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We checked each binary relation on a 5-element set for a given set of properties, including usual ones like asymmetry and less known ones like Euclideanness. Using a poor man's Quine-McCluskey algorithm, we computed prime implicants of non-occurring property combinations, like "not irreflexive, but asymmetric". We considered the laws obtained this way, and manually proved them true for binary relations on arbitrary sets, thus contributing to the encyclopedic knowledge about less known properties.

Introduction

In order to flesh out encyclopedic articles1 about less common properties (like e.g. anti-transitivity) of binary relations, we implemented a simple C program to iterate over all relations on a small finite set and to check each of them for given properties. We implemented checks for the properties given in Def. 1 below. Figure 1 shows the C source code to check a relation R for transitivity, where card is the universe size and elemT is the type encoding a universe element.

This way, we could, in a first stage, (attempt to) falsify intuitively found hypotheses about laws involving such properties, and search for illustrative counter-examples to known, or intuitively guessed, non-laws. For example, Fig. 2 shows the source code to search for right Euclidean non-transitive relations over a 2-element universe, where printRel prints its argument relation in a human-readable form. For a universe of n elements, n2 for loops are nested. In Sect. 6.1 we describe an improved way to iterate over all relations.

Relations on a set of up to 6 elements could be dealt with in reasonable time on a 2.3 GHz CPU. Figure 3 gives an overview, where all times are wall clock times in seconds, and "tr⇒qt" indicates the task of validating that each transitive binary relation is also quasi-transitive. Note the considerable amount of compile time, 2 presumably caused by excessive use of inlining, deeply nested loops, and abuse of array elements as loop variables.

In a second stage, we aimed at supporting the generation of law hypotheses, rather than their validation.

We used a 5-element universe set, and checked each binary relation for each of the properties. 3 The latter were encoded by bits of a 64-bit word. After that, we applied a poor-man's Quine-McCluskey algorithm 4 (denoted "QMc" in Fig. 3) to obtain a short description of property combinations that didn't occur at all. For example, an output line "~Irrefl ASym" indicated that the program didn't find any relation that was asymmetric but not irreflexive, i.e. that each asymmetric relation on a 5-element set is irreflexive. Section 3 shows the complete output on a 5-element universe.

We took each printed law as a suggestion to be proven for all binary relations (on arbitrary sets). Many of the considered laws were trivial, in particular those involving co-reflexivity, as this property applies only to a relatively small number of relations (32 on a 5-element set).

A couple of laws appeared to be interesting, and we could prove them fairly easily by hand for the general case 5 . For those laws involving less usual properties (like antitransitivity, quasi-transitivity, Euclideanness) there is good chance that they haven't been stated in the literature before. However, while they may contribute to the completeness of an encyclopedia, it is not clear whether they may serve any other purpose.

Disregarding the particular area of binary relations, the method of computing law suggestions by the Quine-McCluskey algorithm might be used as a source of fresh exercises ) for (R[0] [1]=false; R[0] [1]<=true; ++R[0] [1]) for (R [1][0]=false; R [1][0]<=true; ++R [1][0]) for (R [1][1]=false; R [1][1]<=true; ++R [1][1]) if (isRgEucl(R) && ! isTrans(R)) printRel(R); } 

R 0 ::= symCls(R 0 ) | R 0 ∪ R 0 . . . R 10 ::= symCls(R 2 ) | symCls(R 8 ) | symCls(R 10 ) | R 0 ∪ R 10 | R 2 ∪ R 8 | R 2 ∪ R 10 | R 8 ∪ R 2 | R 8 ∪ R 10 | R 10 ∪ R 0 | R 10 ∪ R 2 | R 10 ∪ R 8 | R 10 ∪ R 10 . . . R 511 ::= symCls(R 311 ) | . . . | symCls(R 511 ) | R 0 ∪ R 511 | . . . | R 511 ∪ R 511 true ::= isRefl (R 273 ) | . . . | isRefl (R 511 ) | isSym(R 0 ) | . . . | isSym(R 511 ) | false ∨ true | true ∨ false | true ∨ true | true ∧ true | ¬false false ::= isRefl (R 0 ) | . . . | isSym(R 2 ) | . . .
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Figure 5: Tree grammar sketch for Burghardt [1] approach whose solutions are unlikely to be found on web pages. Some of the laws, e.g. Lem. 40, appeared surprising, but turned out during the proof to be vacuously true. The proof attempt to some laws gave rise to the assertion of other lemmas that weren't directly obtained from the computed output: Lemma 4 was needed for the proof of Lem. 19, and Lem. 52 was needed for Lem. 42.

Our Quine-McCluskey approach restricts law suggestions to formulas of the form ∀R. prop 1 (R) ∨ . . . ∨ prop n (R), where the quantification is over all binary relations, and prop i is one of the considered properties or a negation thereof.

For an approach to compute more general forms of law suggestions, see Burghardt [1]; however, due to its run-time complexity this approach is feasible only for even smaller universe sets. In order to handle all relations on a 3-element set, a regular tree grammar of 512 nonterminals, one for each relation, plus 2 nonterminals, one for each truth value, would be needed. Using the encoding scheme from Fig. 4, the original grammar would consist of rules as sketched 6 in Fig. 5. However, this grammar grows very large, and its n-fold product would be needed if all laws in n variables were to be computed.

The rest of this paper is organized as follows. In Sect. 2, we formally define each considered property, and introduce some other notions. In Sect. 3, we show the annotated output for a run of our algorithm on a 5-element set, also indicating which law suggestions gave rise to which lemmas. The latter are stated and proven in Sect. 4, which is the main part of this paper. In addition, we state the proofs of some laws that weren't of the form admitted by our approach; some of them were, however, obtained using the assistance of the counter-example search in our C program. In Sect. 5, we discuss those computed law suggestions that lead to single examples, rather than to general laws. In Sect. 6, we comment on some program details.

This paper is a follow-up version of https://arxiv.org/abs/1806.05036v1. Compared to the previous version, we considered 9 more properties (see Def. 1), including being the empty and being the universal relation, to avoid circumscriptions like "Irrefl∨CoRefl∨¬ASym" in favor of "Empty∨¬ASym"; in the new setting, we found a total of 274 law suggestions, and proved or disproved all of them. I am thankful to all people who have helped with their comments and corrections. considered also.

Definitions

Definition 1. (Binary relation properties) Let X be a set. A (homogeneous) binary relation R on X is a subset of X × X. The relation R is called 1. reflexive ("Refl", "rf") if ∀x ∈ X. xRx; 2. irreflexive ("Irrefl", "ir") if ∀x ∈ X. ¬xRx; 3. co-reflexive ("CoRefl", "cr") if ∀x, y ∈ X. xRy → x = y; 4. left quasi-reflexive ("lq") if ∀x, y ∈ X. xRy → xRx; 5. right quasi-reflexive ("rq") if ∀x, y ∈ X. xRy → yRy; 6. quasi-reflexive ("QuasiRefl") if it is both left and right quasi-reflexive; 7. symmetric ("Sym", "sy") if ∀x, y ∈ X. xRy → yRx; 8. asymmetric ("ASym", "as") if ∀x, y ∈ X. xRy → ¬yRx; 9. anti-symmetric ("AntiSym", "an") if ∀x, y ∈ X. xRy ∧ x = y → ¬yRx; 10. semi-connex ("SemiConnex", "sc") if ∀x, y ∈ X. xRy ∨ yRx ∨ x = y; 11. connex ("Connex", "co") if ∀x, y ∈ X. xRy ∨ yRx; 12. transitive ("Trans", "tr") if ∀x, y, z ∈ X. xRy ∧ yRz → xRz; 13. anti-transitive ("AntiTrans", "at") if ∀x, y, z ∈ X. xRy ∧ yRz → ¬xRz; 14. quasi-transitive ("QuasiTrans", "qt") if ∀x, y, z ∈ X. xRy∧¬yRx∧yRz∧¬zRy → xRz ∧ ¬zRx; 15. right Euclidean ("RgEucl", "re") if ∀x, y, z ∈ X. xRy ∧ xRz → yRz; 16. left Euclidean ("LfEucl", "le") if ∀x, y, z ∈ X. yRx ∧ zRx → yRz; 17. semi-order property 1 ("SemiOrd1", "s1") if ∀w, x, y, z ∈ X. wRx ∧ ¬xRy ∧ ¬yRx ∧ yRz → wRz; 18. semi-order property 2 ("SemiOrd2", "s2") if ∀w, x, y, z ∈ X. xRy ∧ yRz → wRx ∨ xRw ∨ wRy ∨ yRw ∨ wRz ∨ zRw. 19. right serial ("RgSerial", "rs") if ∀x ∈ X ∃y ∈ X. xRy 20. left serial ("LfSerial", "ls") if ∀y ∈ X ∃x ∈ X. xRy 21. dense ("Dense", "de") if ∀x, z ∈ X ∃y ∈ X. xRz → xRy ∧ yRz. 22. incomparability-transitive ("IncTrans", "it") if ∀x, y, z ∈ X. ¬xRy ∧ ¬yRx ∧ ¬yRz ∧ ¬zRy → ¬xRz ∧ ¬zRx. 23. left unique ("LfUnique", "lu"

) if ∀x 1 , x 2 , y ∈ X x 1 Ry ∧ x 2 Ry → x 1 = x 2 . 24. right unique ("RgUnique", "ru") if ∀x, y 1 , y 2 ∈ X xRy 1 ∧ xRy 2 → y 1 = y 2 .
The capitalized abbreviations in parentheses are used by our algorithm; the two-letter codes are used in tables and pictures when space is scarce.

The "left" and "right" properties are dual to each other. All other properties are self-dual. For example, a relation R is left unique iff its converse, R -1 , is right unique; a relation R is dense iff its converse is dense.

We say that x, y are incomparable w.r. 

Reported law suggestions

In this section, we show the complete output produced by our Quine-McCluskey algorithm run.

In the Fig. 6 to 13, we list the computed prime implicants for missing relation property combinations on a 5-element universe set. We took each prime implicant as a suggested law about all binary relations. These suggestions are grouped by the number of their literals ("level").

In the leftmost column, we provide a consecutive law number for referencing. In the middle column, the law is given in textual representation, "¬P" denoting the negation of P, and juxtaposition used for conjunction. The property names correspond to those used by the C program; they should be understandable without further explanation, but can also be looked up via Fig. 42, if necessary. In the rightmost column, we annotated a reference to the lemma (in Sect. 4) where the law has been formally proven or to the example (in Sect. 5) where it is discussed.

For example, line 039, in level 2 (Fig. 6 left), reports that no relation was found to be asymmetric (property 1.8) and non-irreflexive (negation of property 1.2); we show the formal proof that every asymmetric relation is irreflexive in Lem. 13.1. [START_REF]y = z, hence xRz. Quasi-transitivity follows by Lem[END_REF] Laws that could be derived from others by purely propositional reasoning and without referring to the property definitions in Def. 1 are considered redundant; they are marked with a star " * ". 8 For example, law 044 ("no relation is asymmetric and reflexive") is marked since it follows immediately from 046 ("no relation is irreflexive and reflexive") and 039.

No laws were reported for level 1 and level 9 and beyond. A text version of these tables is available in the ancillary file reportedLaws.txt at arxiv.org.

In Fig. 14 to 17, we summarize the found laws. We omitted suggestions that couldn't be manually verified as laws, and suggestions marked as redundant.

Figure 14 and 15 shows the left and right half of an implication table, respectively. Every field lists all law numbers that can possibly be used to derive the column property from the row property.

For example, law 129 appears in line "tr" (transitive) and column "as" (asymmetric) in Fig. 14 because that law (well-known, and proven in Lem. 12.2) allows one to infer a relation's asymmetry from its transitivity, provided that it is also known to be irreflexive.

Fields belonging to the table's diagonal are marked by "X". Law numbers are colored by number of literals, deeply-colored and pale-colored numbers indicating few and many literals, respectively.

Similarly, the table consisting of Fig. 16 and 17 shows below and above its diagonal laws about required disjunctions and impossible conjunctions, respectively.

For example, law 223 appears below the diagonal in line "co" (connex) and column "em" (empty) of Fig. 16, since the law (proven in Lem. 29) requires every relation to be connex or empty, provided it is quasi-reflexive and incomparability-transitive. Law 145 appears above the diagonal in line "le" (left Euclidean) and column "lu" (left unique), since the law (proven in Lem. 45) ensures that no relation can be left Euclidean and left unique, provided it isn't anti-symmetric.

Figure 18 shows all proper implications (black) and incompatibilities (red) from level 2, except for the empty and the universal relation. Vertex labels use the abbreviations from Fig. 14, edge labels refer to law numbers in Fig. 6. 

Formal proofs of property laws

Most of the law suggestions from Fig. 14 to 17 could be proven to hold for all relations, on finite and on infinite sets. Some suggestions turned out to hold only for relations on a sufficiently large9 set X. Suggestion 235 turned out to hold only for a finite set X of odd cardinality (cf. Lem. 60).

We considered all these suggestions to be laws, when appropriate cardinality restrictions are added; their proofs are given in this section. [START_REF]Follows from 9, since a quasi-reflexive relation is always dense by Lem[END_REF] All remaining suggestions were considered non-laws; they are discussed in section "Examples" (5).

We loosely grouped the proven laws by some "main property", usually the most unfamiliar property; for example, Lem. 18 relates symmetry, transitivity, and quasitransitivity, it is shown in the "Quasi-transitivity" section (4.6). Sometimes, we listed a result multiply, accepting some redundancy as a trade-off for local completeness. The grouping is still far from being objective, and it is doubtful that the latter is possible at all.

Due to the grouping we have some forward references in our proofs. For example, the proof of Lem. 5.2 uses Lem. 54. In order to establish the absence of cycles, we computed the proof depth of each lemma to be one more than the maximal proof depth of all its used lemmas. If a lemma would refer to itself directly or indirectly in its proof, no finite proof depth could be assigned to it. We indicate the proof depth by a small superscript, e.g. "Lemma 5. . . . 2. [4] " indicates that Lem. 5.2 has proof depth 4.

Co-reflexivity

Lemma 4. [1] The union of a co-reflexive relation and a transitive relation is always transitive.

Proof. Let C be co-reflexive and T be transitive. Let R = C ∪ T . Assume xRy ∧ yRz. We distinguish four cases: 1. [1] It is the only relation on X that is both co-reflexive and reflexive. 2. [4] It is the only relation on X that is both co-reflexive and left serial. 3. [4] It is the only relation on X that is both co-reflexive and right serial.

It has the following properties:

4. [1] It doesn't satisfy semi-order property 1, if X has at least 2 elements (135, 193, 205).

Proof.

1. The conjunction of Def. 1.1 and 1.3 is ∀x, y ∈ X. xRy ↔ x = y which is the defining condition of I. 1. [1] R satisfies semi-order property 2 (169); 2. [1] R is incomparability-transitive (161).

Proof. Assume for contradiction xRy, then x = y. Let w = x.

1. Applying semi-order property 2 to xRx ∧ xRx and w yields the contradiction wRx ∨ xRw, i.e. w = x. 2. Applying incomparability-transitivity to xRx and w yields the contradiction that

x, x must be incomparable. Lemma 7. (Sufficient for co-reflexivity) A relation R is co-reflexive if one of the following sufficient conditions holds:

1. [1] R is right quasi-reflexive and left unique (140); 2. [1] R is left quasi-reflexive and right unique (141); 3. [2] R is right Euclidean and left unique (095); 4. [2] R is left Euclidean and right unique (096); 5. [2] R is reflexive and left unique (133); 6. [2] R is reflexive and right unique (134); or 7. [1] R is symmetric and anti-symmetric (149). 

Irreflexivity

Lemma 11. (Sufficient for irreflexivity implying emptiness) An irreflexive relation R needs to be empty if one of the following sufficient conditions is satisfied:

1. [1] R is co-reflexive (124); 2. [1] R is left quasi-reflexive (144); 3. [1] R is right quasi-reflexive (144); 4. [2] R is left Euclidean (125); 5. [2] R is right Euclidean (126).

As a consequence, an anti-transitive relation (102, 142, 103, 104) as well as an asymmetric relation (105, 143, 106, 107) needs to be empty under the same sufficient conditions.

Proof. For case 1 to 3, assume for contradiction that R is irreflexive and aRb holds, i.e. a = b.

1. Then a = b by co-reflexivity, contradicting our assumption. 2. [1] anti-symmetric (055).

Proof.

1. xRx would imply the contradiction ¬xRx. 2. xRy ∨ x = y implies ¬yRx, since its left disjunct does.

Lemma 14. (Incompatibilities of asymmetry) [2] On a finite set X, an asymmetric and transitive relation can neither be left (192) nor right (204) serial. On the infinite set Z Z of integer numbers, the usual order < satisfies all four properties simultaneously.

Proof. By Lem. 13.1, such a relation is an irreflexive partial order. On a finite set, it must have a smallest and a largest element; thus it can't be serial.

Symmetry

Lemma 15. A symmetric relation R on a set X is 1. [1] left quasi-reflexive iff it is right quasi-reflexive; 2. [1] left Euclidean iff it is right Euclidean (098, 099); 3. [1] left serial iff it is right serial (215, 216); 4. [1] left unique iff it is right unique (100, 101).

Proof. Let R be symmetric. The converse directions are shown similarly.

Lemma 16. [1] A symmetric and asymmetric relation is always empty (108).

Proof. Assume for contradiction xRy holds. Then yRx by symmetry, and ¬yRx by asymmetry.

4.6. Quasi-transitivity Lemma 17.

1. [1] R is a quasi-transitive relation iff R = I . ∪ P for some symmetric relation I and some transitive relation P , where " . ∪" denotes the disjoint union.. 2. [1] I and P are not uniquely determined by a given R.

3. [1] The definitions xIy :⇔ xRy ∧ yRx and xP y :⇔ xRy ∧ ¬yRx lead to the minimal P . (f) Since I and P are disjoint, we obtain ¬xIz from 1d; hence ¬zIx by symmetry of I. (g) Finally, we have ¬zRx, since else zP x by 1f, which in turn would imply zP y by 1b and the transitivity of P , which would imply zRy, contradicting our assumptions. From 1e and 1g, we conclude the quasi-transitivity of R. 2. For example, if R is an equivalence relation, I may be chosen as the empty relation, or as R itself, and P as its complement. 3. Given R, whenever xRy ∧ ¬yRx holds, the pair x, y can't belong to the symmetric part, but must belong to the transitive part.

Lemma 18. [2] Each symmetric relation is quasi-transitive (077); each transitive relation is quasi-transitive (078).

Proof. Follows from Lem. 17 and the transitivity (Exm. 74.7) and symmetry (74.4) of the empty relation.

Lemma 19. [2] A quasi-transitive relation is transitive if it is anti-symmetric (182), hence in particular if it is asymmetric (181).

Proof. Let R be anti-symmetric and quasi-transitive. We use the definitions of I and P from Lem. 17 Lemma 20. [2] If P is a semi-order (Def. ∪ P is quasi-transitive by Lem. 17.

Lemma 21. (Sufficient for quasi-transitivity implying symmetry) A quasi-transitive relation R is symmetric if one of the following sufficient conditions holds:

1. [1] R is right unique and left serial (244); or 2. [1] R is left unique and right serial.

Proof. We show 1; the proof of 2 is similar. Let yRz hold; assume for contradiction ¬zRy. Obtain xRy by left seriality. We distinguish two cases:

• ¬yRx holds. Then xRz by quasi-transitivity, hence y = z by right uniqueness, hence zRy, contradicting our assumption.

• yRx holds. Then x = z by right uniqueness, hence zRy, contradicting our assumption.

Anti-transitivity

Lemma 22. [1] An anti-transitive relation is always irreflexive (038).

Proof. Assume xRx holds. Then xRx ∧ xRx implies ¬xRx by anti-transitivity, which is a contradiction.

Lemma 23. [2] An irreflexive and left unique relation is always anti-transitive; and so is an irreflexive and right unique relation (127, 128). In particular, each asymmetric and left or right unique relation is anti-transitive (109, 110).

Proof. Let R be irreflexive and left unique, assume for contradiction xRy, and yRz, but xRz. Then x = y due to irreflexivity, hence yRz ∧ xRz contradicts left uniqueness. The proof for right uniqueness is similar. Each asymmetric relation is irreflexive by Lem. 13.1.

Lemma 24. (Necessary for transitivity and anti-transitivity) [3] On a nonempty set X, a relation that is both transitive and anti-transitive can for trivial reasons neither be left (191) nor right (203) serial, is must be asymmetric (118) and satisfy semi-order property 2 (172).

Proof. Let R be transitive and anti-transitive, then xRy ∧ yRz cannot be satisfied for any x, y, z. Hence, R vacuously satisfies semi-order property 2. If R is left serial and z ∈ X, we have yRz for some y, and xRy for some x, contradicting the above. Similarly, R can't be right serial. Asymmetry has been shown in Lem. 12.5.

Incomparability-transitivity

Lemma 25. [3] Each semi-connex relation is incomparability-transitive (066) and hence satisfies semi-order property 2 (070). In particular, this applies to each connex relation (065, 069).

Proof.

• If R is semi-connex and x, y and y, z are incomparable, then x = y and y = z. Due to the latter, x, z are incomparable.

• Each incomparability-transitive relation satisfies semi-order property 2 by Lem. 34.

• Each connex relation is semi-connex by Lem. 50. Lemma 26. [1] If a relation is left Euclidean, left serial, and transitive, and satisfies semi-order property 1, then it is also incomparability-transitive (253). Dually, right Euclideanness, right seriality, transitivity, and semi-order property 1 imply incomparabilitytransitivity (256).

Proof. To show the first claim, assume for contradiction R is not incomparabilitytransitive. Let aRb hold, and c be incomparable both to a and to b. By seriality, obtain c Rc. By semi-order property 1, c Rb must hold. Hence, by Euclideanness, aRc holds. But transitivity then implies aRc, contradicting incomparability.

The proof for the dual claim is similar.

Lemma 27. [1] Let R be an incomparability-transitive relation on X. Whenever xRx holds for some x ∈ X, then x is comparable to every y ∈ X. In particular, a reflexive relation R can only be vacuously incomparability-transitive, that is, when R is also connex (167).

Proof. Let xRx hold, let y be arbitrary. If x and y were incomparable, then so were y and x due to symmetry, hence also x and x by incomparability-transitivity, contradicting xRx.

Lemma 28. [4] If a left Euclidean is also incomparability-transitive, then it is also transitive (162) and trivially satisfies semi-order property The proof for a right Euclidean R is similar.

Lemma 29. [2] Each nonempty, quasi-reflexive and incomparability-transitive relation is reflexive, and hence connex (223); i.e. its incomparability-transitivity is vacuous.

Proof. Let aRb, hence also aRa and bRb hold. Let x ∈ X be arbitrary. By Lem. 27, a is comparable to x. By quasi-reflexivity, xRx holds. Hence R is reflexive. Again by Lem. 27 we obtain that R is connex.

Lemma 30. [1] A symmetric and incomparability-transitive relation is anti-transitive or dense (232).

Proof. Let R be symmetric, incomparability-transitive, and not anti-transitive; let aRb, bRc, but aRc hold. An arbitrary x can be incomparable to at most one of a, b, c (as a side remark: therefore R needn't be semi-connex). If xRy holds, then x and y must both be comparable to at least one of a, b, c, we assume w.l.o.g a. Due to the symmetry of R, we have xRa and aRy; therefore R is dense. The proof of the dual claims is similar.

Define

Lemma 33. [2] On set set X of at least 5 elements, a left unique and right serial relation R cannot be incomparability-transitive ( 212 Proof. Assume for contradiction X has at least 5 elements, and R is a left unique, right serial, and incomparability-transitive relation on X. First, xRx cannot hold for any x. Else, we had by Lem. 27 that x is comparable to every y ∈ X \ {x}. Since yRx would imply the contradiction x = y by uniqueness, we even had xRy for every y ∈ X \ {x}. By seriality, every such y has an R-successor; by uniqueness, at most one such successor can be x. Hence we can find y 1 , y 2 ∈ X \ {x} with y 1 Ry 2 . But this contradicts xRy 2 and uniqueness.

Second, by seriality, we find a chain x 1 Rx 2 ∧ x 2 Rx 3 ∧ . . .. Let m be maximal such that x 1 , . . . , x n are pairwise distinct; by our first observation, we have m 2, and x i = x i+1 for all chain members. For 1 i m and 2 j m, we can't have x i Rx j when i = j -1, since else x i = x j-1 by uniqueness, contradicting distinctness. Therefore, if m 5, we had x 2 incomparable to both x 4 and x 5 , contradicting x r Rx 5 . In particular, m can't be infinite.

We thus have x m+1 = x k for some k ∈ {1, . . . , n}, that is, x m Rx k , which by uniqueness enforces k = 1. That is, starting from an arbitrary member x 1 , we always find a cycle

x 1 Rx 2 ∧ . . . ∧ x m-1 Rx m ∧ x m Rx 1 with 2 m 4.
Since we have 5 elements, we find another cycle y 1 Ry 2 ∧ . . . ∧ y n-1 Ry n ∧ y n Ry 1 of some length n. Then each x i is incomparable to each y j , since x i Ry j would imply x i = y j-1 or x i = y m , i.e. both cycles would be identical; by symmetry, y j Rx i would imply the same contradiction. But y 1 incomparable both to x 1 and to x 2 contradicts x 1 Rx 2 .

Lemma 34. [1] If R is incomparability-transitive, then it always satisfies semi-order property 2 (071).

Proof. Let xRy ∧ yRz hold. If both x, w and w, y were incomparable, then so would be x, y, contradicting xRy.

Lemma 35. Let R satisfy semi-order property 2. Then R is incomparability-transitive if one of the following sufficient conditions holds:

1. [1] R is left quasi-reflexive (180); 2. [1] R is right quasi-reflexive (180); 3. [1] R is symmetric (179); 4. [1] R is transitive and dense (234); 5. [2] R is left Euclidean (177); 6. [2] R is right Euclidean (178); 7. [1] R is anti-transitive, quasi-transitive, and left and right serial (265). By Lem 34, if any of the conditions 1 to 7 holds, then R satisfies semi-order property 2 iff R is incomparability-transitive. The latter doesn't hold without some extra conditions: on the set X = {a, b, c}, the relation R = { a, c } satisfies semi-order property 2, but isn't incomparability-transitive.

Proof. For cases 1 to 4, assume for contradiction aRb holds and c is incomparable both to a and to b. In each of these cases, we construct a chain xRy ∧ yRz such that c is incomparable to all of x, y, z, thus contradicting semi-order property 2.

1. If R is left quasi-reflexive, we have aRa. Choose x, y, z to be a, a, b. 2. If R is right quasi-reflexive, we have bRb. Choose x, y, z to be a, b, b.

3. If R is symmetric, we have bRa. Choose x, y, z to be a, b, a. 4. If R is dense, we have aRa ∧ a Rb. Choose x, y, z to be a, a , b, we find that c must be comparable to a . However, a Rc implies aRc, while cRa implies cRb, both by transitivity, and both contradicting our incomparability assumptions. Proof.

• Let R be right Euclidean and left quasi-reflexive. Then R is also symmetric, since xRy implies xRx by quasi-reflexivity, and both together imply yRx by right Euclideanness. Hence, by Lem. 36, R is also transitive and left Euclidean. The proof for a left Euclidean R is similar.

• If R is left Euclidean, then it is left quasi-reflexive by Lem. 46. Hence if R is also right Euclidean, then it is symmetric and transitive as shown above.

• If R is reflexive and right Euclidean, then it is quasi-reflexive by Lem. 9, and hence symmetric, transitive and left Euclidean as shown above. The proof for a left Euclidean relation is similar.

Lemma 38. [3] The range of a right Euclidean relation is always a subset of its domain.

The restriction of a right Euclidean relation to its range is always an equivalence. Similarly, the domain of a left Euclidean relation is a subset of its range, and the restriction of a left Euclidean relation to its domain is an equivalence. In particular, each left serial and right Euclidean relation is an equivalence (189), and so is each right serial and left Euclidean relation (201).

Proof. If y is in the range of R, then xRy ∧ xRy implies yRy, for some suitable x. This also proves that y is in the domain of R. By Lem. 37, R is therefore an equivalence.

If R is left serial, then every element is in the range of R.

The proofs for the dual claims are similar.

Lemma 39. [4] A relation R is both left and right Euclidean, iff the domain and the range set of R agree, and R is an equivalence relation on that set (097, 114).

Proof. "⇒": follows by Lem. 38. "⇐": Assume aRb and aRc, then a, b, c are members of the domain and range of R, hence bRc by symmetry and transitivity. Left Euclideanness of R follows similarly.

Lemma 40. [4] A right Euclidean relation is always vacuously quasi-transitive (076), and so is a left Euclidean relation (075).

Proof. Let R be right Euclidean. Let xRy ∧ ¬yRx ∧ yRz ∧ ¬zRy hold. Observe that y, z ∈ ran(R). By Lem. 38, R is symmetric on ran(R), hence yRz implies zRy, which is a contradiction. Hence, R is vacuously quasi-transitive, since the assumptions about x, y, z can never be met.

A similar argument applies to left Euclidean relations, exploiting that x, y ∈ dom(R).

Lemma 41. [4] A semi-connex right Euclidean relation is always transitive (155), and so is a semi-connex left Euclidean relation (154). On the set X = {a, b}, the relation R = { a, a , a, b } is semi-connex and left Euclidean, but not symmetric.

Proof. Let R be semi-connex and right Euclidean. Let xRy ∧ yRz hold. Observe again that y, z ∈ ran(R). Since R is semi-connex, the following case distinction is exhaustive:

• xRz holds.
Then we are done immediately.

• zRx holds.

Then also x ∈ ran(R); hence xRz, since R is symmetric on its range by Lem. 38.

• x = z.

Then also x ∈ ran(R); hence xRz, since R is reflexive on its range by Lem. 38. @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ ran rest Lemma 42. [4] If X has at least 3 elements, a semi-connex right Euclidean relation on X is never anti-symmetric, and neither is a semi-connex left Euclidean relation on X.

Proof. Let R be semi-connex and right Euclidean. By Lem. 52, at most one element of X is not in the range of R. Hence, by assumption, two distinct elements x, y ∈ ran(R) exist. Since R is semi-connex and x = y, we have xRy or yRx. By Lem. 38, we obtain both xRy and yRx. This contradicts the anti-symmetry requirement.

Lemma 43. [4] "⇐": Let x, y, z ∈ X such that xRy ∧ xRz, we show yRz. Observe y, z ∈ ran(R). We distinguish two cases: @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ dom rest Based on Lem. 43, Fig. 19 shows a schematized Right Euclidean relation. Deeplycolored squares indicate equivalence classes of R | ran(R) , assuming X's elements are arranged in such a way that equivalent ones are adjacent. Pale-colored rectangles indicate possible relationships of elements in X \ ran(R), again assuming them to be arranged in convenient order. In these rectangles, relationships may, or may not, hold. A light grey color indicates that the element corresponding to the line is unrelated to that corresponding to the column; in particular, the lighter grey right rectangle indicates that no element at all can be related to some in the set rest := X \ ran(R). The diagonal line indicates that xRx holds iff x ∈ ran(R).

A relation R on a set X is right Euclidean iff R := R| ran(R) is an equiva- lence and ∀x ∈ X\ran(R) ∃y ∈ ran(R). xR ⊆ [y] R , cf. Fig. 19. Similarly, R on X is left Eu- clidean iff R := R| dom(R) is an equivalence and ∀y ∈ X\dom(R) ∃x ∈ dom(R). Ry ⊆ [x] R , cf.
dom
Figure 20 shows a similar schema for a left Euclidean relation, Lemma 44. [4] A The proof for a right Euclidean R is similar.

Lemma 46. [1] Each left Euclidean relation is left quasi-reflexive. For left unique relations, the converse also holds. Dually, each right Euclidean relation is right quasi-reflexive, and each right unique and right quasi-reflexive relation is right Euclidean.

Proof.

• Let R be left Euclidean. Then xRy ∧ xRy implies xRx.

• Let R be left unique and left quasi-reflexive. If yRx and zRx, then y = z by left uniqueness, and yRy by left quasi-reflexivity, hence yRz.

• The proof for a right relations is similar.

Lemma 47. (Sufficient for uniqueness implying Euclideanness) [2] A left unique relation R is left Euclidean if one of the following sufficient conditions holds: 4.13. Uniqueness Lemma 58. [1] A left unique and transitive relation is always anti-symmetric (151), and so is a right unique and transitive relation (152).

1. R
Proof. If both xRy and yRx, then xRx by transitivity, hence x = y by left or right uniqueness.

Lemma 59. [1] On a finite set X, a relation is both right unique and left serial iff it is both left unique and right serial (190, 202, 213, 214). On the set of natural numbers, the relation y = x/ /2 ∧ x > 0 is right unique (i.e. a partial function) and left serial (i.e. surjective), but neither left unique (injective) nor right serial (total), where "/ /" denotes truncating integer division (see Fig. 21); the converse relation is a counter-example for the opposite direction.

Proof. "⇒": Let R be right unique and left serial, i.e. a partial function and surjective. Then ran(R) = X. Since for each y ∈ ran(R) we have an x ∈ dom(R) such that xRy, and since no two y share an x, we have that dom(R) has no less elements than ran(R). Since X is finite, this implies dom(R) = X, i.e. R is right serial, i.e. R is a surjective total function. From set theory, we know that R then also must be injective, i.e. left unique. "⇐": Apply the "⇒" proof to the converse relation R -1 .

Lemma 60. [2] On a finite set X with odd cardinality, a left unique, symmetric, and left serial relation cannot be irreflexive, and hence not anti-transitive (235). On the set b,a ,c,d ,d,c , e, f , f, e } satisfies all properties simultaneously.

X = {a, b, c, d, e, f }, the relation R = { a, b ,
Proof. Since R is left unique and symmetric, each x ∈ X can be comparable to at most one element: xRy ∨ yRx and xRz ∨ zRx implies xRy ∧ yRx ∧ xRz ∧ zRx, and in turn y = z. Due to irreflexivity and seriality, each x must be comparable to at least one element different from x. From both conditions together we obtain that each x is related to exactly one different element x . This is impossible if X is finite and of odd cardinality. By Lem. 22, each anti-transitive relation is irreflexive.

Lemma 69. [4] If R is right Euclidean and satisfies semi-order property 2, then it is incomparability-transitive (178), and satisfies semi-order property 1 (174). The same applies if R is left rather than right Euclidean (177, 173).

Proof. Let R be right Euclidean and satisfy semi-order property 2.

• Let wRx and yRz hold, and x, y be incomparable; we show wRz. By Lem. 38, we have xRx; applying semi-order property 2 to wRx ∧ xRx and y yields yRw or wRy.

In the former case, yRz and right Euclideanness yields wRz. In the latter case, wRx and right Euclideanness yields xRy, contradicting x, y's incomparability.

• Incomparability-transitivity has been shown in Lem. 35.6.

• The proofs for left Euclideanness are similar.

Lemma 70. [1] On a set X of at least 5 elements, each relation R that is left and right unique and satisfies semi-order property 2, needs to be transitive or left serial (254). By duality, such a relation also needs to be transitive or right serial. On the 4-element set X = {a, b, c, d}, the relation R = { a, b , b, c , c, d } satisfies all antecedent properties, but non of the conclusion properties.

Proof. Let X have 5 elements, let R be a a left and right unique relation on X satisfying semi-order property 2. Assume for contradiction aRb and bRc, but not aRc, and ¬xRd for all x ∈ X. By semi-order property 2, d needs to be related to at least one of a, b, c, that is, dRa or dRb or dRc holds. By left uniqueness, this implies dRa ∧ aRb ∧ bRc or d = a ∧ aRb ∧ bRc or d = b; the last case is impossible due to ¬aRd.

In both possible cases, we have a chain dRx 1 ∧ x 1 Rx 2 . Now choose two distinct y, z ∈ X \ {d, x 1 , x 2 }. Then by semi-order property 2, y must be comparable to one of d, x 1 , x 2 . Due to left uniqueness, we cannot have yRx 1 ∨ yRx 2 , due to right uniqueness, we cannot have dRy ∨ x 1 Ry. By definition of d, we cannot have yRd, hence x 2 Ry must hold. However, the same arguments apply to y as well, so x 2 Ry must hold, too. By right uniqueness, this implies the contradiction y = z.

Lemma 71. (Necessary for uniqueness and semi-order property 2) Let R on X be left unique and satisfy semi-order property 2. Then R is necessarily

Examples

In this section, we collect those computed properties that gave rise to single examples, rather than to general laws. Laws about the empty (Exm. 74) and the universal (Exm. 75) relation were reported properly by our algorithm. Each other example arose since the reported law suggestion was true on a 5-element universe, but turned out to be false on a larger one. In most cases, we just relied on the algorithm for both claims; in Exm. 76 and 79 we gave formal proofs. 9. [2] R is not irreflexive (037), hence by Lem. 22 not anti-transitive (020), and by Lem. 13.1 not asymmetric (022).

If X has at least 2 elements, then 10. [1] R is not co-reflexive (003); 11. [1] R is not anti-symmetric (053); 12. [1] R is neither left (011) nor right (014) unique.

Example 76. [2] A relation R on a set X cannot non-empty, dense, and asymmetric if X has no more than 6 elements (186). On a set X of at least 7 elements, these properties can be satisfied simultaneously. On the infinite set of all rational numbers, they are satisfied e.g. by the usual strict ordering. Example 79. [1] On a set X of 5 elements, a relation R must be anti-transitive, or anti-symmetric, or quasi-transitive, if one of the following holds:

1. R is left and right unique (252), or 2. R is left unique, and not left serial (255). 3. R is right unique, and not right serial (257).

On the 6-element set X = {a, b, c, d, e, f }, the relations a ,b,c ,c,b ,c,d ,d, e }, and a ,b,c ,c,b ,d,c ,e,d } satisfy all respective properties simultaneously. R 1 also satisfies property 2 and 3.

1. R 1 = { a, a , b, c , c, b , d, e , e, f }, 2. R 2 = { a,
3. R 3 = { a,
We show case 1. and 2.; the proof for case 3. is similar to that of case 2. First, for both cases, we investigate the properties of a relation R that is left unique, but neither anti-transitive, nor anti-symmetric, nor quasi-transitive. As a counter-example to anti-transitivity, let aRa 2 , a 2 Ra 3 , but aRa 3 hold. Then a 2 = a by left uniqueness; that is, the counter-example collapses to aRa, we don't use aRa In both cases, X must have at least 6 elements.

Example 80. [1] On a set X of 6 elements, a relation R can be transitive, left and right serial, and satisfy semi-order property 2, but not 1 (258). An example is shown in Fig. 26. Semi-order property 1 is violated, since dRa, cRb, a, c incomparable, but not dRb. On a set of 5 elements, no relation with these properties exists.

Example 81. [1] On a set X of 6 elements, a relation R can satisfy semi-order property 1 and be anti-symmetric and left serial, but neither transitive nor incomparability-transitive nor dense (259 Example 82. [1] On a set X of 6 elements, a relation R can satisfy semi-order property 1 and be anti-symmetric, left and right serial, but neither transitive nor incomparabilitytransitive (261). An example is shown in Fig. 28. It is not transitive, since cRe ∧ eRb but not cRb; it is not incomparability-transitive, since a, c and a, e are incomparable, but cRe. On a set of 5 elements, no relation with these properties exists.

Example 83. [1] On a set X of 6 elements, a relation R can be transitive, but neither asymmetric nor left nor right serial, and satisfy semi-order property 2, but not 1 (262). An example is shown in Fig. 29. It is not asymmetric, since f Rf ; it is not left and right serial since e and a has no predecessor and successor, respectively; it violates semi-order property 1 since dRa, a, c are incomparable, cRb, but not dRb. On a set of 5 elements, no relation with these properties exists.

Example 84. [1] On a set X of 6 elements, a relation R can satisfy semi-order property 2 and be transitive but neither anti-symmetric nor incomparability-transitive nor left nor right serial (263). An example is shown in Fig. 30. It is not anti-symmetric since eRf and f Re; it is not incomparability-transitive since a, b and a, c are incomparable but cRb; it is not left and right serial, since d and a has no predecessor and successor, respectively. On a set of 5 elements, no relation with these properties exists. Example 85. [1] On a set X of 6 elements, a relation R can satisfy semi-order property 2 and be transitive and left and right serial, but neither anti-symmetric nor incomparabilitytransitive (264). An example is shown in Fig. 31. It is not anti-symmetric, since eRd and dRe; it is not incomparability-transitive since a, b and a, c are incomparable, but cRb. On a set of 5 elements, no relation with these properties exists.

Example 86. [1] On a set X of 6 elements, a relation R can be transitive and left and right serial, but neither anti-symmetric nor dense nor satisfying semi-order property 1 (266). An example is shown in Fig. 32. It is not anti-symmetric, since dRe and eRd; it is not dense, since cRa has no intermediate element; it doesn't satisfy semi-order property 1, since bRb, b, c are incomparable, cRa, but not bRa. On a set of 5 elements, no relation with these properties exists.

Example 87. [1] On a set X of 6 elements, a relation R can be satisfy semi-order property 1 and be anti-symmetric and left and right serial, but neither transitive nor dense (267). An example is shown in Fig. 33. It is not transitive, since bRe ∧ eRa, but not bRa; it is not dense, since bRe has no intermediate element. On a set of 5 elements, no relation with these properties exists.

Example 88. [1] On a set X of 5 elements, a transitive and left and right serial relation R must be anti-symmetric, or semi-connex, or dense (268).

On c,c ,c,d ,c,e ,c,f ,d,e ,d,f , e, f , f, f } is a counterexample.

Both claims have been machine-checked. For the 6-element counter-example, R isn't anti-symmetric due to aRb ∧ bRa, not semi-connex since a and c are incomparable, and not dense since dRe has no intermediate element; left and right seriality has been achieved by making the elements at the start and at the end of each chain reflexive. Example 89. [1] On a set X of 6 elements, a relation R can satisfy semi-order property 1 and be semi-connex, but neither quasi-transitive nor dense nor left nor right serial (269). An example is shown in Fig. 34. It is not quasi-transitive, since eRc ∧ ¬cRe and cRf ∧ ¬f Rc, but f Re; it is not dense, since bRa has no intermediate element; it is not left and right serial, since d and a has no predecessor and successor, respectively. On a set of 5 elements, no relation with these properties exists.

Example 90. [1] On a set X of 5 elements, an irreflexive, semi-connex, and dense relation R must be quasi-transitive, or left or right serial (270). On a larger set, this is no longer true; Fig. 35 shows a counter-example for the 6-element set X = {a, b, c, d, e, f }, Both claims have been machine-checked. In Fig. 35, the cycle a, b, c (shown in blue) violates quasi-transitivity, the minimal and maximal element d and e (green and red) violates left and right seriality, respectively. Element f (grey) is related to each of a, b, c in both directions, e.g. aRf ∧ f Ra holds, thus helping to establish density.

Example 91. [1] On a set X of 5 elements, an transitive and incomparability-transitive relation R must be anti-symmetric, semi-connex, dense, or left or right serial (271). On a larger set, this is no longer true; Fig. 36 shows a counter-example for the 6-element set Example 92. [1] On a set X of 6 elements, a relation R can satisfy semi-order properties 1 and 2 and be left serial but neither right serial nor incomparability-transitive nor quasitransitive nor dense (272). An example is shown in Fig. 37. It is not right serial, since b has no successor; it is not incomparability-transitive, since b, a and b, d are incomparable, but dRa; it is not quasi-transitive, since dRf ∧ ¬f Rd and f Rc ∧ ¬cRf , but not dRc; it is not dense, since cRb has no intermediate element. By reverting the arrow directions, a counter-example for the dual 273 is obtained. On a set of 5 elements, no relation with either property combination exists.

Example 93. [1] On a set X of 6 elements, a relation R can satisfy semi-order properties 1 and 2 and be quasi-transitive and left and right serial, but neither transitive nor incomparability-transitive nor dense (274). An example is shown in Fig. 38. It is not transitive, since cRf ∧ f Rc but not cRc; it is not incomparability-transitive, since a, b and a, d are incomparable, but dRb; it is not dense, since dRb has no intermediate element. On a set of 5 elements, no relation with these properties exists. 

Implementation issues

In this section, we comment on some program details. The source code is available in the ancillary file nonprominentProperties.c.

Improved relation enumeration

We encoded a binary relation by a square array of bools. Originally, we enumerated all possible assignments of such an array. However, if R is a relation on a finite set X of n elements, and π : X → X is a permutation, then R defined by xR y :⇔ π x Rπ y shares all properties from Def. 1 with R; that is, R is reflexive iff R is, etc.

In order to speed up relation enumeration, we therefore defined a normal form for a square array as follows: To the ith array row, assign the pair c i , d i , where c i is the number of true values in columns j = i, and d i is the value of the ith column. An array is in normal form if c 1 , d 1 . . . c n , d n holds, where " " denotes the lexicographic order.

Every array can be converted into normal form by applying a row-sorting permutation simultaneous to rows and columns. Note that the pairs are designed to be invariant under simultaneous row and column permutation.

As an example, the left half of Fig. 39 shows a relation on the set X = {a, b, c, d}, and the pairs assigned to each row. For readability, we denoted the value false and true by "." and "1", respectively. The right half shows the corresponding normal form, obtained by sorting the rows by ascending associated pairs, and permuting the columns in the same way.

It is sufficient to consider property combinations only for relation arrays that are in normal form, and this is what our improved algorithm does. Figure 40 shows the improved code to search for right Euclidean non-transitive relations over a 3-element universe.11 The list allRows contains all possible rows for a 3 × 3 array representing a relation. The rows are grouped by assigned pair; we have one copy for each row position, to account for the varying column position of the diagonal element. For example, in horizontal position 0, the rows 1,1,0 and 1,0,1 are assigned the pair 1, 1 ; they are found at starting index 12 of allRows. The corresponding row values for horizontal position 1 are 1,1,0 and 0,1,1; they start at index 36. Procedure check03 iterates in the loops on gp[0], gp [1], and gp [2] over all combinations of groups that lead to a normal form, and in the loops on rw[0], rw [1], and rw [2], over all combinations of rows from the current groups. The lists allRows and gpS were precomputed by another program; its source code is available in the ancillary file genTables.c. Figure 41 shows, for set cardinalities 1 through 7, the number of all array assignments (column "Unpruned"), the number of arrays in normal form (column "Pruned"), and the quotient of both numbers, indicating the speed-up factor. Figure 42 shows, for each property, the number of satisfying relations found with the old (column "Old") and with the improved (column "Pruned") enumeration method.

Quine-McCluskey implementation

The procedure computeLaws iterates over all relations, determining for each the set 12 of its properties, and counting the number of occurrences of each such vector. After that, it calls the Quine-McCluskey implementation qmc to compute all prime implicants of the non-occurring vectors. The latter procedure performs a top-down breadth-first search on the search graph.

An example graph, showing all possible prime implicants for a Boolean function of 3 variables is given in Fig. 43. At each node of the search graph, the corresponding conjunction is checked by the procedure qmcRect: if no combination in its covered rectangle 13 is "off" and at least one is "on", 14 then it is actually a prime implicant. In that case, we output its description using qmcPrint, 15 and set all vectors in its covered rectangle to don't care.

Note that we can't perform a depth-first search: for example, if a isn't a prime implicant, we can't check its child ab next, since it could satisfy the above primeness criterion, but nevertheless be covered by a simpler prime implicant, such as b.

Figure 44 shows the timing for our Quine-McCluskey run. Enumeration 16 of all relations on a 5-element set and checking all properties of each relation was done after 20 seconds wall-clock time. After that, levels 1 to 5 were completely checked within an hour, but it took over a day to find the last law, on level 8. The largest share of run time was used in looping though all possible rectangles of a level; level n has 24 n • 2 n rectangles.

12 encoded as bit vector, see Fig. 42 13 This terminology is inspired by the Karnaugh diagram method; in Fig. 43, the rectangle covered by a node corresponds to the set of all leaves below it.

14 Since we are interested in non-occurring vectors, "on" corresponds to an occurrence count of zero, and "off" to a count > 0. We encode "don't care" by a count of -1.

15 In particular, we don't perform the usual search of a minimal set of prime implicants covering all "on" vectors. 16 We still used the old enumeration scheme, i.e. we enumerated and checked also relations in nonnormal form. 
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u ab u ab u ac u ac u ab u ab u ac u ac u bc u bc u bc u bc Note that the improved relation enumeration described in Sect. 6.1 would have affected only the very first phase, which was completed in 20 seconds, anyway. However, it would have allowed for using a 6-element universe set in reasonable computation time, thereby avoiding the report of all non-laws in Sect. 5, except 186 (Exm. 76), which needs 7 elements in the universe.

Somewhat unexpected, the 2 25 relations inhabited no more than 495 of the 2 24 possible combinations of properties. A listing of property combinations by number of satisfying relations is provided in the ancillary file propertyCombinationsByCount.txt.

On finding "nice" laws

It is desirable to find a set of laws as "elegant" as possible. While "elegance" is a matter of mathematicians' taste and can hardly be rigorously defined, some criteria for it are beyond doubt.

Each single law should be as general as possible. On a technical level, this translates into two requirements:

1. Each law should consist of as few literals as possible. 2. Each law should use the sharpest predicates possible.

Considering sets of laws, 3. some balance should be kept between conciseness and convenience.

We discuss criteria 1 to 3 in the following.

Criterion 1. Each law should consist of as few literals as possible.

That is, it should be obtained from a rectangle as large as possible. For example, in a law ¬ LfSerial ∨ ¬ Asym ∨ Irrefl, the first literal should be omitted.

This requirement is fulfilled, since our algorithm checks rectangles in order of decreasing size, and for every reported rectangle prevents properly contained rectangles from being reported also.

Criterion 2. Each law should use the sharpest predicates possible.

For example, both "LfUnique ∧ RgUnique ∧ SemiOrd2 ⇒ ASym" (226) and "LfUnique ∧ RgUnique ∧ SemiOrd2 ⇒ Irrefl" is a law, but the latter is redundant since it follows from the former and the law "ASym ⇒ Irrefl" (039).

In a naive approach to cope with this requirement, we ordered the properties by extension set cardinality, see Fig. 42,17 and ensured that the algorithm checks rectangles in order of increasing encoding. This way, 226 corresponds to the encoding 0x08000260, while its weaker consequence would correspond to a larger encoding 0x08002060 and therefore isn't found by the algorithm.

However, when a predicate occurs negated in a law, this order doesn't lead to the desired result. For example, the law "LfUnique ∧ Irrefl ⇒ AntiTrans" (127) is found, but its weaker consequence "LfUnique ∧ ASym ⇒ AntiTrans" (109) was found before it; the former and the latter corresponds to the encoding 0x002120 and 0x000320, respectively.

The latter problem is caused by our too simple enumeration method. In procedure qmc, we iterate in the loop on mask over all property sets of cardinality given by the current level. For each such set we the iterate in the loop on val over all assignments of negation symbols to the properties. For example, referring to level 2 of Fig. 43, mask may take the values ab, ac, bc, and for each value xy, val may take the values xy, xy, xy, xy. However, assuming that the order by extension set cardinalities is c < b < a < a < b < c, we should check the set ac before the larger set bc but after the smaller set bc, which is impossible with our simple enumeration method.

Given the cardinality of each property's extension set (as in Fig. 42), a partial order on the intersection set is induced; Fig. 45 18 gives an example for the facts about two-set intersections inferrable19 from the above order c < b < a < a < b < c.

An improved approach should enumerate the rectangles in an order that is some linearization of this inferred partial order. An efficient method to do this is still to be found. One possibility might be to assign to each property a weight, such that increasing extension set cardinalities correspond to increasing weights, and to linearize the intersections in order of increasing weight sums. Choosing powers of 2 as weights will guarantee that all weight sums are distinct; cf. the numbers in Fig. 45. However, sorting a list of all 24 n • 2 n rectangles on level n would definitely not be efficient.

Criterion 3. Considering sets of laws, some balance should be kept between conciseness and convenience. For example, in a textbook about commutative groups, commutative variants of the associativity axiom, like (xy)z = (yz)x, usually aren't explicitly mentioned, in order to keep the presentation concise. On the other hand, while all theorems are redundant in the presence of an axiomatization, the book will undoubtedly present some of them for convenience.

In our setting, we have a simple formal criterion about which laws to consider redundant: those that follow from other laws solely by propositional logic. For example, "CoRefl⇒LfEucl" (006), is not considered redundant despite the triviality of its proof, since the latter needs to use Def. 1.3 and 1.16. In contrast, "LfUnique∧IncTrans⇒ASym∨LfSerial" (239) is redundant since it follows from "LfUnique∧SemiOrd2⇒ASym∨LfSerial" (242) and "SemiOrd2⇒IncTrans" (071) by propositional inference alone, without employing Def. 1.

As can be seen from the previous example, our algorithm doesn't avoid reporting redundant law suggestions. The reason for this is that it just reports prime implicants in order of appearance, rather than selecting a minimal covering subset of them. The latter technique is commonly employed in proper Quine-McCluskey implementations, it is, however, NP-complete Feldman [6, p.14]. The Karnaugh diagram in Fig. 46 illustrates the problem in a simplified setting (3 properties only) along the example "ASym⇒Irrefl" (039), "¬Refl∨¬ASym" (044), and "¬Refl∨¬Irrefl" (046). Rectangle 044 is inspected before 046, so the former is reported and its fields are set to don't care. When the latter is inspected, there is still one on field in it, so it is reported, too. In contrast, a minimal covering subset approach wouldn't report 044 since all its fields are covered by the union of 039 and 046.
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 1 Figure 1: Source code for transitivity check
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 2 Figure 2: Source code to search for right Euclidean non-transitive relations

Figure 4 :

 4 Figure 4: Encoding scheme for 3 × 3 relations for a Burghardt [1] approach

Definition 3 .

 3 (Operations on relations) 1. For a relation R on a set X and a subset Y ⊆ X, we write R| Y for the restriction of R to Y . Formally, R| Y is the relation on Y × Y defined by x(R| Y )y :⇔ xRy for each x, y ∈ Y . 2. For an equivalence relation R on a set X, we write [x] R for the equivalence class of x ∈ X w.r.t. R. Formally, [x] R := {y ∈ X | xRy}. 3. For a relation R on a set X and x, y ∈ X, we write xR for the set of elements x is related to, and Ry for the set of elements that are related to y. Formally, xR := {y ∈ X | xRy} and Ry := {x ∈ X | xRy}.

Figure 17 :

 17 Figure 17: Law index rg (bot lf: A ∨ B required, top rg: A ∧ B impossible)

1 .

 1 If xT y ∧ yT z, then xT z by transitivity of T , and hence xRz. 2. If xT y ∧ yCz, then y = z by co-reflexivity of C, hence xT z by substitutivity, hence xRz. 3. Similarly, xCy ∧ yT z ⇒ x = yT z ⇒ xRz. 4. If xCy ∧ yCz, then x = yCz implies xRz. Lemma 5. (Identity relation) Given a set X, the identity relation I = { x, x | x ∈ X} is uniquely characterized by any of the following properties (195, 207):

Proof. 1 .

 1 If xRy, then yRy by right quasi-reflexivity, hence x = y by left uniqueness. 2. Dual to 1. 3. Follows from 1, since right Euclidean relation is right quasi-reflexive by Lem. 46. 4. Dual to 3. 5. Follows from 1 and Lem. 9. 6. Dual to 5. 7. Assume for contradiction xT y holds for some x = y. Then yRx by symmetry, while ¬yRx by anti-symmetry.

Proof. 1 .

 1 "⇒": Let R be quasi-transitive. Following Sen[4, p.381], define xIy :⇔ xRy ∧ yRx and xP y :⇔ xRy ∧ ¬yRx. Then • I and P are disjoint: xIy ∧ xP y ⇒ yRx ∧ ¬yRx using the definitions of I and P ⇒ false • Their union is R: xIy ∨ xP y ⇔ (xRy ∧ yRx) ∨ (xRy ∧ ¬yRx) by definition of I and P ⇔ xRy ∧ (yRx ∨ ¬yRx) by distributivity ⇔ xRy • I is symmetric: xIy ⇒ xRy ∧ yRx ⇒ yIx • P is transitive: xP y ∧ yP z ⇒ xRy ∧ ¬yRx ∧ yRz ∧ ¬zRy by definition of P ⇒ xRz ∧ ¬zRx by quasi-transitivity of R ⇒ xP z by definition of P "⇐": Let R = I . ∪ P for some symmetric relation I and some transitive relation R. Assume xRy and yRz hold, but neither yRx nor zRy does. We observe the following facts: (a) xIy is false, since else xIy ⇒ yIx ⇒ yRx, contradicting our assumptions. (b) xP y holds, since xRy ⇒ xIy ∨ xP y ⇒ xP y by 1a. (c) yP z follows by an argument similar to 1a and 1b. (d) Hence xP z holds, by transitivity of P . (e) Hence xRz.

. 3 .

 3 We have xIy ⇒ xRy ∧ yRx ⇒ x = y by anti-symmetry, hence I is co-reflexive. By Lem. 4, R = I ∪ P is transitive.

  ), and neither can a right unique and left serial relation (200). On the 4-element set X = {a, b, c, d}, the relation R = { a, b , b, c , c, d , d, a } is a counter-example for the first claim.

Figure 19 :

 19 Figure 19: Right Euclidean relation

Fig. 20 .

 20 Proof. "⇒": By Lem. 38, R| ran(R) is an equivalence. Let x ∈ X \ran(R). If xRy 1 and xRy 2 , then y 1 , y 2 ∈ ran(R), and y 1 Ry 2 by right Euclideanness of R, that is, y 1 , y 2 belong to the same equivalence class w.r.t. R .

Figure 20 :

 20 Figure 20: Left Euclidean relation

3 .Figure 21 :

 321 Figure 21: Counter-example in Lem. 59

Example 74 .

 74 (Empty relation) The empty relation R = {} on a set X has the following properties:

Figure 22 :

 22 Figure 22: Relation graph in Exm. 76

Figure 25 :

 25 Figure 25: Relation graph in Exm. 78

3 .

 3 As a counter-example to anti-symmetry, let bRc, but cRb hold, for b = c. Then a = b, since else cRa and aRa would imply a = b = c by left uniqueness; similar a = c. As a counter-example to quasi-transitivity, let dRe ∧ ¬eRd ∧ eRf ∧ ¬f Re, but ¬dRf ∨ f Rd hold. Then e = a, since else e = d = a by left uniqueness, implying the contradiction ¬aRa. Similarly, f = a. Moreover, e = b, since else d = c by left uniqueness, implying the contradiction eRd. Similarly, f = b. By a symmetry argument, we also have e = c = f .We have d = e, since the contrary would imply the contradiction eRd; similarly e = f . And we have d = f , since else we had the contradiction eRd. To sum up, we have shown that the set {a, b, c, e, f } has a cardinality of 5, and {d, e, f } has 3 elements, but we couldn't rule out d ∈ {a, b, c}. Second, we distinguish the cases 1. and 2. in order to use the additional properties of R in each case:
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 26 Figure 26: Relation graph in Exm. 80

Figure 29 :

 29 Figure 29: Relation graph in Exm. 83

Figure 30 :

 30 Figure 30: Relation graph in Exm. 84

the 6 -

 6 element set X = {a, b, c, d, e, f }, the relation R = { a, a , a, b , b, a , b, b ,

Figure 33 :

 33 Figure 33: Relation graph in Exm. 87

Figure 35 :

 35 Figure 35: Relation graph in Exm. 90

Figure 36 :

 36 Figure 36: Relation graph in Exm. 91

Figure 37 :

 37 Figure 37: Relation graph in Exm. 92

Figure 39 :

 39 Figure 39: Example relation (left) and its normal form (right)

Figure 41 :

 41 Figure 41: Number of relations vs. carrier set cardinality

Figure 43 :

 43 Figure 43: Search graph for the Quine-McCluskey algorithm on 3 variables

Figure 44 :

 44 Figure 44: Timing for Quine-McCluskey run

Figure 45 :Figure 46 :

 4546 Figure 45: Partial rectangle order Induced by c < b < a < a < b < c

  

  

  

  if it is dense and transitive; 5. trichotomous if it is irreflexive, asymmetric, and semi-connex; 6. a non-strict partial order if it is reflexive, anti-symmetric, and transitive; 7. a strict partial order if it is irreflexive, asymmetric, and transitive; 8. a semi-order if it is asymmetric and satisfies semi-order properties 1 and 2; 9. a preorder if it is reflexive and transitive; 10. a weak ordering if it is irreflexive, asymmetric, transitive, and incomparabilitytransitive; 11. a partial function if it is right unique; 12. a total function if it is right unique and right serial; 13. an injective function if it is left unique, right unique, and right serial; 14. a surjective function if it is right unique and and left and right serial; 15. a bijective function if it is left and right unique and left and right serial.

t. R, if ¬xRy ∧ ¬yRx holds. Definition 2. (Kinds of binary relations) A binary relation R on a set X is called 1. an equivalence if it is reflexive, symmetric, and transitive; 2. a partial equivalence if it is symmetric and transitive; 3. a tolerance relation if it is reflexive and symmetric; 4. idempotent

  2. I is left serial by Lem. 54. If some relation R is both co-reflexive and left serial, then ∀x ∈ X ∃x ∈ X. x Rx holds; hence ∀x ∈ X. xRx holds; therefore R = I by case 1. 3. Dual to case 2. 4. Let x = y, then xIx, yIy, and x, y are incomparable w.r.t. I. If I would satisfy semi-order property 1, then xIy would hold, contradicting our assumption.

Lemma 6

. (Sufficient for co-reflexivity implying emptiness) On a set X of at least 2 elements, a co-reflexive relation R is empty if one of the following sufficient conditions holds:

  1. If R is left quasi-reflexive and xRy holds, then yRx by symmetry, hence yRy. 2. If R is left Euclidean, and xRy and xRz holds, then yRx and zRx by symmetry, hence yRz by left Euclideanness. 3. If R is left serial and x ∈ X, then find some y with yRx by left seriality hence xRy by symmetry. 4. If R is left unique, and xRy 1 and xRy 2 holds, then y 1 Rx and y 2 Rx by symmetry, hence y 1 = y 2 by left uniqueness.

  1 (164), moreover it is left serial or empty (237). The dual applies to a right Euclidean relation (163, 165, 246). Let R be left Euclidean; let xRy and yRz hold. We have xRx by Lem. 38, hence x and z are comparable by Lem. 27. If xRz, we have transitivity immediately. Else, we have zRx, hence x, y, z ∈ dom(R), implying transitivity by Lem. 38. 2. Semi-order property 1: The antecedent of that property (Def. 1.17) cannot hold, since yRz implies yRy by Lem. 38, hence y and x are comparable by Lem. 27. 3. Left seriality: Let R be non-empty; let aRb hold. An arbitrary y must be comparable to a or to b. If aRy or bRy holds, we are done immediately. If yRa or yRb holds, we have yRy by Lem. 38.

	Proof.	1. Transitivity:

  x 1 , . . . , x n to be a cycle of length n if x i Rx i+1 holds for i = 1, . . . , n -1, and x n Rx 1 holds. We first show the existence of a cycle of length 3 or 4. Using seriality, obtain x 1 , x 2 , x 3 , x 4 such that x i Rx i+1 i = 1, 2, 3. We can't have x 1 Rx 3 , since this would imply x 1 = x 2 , contradicting Lem. 13.1. If x 3 Rx 1 , we have a cycle of length 3, and are done. Else, x 1 and x 3 are incomparable; hence due to incomparability-transitivity x 1 and x 4 can't be incomparable, too. We can't have x 1 Rx 4 , since then x 1 = x 3 by uniqueness, and we would have x 1 Rx 2 and x 2 Rx 1 , contradicting asymmetry. Therefore, x 4 Rx 1 , and we have a cycle of length 4. Now let a cycle x 1 , . . . , x n of length n = 3 or n = 4 be given. Let y be an element distinct from all cycle members. We can't have yRx i for any i by uniqueness. We can't have x i Ry for more than one i, again by uniqueness. Hence, y must be incomparable to n -1 cycle members. However, for both n = 3 and n = 4 this implies that y is incomparable to two adjacent cycle members, w.l.o.g. to x 1 and x 2 , contradicting incomparability-transitivity.

  5. Follows from 1, since each left Euclidean relation is left quasi-reflexive by Lem. 46. 6. Follows similarly from 2 and Lem. 46. 7. Assume for contradiction R satisfies semi-order property 2 and all properties from 7, but isn't incomparability-transitive. (a) First, from the conjunction of anti-transitivity and quasi-transitivity we can draw some strong conclusions: Whenever xRy ∧ yRz holds, then we must have yRx ∨ zRy, and x and z must be incomparable. If neither yRx nor zRy held, then xRz and its negation would follow by quasi-transitivity and antitransitivity, respectively. xRz is forbidden by anti-transitivity. If zRx held, then yRx would imply yRz ∧ zRx ∧ yRx, while zRy would imply zRx ∧ xRy ∧ zRy; both cases contradicting anti-transitivity. (b) Second, since R isn't incomparability-transitive, we have aRb and a as well as b is incomparable to some c. By semi-order property 2, we can't have bRa. By left and right seriality applied to a and b, we find a Ra and bRb , respectively. c) Third, by semi-order property 2, b can't be incomparable to a , since it is to a, and a Ra ∧ aRa holds. Similarly, c can't be incomparable to a , and neither to b , since it is to a, and to b, respectively. Moreover, we cannot have a Rc∧cRa , since b is incomparable to both a and c; similarly, we can't have b Rc ∧ cRb . And we can't have a Rc ∧ cRb , since this would imply incomparability of a and b by our first observation; for the same reason, we can't have b Rc ∧ cRa . (d) Altogether, two possibilities remain: i. a Rc ∧ b Rc. Then a Rb would imply a Rb ∧ b Rc ∧ a Rc, contradicting anti-transitivity; and b Ra would yield a symmetric contradiction. ii. cRa ∧ cRb .Then a Rb would imply cRa ∧ a Rb ∧ cRb , again contradicting antitransitivity; similar for b Ra .For the converse direction, let R be incomparability-transitive and let xRy ∧ yRz hold. If both x, w and w, y were incomparable, then so would be x, y, contradicting xRy.

	4.9. Euclideanness
	Lemma 36.

From the first observation, we can conclude that aRa as well as b Rb must hold, too, while a and b must be incomparable, and so must be a and b .

(

[1] 

For symmetric relations, transitivity, right Euclideanness, and left Euclideanness all coincide (098, 099, 117). In particular, each equivalence relation is both left and right Euclidean.

Proof. Let R be symmetric. Transitivity implies right Euclideanness: Given xRy and xRz, we have yRx ∧ xRz by symmetry, hence yRz by transitivity. The proof that right implies left Euclideanness and the proof that the latter implies transitivity are similar.

Lemma 37.

[2] 

A right Euclidean and left quasi-reflexive relation is always symmetric, and hence transitive and left Euclidean (139). Dually, a left Euclidean and right quasireflexive relation is always symmetric and hence transitive and right Euclidean (138). As a consequence, a right and left Euclidean relation is symmetric (097) and hence transitive (114). A reflexive and right or left Euclidean relation is an equivalence, and both left (132) and right (131) Euclidean. On the two-element set X = {a, b}, the relation R := { a, a } is left and right quasi-reflexive, left and right Euclidean, symmetric, transitive, but not reflexive, hence no equivalence.

  left Euclidean and left unique relation is always transitive, and so is a right Euclidean and right unique relation (115, 116). More particularly, in both cases no Lemma 45. [1] A left Euclidean relation is left unique iff it is anti-symmetric (145, 146). Dually, a right Euclidean relation is right unique iff it is anti-symmetric (147, 148). Proof. Let R be left Euclidean. "⇒": If xRy holds, then xRx by Euclideanness. If also yRx holds, we therefore have x = y by uniqueness. "⇐": If x 1 Ry and x 2 Ry, then both x 1 Rx 2 and x 2 Rx 1 follows by Euclideanness, hence x 1 = x 2 by anti-symmetry.

chains xRy ∧ yRz with x = y ∧ y = z can exist. Proof. Let R be left Euclidean and left unique. Let xRy and yRz hold. By Lem. 38, y ∈ dom(R) implies yRy, hence x = y, hence xRz. The proof for right relations is similar.

  ). An example is shown in Fig.27. It is not transitive, since cRf ∧ f Rb but not cRb; it is not incomparability-transitive, since a, f and a, b are incomparable, while f Rb; it is not dense, since eRa has no intermediate element. By inverting the arrow directions, a counter example for the dual 260 is obtained. On a set of 5 elements, no relation with either property combination exists.

at https://en.wikipedia.org

We used gcc version 7.3.0 with the highest optimization level.

For this run, we hadn't provided checks for left and right quasi-reflexivity (Def. 1.4+5), but only for the conjunction of both, viz. quasi-reflexivity (Def. 1.6). As additional properties, we provided a check for the empty relation (∀x, y ∈ X. ¬xRy) and for the universal relation (∀x, y ∈ X. xRy).

See Quine[2] and McCluskey Jr.[3] for the original algorithm.

We needed to require a minimum cardinality of the universe set in some lemmas, e.g.Lem. 51 and 42. 

For sake of simplicity, only one unary and one binary operation on relations is considered, viz. symmetric closure symCls and union ∪. Only two properties of relations are considered, viz. reflexivity isRefl and symmetry isSym. It should be obvious how to incorporate more operators and predicates on relations. By additionally providing a sort for sets, operations like dom, ran, restriction, etc. could be

A warning about possible confusion appears advisable here: In the setting of the Quine-McCluskey algorithm, a prime implicant is a conjunction of negated and/or unnegated variables. However, its corresponding law suggestion is its complement, and hence a disjunction, as should be clear from the example. Where possible, we used the term "literal" in favor of "conjunct" or "disjunct".

We marked all redundancies we became aware of; we don't claim that no undetected ones exist.

For the following laws, we need a universe of at least 2 elements: 025, 058,135, 160, 161, 169, 193, 194, 198, 199, 205, 206, 210, 211; 3 elements: Lem. 42, 188, 226; 4 elements: 028, 059, 060, 061; 5 elements: 200, 212, 220, 240, 248, 254; finite cardinality: Lem. 57, 190, 202, 213, 214; finite and odd cardinality: 235.

We also gave proofs for well-known laws, and even for trivial ones.

Figure 28: Relation graph in Exm. 82

The unimproved code was shown in Fig.2

& & & &

We used the figures from column "Old" for that. Note that column "Pruned" would result in a slightly different order. Also note that due to the nature of the pruning described in Sect. 6.1, dual properties could have different extension set cardinalities.

Capital letters denote negations.

E.g. a < b implies ac < bc by monotonicity.

9. Let R be symmetric and semi-connex, let x, z ∈ X be given such that xRz holds.

Let y ∈ X be distinct from both x and z, then xRy ∨ yRx, and yRz ∨ zRy holds, since R is semi-connex. By R's symmetry, xRy and yRz holds, hence we are done. Note that on the two-element set X = {a, b}, the relation R = { a, b , b, a } is symmetric and semi-connex, but not dense.

On the set X = {a, b, c}, the relation R = { a, a , a, b , b, c , c, c } is dense, but neither reflexive, nor co-reflexive, nor left or right quasi-reflexive, nor left or right Euclidean, nor symmetric, nor satisfying semi-order property 1, nor semi-connex.

Lemma 49. [1] A non-empty dense relation cannot be anti-transitive (185).

Proof. Assume for contradiction that R is non-empty, dense, and anti-transitive. Due to the first property, xRz holds for some x, z; hence due to the second one, xRy ∧ xRz holds for some y; hence due to the third one, ¬xRz holds, which is a contradiction.

Connex and semi-connex relations

Lemma 50. [2] A relation is connex iff it is semi-connex and reflexive (045, 062, 159).

If X has at least 2 elements, a relation R on X is connex iff it is semi-connex and left and right quasi-reflexive (050, 062, 160). On a singleton set X, the empty relation is semi-connex and quasi-reflexive, but not connex.

Proof.

• If R is connex, the semi-connex property and the reflexivity follow trivially. The latter implies quasi-reflexivity by Lem. 9.

• Conversely, let R be semi-connex and reflexive. For x = y, the semi-connex property implies xRy ∨ yRx. For x = y, reflexivity implies xRy.

• Finally, let R be semi-connex and quasi-reflexive. For x = y, the semi-connex property again implies xRy ∨ yRx. For x = y, choose an arbitrary z = x, then xRz or zRx by the semi-connex property. Both cases imply xRx, i.e. xRy, by quasi-reflexivity.

Lemma 51. [3] If a set X has at least 4 elements, then a semi-connex relation R on can neither be anti-transitive (061), nor left (059) nor right (060) unique. The same applies in particular to a connex relation on X (028, 026, 027).

Proof. First, assume R is both semi-connex and anti-transitive. Consider the directed graph corresponding to R, with its vertices being the elements of X, and its edges being the pairs related by R.

Consider three arbitrary distinct vertices. By the semi-connex property, each pair of them must be connected by an edge. By anti-transitivity, (*) none of them may be the source of more than one edge. Hence, the three edges must be oriented in such a way that they for a directed cycle.

Let w, x, y, z be four distinct elements, W.l.o.g. assume the subgraph for x, y, z is oriented a directed cycle corresponding to xRy ∧ yRz ∧ zRx. The subgraph for w, x, y must be oriented as a directed cycle, too; therefore wRx ∧ xRy ∧ yRw must hold. But then, the subgraph for w, x, z is not oriented as a cycle, since wRx∧zRx. This contradicts the cycle-property shown above.

If R is semi-connex and right unique, the latter property implies (*) that no vertex may be the source of two edges, and the proof is similar.

If R is semi-connex and left unique, no vertex may be the target of two edges, leading again to a similar proof.

Each connex relation is semi-connex by Lem. 50.

Lemma 52. [1] If R is a semi-connex relation on X, then the set X \ ran(R) has at most one element; the same applies to X \ dom(R).

The first two possibilities are ruled out by assumption, so the third one must apply, i.e.

x and y can't be distinct. A similar argument applies to dom(R).

Lemma 53. (Sufficient for connex implying universality) A connex relation R on a set X needs to be universal if one of the following sufficient conditions is satisfied:

Proof. For a 2 element set X, all 4 relations on X are easily checked; we assume in the following the X has 3 elements. We show case 1; the other condition is proven dually. For an arbitrary w, find wRx by right seriality. Choose y ∈ X \ {w}. Then yRx would imply the contradiction y = w by left uniqueness. Moreover, x, y incomparable would imply wRy by semi-order property 1, where yRy is obtained by right seriality; hence w = y by left uniqueness, contradicting wRx. So for arbitrary w, and x an R-successor of w, we have that ∀y ∈ X \ {w}. xRy must hold. Now let w 1 , w 2 , y be pairwise distinct, obtain w i Rx i by right seriality, and x i Ry by the above argument. Then x 1 = x 2 , hence w 1 = w 2 , both by left uniqueness; this contradicts our assumption.

Lemma 66. [4] The following conditions are equivalent:

R is reflexive and satisfies semi-order property 1 (035, 136); 3. R is reflexive and satisfies semi-order property 2 (069, 175); 4. R is reflexive and semi-connex (045, 062, 159).

Proof.

• 1 ⇒ 2: If R is connex, no x, y are incomparable; by Lem. 50 R is reflexive.

• 2 ⇒ 1: If x, y were incomparable, applying semi-order property 1 to xRx and yRy would yield the contradiction xRy.

• 1 ⇒ 3: If R is connex, then it is reflexive by Lem. 50 and satisfies semi-order property 2 by Lem. 25.

• 3 ⇒ 1: Given w and x, apply semi-order property 2 to w and xRx ∧ xRx.

• 1 ⇔ 4: Shown in Lem. 50.

4.15. Semi-order property 2 Lemma 67. [1] For a non-empty relation satisfying semi-order property 2, reflexivity and quasi-reflexivity are equivalent. The proof of the dual claims is similar.

Lemma 72. [1] If X has at least 3 elements, every left and right unique relation R on X that satisfies semi-order property 2 is asymmetric (226). Lemma 73. [1] Every left or right quasi-reflexive relation satisfying semi-order property 2 vacuously also satisfies semi-order property1 (176).

Proof. We show that the antecedent of Def. 1.17 is never satisfied. If wRx and yRz then yRy for a left quasi-reflexive R; applying semi-order property 2 to x and yRy ∧ yRy yields that x, y can't be incomparable. For a right quasi-reflexive R, apply semi-order property 2 to y and xRx. x 0 Unsatisfiability on small sets has been machine-checked. Subsequently, the following argument was found, cf. Fig. 23: If x 0 Rz 0 for some elements x 0 , z 0 , then by density x 0 Ry ∧ yRz 0 , hence x 0 Rx 1 ∧ x 1 Ry hence x 1 Rx 2 ∧ x 2 Ry; and dually yRz 1 ∧ z 1 Rz 0 and yRz 2 ∧ z 2 Rz 1 . Since R is asymmetric, it is also irreflexive by Lem. 13.1; therefore x 0 = x 1 = x 2 and z 0 = z 1 = z 2 and x i = y = z j for all i, j ∈ {0, 1, 2}. The plain asymmetry of R implies x i = z j for all i, j ∈ {0, 1, 2} and x 0 = x 2 and z 0 = z 2 . Therefore, all seven elements x 0 , x 1 , x 2 , y, z 0 , z 1 , z 2 are pairwise distinct; i.e. X has at least 7 elements.

The graph shown in Fig. 22 shows a non-empty asymmetric dense relation on a 7element set; its properties have been machine-checked, too. An arrow from x (light blunt end) to y (dark peaked end) indicates xRy. Each vertex has three outgoing edges, all sharing its color; their opposite vertices are always connected to each other by a directed cycle. Dually, each vertex has three incoming edges, with their opposite vertices again connected by a directed cycle. For example, vertex A points to the cycle C → D → E → C, and is pointed to by the cycle B → F → G → B; in terms of Fig. 23,x F,G,A,E,D,C, respectively. However, Fig. 23 matches Fig. 22 in a multitude of other ways.

Example 77. [1] On a set X of 6 elements, a relation R can be transitive but not antisymmetric, and satisfy semi-order property 2, but not 1 (227). An example is shown in Fig. 24. Anti-symmetry is violated by eRf ∧ f Re. Semi-order property 1 is violated by aRc, bRd, b, c incomparable, but not aRd. On a set of 5 elements, no relation with these properties exists.

Example 78. [1] On a set X of 6 elements, a relation R can be right unique, left serial, and asymmetric but not satisfying semi-order property 2 (243). An example is shown in