostly formulated within a Bayesian framework in order to
combine 1) concentration observations and their error sta-
tistics, 2) prior flux information and their error statistics, and
3) a numerical model of atmospheric transport and its error
statistics. Robust estimation of model transport error has
raised serious concerns in the scientific community in view
of the large differences between models [e.g., Gurney et al.,
2002] and between models and observations [e.g., Stephens
et al., 2007]. For instance, some studies have found un-
certainties at the subcontinental scale of several tenths of a
GtC/a in the inverted fluxes resulting only from the choice
of transport model, when exploiting surface measurements
of CO, concentrations [Gurney et al., 2002]. It has been
argued that model transport error is less important for ver-
tically integrated columns of CO, [Rayner and O’Brien,
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2001], as provided by satellites, but there are still stringent
accuracy requirements on models and observations [Chevallier
et al., 2005]. Studying the concept of a space-borne LIDAR
instrument, recent work has shown that discrepancies in the
inverted fluxes (i.e. the maximum of the flux probability
density functions -PDF- after the inversion) of 0.1 GtC/a per
10° km? arising from model differences only [Houweling
et al., 2010]. These large uncertainties in the end products
of the inversion systems currently limit their utility for polit-
ical decision-making about the carbon cycle and motivate
further research.

[3] Our paper examines the impact of the differences found
between the current version of two global transport models:
“LMDZ” from the Laboratoire de Météorologie Dynamique
[Hourdin et al., 2006] and the GEOS-Chem transport model
[Suntharalingam et al., 2004; Palmer et al., 2008]. The two
models have been developed by distinct groups and have
been applied to two flux inversion systems: a variational
system for LMDZ [Chevallier et al., 2007] and an ensemble
Kalman filter for GEOS-Chem [Feng et al., 2009]. This
paper is a first attempt to assess how different the resulting
CO; fluxes will be from using these different systems when
they process real satellite observations from the pioneer
GOSAT platform [Yokota et al., 2009]. We present a series
of one-year Observing System Simulation Experiments
(OSSEs). These OSSEs have been designed so that the same
flux inversion system exploits simulated retrievals of X0,
that are either consistent or not with the atmospheric model
embedded in the inversion system. In the presence of
complicated model and observation error statistics, empiri-
cal strategies have been adopted in the past [e.g., Chevallier,
2007], two of which (observation error inflation and data
thinning) are tested here in an attempt to minimize the pro-
blems encountered from the model differences. The paper is
structured as follows. Section 2 describes the data and the
models. Results are presented in Section 3 and Section 4
concludes the paper.

2. Method

2.1. GOSAT Observations

[4] We are interested here in the Xco, products that can
be generated from the GOSAT radiation measurements in
the near infrared spectral range (reflected solar radiation).
GOSAT has been acquiring data since February 2009, but
for simplicity the present simulations rely on the instrument
and platform specifications as available from the scientific
literature. We apply them to the atmospheric conditions of
the year 2006. The Xco, retrievals are characterized using
the retrieval algorithm developed for the Orbiting Carbon
Observatory (OCO) mission [Bosch et al., 2006] which has
recently been adapted to GOSAT. Using the technical spec-
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ification of GOSAT given by Suto et al. [2008], we calcu-
late scene-specific error estimates and 12-level averaging
kernels for the Xco, retrieval for five surface types, eight
solar zenith angles and five aerosol optical depths. We
assume that X, is retrieved from a simultaneous fit to
two CO, bands (1.61 and 2.06 um) and the O, A Band
(0.765 pm) and that CO, is retrieved together with water
vapour, temperature, surface albedo, surface pressure and
the aerosol optical depth. The GOSAT look-up table is sim-
ilar to the OCO ones used by Feng et al. [2009] reflecting
the similarity between the observed spectral bands of the
two instruments. The results of Section 3 do not depend on
the prior concentration profiles, which are set to zero.

[s] GOSAT is in a sun-synchronous orbit with a three-
day repeat cycle and an equator crossing time of 1:00 p.m.
in descending node. For simplicity, we assume that all sound-
ings are acquired along the satellite ground-track only. We
discard observed scenes that are contaminated by cloud and
or have aerosol optical depths >0.3 by using seasonal PDFs
for cloud and aerosol optical depths derived from the Mod-
erate Resolution Imaging Spectrometer (MODIS) and Multi-
angle Imaging Spectrometer (MISR) instruments [Feng
et al., 2009]. In order to minimize possibly large corre-
lated errors in the transport model and the observations at
the subgrid scale, only one scan per orbit and per 3.75° x
2.5° grid box is kept for the X, simulations, which leaves
about 330,000 individual soundings for one year (starting
from about 20 times more individual soundings).

[6] The error budget associated with the look-up table
does not account for radiative transfer model uncertainties,
like errors related to the description of aerosols. We assign
1 ppm to errors associated with the radiation model, repre-
sentation, and transport model. We sum the variance of the
three components and that of the tabulated retrieval error
to assign the observation errors in the inversion system.
The resulting sounding uncertainty varies between 1.8 and
7.2 ppm, which is comparable to the simple GOSAT error
model of Chevallier et al. [2009].

2.2. Transport Models and Boundary Conditions

[7] We use the LMDZ model [Hourdin et al., 2006] at a
horizontal resolution of 3.75° x 2.5° (longitude-latitude)
with 19 vertical levels. The simulation of the atmospheric
flow is constrained by nudging towards the winds ana-
lysed at the European Centre for Medium-Range Weather
Forecasts. We also use the GEOS-Chem chemistry trans-
port model (v8-02-01) at a horizontal resolution of 2.0° x
2.5° (latitude-longitude-) with 40 vertical levels. The model
is driven by GEOS-5 meteorological analyses from the
NASA Goddard Global Modelling and Assimilation Office.

[8] A set of reference CO, fluxes is defined that includes
3-hourly fluxes for the terrestrial biosphere, monthly ocean
fluxes, monthly biomass burning fluxes and yearly fossil
fuel emissions. More details are given by Chevallier et al.
[2010] for the first two types of fluxes and by Palmer et al.
[2008] for the other two. Surface fluxes, like meteorology,
correspond to year 2006. The 3D global field of CO, on
1 January 2006 (at the start of the simulation) comes from
a previous run of LMDZ [Chevallier et al., 2010].

2.3. Inversion System

[9] The inversion system of Chevallier et al. [2007] esti-
mates weekly CO, fluxes on a 3.75° x 2.5° (longitude-
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latitude) grid over a long period of time, typically a year or
more, together with the field of CO, at the start of the
assimilation window. The statistically optimal fluxes and
initial field are found by iterative minimization of the cor-
responding Bayesian cost function. The inversion system is
used here for a whole year in the configuration that has been
finalised for a 21-year reanalysis of surface measurements
[Chevallier et al., 2010]. Based on the independent observa-
tions, some skill of the system has been demonstrated since
the 21-year flux inversion improves the posterior atmo-
spheric simulation compared to a naive standard that simply
uses the annual global CO, growth rate.

[10] The uncertainty of the inverted fluxes is central to
this study. It is estimated from the Monte Carlo approach
of Chevallier et al. [2007], in which an ensemble of inver-
sions is built from the statistics of the prior errors and of
the observation errors. By construction, the ensemble of the
inverted fluxes follows the theoretical (Bayesian) error sta-
tistics of the posterior fluxes. This approach can easily be
extended to assess the error statistics in the presence of
known sub-optimal features, like inconsistent transport mod-
elling. In practice, five successive steps are followed for
each OSSE: 1) the reference set of CO, surface fluxes and
CO, initial field (described in the Section 2.2) is used as
boundary conditions to a transport model to generate a set
of pseudo observations following the characteristics given
in Section 2.1; 2) the pseudo-observations are perturbed
consistently with the assumed observation error statistics;
3) the reference CO, surface fluxes and initial field are per-
turbed consistently with the assumed prior error statistics;
4) the flux inversion system is applied to the perturbed
pseudo-observations (as data) and the perturbed CO, fluxes
and initial field (as prior field); and 5) the error of the
inverted CO, fluxes and initial field is quantified by com-
parison to the reference fluxes in terms of biases and stan-
dard deviation.

[11] The method is applied several times with different
perturbations each time, in order to compute the inversion
error statistics. The present study exploits ensembles of four
one-year inversions of surface fluxes in eight-day segments.
As a result, we have a series of 48 monthly fluxes available
at each location of the world for each ensemble, thereby
providing stable statistics.

[12] Two types of ensembles are built. The first one is
internally consistent: the transport model in Step 1 and the
one used by the inversion system in Step 4 are the same
(LMDZ in our case). The second type is not: Step 1 relies on
GEOS-Chem while Step 4 keeps LMDZ.

3. Results

3.1. Direct Simulations

[13] LMDZ and GEOS-Chem are used to simulate the
individual GOSAT X o, for the year 2006 with the boundary
conditions (surface fluxes and CO, initial state) described in
Section 2.2. In spite of the large scientific and technical dif-
ferences between the two transport models, a fair agreement
is found, with a mean global difference of 0.04 ppm (LMDZ
minus GEOS-Chem), a standard deviation of 0.6 ppm and
a regression slope of 1.00156 ppm/ppm. By comparison, the
variability of the simulated Xcq, is much larger (5.6 ppm
standard deviation). No significant trend of the differences
as a function of time or Xcq, value is noticed. The 0.04 ppm
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Figure 1. (a) Prior error standard deviations and (b) fractional uncertainty reduction of the monthly mean CO, surface

fluxes in the 22 TransCom3 regions for the optimal OSSE.

bias is likely caused by the interpolation of the model grids
to the 12-level averaging kernel grids that was found not to
conserve mass in the course of this study. At this stage,
using a conversion factor of 2.12 GtC/ppm [Denman et al.,
2007], we may expect that this bias will be interpreted by
the one-year LMDZ-based inversion system as a negative
global mass increment of up to —0.08 GtC/a. By compari-
son, the uncertainty in the global annual carbon fluxes from
the NOAA ESRL surface network is about 0.15 GtC/a (given
a 0.07 ppm/a uncertainty in the global mean growth rate;
see http://www.esrl.noaa.gov/gmd/ccgg/trends/, access 15 June
2010).

3.2. Flux Inversion Results

[14] We first look at the inversion results in terms of
fractional uncertainty reduction (FUR) for the fluxes. This
quantity is defined as one minus the ratio of the posterior
error standard deviation to the prior error standard deviation.
It therefore quantifies the improvement in precision. It may
become negative in suboptimal configurations or with insuffi-
cient realizations.

[15] Figure 1 shows the FUR for the grid-point weekly
CO, fluxes aggregated at the monthly scale within the

22 TransCom3 regions of Gurney et al. [2002] together with
the corresponding prior errors. We acknowledge these are
coarse geographical regions but they provide a framework
with which to facilitate easy reproducibility of results. The
largest uncertainty reductions (up to 80%) are located over
vegetated lands while the GOSAT observations bring little
information over the oceans [Chevallier et al., 2009]. The
FUR is also displayed in the case where a different trans-
port model is used in Step 1 (GEOS-Chem) and in Step 4
(LMDZ) of the OSSE, all other inversion components being
consistent. The inconsistent atmospheric transport reduces
the FUR by up to 0.36. Still the observations improve all
fluxes in terms of random errors at these spatial scales.

[16] We now investigate the impact of the transport
inconsistency in terms of the accuracy of the inverted fluxes.
By construction, our prior fluxes are unbiased: their uncer-
tainty is fully characterised by a covariance matrix. In prin-
ciple, this feature holds for the posterior fluxes in the optimal
configuration, even though in practice, our finite ensemble
size leaves a global bias of +0.1 GtC/a. In contrast, the global
budget of the sub-optimal OSSE is biased by +0.9 GtC/a.
This number is larger than our guess of —0.08 GtC/a made
in the previous section. The +0.9 GtC increment is actually
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Figure 2. (a) Regional biases of the monthly mean CO, surface fluxes for the suboptimal OSSEs. (b) The corresponding
fractional uncertainty reduction in the 22 TransCom3 regions.

only one side of a mass dipole. The other one occurs in the
CO, columns at the start of the inversion window, which are
biased by —0.15 ppm after the inversion, even though their
FUR is 8% (the FUR for this field reaches 12% in the
optimal OSSE). This bias corresponds to a mass offset of
—0.33 GtC, which counterbalances more than one third of
the flux bias. To make the bias inventory complete, we note
that the Xcq,s are biased after the suboptimal inversion by
—0.13 ppm, compared to 0.002 ppm in the optimal case.
[17] Figure 2a shows the geographical distribution of the
surface biases of the sub-optimal OSSEs. The circles marked
‘Sup-optimal reference’ correspond to the sub-optimal con-
figuration illustrated so far, with only atmospheric transport
being inconsistent. Two additional tests are reported where
some features of the sub-optimal OSSE have been modified
with the empirical methods in order to damp the biases
[Chevallier, 2007]: 1) the data density is thinned everywhere
on the globe by a factor of 8 and 2) the observation error
variances assigned in Step 4 of the OSSE are inflated by a
factor of 4. From Figure 2a, we see that the reference sub-
optimal OSSE vyields varying positive and negative regional
biases. The largest one over land is in region South Amer-
ican Tropical (67 MtC/month). The annual mean bias

amounts to 0.53 GtC/a in Europe, nearly twice as much
as the European annual sink (about 0.3 GtC/a according to
Schulze et al. [2009]). Among the sub-optimal configura-
tions, only the dramatic reduction of observation density
improves the bias over Europe (down to 0.23 GtC/a). But
even this configuration leaves the bias about unchanged in
other regions. These results suggest the transport differences
act at large rather than small scales.

[18] The FUR for the three sub-optimal OSSEs is reported
in Figure 2b. The lowest performance is seen for the OSSE
with eight times less observations, but the FUR actually
varies by less than 0.15 in each region from one case to
another. Conversely, we show that increasing the data den-
sity in the suboptimal configuration does not efficiently
increase the precision of the surface CO, budget.

4. Conclusions

[19] GOSAT is the first satellite to be operated specifi-
cally for the remote sensing of CO,. Compared to instru-
ments designed for other atmospheric compounds, GOSAT
is not motivated by the mapping of the concentrations as
such, but rather by the mapping of the underlying surface
fluxes. From the raw radiance measurements to the flux
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product, a series of sophisticated algorithms are run whose
performance has to be carefully evaluated in order to guar-
antee the quality of the desired product. This paper con-
centrates on the uncertainties associated with the numerical
modelling of atmospheric transport, which is part of this
process, by exploiting two state-of-the-art models. For a
one year inversion, we find biases in the inferred surface
carbon budget of a few hundreds of MtC/a at the scale of
subcontinents, resulting from existing differences between
the atmospheric simulations of a few tenths of ppm only,
that would be scarcely detectable from a validation network.
It is noteworthy that this inversion experiment already took
model differences into account, in the form of an uncorre-
lated random component in the assigned observation error,
but this representation appears to be insufficient. Attempts
to damp the biases by adapting the inversion system have
hardly improved the performance of the inversion. The
initial 3D field of CO,, which is part of the inverted vari-
ables, is also biased after the inversion, with mass offsets of
opposite sign compared to the global mass offset from the
fluxes. If the initial 3D field was known precisely (which is
not realistic) this artificial dipole of mass increments would
disappear: we find that the bias of the surface carbon bal-
ance would be reduced to 0.2 GtC/a, but large flux biases at
the subcontinental scale would remain, up to 66 MtC per
month (not shown). We also showed the benefit of adding
more Xcop retrievals in the inversion system saturates early,
in contrast to what would be obtained in the absence of
transport inconsistencies. We have not considered here the
impact of possible biases in the Xcq, retrievals themselves
that further hamper the flux estimation.

[20] If we make the hypothesis that the difference between
LMDZ and GEOS-Chem is a fair illustration of the differ-
ence between any state-of-art transport model and the truth,
this study points at a critical issue for the users of the
GOSAT flux products. It is also of concern for the planning
of future Xcop-monitoring satellites, as already noted by
Houweling et al. [2010]. Pragmatic strategies have to be
found to address this issue, given the long-standing diffi-
culty in modelling of the subgrid-scale transport processes.
We recommend that transport errors be explicitly accounted
for in the inversion systems by including some representa-
tion of these errors in the inverted variables. Such strategies,
initiated for methane inversions by Bergamaschi et al. [2007],
will likely exploit information from the surface network, for
which transport biases are different, or from inventories, in
addition to the GOSAT-type total column retrievals.
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