, where tree-grammar descriptions of equivalence classes of terms are used to compute generalizations modulo equational theories. We discuss several improvements, including an efficient implementation of variable-restricted E-anti-unification from [Hei95], and give some runtime figures about them. We present applications in various areas, including lemma generation in equational inductive proofs, intelligence tests, diverging Knuth-Bendix completion, strengthening of induction hypotheses, and theory formation about finite algebras.

Introduction

An important task in the field of artificial intelligence is generalization. To the extent that a generalization approach allows us to incorporate certain background knowledge, it opens up applications in various fields of computer science. Inductive logic programming, for example, is concerned with generalization wrt. Horn-logic theories, with potential applications in automated scientific discovery, knowledge discovery in databases, automatic programming, and other areas. [START_REF] Heinz | Anti-Unifikation modulo Gleichungstheorie und deren Anwendung zur Lemmagenerierung[END_REF] gives several algorithms for generalizing terms wrt. equational background theories; they are applied to lemma generation in equational induction proofs. In this paper, we describe the implementation of these algorithms and give some further applications.

As a motivating example, consider the sequence 0, 1, 4, 9, represented by terms 0, suc(0), suc 4 (0), suc 9 (0), respectively. Trained people with a knowledge of addition and multiplication of natural numbers will easily recognize that square numbers computable by the scheme x * x are the desired solution for finding the continuation of the numbers. However, syntactical anti-unification merely leads to the term y, which is too general to be used for computing a continuation of the above sequence.

A useful mechanism for computing schemes is anti-unification extended to take account of equational theories. Addition and multiplication of natural numbers can be specified by the equations of Theory (1) in Fig. 3. In Fig. 1, we demonstrate that x * x is one of the generalizations resulting from antiunification of the above terms 0, suc(0), suc 4 (0), suc 9 (0) modulo equational Theory (1), since each of them equals an instance of x * x. Some problems arise if generalizations of terms wrt. equational theories have to be computed:

-There may exist many generalizations allowing the elements of a sequence of terms to be computed.

-The set of generalizations wrt. equational theory is usually infinite (see, however, Fig. 42 in Sect. 7.2). -Hence, only approaches enumerating its elements can be provided.

-Depending on the application area, the set of possible generalizations may contain useless or undesired computation schemes.

In [START_REF] Heinz | Anti-Unifikation modulo Gleichungstheorie und deren Anwendung zur Lemmagenerierung[END_REF], an approach to generalization modulo canonical equational theories, called antinarrowing, has been developed. This approach simply allows all generalizations of terms modulo canonical theories to be enumerated; useless generalizations can only be eliminated after their computation using corresponding criteria.

Instead of enumerating all generalizations of terms modulo equational theory, a compact, finite representation of the set of all generalizations is desirable for several reasons, e.g. to enable all useless generalizations to be eliminated at one go.

[Hei95] therefore investigates a second approach to E-anti-unification based on regular tree grammars1 . At the heart of the approach is an algorithm that takes two sorts or regular tree languages s, s , and computes a sort or regular tree language θ of all syntactical generalizations of terms from s and s :

L(θ) = {t t | t ∈ L(s), t ∈ L(s)}.
In order to E-anti-unify two terms modulo a given background equational theory E, their equivalence classes modulo E are represented by sorts s, s ; the corresponding θ then contains all Egeneralizations of both terms.

In this paper, we describe the implementation of the sort approach to E-anti-unification including technical optimizations and run-time measurements. We present several applications:

generation of lemma candidates in blocked situations of an inductive proof (Sect. 6) construction of series-formation laws (Sect. 7) some other potential applications, which are only sketched (Sect. 8).

Section 2 introduces some necessary formal definitions and notations. Section 3 presents the implementation of E-Anti-Unification. Section 4 discusses how to enumerate the terms of a computed sort. Section 5 gives an elaborate example of E-anti-unification. Sections 6 to 8 present the abovementioned applications. In Sect. 11, we show that for each finite algebra we can always generate a closed representation of all its quantifier-free and variable-bounded theorems. The PROLOG source code of our implementation is listed in Appendix A.

Definitions and Notations

Definition 1. Let V be an enumerable set of variables, F a finite set of function symbols, each with fixed arity; ar(f) denotes the arity of f ∈ F. Terms are built from V ∪ F; T denotes the set of terms.

We assume familiarity with the classic definitions and notations of terms. We say that a term t starts with a function symbol f if t = f (t 1 , . . . , t n) for some terms t 1 , . . . , t n . vars(t) describes the set of variables occurring in a term t ∈ T . A term is called linear if no variable occurs in it twice. A term t is called a ground term if t does not contain any variables.

Definition 2. Lists are built from [] and cons, written as (.) as in PROLOG; length(L) denotes the number of elements of the list L; head(L) denotes its first element. The list-comprehension notation [t | p(t)] denotes a list of all t, such that p(t) holds, in some arbitrary order.

t 1 , . . . , t n denotes an n-tuple; π n i (t 1 , . . . , t n) := t i denotes its i-th projection. := means equal by definition. A ⊂ B means that A is a subset of B, or A is equal to B.

A denotes the number of elements of a finite set A. ϕ[A] := {ϕ(a) | a ∈ A} denotes the image of the set A under the mapping ϕ; ϕ -1 [A] := {a | ϕ(a) ∈ A} denotes the inverse image of A under ϕ. For a set A, we denote its n-fold cartesian product by A n . Definition 3. Substitutions are defined as usual; {x 1 ← t 1 , . . . , x n ← t n } denotes a substitution that maps each variable x i to the term t i . Sometimes we also use a set-comprehension-like notation: {x ← t | p(x, t)} denotes a substitution that maps each x to t such that p(x, t) holds. dom(σ) := {x ∈ V | σx = x} denotes the domain of σ.

σ is called a linear substitution if σ x 1 , . . . , x n is a linear term, where dom(σ) = {x 1 , . . . , x n }. σ is called a flat substitution if σx ∈ V for all x ∈ V. σ is called a renaming substitution if it is a bijective mapping from variables to variables, and hence is both linear and flat.

t is called an instance of t , and t an anti-instance of t, if a substitution σ exists such that t = σt . If σ is a renaming, t is also called a variant of t . Definition 4. An equational theory E is a finite set of equations t l = t r . The relation (= E) is defined as usual as the smallest reflexive, symmetric, and transitive rewrite relation that contains E.

The equivalence class of a term t mod. (= E) is denoted by t := {t ∈ T | t = E t}. T / E denotes the algebra of equivalence classes. We assume that in each equivalence class t, some term nf (t) is distinguished, which we call the normal form of t. Let N := nf [T] be the set of all normal forms. t, nf (t), and N depend on E.

Note that we do not require (= E) to be computable by a confluent and noetherian term-rewriting system. However, we require that each equivalence class t be a regular tree language.

Definition 5. Let S N AM E be an enumerable set of sort names, and let the sets V, F, and S N AM E be pairwise disjoint. Let S denote the set of all sort expressions; a sort expression is a sort name or has one of the forms s 1 | s 2 , where s 1 , s 2 ∈ S; f (s 1 , . . . , s n), where f ∈ F, s 1 , . . . , s n ∈ S; or

x for x ∈ V.
A sort definition is of the form s n .

= s e , where s n is a sort name and s e is a sort expression. We say that s n is defined by s e .

Given a system of sort definitions where each occurring sort name has exactly one definition, we define their semantics as their least fixed point. We denote the semantics of a sort expression s by L(s) ⊂ T , which has the following properties: occur. Each system of sort definitions can be transformed into head normal form, and into normal form, maintaining its semantics. Any system of sort definitions in head normal form, or in normal form, has exactly one fixed point.

L(s 1 | s 2) = L(s 1) ∪ L(s 2) L(x) = {x} for x ∈ V L(f (s 1 , . . . , s n)) = {f (t 1 , . . . , t n) | t i ∈ L(s i)} for f ∈ F L(s n) = L(
Theorem 6. Assume a system of sort definitions in normal form. Let p be a family of unary predicates, indexed over the set of all defined sort names. Show for each defined sort name s:

∀t ∈ T p s (t) ↔ p s1 (t) ∨ . . . ∨ p sn (t) if s . = s 1 | . . . | s n ∀t ∈ T p s (t) ↔ ∃t 1 , . . . , t n ∈ T t = f (t 1 , . . . , t n) ∧ p s1 (t 1) ∧ . . . ∧ p sn (t n) if s . = f (s 1 , . . . , s n) ∀t ∈ T p s (t) ↔ t = x if s . = x
Then, ∀t ∈ T t ∈ L(s) ↔ p s (t) holds for each defined sort name s.

Definition 7. A term t is called a generalization of t 1 and t 2 iff there exist substitutions σ 1 and σ 2 such that σ 1 t = t 1 and σ 2 t = t 2 . t is called the most specific generalization iff each generalization t of t 1 and t 2 is an anti-instance of t. The most specific generalization t of two terms t 1 , t 2 always exists and is unique up to renaming. We sometimes use the notation t 1 t 2 := t.

The above definitions can be extended to generalization of n terms; we write t 1 . . . t n to denote the most specific generalization of t 1 , . . . , t n .

Definition 8. A term t is called an E-generalization of terms t 1 , t 2 iff there exist substitutions σ 1 and σ 2 such that σ 1 t = E t 1 and σ 2 t = E t 2 .

As in to unification, a most specific E-generalization of arbitrary terms does not usually exist. A set G ⊂ T is called a correct set of E-generalizations of t 1 , t 2 iff each member is an E-generalization of t 1 , t 2 . G is called complete if, for each E-generalization t of t 1 , t 2 , G contains an instance of t. G is called complete wrt. linear generalizations if for each linear term t, which is an E-generalization of t 1 , t 2 , G contains an instance of t.

The following algorithm can be traced back to the early seventies [START_REF] Plotkin | A note on inductive generalization[END_REF][START_REF] Plotkin | A further note on inductive generalization[END_REF][START_REF] Reynolds |)) }, !. %-replace sort names by definitions, %-then distribute "!" hsg(Ss,Au,OccIn,OccOut) :-replace_defs([END_REF]. It takes two terms t, t and computes the syntactical generalization t t .

Algorithm 9. Let V be an infinite set of new variables and ϕ : T × T → V an injective mapping.

1. Define sg(f (t 1 , . . . , t n), f (t 1 , . . . , t n)) := f (sg(t 1 , t 1), . . . , sg(t n , t n)).

2. Define sg(f (t 1 , . . . , t n), f (t 1 , . . . , t m)) := ϕ(f (t 1 , . . . , t n), f (t 1 , . . . , t m)), if f = f .

Since syntactical anti-unification is unique only up to renaming, the mapping ϕ is used to fix one concrete variable naming that is the same in all subterms. In the example in Fig. 2, the use of ϕ ensures that both occurrences of sg (3,4) yield the same result, viz. the variable v 34 .

sg(3 + y * 3, 4 + x * 4) = sg (3,4) + sg(y * 3, x * 4) = sg (3,4) + sg(y, x) * sg (3,4) = v34 + vyx * v34 Lemma 10. Algorithm 9 can be extended to anti-unify N terms simultaneously, requiring ϕ : T N → V. For any such ϕ and any finite V ⊂ V, we may define the substitutions σ i for i = 1, . . . , N by σ i ϕ(t 1 , . . . , t N) := t i . We have dom(σ i) = V for all i.

The result of Alg. 9 then satisfies the following correctness property: σ i sg([t 1 , . . . , t N]) = t i for i = 1, . . . , N provided we choose V ⊃ vars(sg([t 1 , . . . , t N])).

E-Anti-Unification

In this section, we describe the implementation of E-anti-unification based on sorts. Section 3.2 restates the algorithm rsg from [START_REF] Heinz | Anti-Unifikation modulo Gleichungstheorie und deren Anwendung zur Lemmagenerierung[END_REF] for computing a sort containing all linear generalizations; Sect. 3.3 discusses how to subsequently modify this sort in order to get all nonlinear generalizations as well. To obtain the sort of all generalizations, Alg. 12 from Sect. 3.2 is run as a first phase, then the algorithm from Sect. 3.3 is run as the second phase; cf. also Sect. 5.

In Sect. 3.4, the algorithm rsg V for computing the sort of all generalization terms that contain only variables from a given set V is restated from [START_REF] Heinz | Anti-Unifikation modulo Gleichungstheorie und deren Anwendung zur Lemmagenerierung[END_REF]. Note that all linear and nonlinear generalizations are computed in one phase only, thus saving a large amount of computation time; cf. Sect. 3.6,Fig. 15. Section 3.5 discusses a technical optimization that applies to both rsg and rsg V and helps to avoid many useless recursive calls. Sect. 3.6 presents some figures for runtime measurements and the improvement factors of technical optimizations.

Modeling Equivalence Classes as Sorts

The algorithms from Sect. 3.2/3.3 and from Sect. 3.4 both require the representation of the equivalence classes of the input terms as sorts. In this paper, we do not treat this issue in detail; rather, we drew up the respective sort definitions manually.

Figure 3 shows the equational theories used in this paper; we will refer to them as background theories. For example, Theory (1) consists of all equations that have a "1" in the leftmost column. Figure 23 refers to Theory (1) and shows the sort definition of s 0 and s 1 , representing 0 and suc(0), respectively. Figure 4 shows the sort representation of 0 to suc 5 (0) wrt. Theory (5); s p , s e , s o , and s n denote the sets of positive (i.e. > 0), even, odd, and arbitrary natural numbers, respectively.

In Theory (6), we have included the (-) operator, such that equivalence classes of terms are no longer regular tree languages, and hence cannot be described by our sorts; for example, the sort definition s

0 . = 0 | . . . | s 0 -s 0 | s 1 -s 1 | . . . | s i -s i | .
. . would become infinite. We can, however, approximate the equivalence classes from below by cutting off the sort definitions at a certain n, i.e., omitting all greater numbers. Figure 5 shows the approximations of 0 to suc 5 (0), where we set the cut-off point to n = 5, i.e. s 6 -s 6 | . . . | s i -s i | . . . is missing; hence, the equivalence classes do not contain terms that yield an intermediate result greater than 5 when evaluated to normal form.

In Sect. 9, we discuss the use of sort-definition schemes that allow several sort definitions to be abbreviated by one scheme. Figure 51 shows a sort-definition scheme for background Theory (0). Figure 50, shows sort-definition schemes of equivalence classes mod. append and reverse.

[Emm94] describes an algorithm for building the sort definitions automatically from a given confluent and noetherian term-rewriting system. However, there is no implementation that fits our data structures. See also Thm. 15 and Cor. 16 in Sect. 11, which provide sufficient criteria for an equational theory in order that the equivalence classes are regular tree languages.

Linear Generalizations

The following algorithm from [START_REF] Heinz | Anti-Unifikation modulo Gleichungstheorie und deren Anwendung zur Lemmagenerierung[END_REF] takes two sorts s, s and computes a sort θ containing all linear syntactical generalizations t t of terms t ∈ L(s), t ∈ L(s), i.e.

θ ⊃ {t t | t ∈ L(s), t ∈ L(s), t t linear }. 567 9 x + 0 = x 567 9 x + suc(y) = suc(x + y) 67 x -0 = x 67 suc(x) -suc(y) = x -y 5 7 9 x * 0 = 0 5 7 9 x * suc(y) = x * y + x 9 0/y = 0 9 suc(x)/suc(0) = suc(x) 9 suc(x)/suc(suc(y)) = suc((x -suc(suc(y))) / suc(suc(y))) dup(0) = 0 duplicate dup(suc(x)) = suc(suc(dup(x))) 5 if (0, x, y) = y if then else 5 if (suc(z), x, y) = x 5 ev(0) = suc(0) is even 5 ev(suc(0)) = 0 5 ev(suc(suc(x))) = ev(x) 4 len([]) = 0 length 4 len(x.y) = suc(len(y)) 8 app([], x) = x append 8 app(x.y, z) = x.app(y, z) 8 rev([]) = [] reverse 8 rev(x.y) = app(rev(y), [x]) 8 rot([]) = [] rotate 8 rot(x.y) = app(y, [x]) 8 il(x, []) = x interleave 8 il([], x)
= x 8 il(x.y, z.w) = x.z.il(y, w) 1. If rsg(s, s) has been called before, then θ is already defined.

Fig. 3. Background Equational Theories Used s0 . = 0 | if (sp, s0, sn) | if (s0, sn, s0) | ev(so) | s0 + s0 | s0 * sn | sn * s0 s1 . = suc(s0) | if (sp, s1, sn) | if (s0, sn, s1) | ev(se) | s1 + s0 | s0 +s1 | s1 * s1 s2 . = suc(s1) | if (sp, s2, sn) | if (s0, sn, s2) | s2 + s0 | s1 + s1 | s0 +s2 | s1 * s2 | s2 * s1 s3 . = suc(s2) | if (sp, s3, sn) | if (s0, sn, s3) | s3 + s0 | s2 + s1 | s1 +s2 | s0 +s3 | s1 * s3 | s3 * s1 s4 . = suc(s3) | if (sp, s4, sn) | if (s0, sn, s4) | s4 + s0 | s3 + s1 | s2 +s2 | s1 +s3 | s0 +s4 | s1 * s4 | s2 * s2 | s4 * s1 s5 . = suc(s4) | if (sp, s5, sn) | if (s0, sn, s5) | s5 + s0 | s4 + s1 | s3 +s2 | s2 +s3 | s1 +s4 | s0 +s5 | s1 * s5 | s5 * s1 sp . = suc(sn) | if (sp, sp, sn) | if (s0, sn, sp) | ev(se) | sp + sn | sn +sp | sp * sp se . = 0 | if (sp, se, sn) | if (s0, sn, se) | ev(so) | suc(so) | se +se | so +so | se * sn | sn * se so . = suc(se) | if (sp, so, sn) | if (s0, sn, so) | ev(se) | so + se | se +so | so * so sn . = 0 | suc(sn) | if (sn, sn, sn) | ev(sn) | sn + sn | sn * sn
. = 0 | s0 + s0 | s0 -s0 | s1 -s1 | s2 -s2 | s3 -s3 | s4 -s4 | s5 -s5 s1 . = suc(s0) | s1 + s0 | s0 + s1 | s1 -s0 | s2 -s1 | s3 -s2 | s4 -s3 | s5 -s4 s2 . = suc(s1) | s2 + s0 | s1 + s1 | s0 + s2 | s2 -s0 | s3 -s1 | s4 -s2 | s5 -s3 s3 . = suc(s2) | s3 + s0 | s2 + s1 | s1 + s2 | s0 + s3 | s3 -s0 | s4 -s1 | s5 -s2 s4 . = suc(s3) | s4 + s0 | s3 + s1 | s2 + s2 | s1 + s3 | s0 + s4 | s4 -s0 | s5 -s1 s5 . = suc(s4) | s5 + s0 | s4 + s1 | s3 + s2 | s2 + s3 | s1 + s4 | s0 + s5 | s5 -s0 sn . = 0 | suc(sn) | sn + sn | sn -sn
2. If s . = s 1 | . . . | s n , then define θ . = rsg(s 1 , s) | . . . | rsg(s n , s). 3. If s . = s 1 | . . . | s n , then define θ . = rsg(s, s 1) | . . . | rsg(s, s n). 4. If s . = f (s 1 , . . . , s n) and s . = f (s 1 , . . . , s n), then define θ . = f (rsg(s 1 , s 1), . . . , rsg(s n , s n)). 5. If s . = f (s 1 , . . . , s n) and s . = f (s 1 , . . . , s n) with f = f , then define θ . = ϕ(s, s).
As shown in [START_REF] Heinz | Anti-Unifikation modulo Gleichungstheorie und deren Anwendung zur Lemmagenerierung[END_REF], L(rsg(s, s)) is a correct set of generalizations which is complete for the linear ones, i.e., t ∈ L(rsg(s

1 , s 2)) ⇒ ∃t 1 ∈ L(s 1), t 2 ∈ L(s 2) t = t 1 t 2 , and t 1 ∈ L(s 1) ∧ t 2 ∈ L(s 2) ∧ t := t 1 t 2 linear ⇒ t ∈ L(rsg(s 1 , s 2)).
Note that Case 1. requires us to maintain a set of argument pairs for which rsg has already been called, and to check the argument pair of each new call against this set. This set is called Occ in the implementation; it was initially implemented by a PROLOG list, then by a binary search tree, and now by a balanced binary search tree. A membership test in a balanced tree with 50 entries takes about 4 msec user time. See also Sect. 3.6 for the impact of balancing on runtime.

Assuming all sort definitions in head normal form, we can slightly improve the above algorithm in order to produce less variables. For example, given the sort definitions of s 0 , s 1 from Fig. 23, the sort s 01 computed in Fig. 24 would comprise twelve different variables if computed by rsg, while it actually -computed by hsg below -has only one variable.

Since L(hsg(s 1 , s 2)) ⊂ L(rsg(s 1 , s 2)), Alg. 12 is still correct; since for each generalization t ∈ L(rsg(s 1 , s 2)) we have σt ∈ L(hsg(s 1 , s 2)) for some flat substitution σ, Alg. 12 is also complete for the linear generalizations.

Algorithm 12. Let s, s , V , and ϕ be as in Alg. 11. Define hsg(s, s) as follows:

1. If hsg(s, s) has been called earlier, its result is already defined.

2. If s . = m i=1 f i (s i1 , . . . , s ini), and s . = m j=1 f j (s j1 , . . . , s jn j), then let θ be a new sort name, define θ . = ϕ(s, s) | m i=1 m j=1 hsg(f i (s i1 , . . . , s ini), f j (s j1 , . . . , s jn j)); let hsg(s, s) := θ. 3. Define hsg(f (s 1 , . . . , s n), f (s 1 , . . . , s n)) := f (hsg(s 1 , s 1), . . . , hsg(s n , s n)). 4. Define hsg(f (s 1 , . . . , s n), f (s 1 , . . . , s m)) := ⊥, if f = f .
Usually, most of the disjuncts in Case 2. start with different function symbols, f i = f j , and hence evaluate to ⊥ by Case 4. In Sect. 3.5, we will discuss an optimization that avoids these recursive calls of hsg.

Algorithms 11 and 12 can both be extended to compute the linear generalizations of N sorts simultaneously, requiring ϕ : S N → V . Our implementation is capable of that, and we will tacitly use rsg([s , s , . . . , s (N)]) with N arguments where appropriate in this paper. Note that it makes sense to have multiple occurrences of the same sort among the input arguments. For example, using the sort definitions from Fig. 23, we have 0 * 0 (0 + 0) * (0 + 0) = v * v ∈ L(hsg(s 0 , s 0)) \ L(s 0). Moreover, it is important to maintain the order of argument sorts during computation, since otherwise, for example

hsg(s 1 , s 1) = . . . | hsg(s 0 , s 1) + hsg(s 1 , s 0) | . . . = . . . | hsg(s 0 , s 1) + hsg(s 0 , s 1) | . . . = . . . | v 01 + v 01 | . . .
although 1 is not equal to any instance of v 01 + v 01 . For these reasons, we treat the argument of the extended hsg as a list rather than as a set of sorts.

Nonlinear Generalizations

The result sorts of the above algorithm contains all linear generalizations, but only some nonlinear ones. That is not generally sufficient, as the example in Sect. 5 shows (see in particular the difference between s 01 and s 01 in Fig. 30).

In order to obtain as well all nonlinear generalizations, which are more specific, we need a second phase which introduces common variables to related sorts. We use the abbreviation inf s(V

) := { v∈V π N i (ϕ -1 (v)) | 1 i N }; note that ϕ -1 exists since ϕ is injective.
Below, we will assume N = 2 for the sake of simplicity.

[Hei95] proceeds as follows: for each set of variables {v 1 , . . . , v n } from the result sorts, whenever inf s({v 1 , . . . , v n }) does not contain the empty sort, a new variable v is introduced which can be thought of intuitively as generalizing the sorts in inf s(V), and each occurrence of each v i is replaced by v i | v . For example, using the definitions from Sect. 5, we have v 01 = ϕ(s 0 , s 1), v 0n = ϕ(s 0 , s n), v n1 = ϕ(s n , s 1), and v nn = ϕ(s n , s n); hence inf s({v 0n , v n1 }) = {s 0 ∩ s n , s n ∩ s 1 } = {s 0 , s 1 } since s 0 ∪ s 1 ⊂ s n . Thus, v 0n , v 0n are replaced by v 0n | v , and v 0n | v , respectively. Similarly, for any subset of {v 01 , v 0n , v n1 , v nn } that contains more than one element, a new variable would be added.

We follow this approach, except that we only consider maximal sets {v 1 , . . . , v n } of variables, i.e. where {} ∈ inf s({v 1 , . . . , v n , v n+1 }) for any v n+1 . For each generalization term t obtained by the [START_REF] Heinz | Anti-Unifikation modulo Gleichungstheorie und deren Anwendung zur Lemmagenerierung[END_REF] approach, we get a more specific generalization term σt for some flat substitution σ. By analogy with the remark in Sect. 3.2, this shows the algorithm is still complete. In the above example, we would add only one variable for the set {v 01 , v 0n , v n1 , v nn }, which is maximal.

In the example in Sect. 5 / Fig. 30, the second phase leads to the modification of sort s 01 to s 01 , etc. Unlike the former sort, the latter, for example, contains the term v 01 * v 01 , meaning that 0 and 1 are both quadratic numbers.

We explain below how the n-tuples v 1 , . . . , v n of variables with non-empty sort intersections {} ∈ inf s({v 1 , . . . , v n }) are found. The replacement of each v i by v i | v is then straightforward. As the computation of sort intersections is very time-consuming, we try to minimize the number of such computations by applying some -correct -heuristics explained below. Note, however, that when each defined sort name corresponds to an equivalence class (unlike s n), computing their intersections is trivial, since different equivalence classes are always disjoint. Let V be the set of variables newly generated by the first phase. Each variable v ∈ V is assigned a pair s v , s v := ϕ -1 (v) of sorts such that v represents all generalizations of any term from s v with any term from s

v . Let S := {s v | v ∈ V } ∪ {s v | v ∈ V }
be the set of all relevant sorts. In the first step, we compute the set

I2 := { s 1 , s 2 , s 12 | s 1 , s 2 ∈ S, {} = s 12 = s 1 ∩ s 2 , s 1 ≺ s 2 }
of all non-empty intersections of sorts from S. This is accomplished by the PROLOG predicate calc sort infs. The relation (≺) is an arbitrary irreflexive total ordering on S. Without the condition s 1 ≺ s 2 , we had s 2 , s 1 , s 12 ∈ I2 whenever s 1 , s 2 , s 12 ∈ I2; the additional ordering condition helps to keep the memory requirements small. I2 is represented by a balanced binary tree. Then, the set

L2 := { v 1 , v 2 | v 1 , v 2 ∈ V, {} ∈ inf s({v 1 , v 2 }), v 1 ≺ v 2 }
of all pairs of variables with non-empty intersections is computed by calc inf2s. The remarks on s 1 ≺ s 2 apply similarly to the ordering condition v 1 ≺ v 2 . Each variable in the set V is equipped with its number of occurrences in L2, i.e. for each v ∈ V . Let

i v := #({ v, v | v, v ∈ L2} ∪ { v , v | v , v ∈ L2}); then the set V 2 := { v, i v | v ∈ V }
is computed using the predicates calc varcnt and collect varcnt. The predicate calc infs list then takes L2 and V 2 as input: it calls calc infs for each v 1 , v 2 ∈ L2, which in turn computes the set of all maximal V 12 such that v 1 , v 2 ∈ V 12 , and {} ∈ inf s (V 12). The rules for calc infs are given in Fig. 6; the start configuration is

{v 1 , v 2 } L2 []
for each pair v 1 , v 2 ∈ L2. All the rules in this paper are priorized, i.e. the n-th rule is tried only if the 1-st, . . . , n -1-th did not succeed. Out denotes the output so far. The set Susp contains "suspended" variable sets V that are subsumed by some earlier output, see rule (Suplist). The suspension is released as soon as a new variable can be joined to the actual set V , see rule (Inf Inh). The actual set V is reported as a maximal one only if no suspended variable sets exist, see rules (Output Max), (Max Subs Susp). Rule (Inf Inh) has two successors, the output of both of which has to be joined; + + denotes the appending of two lists. Rule (Count) is justified since v can have non-empty intersections with at most i v different variables ("intersection of variables" v 1 , . . . , v n meaning inf s({v 1 , . . . , v n })). In order to allow fast lookup of i v in rule (Count), and fast testing of v , v , . . . ∈ L2 in rule (Sublist2), both L2 and V 2 are given additionally in balanced-tree form to the algorithm. Figure 7 shows an example intersection hierarchy for the variables a, b, c, d; a common upper bound of v 1 , . . . , v n indicates that {} ∈ inf s(v 1 , . . . , v n). While setting up I2, the six intersection sets inf s({a, b}), inf s({a, c}), inf s({a, d}), inf s({b, c}), inf s({b, d}), inf s({c, d}) are computed and tested to determine whether they contain the empty set. Note that these computations are unavoidable, since any two sorts could intersect independently of the others. During the run of calc infs list, only two more intersection sets need to be computed and checked; they are flagged right to the rule (Inf Inh) in Figs. 8 and 9 which show the corresponding example run. See also Sect. 5 for a second example. [a,c] [] [b] (Max Subs Susp) (Contd. in Fig. 9)

V [v | List] Susp v ∈ V (Member) V List Susp V [v | List] Susp i v < # V (Count) V List Susp V [v | List] Susp ∃v ∈ V v , v , . . . ∈ L2 (Sublist2) V List Susp ∧ v , v , . . . ∈ L2 V [v | List] Susp ∃V ∈ Out V ∪ {v } ⊂ V (Suplist) V List [v | Susp] V [v | List] Susp {} ∈ inf s(V ∪ {v }) (Inf Inh) V ∪ {v } List + +Susp [] V List + +Susp [] V [v | List] Susp (Inf Empty) V List Susp V [] [] ∃V ∈ Out V ⊂ V (Max Subsumed) V [] [] (Output Max) output V V [] [v | Susp] (Max Subs Susp)
L2 = { a, b , a, c , b, c , b, d , c, d } V 2 = { a, 2 , b, 3 , c, 3 , d, 2 } [a,b] [a,b,c,d] [] (Member) [a,b] [b,c,d] [] (Member) [a,b] [c,d] [] (Inf Inh) infs({a,b,c}) [a,b,c] [d] [] (Sublist2) [a,b,c] [] [] (Output Max [a,b,c]) [a,b] [d] [] (Sublist2) [a,b] [] [] (Max Subsumed) [a,c] [a,b,c,d] [] (Member) [a,c] [b,c,d] [] (Suplist) [a,c] [c,d] [b] (Member) [a,c] [d] [b] (Sublist2)
Fig. 8. Example: Intersection Computation Run [b,c] [a,b,c,d] [] (Suplist) [b,c] [b,c,d] [a] (Member) [b,c] [c,d] [a] (Member) [b,c] [d] [a] (Inf Inh) infs({b,c,d}) [b,c,d] [a] [] (Sublist2) [b,c,d] [] [] (Output Max [b,c,d]) [b,c] [a] [] (Suplist) [b,c] [] [a] (Max Subs Susp) [b,d] [a,b,c,d] [] (Sublist2) [b,d] [b,c,d] [] (Member) [b,d] [c,d] [] (Suplist) [b,d] [d] [c] (Member) [b,d] [] [c] (Max Subs Susp) [c,d] [a,b,c,d] [] (Sublist2) [c,d] [b,c,d] [] (Suplist) [c,d] [c,d] [b] (Member) [c,d] [d] [b] (Member) [c,d] [] [b] (Max subs susp)

Variable-Restricted E-Anti-Unification

The following algorithm from [START_REF] Heinz | Anti-Unifikation modulo Gleichungstheorie und deren Anwendung zur Lemmagenerierung[END_REF] takes two input sorts s, s and a finite set V of variables and computes the set of all generalizations of terms from s and s that contain only variables from the set V . The call rsg V ({}, s, s) computes precisely the intersection of the sorts s and s . Note that not only linear generalizations are computed; hence, the computationally expensive second phase described in Sect. 3.3 can be omitted. See Sect. 3.6 for figures on the runtime improvement thus achieved. The remarks from Sect. 3.2 about extending the algorithm to N arguments also apply to rsg V .

Algorithm 13. Let s and s be sorts and θ a new sort name. Let ϕ : S × S → V be an injective mapping. Let V be a finite set of variables, such that T P := ϕ -1 [V] ⊂ T × T is a finite set of term pairs. (Note that each term is also a sort expression.) Define rsg V (V, s, s) := θ, where a new sort definition for θ is introduced by the following cases.

1. If rsg V (V, s, s) has been called before, then θ is already defined.

2. If s . = s 1 | . . . | s n , then define θ . = rsg V (V, s 1 , s) | . . . | rsg V (V, s n , s). 3. If s . = s 1 | . . . | s n , then define θ . = rsg V (V, s, s 1) | . . . | rsg V (V, s, s n). 4. If s . = f (s 1 , . . . , s n), and s . = f (s 1 , . . . , s n), then define θ . = f (rsg V (V, s 1 , s 1), . . . , rsg V (V, s n , s n)). 5. If s . = f (s 1 , . . . , s n), and s . = f (s 1 , . . . , s n), then define θ . = t,t ∈T P ∩(L(s)×L(s)) ϕ(t, t).
Lemma 14. Given ϕ : T N → V and V , we may define σ i ϕ(t 1 , . . . , t N) := t i for all t 1 , . . . , t N ∈ ϕ -1 [V] and i = 1, . . . , N . We have dom(σ i) = V for all i. We assume that for each x ∈ V , x = ϕ(t 1 , . . . , t n) such that not all t 1 , . . . , t n start with the same function symbol.

The result of Alg. 13 then satisfies the following correctness property:

t ∈ L(rsg V (V, [s 1 , . . . , s N])) ⇔ vars(t) ⊂ V ∧ N i=1 σ i t ∈ L(s i)
Hence, when the argument sorts of rsg V are equivalence classes of terms, we have

t ∈ L(rsg V (V, [t 1 , . . . , t N])) ⇔ vars(t) ⊂ V ∧ N i=1 σ i t = E t i
Proof. We show the lemma only for N = 2, using Thm. 6 with

p θ (t) :⇔ σ 1 t ∈ L(s) ∧ σ 2 t ∈ L(s) ∧ vars(t) ⊂ V if θ . = rsg V (V, s, s) p θ (t) :⇔ t = ϕ(t , t) if θ . = ϕ(t , t) p θ (t) :⇔ t ∈ L(θ) else
In the latter case, we have nothing to show. In the two former cases, we make a case distinction according to the rule from Alg. 13 that defined θ. The second case has been introduced to put the result sort definitions into normal form.

1. In this case, no new sort definition is introduced.

2. We have

p θ (t) ⇔ σ 1 t ∈ L(s) ∧ σ 2 t ∈ L(s) ∧ vars(t) ⊂ V by Def. of p θ ⇔ ∃i σ 1 t ∈ L(s i) ∧ σ 2 t ∈ L(s) ∧ vars(t) ⊂ V by Def. of L(s) ⇔ ∃i p θi (t)
by Def. of p θi 3. Similar to 2. 4.

p θ (t) ⇔ σ 1 t ∈ L(s) ∧ σ 2 t ∈ L(s) ∧ vars(t) ⊂ V by Def. of p θ ⇔ ∃t 11 ∈ L(s 1), . . . , t 1n ∈ L(s n) ∃t 21 ∈ L(s 1), . . . , t 2n ∈ L(s n) σ 1 t = f (t 11 , . . . , t 1n) ∧ σ 2 t = f (t 21 , . . . , t 2n) ∧ vars(t) ⊂ V by Def. of L(s), L(s) ⇔ ∃t 1 , . . . , t n t = f (t 1 , . . . , t n) ∧ n i=1 σ 1 t i ∈ L(s i) ∧ σ 2 t i ∈ L(s i) ∧ vars(t i) ⊂ V (*) ⇔ ∃t 1 , . . . , t n t = f (t 1 , . . . , t n) ∧ n i=1 p θi (t i)
by Def. of p θi (*): "⇒": since σ 1 x and σ 2 x never start with the same function symbol f , we must have t = f (t 1 , . . . , t n) with σ 1 t i = t 1i ∈ L(s i), the case is similar for σ 2 "⇐": choose t 1i := σ 1 t i , and

t 2i := σ 2 t i 5. p θ (t) ⇔ σ 1 t ∈ L(f (s 1 , . . . , s n)) and σ 2 t ∈ L(f (s 1 , . . . , s n)) and vars(t) ⊂ V by Def. of p θ ⇒ σ 1 t = f (. . .) and σ 2 t = f (. . .) and vars(t) ⊂ V ⇒ t ∈ V and vars(t) ⊂ V ⇒ t ∈ V by Def. of vars ⇒ t = ϕ(t ,

Optimized Argument Selection

We now discuss how to avoid recursive calls of rsg V , and analogously of rsg, that yield ⊥.

Consider the sort definitions of s 0 and s 1 in Fig. 23. In the naive implementation, hsg(s 0 , s 1) amounts to sixteen recursive calls, shown in lines 3 to 6 of Fig. 24. However, by comparing the leading function symbols in each call, we can see immediately that twelve of them will return the empty sort, and can hence be ignored, while only four of them start with identical function symbols and thus need to be further evaluated:

hsg(s 0 + s 0 , s 0 + s 1) | hsg(s 0 + s 0 , s 1 + s 0) | hsg(s 0 * s n , s 1 * s 1) | hsg(s n * s 0 , s 1 * s 1).
The situation is slightly more complicated when computing rsg ϕ(0, suc(0)) and v 2 = ϕ(0, 0 + 0), the calls rsg V ({v 1 , v 2 }, 0, suc(0)) and rsg V ({v 1 , v 2 }, 0, s 0 + s 0) will result in v 1 , and v 2 , respectively. We present below an algorithm for selecting the argument pairs for recursive rsg V calls. In a first step, we use the set V to build a search tree V T * of pairs2 of different function symbols which need to be considered by rsg V . Building the search tree is a straightforward matter. In the above example, we get the tree shown in Fig. 11. In the general case, each path in the search tree has a length of N .

The sort definitions are expected to be in head normal form, i.e., of the general form

s . = f 1 (s 11 , . . . , s 1n1) | . . . | f m (s m1 , . . . , s mnm).
We sort the disjuncts f 1 (s 11 , . . . , s 1n1), . . . , f m (s m1 , . . . , s mnm) ascendingly by their leading function symbols, assuming an arbitrary irreflexive total ordering ≺, and group together all disjuncts with the same function symbol (called "pre-grouping" to distinguish it from the kernel grouping algorithm). For example, from the definitions of s 0 and s 1 in Fig. 23, we get after sorting [0,

s 0 + s 0 , s 0 * s n , s n * s 0] [suc(s 0), s 0 + s 1 , s 1 + s 0 , s 1 * s 1],
and after pre-grouping

[[0], [s 0 + s 0], [s 0 * s n , s n * s 0]] =: P s 1 [[suc(s 0)], [s 0 + s 1 , s 1 + s 0], [s 1 * s 1]] =: P s 2 .
In the general case, we get N such lists of pre-groups. These lists of pre-groups, together with the search tree, are given to the kernel grouping algorithm shown in Fig. 12, which produces a list of N -tuples, each serving as arguments for a subsequent recursive rsg V call.

The kernel grouping algorithm takes four input arguments:

a flag E which can take the values eq or ne, the latter indicating that different function symbols have occurred in the current group the search tree V T * the current group (a list of pre-groups) the current list of lists of pre-groups.

A pre-group, like [s 0 + s 1 , s 1 + s 0], is denoted by P , or P ; a list of pre-groups by P s, P s , or Group. ↑ P denotes the common head symbol of all terms in the pre-group P . For a search (sub)tree V T , we denote by V T f the subtree of V T at the branch labeled f ; if a branch labeled f does not exist within V T , we get V T f = nil, which denotes the empty search tree.

The output accumulator is not shown in Fig. 12; instead, in rule (Output), the statement "output reverse(Group)" occurs. If this statement is reached, Group = [P N , . . . , P 1] is a list of length N , and a list [t 1 , . . . , t N | t i ∈ P i , i = 1, . . . , N] of all N -tuples, such that the i-th component is a member of the i-th pre-group of reverse(Group), is added to the output; the order of tuples within the list does not matter. The rule (Output) and the rules named (Abort . . .) do not have a successor, whereas rules (Join) and (Follow) have two. The start configuration is

eq V T * [] [P s 1 , . . . , P s N]
where V T * is the initial search tree and P s 1 , . . . , P s N are the N lists of pre-groups obtained after pre-grouping. Figure 13 shows a computation example. For the sake of readability, pre-groups are written in braces, and the P s i in the fourth argument are separated by semicolons.

The same algorithm can also be used for rsg and hsg instead of rsg V by providing an empty search tree.

We give below an estimation of the time complexity of the grouping algorithm. Assume that we are given N sorts whose definitions are in head normal form and have each at most m disjuncts on their right-hand side; moreover, assume that the initial search tree V T * was built from n variables. Sorting the disjuncts by leading function symbols takes N • m • log m time; pre-grouping takes N • m time. We obtain N lists, each of which contains at most m groups. For the sake of brevity, we denote the third argument of the rules in Fig. 12 by G, and the fourth by H. Any 4-tuple E, V T, G, H that occurs during the computation is called a state; a state is called final if a rule without successors is applied to it. If V T of a state is a subtree of V T * , we call the list of function symbols along the way from the root of V T * to the root of V T the path of that state. Proceeding from V T to V T f means appending f to the actual path. Observe the following properties of the rules: 1. To any state with E = ne whose actual V T is not a subtree of V T * , the rule (Abort Ne) will be applied, i.e. this state is final. Hence, each non-final state with E = ne corresponds to a node in V T * , viz. the root of the actual V T . 2. A non-final state with E = ne and a path [f 1 , . . . , f k] has H = [P s k+1 , . . . , P s N]. Moreover, we have f i =↑ P i for some P i in P s i for all i = 1, . . . , k. H) shortened by one element. The latter makes it impossible to reach V T f again, since f =↑ P ≺ P for all later P in P s , using the terminology common to rules (Join), (Follow), (Skip), and (Init). 4. At most m different non-final states with E = ne may correspond to the same node of V T * .

Each successor of a state with E

= ne corresponds to a different subtree V T f of V T * (possibly V T f = nil), or has head(
This follows from 1 and 3. 5. E has the value eq iff there is a function symbol f such that ↑ P = f for all P in G; in this case, we write

↑ G := f . eq V T [P | Group] [[P | P s] | Rest] f =↑ P =↑ P (Join) eq V T f [P , P | Group] Rest eq V T [P | Group] [P s | Rest] E V T Group [] (Output) output reverse(Group) ne nil Group Any (Abort Ne) eq nil [P | Group] [[P | P s] | Rest] ↑ P ≺↑ P (Abort Eq) E V T Group [[P | P s] | Rest] f =↑ P (Follow) ne V T f [P | Group] Rest Group = [] E V T Group [P s | Rest] E V T Group [[P | P s] | Rest] Group = [] (Skip) E V T Group [P s | Rest] E V T [] [[P | P s] | Rest] f =↑ P (Init) eq V T f [P] Rest eq V T [] [P s | Rest] E V T Group [[] | Rest] (Abort [])
Fig. 12. Grouping Rules Precedence: 8. Each non-final state has at most two final states as successors. 9. The initial search tree has N • n + 1 nodes, if no two variables share a part of their path except for the root node. In all other cases, the number of nodes is decreased by path sharing.

(0) ≺ (s) ≺ (*) ≺ (+) Input: [[0,s0*sn,sn*s0,s0+s0], [suc(s0),s1*s1,s0+s1,s1+s0]] Pre-Grouped: [[[0],[s0*sn,sn*s0],[s0+s0]],[[suc(s0)],[s1*s1],[s0+s1,s1+s0]]] Initial Search Tree V T * : 0 -→ s -→ (nil denotes empty subtree) Output: [[0,suc(s0)],[s0*sn,s1*s1],[sn*s0,s1*s1],[s0+s0,s0+s1],[s0+s0,s1+s0]] eq 0 [] [[{0},{S0*Sn,Sn*S0},{S0+S0}] ; [{suc(S0)},{S1*S1},{S0+S1,S1+S0}]] (Init) eq s [{0}] [[{suc(S0)},{S1*S1},{S0+S1,S1+S0}]] (Follow s) ne nil [{suc(S0)},{0}] [] (Output [0,suc(S0)]) eq s [{0}] [[{S1*S1},{S0+S1,S1+S0}]] (Skip) eq s [{0}] [[{S0+S1,S1+S0}]] (Skip) eq s [{0}] [[]] (Abort []) eq 0 [] [[{S0*Sn,Sn*S0},{S0+S0}] ; [{suc(S0)},{S1*S1},{S0+S1,S1+S0}]] (Init) eq nil [{S0*Sn,Sn*S0}] [[{suc(S0)},{S1*S1},{S0+S1,S1+S0}]] (Skip) eq nil [{S0*Sn,Sn*S0}] [[{S1*S1},{S0+S1,S1+S0}]] (Join *) eq nil [{S1*S1},{S0*Sn,Sn*S0}] [] (Output [S0*Sn,S1*S1],[Sn*S0,S1*S1]) eq nil [{S0*Sn,Sn*S0}] [[{S0+S1,S1+S0}]] (Abort Eq) eq 0 [] [[{S0+S0}] ; [{suc(S0)},{S1*S1},{S0+S1,S1+S0}]] (Init) eq nil [{S0+S0}] [[{suc(S0)},{S1*S1},{S0+S1,S1+S0}]] (Skip) eq nil [{S0+S0}] [[{S1*S1},{S0+S1,S1+S0}]] (Skip) eq nil [{S0+S0}] [[{S0+S1,S1+S0}]] (Join +) eq nil [{S0+S1,S1+S0},{S0+S0}] [] (Output [S0+S0,S0+S1],[S0+S0,S1+S0]) eq nil [{S0+S0}] [[]] (Abort []) eq 0 [] [[] ; [{suc(S0)},{S1*S1},{S0+S1,S1+S0}]] (Abort [])
From 9, there are at most N • n + 1 nodes in V T * ; from 1 and 4, there are at most m • (N • n + 1) nonfinal states with E = ne; from 6 and 7, there are at most m • m • N + m non-final states with E = eq. Hence, there are at most m

• (N • n + 1) + m • m • N + m = m • (N • n + N • m + 2) m • N • (m + n + 1)
non-final states, and, by 8, at most 3

• m • N • (m + n + 1
) states in all. A final state may result in an output of at most g N N -tuples, where g is the maximum number of disjuncts of a sort-definition's right-hand side that start with the same function symbol. Including sorting and pre-grouping, our approach takes

O(N • m • (m + n) • g N) time.
Since the naive approach -without grouping -takes O(m N) time, grouping makes sense especially for N > 2, i.e. when more than two input sorts are to be anti-unified. Moreover, using the grouping algorithm makes the runtime more insensitive to the number of different function symbols in the background theory. Figure 14 shows some runtime measurements for grouping including pre-grouping. See Sect. 3.6 for more measurements.

Runtimes

In this section, we discuss some figures for runtime measurements. All runtimes given in this paper refer to user time of a SICStus PROLOG 2.1 #8 implementation on a SUN 4/50GX SPARC with 40 MHz clock and 64 MBytes main storage.

During development of the implementation prototype, we experimented with several technical optimizations. The impact of the successful ones (see Fig. 15) on runtimes are discussed below. Since runtime measurements have not been conducted systematically at all stages of development, we tried to estimate their impact from the available data shown in Figs. 38 and40. These data are categorized and summarized in Fig. 16, yielding estimations of the improvement factors obtained by applying several optimizations simultaneously. Figure 17 gives a graphical representation of these factors, the x-axis being scaled logarithmically. In Fig. 18, we have computed the impact of each single technical improvement as far as possible, based on the data from Fig. 17.

Several measurements have been made in order to explore the practical runtime behavior of the final version (with optimizations bdgsv) of the algorithm wrt. number and size of input sorts. Figure 19(a) shows the E-anti-unification runtime vs. size of sort definitions; figures denote runtime of rsg V ({}, Sorts) in seconds. s i denotes the equivalence class of i wrt. the respective background theory, cf. Fig. 4, 5. "> n" means running out of memory after n seconds.

In the third column, we have included the (-) operator in the background theory, such that equivalence classes of terms can no longer be described by our sorts. We therefore cut off the sort definitions Fig.

Graphical Representation of Improvement Factors

at 20 -cf. Sect. 3.1. Since adding (-) to the background theory led to an erratic increase in runtime, we additionally measured the dependency of runtime on the "cut-off point"; the result is shown in Fig. 19 (b), indicating the runtimes in seconds for rsg V ({}, s 0 , s 2) with cut-off points n from 2 to 20.

Figure 20 shows the runtime for rsg V ({}, s i X) wrt. the background theory of {+}, {+, * }, and {+, * , /}, respectively, where s i X denotes the list that contains i times the sort s X .

Sorts + +, * +, -, * [s0, s1, s2] 0 0 > 266 [s0, s1, s3] 1 2 [s0, s1, s4] 0 3 [s0, s1, s5] 1 4 [s0, s1, s6] 1 5 [s0, s1, s7] 1 6 [s0, s1, s8] 1 9 [s0, s1, s9] 2 8 [s0, s1, s10] 2 10 [s0, s1, s11] 2 13 [s0, s1, s12] 2 15 [s0, s1, s13] 3 15 [s0, s1, s14] 3 17 [s0, s1, s15] 4 19 [s0, s1, s16] 6 21 [s0, s1, s17] 5 23 [s0, s1, s18] 7 24 [s0, s1, s19] 5 26 [s0, s1, s20] 7 29 (a) n +, - +, -, * 2 0 3

Sort Enumeration

The algorithms rsg and rsg V both return a sort as result. In this section, we describe how the terms belonging to a given sort are enumerated.

Enumeration of all terms of a given sort is done depth first. It is checked whether the sort is finite; in this case, a simple depth-first traversion is sufficient. For an infinite sort, the depth is limited to a fixed bound which is iteratively deepened. The depth of a term is currently measured as the maximum number of replacements of sort names by their definitions of all paths from the term root to its leaves. However, several other depth measures are possible; see the remarks on the 0,1,2,1,4,1,6 series example in Sect. 7.2.

Cutting the depth at a fixed bound n introduces many dead ends in sort enumeration when disjunctions in sort definitions are tried that can lead only to terms of a depth greater than n. As this usually happens at each of the n levels of recursive descent, the number of dead ends is in the order of magnitude m n , where m is the maximum number of disjuncts occurring in a sort definition. For an example, see Figs. 35 and 36 in Sect. 5. An important optimization therefore consists in recording for each sort s the minimum depth mindepth(s) of any of its terms; rule (Sort Def) is applicable only if this minimum depth is smaller than the remaining depth bound.

The rules of the optimized enumeration algorithm are given in Fig. 21. The notation s : dp : t means that t is a term of a depth dp in L(s), where s is an arbitrary sort expression. The resulting speedup of 6.3 compared to standard enumeration can be seen from line "d" in Fig. 18. The values of the sort's minimum depths are computed using a bottom-up algorithm acting on all (new) sort definitions simultaneously, similar to the inhabitance algorithm from [START_REF] Aiken | Implementing regular tree expressions[END_REF], which is described in Sect. 4.1.

Originally, our implementation had the additional capability of enumerating only terms in normal form wrt. a given set of (linear) redices. However, line 9 in Fig. 40 shows that sort enumeration may still take unacceptably long if only terms in normal form are to be enumerated. The restriction to terms in normal form is therefore achieved by intersecting the solution sort with the sort of all terms in normal form (provided all redices are linear terms, cf. Sect. 6.2), rather than by restricting the enumeration algorithm to terms in normal form. See line 10 in Fig. 40. In a second phase, repeat the following solving algorithm until no further progress is obtained, which will be the case after at least k cycles if there are k sort definitions. The solving algorithm checks each unsolved equation as to whether one or more of its right-hand side max(. . .) expressions are ground terms, meaning that all necessary data is available to compute its value. These expressions are evaluated and substituted by their result. If one of the results is minimal, i.e. equals i -1 in the i-th cycle, the whole equation can be solved: S = i. Fig. 22 gives an example of a computation of the depths of sorts from Fig. 4.

All equations that remain unsolved after the final cycle correspond to empty sorts, cf. [START_REF] Aiken | Implementing regular tree expressions[END_REF]. Their sort definitions' right-hand sides are simply replaced by ⊥, and any occurrence of them in other sort definitions is also replaced by ⊥, which may give rise to some obvious further simplifications.

In order to supply a different depth measure, max has to be replaced accordingly, and the optimization based on its idempotence property may no longer be applicable.

i = 1 2 3 S0 = 1 S1 = min(S0, Se) + 1 = 2 S2 = min(S1) + 1 = min(2) + 1 = 3 S3 = min(S2, max(S1, S2)) + 1 = min(S2, max(2, S2)) + 1 = 4 S4 = min(S3, max(S1, S3), S2) + 1 = min(S3, max(2, S3), S2) + 1 = 4 S5 = min(S4, max(S1, S4), max(S2, S3)) + 1 = min(S4, max(2, S4), max(3, S3)) + 1 = 5 Sp = min(Sn, Se) + 1 = 2 Se = 1 So = min(Se) + 1 = 2 Sn = 1

An E-Anti-Unification Example

In this section, we give an elaborate example of how the E-anti-unification algorithms work. Consider the background equational Theory (1) from Fig. 3, defining (+) and (*) over the 0-suc algebra. The equivalence class of 0 and suc(0) can be defined as sorts s 0 and s 1 , respectively, as shown in Fig. 23. s n is not an equivalence class, but the sort of all terms. For example, the sort definition of s 0 can be read as follows: there are four possibilities for forming a term of the value 0: first, the constant 0 itself; second, adding two terms of value 0; third, multiplying a term of value 0 by any other term; and fourth, multiplying them conversely.

The computation of hsg(s 0 , s 1), according to Alg. 12, is shown in Fig. 24. The necessary auxiliary computations are shown in Figs. 25 to 29. The resulting sort definitions are summarized in the upper part of Fig. 30; They contain all the linear generalizations but only some of the nonlinear ones. Figures 31 to 34 show the computation of variables with non-empty sort intersections using the algorithm from Sect. 3.3, resulting in the new variable v 00 for v 00 , v 0n , v n0 , v nn , and v 01 for v 01 , v 0n , v n1 , v nn . The lower part of Fig. 30 shows the appropriately modified sort definitions. L(s 01) is the set of all generalizations of 0 and suc(0) modulo +, * .

Figures 35 and36 show the enumeration of sort s 01 with a depth bound of 2. The actual depth bound is shown in the second column, the i-th number referring to the i-th identifier (variable or sort name) in the term. Terms flagged "<*****" do not contain any sort names and are output. In Fig. 36, most terms that do not yield output are omitted. Linear Generalization: v00, v0n , v00, vn0 , v00, vnn , v01, v0n , v01, vn1 , v01, vnn , v0n, vn0 , v0n, vn1 , v0n, vnn , vn0, vnn , vn1, vnn ,3 ,v01,3 ,v0n,5 ,vn0,3 ,vn1,3 ,vnn,5 32) 6 Lemma Generation

s0 . = 0 | s0 + s0 | s0 * sn | sn * s0 s1 . = suc(s0) | s0 + s1 | s1 + s0 | s1 * s1 sn . = 0 | suc(sn) | sn + sn | sn * sn
= v01 | hsg(0, suc(s0)) | hsg(0, s0 + s1) | hsg(0, s1 + s0) | hsg(0, s1 * s1) | hsg(s0 + s0, suc(s0)) | hsg(s0 + s0, s0 + s1) | hsg(s0 + s0, s1 + s0) | hsg(s0 + s0, s1 * s1) | hsg(s0 * sn, suc(s0)) | hsg(s0 * sn, s0 + s1) | hsg(s0 * sn, s1 + s0) | hsg(s0 * sn, s1 * s1) | hsg(sn * s0, suc(s0)) | hsg(sn * s0, s0 + s1) | hsg(sn * s0, s1 + s0) | hsg(sn * s0, s1 * s1) = v01 | ⊥ | ⊥ | ⊥ | ⊥ | ⊥ | hsg(s0 + s0, s0 + s1) | hsg(s0 + s0, s1 + s0) | ⊥ | ⊥ | ⊥ | ⊥ | hsg(s0 * sn, s1 * s1) | ⊥ | ⊥ | ⊥ | hsg(sn * s0, s1 * s1) = v01 | hsg(s0, s0) + hsg(s0, s1) | hsg(s0, s1) + hsg(s0, s0) | hsg(s0, s1) * hsg(sn, s1) | hsg(sn, s1) * hsg(s0 * s1) = v01 | s00 + s01 | s01 + s00 | s01 * sn1 | sn1 * s01
= v00 | 0 | s00 + s00 | s00 * snn | s0n * sn0 | sn0 * s0n | snn * s00
s00 . = v00 | 0 | s00 + s00 | s00 * snn | s0n * sn0 | sn0 * s0n | snn * s00 s01 . = v01 | s00 + s01 | s01 + s00 | s01 * sn1 | sn1 * s01 s0n . = v0n | 0 | s0n + s0n | s0n * snn | snn * s0n sn0 . = vn0 | 0 | sn0 + sn0 | sn0 * snn | snn * sn0 sn1 . = vn1 | suc(sn0) | sn0 + sn1 | sn1 + sn0 | sn1 * sn1 snn . = vnn | 0 | suc(snn) | snn + snn | snn * snn Complete Generalization: s 00 . = v00 | v 00 | 0 | s 00 + s 00 | s 00 * s nn | s 0n * s n0 | s n0 * s 0n | s nn * s 00 s 01 . = v01 | v 01 | s 00 + s 01 | s 01 + s 00 | s 01 * s n1 | s n1 * s 01 s 0n . = v0n | v 00 | v 01 | 0 | s 0n + s 0n | s 0n * s nn | s nn * s 0n s n0 . = vn0 | v 00 | 0 | s n0 + s n0 | s n0 * s nn | s nn * s n0 s n1 . = vn1 | v 01 | suc(s n0) | s n0 + s n1 | s n1 + s n0 | s n1 * s n1 s nn . = vnn | v 00 | v 01 | 0 | suc(s nn) | s nn + s nn | s nn * s nn
} V 2 = { v00
} [V00,V0n] [V00,V01,V0n,Vn0,Vn1,Vnn] [] (Member) [V00,V0n] [V01,V0n,Vn0,Vn1,Vnn] [] (Sublist2) [V00,V0n] [V0n,Vn0,Vn1,Vnn] [] (Member) [V00,V0n] [Vn0,Vn1,Vnn] [] (Inf Inh) infs({V00,V0n,Vn0}) [V00,V0n,Vn0] [Vn1,Vnn] [] (Sublist2) [V00,V0n,Vn0] [Vnn] [] (Inf Inh) infs({V00,V0n,Vn0,Vnn}) [V00,V0n,Vn0,Vnn] [] [] (Output Max [V00,V0n,Vn0,Vnn]) [V00,V0n,Vn0] [] [] (Max Subsumed) [V00,V0n] [Vn1,Vnn] [] (Sublist2) [V00,V0n] [Vnn] [] (Suplist) [V00,V0n] [] [Vnn] (Max Subs Susp) [V00,Vn0] [V00,V01,V0n,Vn0,Vn1,Vnn] [] (Member) [V00,Vn0] [V01,V0n,Vn0,Vn1,Vnn] [] (Sublist2) [V00,Vn0] [V0n,Vn0,Vn1,Vnn] [] (Suplist) [V00,Vn0] [Vn0,Vn1,Vnn] [V0n] (Member) [V00,Vn0] [Vn1,Vnn] [V0n] (Sublist2) [V00,Vn0] [Vnn] [V0n] (Suplist) [V00,Vn0] [] [Vnn,V0n] (Max Subs Susp) (Contd. in Fig.
Fig. 31. Intersection Computation for s0, s1 [V01,Vnn] [V00,V01,V0n,Vn0,Vn1,Vnn] [] (Sublist2) [V01,Vnn] [V01,V0n,Vn0,Vn1,Vnn] [] (Member) [V01,Vnn] [V0n,Vn0,Vn1,Vnn] [] (Suplist) [V01,Vnn] [Vn0,Vn1,Vnn] [V0n] (Sublist2) [V01,Vnn] [Vn1,Vnn] [V0n] (Suplist) [V01,Vnn] [Vnn] [Vn1,V0n] (Member) [V01,Vnn] [] [Vn1,V0n] (Max Subs Susp) [V0n,Vn0] [V00,V01,V0n,Vn0,Vn1,Vnn] [] (Suplist) [V0n,Vn0] [V01,V0n,Vn0,Vn1,Vnn] [V00] (Sublist2) [V0n,Vn0] [V0n,Vn0,Vn1,Vnn] [V00] (Member) [V0n,Vn0] [Vn0,Vn1,Vnn] [V00] (Member) [V0n,Vn0] [Vn1,Vnn] [V00] (Sublist2) [V0n,Vn0] [Vnn] [V00] (Suplist) [V0n,Vn0] [] [Vnn,V00] (Max Subs Susp) [V0n,Vn1] [V00,V01,V0n,Vn0,Vn1,Vnn] [] (Sublist2) [V0n,Vn1] [V01,V0n,Vn0,Vn1,Vnn] [] (Suplist) [V0n,Vn1] [V0n,Vn0,Vn1,Vnn] [V01] (Member) [V0n,Vn1] [Vn0,Vn1,Vnn] [V01] (Sublist2) [V0n,Vn1] [Vn1,Vnn] [V01] (Member) [V0n,Vn1] [Vnn] [V01] (Suplist) [V0n,Vn1] [] [Vnn,V01] (Max Subs Susp) (Contd. in

Implementation

One application of E-anti-unification is for generating lemma candidates in equational induction proofs. In this section, we follow [START_REF] Heinz | Anti-Unifikation modulo Gleichungstheorie und deren Anwendung zur Lemmagenerierung[END_REF] in showing how to generate candidates that are applicable in a given blocked proof situation. The algorithm presented here takes as input a term t and a list [σ 1 , . . . , σ n] of ground substitutions, and generates as output the sort s r of all terms t such that σ i t = E σ i t for i = 1, . . . , n. In other words, each generated t equals the given t at least on all given example instances. The appropriate selection of the σ i is discussed in Sect. 6.3 below.

Note that for each universally valid equation t = E t , the right-hand side t will be a member of L(s r), and that for each non-universally valid equation t = E t , t can be excluded from s r by adding a "counter-example instance" σ with σ t

= E σ t to [σ 1 , . . . , σ n].
The algorithm first computes the simultaneous syntactical anti-unification of all example instances

t l := σ 1 t . . . σ n t.
Usually, t l is a variant of t, cf. Sect. 6.3. Next, we compute the sort of all E-anti-unifiers of example instances

s r := rsg V (vars(t l), [σ 1 t, . . . , σ n t]).
For each t r ∈ L(s r), the equation t l = t r is then a lemma candidate. Note that using rsg V ensures that vars(t r) ⊂ vars(t l), thus excluding nonsense candidates like (x 1 + x 2) + x 3 = x 4 + x 5 . In order to additionally restrict s r to terms in normal form, we may define the sort s N F of all terms in normal form (see Sect. 6.2 below) and intersect s r with s N F . This will exclude candidates such as (x 1 + x 2) + x 3 = x 1 + (x 2 + (x 3 + 0)).

Filter Sorts

In order to restrict the output of lemma generation or other applications to make it satisfy certain additional criteria, we may intersect the result sort of E-anti-unification with appropriate filter sorts.

The definition and construction of these filter sorts is described below.

-The top sort s T OP of all valid terms at all depends on the variables that have been introduced during E-anti-unification. Each such variable must be treated as a nullary function symbol. Let V be the set of all variables occurring in any sort definition; then

s T OP . = x∈V x | f ∈F f (s T OP , . . . , s T OP).
-Provided all term-rewrite rules of the given background equational theory have linear left-hand sides, we can compute the sort s RED of all reducible terms. Let l 1 , . . . , l n be the left-hand sides; let

L i := {x ← s T OP | x ∈ vars(l i)} (l i)
be the sorts obtained by replacing every variable by s T OP . L i contains all terms where l i matches at the root. Define the set of all reducible terms by

s RED . = n i=1 L i | f ∈F f (s RED , s T OP , . . . , s T OP) | . . . | f (s T OP , . . . , s T OP , s RED).
-Since our sorts are closed wrt. relative complements, the sort of irreducible terms can simply be computed by s N F := s T OP \ s RED .

-If there are nonlinear redices, the set T RED of reducible terms as well as the set T N F of irreducible terms may no longer be a regular tree language and may thus not be representable by our sorts, cf. e.g. [START_REF] Hofbauer | Linearizing term rewriting systems using test sets[END_REF][START_REF] Comon | Equational formulas in order-sorted algebras[END_REF]. However, by omitting all nonlinear left-hand sides, we can achieve L(s RED) ⊂ T RED , and T N F ⊂ L(s N F). Conversely, by replacing each nonlinear redex with a linear anti-instance, we get T RED ⊂ L(s RED) and L(s N F) ⊂ T N F . -For every finite set of variables V ⊂ W , we can compute the sort S W V of all terms t such that V ⊂ vars(t) ⊂ W . Let A be the set of all occurring arities; for any a ∈ A, let parts(V, a) := { P 1 , . . . , P a | P 1 ∪ . . . ∪ P a = V, ∀i, j i = j → P i ∩ P j = {}} denote the set of all partitions of the set V into a disjoint subsets; let parts(V, 0) = {}. Define

s W {} . = x∈W x | f ∈F f (s W {} , . . . , s W {}), s W {v} . = v | f ∈F ,ar(f) 1 f (s W {v} , s W {} , . . . , s W {}) | . . . | f (s W {} , . . . , s W {} , s W {v}), s W V . = a∈A f ∈F ,ar(f)=a P1,...,Pa ∈parts(V,a) f (s W P1 , . . . , s W Pa).
Fig. 37 shows an example for , and so on. Note that filtering with s V {} can be avoided by computing with rsg V instead of rsg, which is also much faster. However, for V = {} the filter sorts s W V provide a means of ensuring that each solution term contains at least all variables from a given set V .

F = {0, s, +}, V = {v 1 , v 2 } and W = {v 1 , v 2 , v 3 , v 4 },

Selection of Ground Instances

As shown in Sect. 6.1, our lemma-generation algorithm needs some ground instances as input.

Regarding their selection, we have the following requirements: Let v 1 , . . . , v n be the variables occurring in the given left-hand side term t. A ground instance is defined by an n-tuple t 1 , . . . , t n , viz.

{v 1 ← t 1 , . . . , v n ← t n } (t). Similarly, a matrix G =     t 11 . . . t 1n t m1 . . . t mn    
defines m ground instances of t, viz. one for each row. We have the following requirements with respect to G:

1. In each column there occur two terms starting with different function symbols. 2. No two columns are identical.

3.

In each column at least one "non-trivial" value occurs (e.g. ∈ {0, 1}, ∈ {[], [a]}). 4. There are not too many rows. 5. No two rows are identical. 6. The t ij are not too large values.

Requirements 1. and 2. ensure that the syntactical anti-unification of all m ground instances yields a variant of t; 3. enhances the quality of results; 4. to 6. are designed to obtain small runtimes. Fig. 20 gives an impression of the size and number of ground instances that can currently be handled by our implementation. Note that by reimplementing in C and using up-to-date hardware, the runtimes could be improved by about one order of magnitude.

By "quality of results" we mean -informally -the ratio of "desired" terms to overall enumerated terms, weighted somehow by order of appearance. In other words, the earlier a desired term appears, the higher the quality; and the more desired terms appear, the higher the quality. Which terms are considered to be "desired" depends on the application; e.g. in lemma generation, t r is desired if the equation t l = t r is universally valid. Since, in general, infinitely many terms are contained in the result sort, a formal measure of quality can be defined e.g. by the expression q := ∞ i=1 d i • δ i , where d i = 1 if the i-th enumerated term belongs to the desired terms, d i = 0 else, and 0 < δ < 1 is some real number. We then always have 0 q δ 1-δ . Currently, the example ground instances still have to be provided manually. When automating this process, Requirements 1., 2., and 5. are easy to satisfy as they are precisely defined. Requirement 3. would call for special knowledge about the equational theory which is not generally available. We propose dropping this requirement which is vague anyway, and enhancing the results' quality by adding more instances (i.e. rows), maintaining, however, a balance wrt. the contradicting Requirement 4. On a similarly informal level, Requirement 3. usually contradicts Requirement 6., since, for example, the smallest terms are the nullary function symbols which mostly exhibit special behavior wrt. equationally defined functions like +, * , app and others.

The more the algorithms speeds can be improved, the less critical the selection of appropriate ground examples becomes.

Results and Runtimes

Figure 38 shows some generated lemmas together with the required runtimes -cf. also Sect. 3.6. The column "T" shows the background equational theory -cf. Fig. 3. The left-hand side of the equation in the column "Law" was input to the algorithm; the right-hand side was generated; note, for example, the difference between lines 23 and 24. Column "Rhs" indicates the normal forms of the left-hand side's ground instances. This is considered a measure of the size of the input sorts to be anti-unified. In lines 12 to 24, ε stands for the empty list [], while ab, for example, stands for the list [a, b]. Column "Nr" indicates the number of terms from the result sort that were enumerated before the desired right-hand side appeared. Columns "A", "I", and "E" show the runtime for anti-unification, intersecting with left-hand side's variables sort (left empty if rsg V is used), and enumeration, respectively. Column "Σ" shows the total runtime. Since the time resolution was 5 seconds, shorter runtimes appear as "0". The rightmost column indicates which technical optimizations have been switched on -cf. Fig. 15.

As an example, in line 1, the algorithm was provided with the following instances of the left-handside term v1 + (v2 + v3):

1 + (0 + 0) = 1, 0 + (1 + 0) = 1, 2 + (0 + 1) = 3.
It thus had to anti-unify the equivalence classes of suc(0), suc(0), and suc(suc(suc(0))) wrt. the given background theory consisting of the four equations defining + and * . Anti-Unification took 35 seconds; intersecting the sort of all E-generalizations with the sort of all terms in variables v1, v2, v3 took another 55 seconds, and enumerating the result sort took 10 seconds until the desired right hand side v1 + (v2 + v3) appeared.

As can be seen from a comparison of lines 7 and 8, for example, there is a trade-off effect between runtime and the quality of the result which can be controlled by the number and size of input sorts. 7 Series Guessing

T Law Rhs Nr A I E Σ 1 v1 + v2 + v3 = v1 + (v2 + v3) 1,

Implementation

A second application of E-anti-unification is the computation of possible continuations of term sequences, wellknown from intelligence tests. In this section, we discuss a corresponding algorithm. Given a list of terms [t n , . . . , t 1] and an example count k n, the algorithm described below generates the sort s r of all its possible formation laws wrt. a given equational background theory. Each formation-law term t ∈ s r computes each list member beyond n -k from its predecessors, using only functions of the equational background theory. Note that for technical reasons we reverse the usual list order, i.e. to compute formation laws of the quadratic numbers 0, 1, 4, 9, . . ., we start with the list [suc 9 (0), suc 4 (0), suc(0), 0].

We proceed in a similar way to lemma generation (cf. Sect. 6.1). First, we select the k suffixes of length n -k, . . . , n -1 and annotate each one with its length plus one, i.e. with the rank of the respective successor term within the series. We then syntactically anti-unify these length-annotated suffixes:

[suc n-k+1 (0), t n-k , . . . , t 1] . . . [suc n (0), t n-1 , . . . , t k , t k-1 , . . . , t 1] t l = [suc n-k+1 (v 0...k-1), t n-k...n-1 , . . . , t 1...k , t]
where t i...j = t i . . . t j , and t

= [] [t 1] . . . [t k-1 , . . . , t 1].
We compute the sort of all E-anti-unifiers s r := rsg V (vars(t l), [t n-k+1 , . . . , t n]). Each t r ∈ L(s r) can be interpreted as a series-formation law: applying the term-rewriting rule t l t r to a length-annotated suffix [suc i (0), t i , . . . , t 1] will result in the next series element t i+1 , for n -k i < n. As in Sect. 6.1, using rsg V ensures that vars(t r) ⊂ vars(t l). By intersecting s r with s N F , we can additionally restrict it to terms in normal form. Fig. 39 gives an example for n = 4 and k = 3.

Note that t l is not usually a list of variables, but it contains function symbols. Consequently, the terms from s r are more complicated than is intuitively expected; e.g. in the example in Fig. 39, the result term considered is suc(v 1) * suc(v 1), whereas the usual way would be to give the series-construction law as v * v. Alternatively, one might provide the rsg V call directly with V = {ϕ(suc n-k+1 (0), ..., suc n (0)), ϕ(t n-k , ..., t n-1), . . . , ϕ(t 1 , ..., t k), ϕ([], ..., [t k-1 , ..., t 1])}, thus intentionally over-generalizing. This might require some changes in the grouping algorithm from Sect. 3.5. Moreover, Lemma 14 is no longer valid.

Results and Runtimes

Figure 40 shows some series laws that have been guessed together with the required runtime. Columns "T", "Nr", "A", "E", "Σ" and the rightmost one are as in Fig. 38. The column "Series" shows the series given to the algorithm; the column "L" shows the number k of example suffixes, i.e. the number of anti-unified input sorts. The column "Law" shows the law that is expected to be generated; v 1 denotes the previous member of series, v 2 the pre-previous, and so on; m denotes the rank within the series. Using the notions from Sect. 7.2, we have v 1 = t n-k...n-1 , v 2 = t n-k-1...n-2 , . . . , and m = suc n-k+1 (v 0...k-1). Columns "D" and "N" show the runtimes for computing sort depths (cf. Sect. 4), and for intersecting with the normal forms' sort (cf. Sect. 6.2), respectively. In lines 1 to 9, the enumeration algorithm was restricted to output only terms in normal form. However, this contradicted the technical optimization obtained by using sort depths (cf. Sect. 4). Therefore, in lines 10 to 23, we explicitly intersected the sort of all generalizations with the sort of all normal forms, dropping the normal-form restriction from the enumeration algorithm. The latter method Given the series 0, 1, 4, 9, . . ., and k = 3

[suc 3 (0), suc 4 (0), suc(0), 0] suc 9 (0) suc 3 (0) * suc 3 (0) [suc 2 (0), suc(0), 0] suc 4 (0) suc 2 (0) * suc 2 (0) [suc(0), 0] suc(0) suc(0) * suc(0) [suc(v1), v2 | v3] L(s1,4,9) suc(v1) * suc(v1)
For example, we have suc(v1) * suc(v1) ∈ L(s1,4,9); the corresponding rewrite rule is:

[suc(v1), v2 | v3] suc(v1) * suc(v1) This rule rewrites: [suc(0), 0] suc(0) [suc 2 (0), suc(0), 0] suc 4 (0) [suc 3 (0), suc 4 (0), suc(0), 0] suc 9 (0) [suc 4 (0),
suc 9 (0), suc 4 (0), suc(0), 0] suc 16 (0) . . . Fig. 39. Example: Series Guessing makes sort enumeration dead-end-free, and is thus faster for all but very small examples -cf. lines 9 and 10. An ∞ in column "Nr" indicates that the desired law has not been enumerated among, say, the first 100 terms. In this case, the column "Σ" shows a ">". Since t l is not usually a list of variables, but contains function symbols, m, v 1 , v 2 , . . . from Fig. 40 do, in fact, stand for proper terms. For example, in line 23, we have v 1 = suc 2 (x), and the enumerated law, viz. suc(x), has been abbreviated to p(v 1), the predecessor of v 1 . The case is similar in line 21 -cf. also Fig. 42. Some remarks on lines 13 to 16: The desired solution if (ev(suc(m)), suc 3 (m), suc(0)) has the depth 5. Hence, all solutions of depth 4 are enumerated before the desired one, the first being ev(x 1) * (x 3 + x) + if (if (x, x 2 , x 1), suc(x 3), ev(x)), which is, in fact, considered a "correct" solution -see Fig. 41, where each column corresponds to a subterm of the solution (the marked column corresponds to the whole term), irrelevant numbers are printed in small type. The solution ev(x 1) * suc(x 2) + suc(ev(x 1)) is shorter and of the same depth, but not in normal form. The shortest solution seems to be suc(ev(x 1) * suc 2 (x 2)), which is deeper and not in normal form. If the depth measure of the enumeration algorithm is changed such that unfolding a sort definition is counted only if the head symbol of the right-hand side is not in {0, s}, the desired solution is of depth 2 and is thus enumerated first. Some remarks on line 18: While the function ev(•) allows one to distinguish series members with even and odd rank, no function is available in background theory (5) to distinguish ranks 0, 1, and 2 mod. 3. For this reason, the series in line 18 was expected by the authors to have no solution at all when given to the algorithm. Note that the trivial solution v 3 was prevented by setting L = 4, thus forcing the algorithm to compute the first 1 from the two preceding 0's. However, the algorithm found the solution ev(v 1 + v 2), which is "correct". This seems to indicate a possible strength of the algorithm: building series laws from a well-defined limited set of functions rather than predicting the next series member(s).

Figure 42 gives some enumerated series laws. The column "T" indicates the background theory used. In the column "Series", the semicolon indicates the number of example suffixes: one for each series member to the right of the semicolon. Column "D" shows the depth up to which the shown laws appeared. An "∞" means that the result sort is finite and is given completely in the column "Laws"; if (ev(m), m, 1) 4 13. 125 25 170 0 320 bdgs v 17 5 0, 0, 1, 1, 0, 0, 1, 1 ev(v2) 5 1. 500 155 1500 0 2155 dgs v 18 5 0, 0, 1, 0, 0, 1 ev(v1 + v2) 4 1. 75 15 210 0 300 dgs v 19 5 0, 1, 3, 7 suc(v1 + v1) 3 1. 30 5 95 0 130 dgs v 20 5 1, 2, 2, 3, 3, 3, 4, 4, 4,

+ * if ev + (if s ev) (x1) (x3 x) (x, x2 , x1), (x3), (x) 0 1 0 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 2 1 2 1 4 2 1 1 1 0 2 1 0 1 0 3 0 2 4 2 1 1 0 2 0 3 3 2 1 2 1 0 4 1 4 3 6 2 3 3 3 0 2 1 0 3
0 5 0 4 8 4 1 1 0 4 0 5 5 4 1 4 1 0 6 1 6 5 8 2 5 5 5 0 2 1 0 5 0 7 0 6 12 6 1 1 0 6 0 7 7 6 1 6 1 0 8 1 8 7 10 2 7 7 7 0 2 1 4 0,1,2,1;4,1,6 ∞ suc 4 (x1):suc(x2) Note that in lines 1 to 4, and 17 to 18, the result sort is finite, and precise statements can be made about the series and their possible continuations. For example, from line 3 we can conclude that there are only two ways to build the series 0, 2, 4, 6 from functions + and * . From line 4 we can conclude that there is no way to build 0, 1, 2, 1, 4, 1, 6 from these functions.

Other Potential Applications

In this section, we look at some other potential applications of E-anti-unification which we have considered but not implemented.

Divergence Handling in Knuth-Bendix Completion

The Knuth-Bendix completion procedure is an important tool in equational reasoning. However, its applicability is limited by the possibility of its generating an infinite sequence of term-rewriting rules. Kirchner [START_REF] Kirchner | Schematization of infinite sets of rewrite rules. Application to the divergence of completion processes[END_REF][START_REF] Kirchner | Schematization of infinite sets of rewrite rules generated by divergent completion processes[END_REF] proposes schematizing such a sequence using meta variables; Avenhaus [START_REF] Avenhaus | Transforming infinite rewrite systems into finite rewrite systems by embedding techniques[END_REF] proposes consistently introducing new function symbols and new equations to achieve termination of the Knuth-Bendix completion.

In any approach, it is necessary to recognize schemata in rule or term sequences. Kirchner proposes using generalization modulo an equivalence relation to find useful schemata candidates, but has not developed any approaches to anti-unification modulo equational theories. Nevertheless, useful equational candidates could be suggested by using the mechanisms for anti-unification presented in this paper.

Below, we sketch a possible approach for finding useful schemas using Exm. 2.1 from [START_REF] Kirchner | Schematization of infinite sets of rewrite rules generated by divergent completion processes[END_REF]. Consider the rewrite rules shown in Fig. 43 axiomatizing the "signed binary tree theory". From these rules, the completion procedure generates two infinite families of rules shown in Fig. 44. The rightmost column shows the origin of each rule. For example, Rule 5 arose from superimposing Rule 4 at position 1 on Rule 2 at the root, denoted by ε. Kirchner states in Example 2.3 that the first and second family of rules can be schematized by the meta rule

∀X, Y f (-X, f (X, Y)) Y and ∀X, Y f (f (Y, X), -X)
Y , respectively, modulo the equational theory consisting of Rules 1 and 2 from Fig. 43. We now focus on the first family and discuss the problems that arise when we try to reduce the detection of the first meta rule to a series-guessing task like the ones described in Sect. 7.1.

1 --x x 2 -f (x, y) f (-y, -x) 3 f (f (y, x), -x) y 4 f (-x, f (x, y)) y
Finding appropriate subsequences. A fair completion strategy will not produce the rules in the order shown in Fig. 44; rather, it will produce a sequence of rules interleaving both rule families. Thus we are left with the task of detecting subsequences that may obey common schemes. To achieve this, we propose applying the series-guessing algorithm for the empty equational theory to the origin information.

Each rule generated by the completion process can be assigned an "origin term" constructed from the numbers of the input rules as constants and a 4-ary operator o (for "overlay"). For example, Rules 4, 5, 9, and 10 from Figs. [suc(suc we simply took the theory given in [START_REF] Kirchner | Schematization of infinite sets of rewrite rules generated by divergent completion processes[END_REF], consisting of Rules 1 and 2 from Fig. 43. In general, though, it is not at all clear which background theory is appropriate. In Kirchner's examples, it is always taken from the input rules. In many other examples, it simply defines the repeated application of certain functions; e.g., for the completion example3 in Fig. 48, it is sufficient to define b i (x) by b 0 (x) = x and b s(i) (x) = b(b i (x)), and to define d i (x) similarly. This is a special case of ω terms which have been investigated to deal with infinite sets of terms occurring in Knuth-Bendix completion or elsewhere [START_REF] Comon | On unification of terms with integer exponents[END_REF]. It seems to be a good default measure to use a theory of appropriate ω terms as the equational background theory.

(v 1)), o(v 2 , v 3 .1, 2, ε), v 2 |v 4] o(o(v 2 , v 3 .1, 2, ε), v 3 .1.1, 2, ε). If, by way of a negative example, X Y . = X Y f (X, Y) . = f (X, Y) | --f (X, Y) | -f (-Y , -X) -f (X, Y) . = f (-Y, -X) --X . = X -X . = -X | ---X X . = X | --X
Once the background theory itself is fixed, the next problem is how to find an appropriate regular tree grammar for the equivalence classes modulo this theory. In the above example, this was the most time-consuming and error-prone task. Figure 47 shows the tree-grammar scheme (cf. Sect. 9) we eventually came up with; the rules are priorized PROLOG facts. Note that the approach of [START_REF] Emmelmann | Codeselektion mit regulr gesteuerter Termersetzung[END_REF] mentioned in Sect. 3.1 is not applicable, since it requires a confluent and noetherian term-rewriting system, which is precisely what the completion process itself is about to build. Except for the cases where the background theory is based on ω terms, a satisfactory approach to automatically obtaining a tree grammar for the equivalence classes has yet to be found.

Considering equations in anti-unifying length-annotated suffixes. A closer look at the above completion example reveals a flaw in our approach to series guessing as presented in Sect. 7.1. Consider the variables v 2 and v 3 in Fig. 46. Their pre-images under ϕ are inverse to each other modulo the background equational theory. Hence, it was desirable to establish the relation v 2 = -v 3 , and to delete v 3 from the set V of variables that may appear in a series law, thus avoiding certain redundant series laws. In fact, the set of enumerated laws for k = 2 collapses into the singleton set

{f (f (f (v 2 , -x(suc 2 (v 1))), -x(suc 3 (v 1))), f (f (x(suc 3 (v 1)), f (x(suc 2 (v 1)), -v 2)), y)) y}
modulo the above relation; the case is similar for k = 3. The reason for the appearance of both v 2 and v 3 is that we did not consider the equational background theory when anti-unifying the lengthannotated suffixes. However, by simply E-anti-unifying them using the algorithm from Sect. 3.2 / 3.3, we would still get both v 2 and v 3 in the variables set V .

Hoare Invariants

When verifying imperative programs, a still unresolved problem is how to generate loop invariants automatically. We show below that E-anti-unification could be used for this purpose.

Consider the following imperative program: d(d(d(d(d(f (x))))))) . . . x := 0; for i:=0 by 1 to n do x:=x+2*i done By anti-unifying sample values of i, x for a couple of iterations, e.g. 0, 0 , 1, 1 , 2, 4 , 3, 9 modulo an appropriate theory (which should define at least + and *), we obtain the candidate x = i*i for the loop invariant. Note that 0 <= i <= n cannot be obtained since it is not an equation.

Reengineering of Functional Programs

When programming software, it is often difficult to attain an adequate level of abstraction at the first try. Consequently, one often has different procedures that do almost -but not quite -the same thing. E-anti-unification could potentially help in reengineering such programs by computing a most specific generalization. By way of an example, consider a functional program where two almost identical procedures f 1 (•) and f 2 (•) are defined:

f 1 (x) := F [x + 1] f 2 (x) := F [2 * x] g(x) := G[f 1 (x 1) , f 2 (x 2)]
where F [•] denotes the possibly complex body expression common to both procedures; the third line indicates calls to f 1 and f 2 in the body G[•] of another procedure g. Purely syntactic anti-unification of the procedure bodies of f 1 and f 2 yields F [y], leading to the following reengineered program:

f (x, y) := F [y] g(x) := G[f (x 1 , x 1 + 1) , f (x 2 , 2 * x 2)]
Note that the calls to + and * have been moved outward since they are considered to have nothing in common. Using E-anti-unification modulo the theory of + and * , we get a more specific generalization of the bodies, viz. F [a * x + b], leading to a better factorization of the commonalities of f 1 and f 2 :

f (x, a, b) := F [a * x + b] g(x) := G[f (x 1 , 1, 1) , f (x 2 , 2, 0)]
In practice, the literally identical part F [•] of two procedure bodies will usually be small, or even nonexistent. It is thus of great importance to be able to deal with commonalities that are revealed only by applying a background theory about programming language semantics. To the extent that this theory is an equational one and admits regular equivalence classes, our E-anti-unification approach can be employed to detect the commonalities.

Strengthening of Induction Hypotheses

It is well known that sometimes a formula F cannot be proven by induction, while a stronger formula G such that G ⇒ F is provable. The reason is that a stronger formula also provides a stronger induction hypothesis. In inductive theorem proving, it is therefore a common technique to strengthen F if its original proof attempt failed. This is usually done by replacing some constants or terms by variables, or by decoupling different occurrences of the same variable; in other words, by building anti-instances of F . The main problem is not to overgeneralize F such that it is no longer valid.

There are several heuristics known from the literature, e.g. [START_REF] Boyer | A Computational Logic[END_REF][START_REF] Hummel | Generierung von Induktionsformeln und Generalisierung beim automatischen Beweisen mit vollstndiger Induktion[END_REF][START_REF] Bundy | Extensions to the ripplingout tactic for guiding inductive proofs[END_REF]. Manna and Waldinger [MW80] propose using anti-unification, based on the data acquired during the failed original proof attempt, to find the least strengthening of F that has a chance of being proven inductively. However, they failed to notice that their example does in fact need anti-unification modulo an equational theory.

Consider the equational theory and the induction proof attempt shown in Fig. 49. Manna and Waldinger suggest anti-unifying the actual goal with the induction hypothesis if simple rewriting with it does not lead to success. This way, overgeneralization could be avoided, since anti-unification computes the most specific anti-instance of the induction hypothesis that is just general enough to make it applicable. Backtracking to 9., we obtain by E-anti-unification with the induction hypothesis:

rev a(t, [h]) = app(rev(t), [h]) 9. rev a(l, []) = rev(l) = app(rev(l), [])
I.H. (7.), and l = app(l, []) rev a(t , l) = app(rev(t), l) strengthened I.H.

It is well known that the proof succeeds using the strengthened induction hypothesis.

In order to do the E-anti-unification shown above, we need to define equivalence classes of nonground terms as regular tree languages. In our example, we get the grammar scheme shown in Fig. 50.

In the example, it is sufficient to syntactically anti-unify the left-hand sides, and to provide the variable set {t , l } where t = ϕ(t, l) and l = ϕ([h], []) to rsg V of the right-hand sides, viz. rsg V ({t , l }, app(rev(t), [h]), rev(l)).

1.

app([], l) = l 2. app([h | t], l) = [h | app(t, l)] 3. rev([]) = [] 4. rev([h | t]) = app(rev(t), [h]) 5. rev a([], l) = l 6. rev a([h | t], l) = rev a(t, [h] | l)
Equations 1. to 4. are given as background theory, defining append and reverse; equations 5. and 6. are the usual optimized version of reverse using an accumulator. The goal is to show the correctness of rev a, i.e. to show 7.

rev a(l, []) = rev(l)

We try a proof by induction on l The desired solution is the one enumerated first, and it is found in 1 second user time. We list all enumerated terms at depth level 3, which is the minimum level of the result sort:

; l = [] is trivial; in case l = [h | t],
(A) . = rev(A) | app([], rev(A)) | app(rev(A), []) app(A, B) . = app(A, B) | app(app(A, B), []) | app([], app(A, B)) | rev(rev(app(A, B))) A . = A | app([], A) | app(A, []) | rev(rev(A)) if app(. . .) = A = rev(. . .)
app(rev(t), l), app(rev(t), rev(l)), app(rev(t), app(l , [])), app(rev(t), app([], l)).

Note that the second term is not a correct solution, the reason being that instances of l , viz. [h] and [], are both "trivial" values in the sense of requirement 3. from Sect. 6.3, i.e. they satisfy rev(x) = x.

The third and fourth solution are correct, but not in normal form; they would have been filtered out by a normal form filter.

Dynamic Sort Generation

For many background equational theories, some of the equivalence classes follow a common schema. For example, consider Theory (3) from Fig. 3, defining append and reverse of lists. The equivalence class of any list [A, B] can be defined by

[A, B] . = [A, B] | app([A, B], []) | app([A], [B]) | app([], [A, B]) | rev([B, A]),
irrespective of the value of A and B. We thus get a schema of sort definitions abbreviating any of its instances. This can be implemented in PROLOG by a corresponding fact containing A and B as PROLOG variables.

Moreover, we may even use PROLOG rules to dynamically generate sort definitions as needed. For example, the schema shown in Fig. 51 will generate the equivalence class of each natural number modulo the theory of (+). The predicate all sums(I, J, Sums) computes a sort disjunction Theorem 21. If T / E is finite, the set of all universally valid equations in one variable x is a regular tree language.

Proof. Let ϕ be such that ϕ(b) = x for some b ∈ B. By Cor. 17, a i is a regular tree language for each a ∈ T . Define s valid . = a∈A rsg V ({x}, a) : rsg V ({x}, a). Let t 1 , t 2 ∈ T with vars(t 1) ∪ vars(t 2) ⊂ {x}. Then,

t 1 : t 2 is universally valid ⇔ exists a ∈ T N such that t 1 , t 2 ∈ L(rsg V ({x}, a)) by Lemma 20 ⇔ exists a ∈ A such that (t 1 : t 2) ∈ L(rsg V ({x}, a) : rsg V ({x}, a)) ⇔ (t 1 : t 2) ∈ L(s valid) Example 22.
Consider (IN mod 2) with +. We have, letting v 01 = ϕ(0, 1), and abbreviating s 0 := 0, s 1 := 1, and

s ij := rsg V ({v 01 }, s i , s j): s 0 . = 0 | s 0 + s 0 | s 1 + s 1 s 1 . = 1 | s 0 + s 1 | s 1 + s 0 s 00 . = 0 |
B :=            b 1,1 . . . b 1,N n b n,1 . . . b n,N n     ∀t 1 , . . . , t n ∈ T ∃j ∈ {1, . . . , N n } ∀i ∈ {1, . . . , n} b i,j = E t i        B is non-empty since (T / E) n is finite, viz. of cardinality N n .
Intuitively, for each matrix b ∈ B there is a one-to-one correspondence between its column vectors and the elements of (T / E) n .

In this section, let

x 1 := ϕ(b 1,1 , . . . , b 1,N n), . . . , x n := ϕ(b n,1 , . . . , b n,N n) for some b ∈ B, and let V := {x 1 , . . . , x n }. Let A := {a ∈ (T / E) (N n) | L(rsg V ({x 1 , . . . , x n }, a)) = {}}.
Lemma 24. Let t 1 , t 2 ∈ T with vars(t 1) ∪ vars(t 2) ⊂ V . The equation t 1 : t 2 is universally valid iff there exists an a ∈ A such that t 1 , t 2 ∈ L(rsg V ({x 1 , . . . , x n }, a)).

Proof. "⇒":

Consider the σ i from Lemma 14 in Sect. 3.4. Define a i := σ i t 1 for i = 1, . . . , N n ; then t 1 ∈ L(rsg V ({x 1 , . . . , x n }, a)) by Lemma 14; similarly, σ i t 2 = E σ i t 1 = a i for all i implies t 2 ∈ L(rsg V ({x 1 , . . . , x n }, a)).

"⇐": Let t 1 , t 2 ∈ L(rsg V ({x 1 , . . . , x n }, a)); consider an arbitrary substitution {x 1 ← t 1 , . . . , x n ← t n }. We have

σ j x i = σ j ϕ(b i,1 , . . . , b i,N n) Def. x i = b i,j
Def. σ j = {x 1 ← b 1,j , . . . , x n ← b n,j } (x i) By induction on t, it follows that σ j t = {x 1 ← b 1,j , . . . , x n ← b n,j } (t) for all t ∈ T with vars(t) ⊂ {x 1 , . . . , x n }. Thus:

{x 1 ← t 1 , . . . , x n ← t n } (t 1) = E {x 1 ← b 1,j , . . . , x n ← b n,j } (t 1) since ∃j ∈ {1, . . . , N n } ∀i ∈ {1, . . . , n} b i,j = E t i by Def. 23 = σ j t 1 as shown above = E a j by Lemma 14, since t 1 ∈ L(rsg V ({x 1 , . . . , x n }, a)) = E {x 1 ← t 1 , . . . , x n ← t n } (t 2)
similarly Hence, the equation t 1 : t 2 is universally valid.

Theorem 25. If T / E is finite, the set T H n (T / E) of all universally valid equations in n variables is a regular tree language for each n.

Proof. Let ϕ be such that ϕ(b 1,1 , . . . , b 1,N n) = x 1 , . . . , ϕ(b n,1 , . . . , b n,N n) = x n for some b ∈ B; let V := {x 1 , . . . , x n }. By Cor. 17, a i is a regular tree language for each a ∈ T . Define s valid . = a∈A rsg V ({x 1 , . . . , x n }, a) : rsg V ({x 1 , . . . , x n }, a). Let t 1 , t 2 ∈ T with vars(t 1) ∪ vars(t 2) ⊂ V . Then t 1 : t 2 universally valid ⇔ exists a ∈ A such that t 1 , t 2 ∈ L(rsg V ({x 1 , . . . , x n }, a)) by Lemma 24 ⇔ exists a ∈ A such that (t 1 : t 2) ∈ L(rsg V ({x 1 , . . . , x n }, a) : rsg V ({x 1 , . . . , x n }, a)) ⇔ (t 1 : t 2) ∈ L(s valid)
Example 26. Consider again (IN mod 2) with +. Let v 0011 = ϕ(0, 0, 1, 1), v 0101 = ϕ(0, 1, 0, 1), V = {v 0011 , v 0101 }, and abbreviate s 0 := 0, s 1 := 1, and s ijkl := rsg V ({v 0011 , v 0101 }, s i , s j , s k , s l). The sort definitions are shown in Fig. 52; the sorts s 0001 , s 0010 , s 0100 , s 0111 , s 1000 , s 1011 , s 1101 , and s 1110 are all empty and have been omitted in the definition of s valid . For example, the commutativity law v 0011 + v 0101 : v 0101 + v 0011 is contained in L(s 0110 : s 0110).

Corollary 27. If T / E is finite, for each finite V 1 ⊂ V 2 ⊂ V and V 3 ⊂ V 4 ⊂ V, the set of all universally valid equations t 1 : t 2 such that V 1 ⊂ vars(t 1) ⊂ V 2 and V 3 ⊂ vars(t 2) ⊂ V 4 is a regular tree language.
Proof. Apply Thm. 25 to V := V 2 ∪ V 4 ; using the variable filter sorts s V2 V1 , s V4 V3 from Sect. 6.2, define

s result . = a∈A (rsg V (V, a) ∩ s V2 V1) : (rsg V (V, a) ∩ s V4 V3).
Corollary 28. If T / E is finite and n ∈ IN arbitrary, the set T H n (T / E) of universally valid equations in n variables can be represented as the deductive closure of finitely many equations.

Proof. Using Thm. 25, T H n (T / E) = L(s valid) where a), and V = {x 1 , . . . , x n }. For each a ∈ A, choose some arbitrary normal form nf a ∈ L(rsg V (V, a)). By Cor. 17 and Lemma 15, the sort definition of each a i is in head normal form and refers only to sort names corresponding to some a j . Hence, by construction of rsg V , the sort definition of each rsg V (V, a) is in head normal form and refers only to sort names corresponding to some rsg V (V, a).

s valid . = a∈A rsg V (V, a) : rsg V (V,
. = 0 | s0000 + s0000 | s0011 + s0011 | s0101 + s0101 | s0110 + s0110 | s1001 + s1001 | s1010 + s1010 | s1100 + s1100 | s1111 + s1111 s0011 . = v0011 | s0000 + s0011 | s0011 + s0000 | s0101 + s0110 | s0110 + s0101 | s1001 + s1010 | s1010 + s1001 | s1100 + s1111 | s1111 + s1100 s0101 . = v0101 | s0000 + s0101 | s0011 + s0110 | s0101 + s0000 | s0110 + s0011 | s1001 + s1100 | s1010 + s1111 | s1100 + s1001 | s1111 + s1010 s0110 . = s0000 + s0110 | s0011 + s0101 | s0101 + s0011 | s0110 + s0000 | s1001 + s1111 | s1010 + s1100 | s1100 + s1010 | s1111 + s1001 s1001 . = s0000 + s1001 | s0011 + s1010 | s0101 + s1100 | s0110 + s1111 | s1001 + s0000 | s1010 + s0011 | s1100 + s0101 | s1111 + s0110 s1010 . = s0000 + s1010 | s0011 + s1001 | s0101 + s1111 | s0110 + s1100 | s1001 + s0011 | s1010 + s0000 | s1100 + s0110 | s1111 + s0101 s1100 . = s0000 + s1100 | s0011 + s1111 | s0101 + s1001 | s0110 + s1010 | s1001 + s0101 | s1010 + s0110 | s1100 + s0000 | s1111 + s0011 s1111 . = 1 | s0000 + s1111 | s0011 + s1100 | s0101 + s1010 | s0110 + s1001 | s1001 + s0110 | s1010 + s0101 | s1100 + s0011 | s1111 + s0000 s valid . = s0000 : s0000 | s0011 : s0011 | s0101 : s0101 | s0110 : s0110 | s1001 : s1001 | s1010 : s1010 | s1100 : s1100 | s1111 : s1111
s f f f f . = f | s f f f f ∨ s f f f f | s f ttt ∧ s f f f f | stttt ∧ s f f f f | s f f f f ∧ s f ttt | s f f f f ∧ stttt | s f f f f ∧ s f f f f | s f f f f ∧ s f f f t | s f f f f ∧ s f f tt | s f f f f ∧ s f tf t | s f f f t ∧ s f f f f | s f f tt ∧ s f f f f | s f tf t ∧ s f f f f s f f f t . = s f f f f ∨ s f f f t | s f f f t ∨ s f f f f | s f f f t ∨ s f f f t | s f ttt ∧ s f f f t | stttt ∧ s f f f t | s f f f t ∧ s f ttt | s f f f t ∧ stttt | s f f f t ∧ s f f f t | s f f f t ∧ s f f tt | s f f f t ∧ s f tf t | s f f tt ∧ s f f f t | s f f tt ∧ s f tf t | s f tf t ∧ s f f f t | s f tf t ∧ s f f tt s f f tt . = v f f tt | s f f f f ∨ s f f tt | s f f f t ∨ s f f tt | s f f tt ∨ s f f f f | s f f tt ∨ s f f f t | s f f tt ∨ s f f tt | s f ttt ∧ s f f tt | stttt ∧ s f f tt | s f f tt ∧ s f ttt | s f f tt ∧ stttt | s f f tt ∧ s f f tt s f tf t . = v f tf t | s f f f f ∨ s f tf t | s f f f t ∨ s f tf t | s f tf t ∨ s f f f f | s f tf t ∨ s f f f t | s f tf t ∨ s f tf t | s f ttt ∧ s f tf t | stttt ∧ s f tf t | s f tf t ∧ s f ttt | s f tf t ∧ stttt | s f tf t ∧ s f tf t s f ttt . = s f ttt ∨ s f ttt | s f ttt ∨ s f f f f | s f ttt ∨ s f f f t | s f ttt ∨ s f f tt | s f ttt ∨ s f tf t | s f f f f ∨ s f ttt | s f f f t ∨ s f ttt | s f f tt ∨ s f ttt | s f f tt ∨ s f tf t | s f tf t ∨ s f ttt | s f tf t ∨ s f f tt | s f ttt ∧ s f ttt | s f ttt ∧ stttt | stttt ∧ s f ttt stttt . = t | s f ttt ∨ stttt | stttt ∨ s f ttt | stttt ∨ stttt | stttt ∨ s f f f f | stttt ∨ s f f f t | stttt ∨ s f f tt | stttt ∨ s f tf t | s f f f f ∨ stttt | s f f f t ∨ stttt | s f f tt ∨ stttt | s f tf t ∨ stttt | stttt ∧ stttt Fig. 53. Sort Definitions in Exm. 29 f ∧ x : f y ∧ x : x ∧ y x ∧ y ∧ y : x ∧ y x ∧ y ∧ (x ∨ y) : x ∧ y f ∨ x : x x ∨ x : x x ∨ (x ∧ y) : x t ∧ x : x x ∧ x : x x ∧ (x ∨ y) : x y ∨ x : x ∨ y x ∨ y ∨ y : x ∨ y x ∨ y ∨ (x ∧ y) : x ∨ y t ∨ x : t
For a ∈ A, let rsg V (V, a) . = m i=1 f i (rsg V (V, a i1), . . . , rsg V (V, a ini)) for some f i , a ij . Define T H a := {f i (nf ai1 , . . . , nf ain i) : nf a | i = 1, . . . , m}. Define T H := a∈A T H a . Let t ∈ L(rsg V (V, a)
) for some a ∈ A; we show by induction on t that the equation t : nf a is a deductive consequence of T H. Consider the alternative in the sort definition of rsg V (V, a) that leads to t:

-If t = f i (t 1 , . . . , t ni)
, where t j ∈ L(rsg V (V, a ij)), then by induction hypothesis the equations t j : nf aij are deductive consequences of T H. Since (f i (nf ai1 , . . . , nf ain i) : nf a) ∈ T H, we have finished. -If t = f i is a constant or a variable, we immediately have (f i : nf a) ∈ T H.

If we now take an arbitrary equation (t 1 : t 2) ∈ L(s valid), then t 1 , t 2 ∈ L(rsg V (V, a)) for some a ∈ A; the equation is a consequence of t 1 : nf a and t 2 : nf a .

Remark 1. Note that no proper instances of the equations in T H are needed to derive any equation t 1 : t 2 in L(s valid). Hence, if we consider all variables in V as constants and choose nf a to be of minimal size within L(rsg V (V, a)), we obtain a noetherian ground-rewriting system for the set of all universally valid equations in variables from V . Moreover, this rewriting system assigns a unique normal form to each term t that may occur in a universally valid equation, viz.

nf a if t ∈ L(rsg V (V, a)).
Of course, when permitting proper instantiations, we lose these properties, since the commutativity law, for example, could be among the universally valid equations. On the other hand, we may delete equations that are instances of others, thus reducing the number of equations significantly. To find such subsumed equations, an appropriate indexing technique may be used, see e.g. [START_REF] Graf | Path indexing for term retrieval[END_REF][START_REF] Graf | Extended path-indexing[END_REF][START_REF] Graf | Substitution tree indexing[END_REF].

Example 29. Consider Bool = {f, t} with the operations ∧ and ∨:

∧ f t f f f t f t ∨ f t f f t t t t
Computing s valid for n = 2 variables, we obtain the six non-empty sorts shown in Fig. 53. Proceeding as described in the proof of Cor. 28, we obtain 76 equations in T H; 43 of them are instances of others and can therefore be deleted. Of the remaining 33, a further 17 have been manually deleted since they were subsumed modulo commutativity. The remaining equations are given in Fig. 54.

Example 30. Figure 55 shows an axiom system for the equational theory of (IN mod 2) with + in 3 variables. The 105 equations have been extracted from a system of 256 sort definitions 240 of which where empty. Only equations that were syntactically subsumed have been removed (automatically).

Remark 2. In order to estimate the complexity of computing an axiomatization of a finite algebra T /E, observe the following facts. Using an appropriate caching mechanism when computing rsg V (V, a) for all a ∈ A T , we can ensure that rsg V is called exactly once for each such a. If all sort definitions are in head normal form, the cost of one rsg V call without its recursive subcalls is precisely the cost of its grouping algorithm. In Sect. 3.5, we estimated the latter to be

O(N • m • (m + n) • g N),
where N denotes the number of sorts to be anti-unified simultaneously, m is the maximal number of alternatives of a sort definition's right-hand side, n is the number of variables in V , and g is the maximum number of disjuncts of a sort-definition's right-hand side that start with the same function symbol. We have N = N n and n = n, leading to an overall complexity of O((N • g

) (N n) • N n • m • (m + n))
for computing all N (N n) rsg V calls. Transformation of the sort definitions into an axiom system can be done in linear time.

Typed Equational Theories in n Variables

Theorem 25 and Corollaries 27 and 28 can be generalized to typed algebras where different variables may have different -disjoint -domains. We will do this in this section. The definitions given below generalize Def. 23 to n typed variables.

Definition 31.

Let T Y be a finite set of types. Assume each x ∈ V has a fixed type type(x) ∈ T Y such that for each T ∈ T Y there are infinitely many x ∈ V with type(x) = T . Assume each f ∈ F has a fixed signature f : T 1 × . . . × T n → T where T 1 , . . . , T n , T ∈ T Y.

For T ∈ T Y, let T T be the set of well-typed terms of type T , which is defined as usual. Let T := T ∈T Y T T ; for t ∈ T define type(t) := T if t ∈ T T ; type(t) is uniquely determined since any f has only one signature. A substitution {x 1 ← t 1 , . . . , x n ← t n } is called well-typed if type(x i) = type(t i) for i = 1, . . . , n. Consequently, we always have type(σt) = type(t) for well-typed σ, t.

We call a term of the form t 1 : t 2 a typed (formal) equation if t 1 , t 2 ∈ T T for some T ∈ T Y; in this case we define type(t 1 : t 2) := T . An equation t 1 : t 2 is called universally valid if σt 1 = E σt 2 for every well-typed substitution σ. For x 1 , . . . , x n ∈ V and T ∈ T Y, define T H T x1,...,xn (T / E) as the set of all typed formal equations of type T with variables x 1 , . . . , x n that are universally valid over T / E . Define T H x1,...,xn (T / E) := T ∈T Y T H T x1,...,xn (T / E) as the set of all possible typed formal equations with variables x 1 , . . . , x n that are universally valid over T / E . Note that not all x i must occur in such an equation, but no other variables may occur.

We still assume that T / E is finite; hence T T / E is finite for each T ∈ T Y. We assume in this section that we are given n fixed variables x 1 , . . . , x n of types T 1 , . . . , T n , respectively, such that T Ti / E is of cardinality Lemma 33. Let t 1 , t 2 ∈ T T for some T ∈ T Y with vars(t 1) ∪ vars(t 2) ⊂ V . The equation t 1 : t 2 is universally valid iff there exists an a ∈ A T such that t 1 , t 2 ∈ L(rsg V (V, a)).

Proof. The proof is similar to that of Lemma 24, with the following observations:

"⇒": The σ i from Lemma 14 in Sect. 3.4 are well-typed, since type(x j) = T j = type(b j,i). Moreover, a ∈ A T , since type(a i) = type(σ i t 1) = type(t 1) = T for all i.

"⇐": It is sufficient to consider an arbitrary well-typed substitution {x 1 ← t 1 , . . . , x n ← t n } with type(t i) = type(x i) = T i .

Theorem 34. If T / E is finite, the set T H T x1,...,xn (T / E) of all universally valid equations between terms of type T with variables x 1 , . . . , x n of types T 1 , . . . , T n ∈ T Y is a regular tree language.

Proof. Let ϕ be such that ϕ(b 1,1 , . . . , b 1,N) = x 1 , . . . , ϕ(b n,1 , . . . , b n,N) = x n for some b ∈ B; let V := {x 1 , . . . , x n }. By Cor. 17, a i is a regular tree language for each a ∈ T T , T ∈ T Y. Define s T valid . = a∈A T rsg V (V, a) : rsg V (V, a). Let t 1 , t 2 ∈ T T with vars(t 1) ∪ vars(t 2) ⊂ V . Then,

t 1 : t 2 is universally valid ⇔ exists a ∈ A T such that t 1 , t 2 ∈ L(rsg V (V, a)) by Lemma 33 ⇔ exists a ∈ A T such that (t 1 : t 2) ∈ L(rsg V (V, a) : rsg V (V, a)) ⇔ (t 1 : t 2) ∈ L(s T valid) Corollary 35. If T / E is
. = a∈A T rsg V (V, a) : rsg V (V, a). Let s valid . = T ∈T Y s T valid .
For each a ∈ A T choose some arbitrary normal form nf a ∈ L(rsg V (V, a)). For a ∈ A T , let rsg V (V, a) . = m i=1 f i (rsg V (V, a i1), . . . , rsg V (V, a ini)) be in head normal form. Define T H a := {f i (nf ai1 , . . . , nf ain i) : nf a | i = 1, . . . , m}. Define T H T := a∈A T T H a and T H := T ∈T Y T H T .

By analogy with the proof of Thm. 28, we can show that, for arbitrary t ∈ L(rsg V (V, a)), a ∈ A T , and T ∈ T Y, the equation t : nf a is a deductive consequence of T H. An arbitrary equation (t 1 : t 2) ∈ L(s valid) follows from t 1 : nf a and t 2 : nf a . Note that an arbitrary equation (t 1 : t 2) in L(s T valid) is generally not a deductive consequence of T H T only, since rewritings on subterms, e.g. of t 1 , that are not of type T may be necessary.

Corollary 36. If T / E is finite and n ∈ IN arbitrary, the set of universally valid quantifier-free formulas in n variables is a regular tree language and can be represented as the deductive closure of finitely many axioms that may use the equality predicate. The same holds if the set of admitted junctors is arbitrarily restricted, as long as it contains logical equivalence (↔).

Proof. This follows immediately from Thm. 34 and Cor. 35 by adding a type Bool to T Y, coding each predicate as a function into Bool, and coding logical junctors as functions from Bool to Bool. Equations (t 1 : t 2) of type Bool are read as logical equivalences (t 1 ↔ t 2); all other equations as equality axioms (t 1 = t 2).

Example 37. Consider (IN mod 3) with function (+) and predicates (<) and (=) :

+ 0 1 2 0 0 1 2 1 1 2 0 2 2 0 1 < 0 1 2 0 f t t 1 f f t 2 f f f = 0 1 2 0 t f f 1 f t f 2 f f t ∧ f t f f f t f t ∨ f t f f t t t t
The deductive closure of the formulas given in Fig. 56 yields the set of all valid formulas in one variable x of type IN mod 3 and with ∧ and ∨ (and ↔) as the only logical junctors. Pure ground formulas and formulas that are instances of others have been deleted, as well as variants modulo commutativity or idempotency of ∧ and ∨. Equations of type (IN mod 3) are listed first, followed by equations of type Bool. Note that the former are not redundant; for example, reducing x + 1 = 1 + x to t requires the equations:

x + 1 : 1 + x and 1 + x = 1 + x : t, which has been subsumed by x = x : t.

As another example, the formula x = 0 ∨ x = 1 ∨ x = 2 reduces to t via the equations: (x = 0) : (x < 1), (x = 2) : (1 < x), (1 < x) ∨ (x < 1) : x + x < 2, and (1 = x) ∨ (x + x < 2) : t.

+ . . . + N N n) • g N • N • m • (m + n))
, where m denotes the maximal number of alternatives of a sort definition's right-hand side, and g is the maximum number of disjuncts of a sort definition's right-hand side that start with the same function symbol. Figure 57 shows the runtimes and result statistics for some examples (optimizations "bdgsv" used). Column "Dom" shows the involved domains, "F" shows the functions, "P" the predicates, "J" the junctors, and "V" the number of variables. Columns "S", "A", "M", and "I" show the time for setting-up, anti-unifying, enumerating the minimal terms, and removing the redundant instances, respectively. "> n" means running out of memory after n seconds. Column "Σ" shows the total time; column "Sz" shows the number of non-redundant equations (without manual deletions).

Remark 5. The above results refer to finite algebras only, i.e. models with finite T / E . It remains to be uninvestigated whether, given an arbitrary equational theory, we can find a finite "test set" T test / E ⊂ T / E of ground instances such that an equation is universally valid iff it holds for all instances from the test set.

Fig. 1 .

 1 Fig.1. Anti-Unification Modulo Equational Theory (1) from Fig.3

Fig. 2 .

 2 Fig. 2. Example: Computation of Syntactical Anti-Unification

Fig. 4 .

 4 Fig. 4. Equivalence Classes for Background Theory (5) from Fig.3

 s0

Fig. 5 . 3 Algorithm 11 .

 5311 Fig.5. Equivalence Classes for Background Theory (6) from Fig.3

Fig. 6 .Fig. 7 .

 67 Fig. 6. Rules for calc infs

Fig. 9 .

 9 Fig. 9. Example: Intersection Computation Run (contd.)

0 Fig. 11 .

 011 Fig. 11. Example: Search Tree

Fig. 13 .

 13 Fig. 13. Example: Argument Selection Run

Fig. 16 .

 16 Fig. 16. Measured Improvements of Technical Optimization Groups

Fig. 20 .

 20 Fig. 20. E-Anti-Unification Runtime vs. Size and Number of Sorts

Fig. 22 .

 22 Fig. 22. Example: Sort Depth Computation

Fig. 23 .

 23 Fig. 23. Sort Definition of s0, s1

Fig. 24 .

 24 Fig. 24. Computation of hsg(s0, s1)

Fig. 25 .

 25 Fig. 25. Computation of hsg(s0, s0)

Fig. 30 .

 30 Fig. 30. Generalization of s0 and s1

Fig. 34)Fig. 36 .

 3436 Fig. 33. Intersection Computation for s0, s1 (2. Contin.)

0 |)Fig. 37 .

 037 Fig. 37. Example: Variable Filter Sort

 Fig. 40. Series-Guessing Runtimes

Fig. 42 .

 42 Fig. 42. Some Enumerated Series Laws

Fig. 43 .

 43 Fig. 43. Input Rewrite Rules from Kirchner's Example 2.1

 43 and 44 are represented by the origin terms 4, o(4, ε.1, 2, ε), o(o(4, ε.1, 2, ε), ε.1.1, 2, ε), and o(o(o(4, ε.1, 2, ε), ε.1.1, 2, ε), ε.1.1.1, 2, ε), respectively. Note that the path concatenation operator "." associates to the left. Applying the series-guessing algorithm to this term sequence, and setting, say, the example count k = 2, we obtain one single law, viz.

Fig. 47 .

 47 Fig. 47. Tree-Grammar Scheme for Equivalence Classes in Kirchner's Example 2.1

 (b(b(b(b(e(x))))))) d(d(d(d(d(f (x)))))) 15 a(b(b(b(b(b(b(c(x)))))))) d(d(d(d(d(d(x))))))16a(b(b(b(b(b(b(e(x)))))))) d(

Fig. 48 .

 48 Fig. 48. Divergent Completion Schematizable using ω Terms

Fig. 50 .

 50 Fig. 50. Equivalence Classes of Non-Ground Terms mod. append, reverse

 s0000

Fig. 52 .

 52 Fig. 52. Sort Definitions in Exm. 26

Fig. 54 .

 54 Fig. 54. Equational Theory of Bool with ∧ and ∨

Fig. 55 .

 55 Fig. 55. Equational Theory of (IN mod 2) with +

B

 N i . Let N := N 1 • . . . • N n . Definition 32. Modifying Defs. 19 and 23, define 1 ∈ T T1 , . . . , t n ∈ T Tn ∃j ∈ {1, . . . , N } ∀i ∈ {1, . . . , n} b i,j = E t i is non-empty since T T1 / E × . . . × T Tn / E is finite, viz. of cardinality N . Intuitively, for each matrix b ∈ B there is a one-to-one correspondence between its column vectors and the elements of T T1 / E × . . . × T Tn / E . In this section, let x 1 = ϕ(b 1,1 , . . . , b 1,N), . . . , x n = ϕ(b n,1 , . . . , b n,N) for some b ∈ B, and let V := {x 1 , . . . , x n }. Let A T := {a ∈ (T T / E) N | L(rsg V (V, a)) = {}} for T ∈ T Y.

Remark 3 .

 3 Since (=) and (↔) are required among the predicates and junctors, respectively, Cor. 36 does not apply to the set of universally valid Horn formulas. Remark 4. By analogy with the final remark in Sect. 11.3, we can estimate the complexity of computing all N N 1 + . . . + N N n rsg V calls as O((N N 1

%

 -calc the difference NameSTs of sorts S and Ts, %-OccIn, OccOut is the bin tree of triples ([S|Ts],DiffSTs,NameSTs) %-for which diff already has been called, %-DiffST may be uninstantiated until the completion of the call, %-the meaning of a triple is: NameSTs sortdef DiffSTs, %-S\(T1!...!Tn) = NameSTs, where Ts = [T1,...,Tn] is a sorted list diff_t(S,Ts,STs,OccIn,OccOut) :-trace_enter(diff,S\Ts), diff(S,Ts,STs,OccIn,OccOut), trace_leave(diff,S\Ts=STs). is top diff(_S,Ts,bottom,OccIn,OccIn) :member(top,Ts), !. %-replace sort definitions diff(S,Ts,STs,OccIn,OccOut) :-replace_defs([S|Ts],[SDf|TsDf],OccIn,Occ1,DefSTs,NameSTs,true), !, flatten_op_list(TsDf,(!),TsDf1), sortthat are subsumed by others %: optimize_diff_list2([(a\[b,c])+(c\[]),(a\[b])+(c\[])],[],[(a\b)+c]of diff for sort disjunction case diff_list2([S|Ss],T,[ST|STs],OccIn,OccOut) :-diff_t(S,T,ST,OccIn,Occ1), diff_list2(Ss,T,STs,Occ1,OccOut), !. diff_list2([],_T,[],OccIn,OccIn) trace_enter(inh,inh(T,Occ)), inh(T,Occ,Defs), trace_leave(inh,inh(T,Occ)), !. inh(bottom,_Occ,_Defs) :-!, fail. inh(top,_Occ,_Defs) :-. [Cr|Sorts], I =.. [Cr|Is], inhm_list(Sorts,Is), !. inhm_list([T|Ts],[I|Is]) :-inhm_t(T,I), !, inhm_list(Ts,Is), !. set UsedSet of all sorts that occur directly or % indirectly in the definition of Sort use(Sort,_Defs,UsedSet) :-memo_use(Sort,UsedSet), !. use(Sort,Defs,UsedSet) :-use_t(Sort,[],Defs,UsedSet), assert(memo_use(Sort,UsedSet)),Occ,Defs,UsedSet) :atom(Sort), Sort sortdef SortDef, use_t(SortDef,[Sort|Occ],Defs,UsedSet), !. use(Sort,Occ,Defs,UsedSet) :atom(Sort), member((_,SortDef,Sort),Defs), use_t(SortDef,[Sort|Occ],Defs,UsedSet), !.

 ,I1,Parts,PartsX), !. % succeed once for each atom that is read in, stop if 'end' is entered read_list(into ListV and ListNV, such that each element in ListV % contains prolog variables, and none in ListNV does split_contains_vars([Elem|List],[Elem|ListV],ListNV) :-contains_vars(Elem), split_contains_vars(List,ListV,ListNV), !. split_contains_vars([Elem|List],ListV,[Elem|ListNV]) :-split_contains_vars(List,ListV,ListNV), !. Suffix is a suffix of List %<*backtrackable*> suffix(List,List). suffix(Suffix,[_Head|Tail]) :suffix(Suffix,Tail). %: transpose([[a,b,c],[d,e,f]],[[a,d],[b,e],[c,f]]) transpose(Rows,[Col|Cols]) Elem is in List and remove it from List, yielding ListD %<*backtrackable*> try_delete_from_list(Elem,[Elem|List],List). try_delete_from_list(Elem,[Other|List],[Other|ListD]) :-try_delete_from_list(Elem,List,ListD). % succeed if Elem is member of List, % return the prefix of List, upto, and including Elem try_get_prefix_to([Elem|_List],Elem,[Elem]) :-!. try_get_prefix_to([Head|List],Elem,[Head|Prefix]) :-try_get_prefix_to(List,Elem,Prefix), !. % connect all elements of List by Op yielding Term % eg. unflatten_op([a,b,c],(&),(a&b)&c). unflatten_op([Term],_Op,Term) H|T]) :write(H), nl, write_list(T), !. write_list([]) :nl, !.

 Observe that T ⊂ S, and L(t) = {t} for each t ∈ T . The empty sort is denoted by ⊥. A sort definition of the form s. = f 1 (s 11 , . . . , s 1n1) | . . . | f m (s m1 , . . . , s mnm) is said to be in head normal form, where s, s ij ∈ S N AM E , f i ∈ F ∪ V, and n i = ar(f i). For proof-technical reasons, we define a system of sort definitions as being in normal form if each sort definition has either the form

		s e)	for s n	. = s e
	-s	. = s	

1 | . . . | s n with s, s 1 , . . . , s n ∈ S N AM E , or s . = f (s 1 , . . . , s n) with s, s 1 , . . . , s n ∈ S N AM E , and if no cycles s 1 . = . . . | s 2 | . . . s 2 . = . . . | s 3 | s n-1 . = . . . | s n | . . . s n . = . . . | s 1 | . . .

 : certain combinations of different leading function symbols may lead to a variable in V and thus cannot be ignored; e.g. if v 1 =

	t : s t : s	s	. = s	(Sort Def)
	t : s1 | s2 t : s1			(Disjunction L)
	t : s1 | s2 t : s2			(Disjunction R)
	f (t1, . . . , tn) : f (s1, . . . , sn) t1 : s1 . . . tn : sn			(Function)
	Fig. 10. Simple Algorithm for Testing Sort Membership

V

 Assume that all sort definitions are in head normal form. To each sort name s, associate a PROLOG variable S that will hold the minimal depth of s when the algorithm is finished. For each sort definition s . = f 1 (s 11 , . . . , s 1n1) | . . . | f m (s m1 , . . . , s mnm), introduce an equation S = min(max(S 11 , . . . , S 1n1), . . . , max(S m1 , . . . , S mnm)) + 1 into the set of depth equations. Since max is idempotent, multiple occurrences among its arguments may be replaced by one. Since max is monotonic, max(S i1 , . . . , S ini) can be omitted if S itself occurs among S i1 , . . . , S ini . If any nullary symbol is among f 1 , . . . , f m , the above depth equation simply reads S = 1. Building the set of depth equations is achieved by the PROLOG predicate calc sort depths1 list, which additionally distinguishes solved equations (i.e. ones containing no uninstantiated PROLOG variables) from unsolved ones.

	4.1 Sort Depth Computation		
	⊥ : dp : t fail		(Bottom)
	s : dp : t s : dp-1 : t	s dp mindepth(s) . = s ,	(Sort Def)
	s1 | s2 : dp : t s1 : dp : t		(Disjunction L)
	s1 | s2 : dp : t s2 : dp : t		(Disjunction R)
	f (s1, . . . , sn) : dp : f (t1, . . . , tn) s1 : dp : t1 . . . sn : dp : tn		(Function)
	Fig. 21. Sort Enumeration Rules	

 . . .

	5 1,1;2,3,5	2 suc 2 (x1):suc(x1), suc(x2)	suc 2 (x2 + x1)	suc 2 (x2 * x2 + x1)
	6 1,1,2;3,5,8	2 suc 3 (x1):suc 2 (x2), suc(x1), suc(x3) suc 3 (x3 +(x1 +x1)) suc 3 (x2 + x1)
	7 0;1,3,7	5 suc(x1):x2	suc(x1 + x1 * x1) suc(x2 + x2)
	8 2,3;5,9	2 suc 2 (x1):suc 3 (x2), suc 2 (x1)	suc 5 (x2 * x2)	suc 5 (x2 + x2)
	9 0;1,4	4 suc(x1):x1	suc(x1 + x1 + x1) x1 +x1 +x1 +(suc(x1)-x1)
	10 ;0,1,4	5	x1:x2	x1 * x1	3 * x 3 1 -x 2 1 -x 4 1
	11 0,0,1;0,0,1	3 suc 3 (x1):x2, x3, x4	x4	(x4 + x3) * (x4 -x2)
	12 ;0,1,4	3	x1:	x1 * x1	x1 * if (x1, x1, 0)
	13 1,1;2,3,5	4 suc 2 (x1):suc(x1), suc(x2)	suc(suc(x1 + x2)) suc(if (x1, x1 +x1, suc(0)))
	14 0,0,1,1;0,0,1,1 3 suc 4 (x1):x2, x3, x4, x5	x5	ev(x3)
	15 0,0;1,0,0,1	3 suc 2 (x1):x2, x3	ev(x2 + x3)	ev(if (x2, x1, x3))
	16 0,1,2,1;4,1,6	4 suc 4 (x1):suc(x2), suc(x3), suc(x4), x1 (ev(x1) + if (x1, x4, x3)) * (ev(x1) + (x3 + x1))
	17 abc;bca,cab ∞ suc(x1):[x2, x3, x4]	[x4, x2, x3]	
	18 abab,aba;ab,a ∞ suc 2 (x1):[a, b|x2], [a, b, a|x3]		
	19 baba,aba;ba,a 2 suc 2 (x1):[x2, x3|x4], . . .	il([x3], x4)	[x3|rev(x4)]
	20 a,ba;aba,baba 2 suc 2 (x1):[x2, x3|x4], [x3|x4]	[x3, x2, x3|x4]	il([x3,x3], app(x4,[x2]))

 s 00 + s 00 | s 01 + s 01 | s 10 + s 10 | s 11 + s 11 s 01 . = v 01 | s 00 + s 01 | s 01 + s 00 | s 10 + s 11 | s 11 + s 10 s 10 . = s 00 + s 10 | s 01 + s 11 | s 10 + s 00 | s 11 + s 01 s 11 . = 1 | s 00 + s 11 | s 01 + s 10 | s 10 + s 01 | s 11 + s 00

	s valid	. =	s

00 : s 00 | s 01 : s 01 | s 10 : s 10 | s 11 : s 11 11.3 Equational Theories in n Variables Theorem 21 can be generalized to n variables, which we will do in this section. The definitions given below generalize Defs. 18 and 19 to n variables. Definition 23. Modifying Def. 19, define

 finite and n ∈ IN arbitrary, the set T H x1,...,xn (T / E) of universally valid equations in variables x 1 , . . . , x n of types T 1 , . . . , T n ∈ T Y can be represented as the deductive closure of finitely many equations.

	Proof. The proof is similar to that of Cor. 28:
	Using Thm. 34, T H T x1,...,xn (T / E) = L(s T valid) where s T valid

 make_varlist_of_length(I1,List), !.% generate a list V with the same length as L % but consisting entirely of different prolog variables make_varlist_of_same_length([_E|L],[_|V]) :-make_varlist_of_same_length(L,V), !.

	new_name_list([Prefix|Prefixes],[NewName|NewNames]) :-
	new_name(Prefix,NewName),
	new_name_list(Prefixes,NewNames), !.
	new_name_list([],[]) :-	!.
	new_name_list_list([Prefixes|Prefixess],[NewNames|NewNamess]) :-
	new_name_list(Prefixes,NewNames),
	new_name_list_list(Prefixess,NewNamess), !.
	make_varlist_of_same_length([],[]) :-	!.
	make_varlist_of_same_length_list([List1|Lists1],[List2|Lists2]) :-
		make_varlist_of_same_length(List1,List2),
		make_varlist_of_same_length_list(Lists1,Lists2), !.
	make_varlist_of_same_length_list([],[]) :-	!.
	% succeed if Map is a mapping from the bag Dom to the bag Ran
	%<*backtrackable*>
	mapping([X|Dom],Ran,[X:=Y|Map]) :-
		member(Y,Ran),
		mapping(Dom,Ran,Map).
	mapping([],_Ran,[]) :-	!.
	% succeed if Map maps each Dom in Doms to the respective Ran in Rans
	%<*backtrackable*>
	mapping_list12([Dom|Doms],[Ran|Rans],Map) :-
		mapping(Dom,Ran,Map1),
		mapping_list12(Doms,Rans,Map2),
		{ append(Map1,Map2,Map)
		}.
	mapping_list12([],[],[]) :-	!.
	% succeed if E is a member of the balanced binary tree BBT
	member_bbt(E,f(_L,_Lh,E,_Rh,_R)) :-	!.
	member_bbt(E,f(L,_Lh,V,_Rh,_R)) :-
		E @< V,
		!,
		member_bbt(E,L), !.
	member_bbt(E,f(_L,_Lh,V,_Rh,R)) :-
		V @< E,
		!,
		member_bbt(E,R), !.
	% succeed if each term in Elems is a member of the corresponding
	% list in Lists
	member_list12([Elem|Elems],[List|Lists]) :-
		member(Elem,List),
		member_list12(Elems,Lists).
	member_list12([],[]) :-	!.
	merge_lists_list([List1|Lists1],Optr,[List2|Lists2],[List|Lists]) :-
		merge_lists(List1,Optr,List2,List),
		merge_lists_list(Lists1,Optr,Lists2,Lists), !.
	merge_lists_list([],_Optr,[],[]) :-	!.
	:-	
		abolish(cur_name_no,1),
		assert(cur_name_no(1)).
	% create a new name with the prefix Prefix
	new_name(Prefix,NewName) :-
		name(Prefix,PrefixL),
		retract(cur_name_no(CurNo)),
		NewNo is CurNo + 1,
		assert(cur_name_no(NewNo)),
		name(CurNo,CurNoL),
		append(PrefixL,CurNoL,NewNameL),
		name(NewName,NewNameL), !.

Called "sorts" in this paper, following[START_REF] Comon | Equational formulas in order-sorted algebras[END_REF]

N -tuples in the general case, where N sorts are simultaneously anti-unified.

This example was provided by Jörg Denzinger, University of Kaiserslautern.

we apply the series-guessing algorithm to Rules 4, 5, 11, 15, we get no law at all, thus indicating that this sequence does not belong to a rule family.

Since series guessing wrt. the empty theory is quite fast, one might check all possible ascending rule sequences whether their origin terms reveal a common law or not. Some optimization may be achieved using the fact that a sequence has no law if any of its prefixes has no law. Moreover, efficient data structures like substitution tree indexes [START_REF] Graf | Substitution tree indexing[END_REF] might help to find all rule subsequences that have a law.

Applying series guessing to a selected rule subsequence. Once we have selected one or more rule sequences as described above, we may apply the series-guessing algorithm to the rules. Each series law thus obtained will correspond to a meta rule that generalizes all rules of the subsequence modulo the chosen equational background theory. For example, in a first attempt, we applied series guessing to the rules shown in Fig. 45, however without success. Figure 46 documents a successful attempt at series guessing for both k = 2 and k = 3, taking 17 and 28 seconds user time, respectively.

Dealing with variable names. Since the E-anti-unification approach presented here is based on regular tree grammars, we treated variables as constants. This is no longer sufficient for the present completion example: if the variables are named as in Figs. 43 and44, the syntactical anti-unification of length-annotated suffixes will yield the variables shown in Fig. 45. Note that x 4 does not occur in any argument of ϕ; in particular, a variable v = ϕ(-x 3 , f (-x 4 , -x 3)) is missing. This is the reason for the non-existence of a series law in Fig. 45. If we number the variables x 1 to x 4 in reverse order, we have a similar problem, since then ϕ(x 3 , x 4) is missing.

In a second attempt, we tried to circumvent this problem by modeling variables as functions of natural numbers, i.e. x(i) for x i , where i denotes suc i (0) for the sake of brevity. The rule sequence and the corresponding ϕ is shown in Fig. 46. Note that we also had to reverse the numbering of variables, since otherwise ϕ(x(3), f (x(3), x(4))) would again be missing.

What is needed, though, is an approach to E-anti-unification that is able to deal with variables rather than just constants.

Setting up the equational background theory's tree grammar. The main problem here consists in determining an appropriate equational background theory in the first place. In the above example,

Variables (k = 2):

No laws found (k = 2, k = 3) Fig. 45. Series-Guessing Approach (A) Applied to the Rule Sequence 4, 5, 9, 10 Input Series:

Variables (k = 2): Variables (k = 3):

Laws found (k = 2):

Laws found (k = 3): all sums(I, 0, I + 0). all sums(I, suc(J), I + suc(J) | Sums) ← all sums(suc(I), J, Sums). Similarly, the theory of (+) and (*) has been schematized, requiring a predicate that computes all factors of a given number.

10 Depth-Bounded E-Anti-Unification

In most applications of E-anti-unification, one is interested only in the first few enumerated terms, which are the simplest wrt. the employed depth measure. In such cases, it may be sufficient to cut off the rsg V algorithm each time it reaches a given depth, thus avoiding the computation of larger solutions that will subsequently be ignored anyway. This way, even large terms can be E-anti-unified.

For example, consider the series 2, 4, 16, 256. The series-prediction algorithm from Sect. 7.1 with example count k = 2 will call rsg

The first enumerated solution should be suc 4 (v 1) * suc 4 (v 1), which has depth 5, or depth 1 if suc is not counted. In any case, it is not necessary to descend to depth 256 to obtain this solution.

In this example, however, owing to the growing length of sort definitions caused by (+), the searchtree breadth is too large to get reasonable runtimes, even for depth 2.

Equational Theories of Finite Algebras

In this section, we show that for each finite algebra we can always generate a closed representation of all its quantifier-free and variable-bounded theorems.

We first give some sufficient criteria for an equational theory so that the equivalence classes are regular tree languages (Sect. 11.1). We then show that the set T H n (A) of formal equations in up to n variables, which are universally valid over a given finite algebra A, is always a regular tree language. This implies a constructive way of describing T H n (A) by a finite term-rewriting system (Sect. 11.3). By extending the approach to typed algebras and including a type Bool, we are able to construct an axiom set describing the set of all quantifier-free and variable-bounded theorems of a given finite algebra with arbitrary functions, predicates, and junctors. See Fig. 56 for an axiom system that describes T H 2 ((IN mod 3), (+), (<), (=), (∧), (∨)).

where

Hence, the sort t contains all term that are equivalent mod. E to t.

Corollary 16. (Sufficient Criterion for Regular Equivalence Classes) Let ≺ be a well-founded ordering on N with a finite branching degree, and let be its reflexive closure. If t i nf (f (t 1 , . . . , t n)) for all f ∈ F, t 1 , . . . , t n ∈ N and all i ∈ {1, . . . , n}, then t is representable as a regular sort for all t ∈ T .

Proof.

Under the above assumptions, we have for fixed t ∈ N and f ∈ F:

where the latter set is finite. The conclusion follows by Lemma 15.

Corollary 17.

If T / E is finite, each equivalence class can be represented as a regular tree language.

Proof. Trivially, N has as many elements as T / E . The conclusion follows by Lemma 15.

Equational Theories in One Variable

Definition 18. Let (:) ∈ F be a symbol of arity 2; we call a term of the form

Hence, the equation t 1 : t 2 is universally valid. '), write(TailsSHeadsSB), nl, abolish(origin_v,2), sg(TailsS,LawL), setof((Ss,var,V),origin_v (Ss,V) name (S,[115|ExpN]), name(Exp,ExpN), integer(Exp), Exp1 is Exp + 1, name(Exp1,Exp1N), name [START_REF] R0 |]) :-simplify_sort1(OccS,OccSs), simplify_sort4(S1,S2), extract_defs_from_occ(OccSs,DefsS,memo_inf,Memo), assert_list(DefsS), assert_list(Memo)[END_REF][115|Exp1N]), TermB =..