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We present a general framework to define an application-dependent weight measure on terms that subsumes e.g. total simplification orderings, and an O(n • log n) algorithm for the simultaneous computation of the minimal weight of a term in the language of each nonterminal of a regular tree grammar, based on Barzdins' liquid-flow technique.

Introduction

Regular tree grammars or automata [START_REF] Thatcher | Generalized finite automata theory with an application to a decision problem of second-order logic[END_REF] are a generalization of regular (word) grammars allowing the description of infinite sets of terms, aka. trees. The set of regular tree languages is closed wrt. boolean operations like intersection and complement, language equivalence and the sublanguage property are decidable. They are an important tool in various areas of computer science.

Emmelmann [START_REF] Emmelmann | Code selection by regularly controlled term rewriting[END_REF][START_REF] Emmelmann | Codeselektion mit regulr gesteuerter Termersetzung[END_REF] used them in a compiler generator to compute optimal target code depending on the instruction set of the target machine, employing a notion of weighted language membership to reflect instruction execution costs. Aiken and Murphy [START_REF] Aiken | Implementing regular tree expressions[END_REF] exploited the equivalence between regular tree languages and systems of linear set constraints in a type checking algorithm for a functional programming language. In [START_REF] Burghardt | Regular substitution sets: A means of controlling E-unification[END_REF] we used regular tree grammars to compute simple invariants of data types that are needed in refinement verification and synthesis. McAllester [START_REF] Mcallester | Grammar rewriting[END_REF] represented congruence classes induced by nonorientable equations in term rewriting by regular tree languages and gave algorithms to rewrite grammars instead of terms. Based on an almost similar representation, Heinz [START_REF] Heinz | Lemma discovery by anti-unification of regular sorts[END_REF][START_REF] Heinz | Anti-Unifikation modulo Gleichungstheorie und deren Anwendung zur Lemmagenerierung[END_REF] computed complete sets of term generalizations wrt. an equational background theory (E-anti-unification). Comon [START_REF] Comon | Equational formulas in order-sorted algebras[END_REF] used regular tree languages to describe sets of ground constructor terms as sorts, and the corresponding automaton constructions to implement sort operations. He provided a transformation system to decide first-order formulas with equality and sort membership as the only predicates. He showed the decidability of inductive reducibility as an application.

Comon [START_REF] Comon | Inductive proofs by specification transformation[END_REF] pointed out the equivalence between regular tree automata and elementary sorted signatures, or linear term declarations by Schmidt-Schauß [START_REF] Schmidt-Schau | Computational Aspects of an Order-Sorted Logic with Term Declarations[END_REF]; Uribe [START_REF] Uribe | Sorted unification using set constraints[END_REF] showed the equivalence to linear set constraints; Bachmair et. al. [START_REF] Bachmair | Set constraints are the monadic class[END_REF] showed the equivalence to the monadic class, i.e. the class of first-order predicate logic formulas with arbitrary quantifiers, with unary predicates only, and without function symbols.

In many of the above applications, it is necessary to enumerate terms of some computed tree language in order of increasing height, or, more generally, some measure of weight which is defined dependent on the environment the grammar algorithms are used in. To this end, it is necessary to compute the minimal height, or weight, of each nonterminal's language. As a by-product, this computation also determines which nonterminals produce the empty language, which enables to simplify the grammar accordingly; Aiken and Murphy [START_REF] Aiken | Implementing regular tree expressions[END_REF] found out that in their application area this optimization had the largest impact on practical run times at all.

In 1991, Barzdin and Barzdin [START_REF] Barzdin | Rapid construction of algebraic axioms from samples[END_REF] proposed their liquid-flow algorithm which takes an incompletely given finite algebra and acquires hypotheses about what are probable axioms, using a rather involved technique including labeled graphs with several kinds of nodes and arcs. Recently [START_REF] Burghardt | Axiomatization of finite algebras[END_REF], we gave a rational reconstruction of this work that is based on well-known algorithms on regular tree grammars. It revealed that the core of the liquid-flow algorithm in fact amounts to a classical fixpoint algorithm to compute the minimal term heights of all languages generated by nonterminals simultaneously. However, the version of Barzdin and Barzdin has only linear time complexity while the classical algorithm [AM91, Sect.4] is quadratic.

In this paper, we generalize the liquid-flow algorithm to compute used-defined weights instead of heights. In the Sect. 2, we present a rather general framework to define an application-dependent weight measure on terms that subsumes e.g. any total simplification ordering [DJ90, Sect. 5.2] as a special case. In Sect. 3, we show that a naive transfer of Barzdins' liquid-flow technique leads to a sub-quadratic weight computation algorithm only under very restrictive assumptions. In Sect. 4, we present an improved algorithm for our framework that has a time complexity of O(n • log n) without any restrictions. We give correctness and complexity proofs for all presented algorithms.

Grammars and weights

We assume familiarity with terms and (word) grammars.

Let Σ be a finite set of function symbols, together with their arities. Let ar denote the maximal arity of any function symbol in Σ. We abbreviate the set of all n-ary functions by Σ n , and the set of all at least n-ary functions by Σ n . Let T denote the set of ground terms over Σ, defined in the usual way. Let N be a finite set of nonterminal symbols; we use nt := #N to denote its cardinality.

A regular tree grammar is a triple G = Σ, N , R , where R is a finite set of production rules of the form N ::= f 1 (N 11 , ..., N 1n 1 ) | . . . | f m (N m1 , ..., N mnm ), where N, N ij ∈ N and f i ∈ Σ n i . If some n i is zero, f i is a constant; if m is zero, N produces the empty language. We call f i (N i1 , . . . , N in i ) an alternative of the rule for N .

Let al denote the total number of alternatives in the grammar G; we use it as a size measure for G.

For each nonterminal N ∈ N , exactly one defining rule in R must exist with N as its left-hand side. Given a fixed grammar G and a nonterminal N ∈ N , the language produced by N , viz. L(N ) ⊆ T , is defined in the usual way as the set of all terms derivable from N as the start symbol.

Let D be a set and (<) an irreflexive, total, and well-founded1 order on D with a maximal element ∞. Let ( ) denote the reflexive closure of (<). A function f : D n -→ D is called monotonic and increasing iff

( n i=1 x i y i ) ⇒ f (x 1 , . . . , x n ) f (y 1 , . . . , y n ) and n i=1 x i f (x 1 , . . . , x n ),
respectively. f is called a weight function iff it is monotonic and increasing. Let D be as above and a signature Σ be given. For each n ∈ IN and f ∈ Σ n , let a weight function f :

D n -→ D be given. Define wg : T -→ D inductively by wg(f (t 1 , . . . , t n )) := f (wg(t 1 ), . . . , wg(t n )). For T ⊆ T , define wg(T ) := min{wg(t) | t ∈ T }.
Note that wg(T ) ∈ D is always well-defined and wg(T ) = wg(t) for some t ∈ T . If N is a nonterminal of a given regular tree grammar over the signature Σ, we additionally define wg(N ) := wg(L(N )). A term t ∈ L(N ) is called minimal wrt. N if wg(t) = wg(N ). We assume that f (x 1 , . . . , x n ) can always be computed in time O(n).

The most familiar examples of weight measures are the size sz(t), and the height hg(t) of a term t, i.e. the total number of nodes, and the length of the longest path from the root to any leaf, respectively. If D := IN ∪ {∞} and f (x 1 , . . . , x n ) := 1 + x 1 + . . . + x n for each f ∈ Σ n , we get wg(t) = sz(t); the definitions f (x 1 , . . . , x n ) := 1 + max{x 1 , . . . , x n } for f ∈ Σ n yield wg(t) = hg(t). For a more pretentious example, let 3 ∈ Σ 0 and (+), (•) ∈ Σ 2 , and consider the term t (x, y) := x + 3 • y with the set of proper subterms S := {X, 3, 3 • X}. Let D := (IN ×S)∪{∞}. The following definitions of weight functions lead to wg(t) being a pair of the number of occurrences of t in t and the largest term in S occurring at the root of t. Let i j ∈ IN and t j ∈ {X, 3, 3 • X}; we use infix notation for weight functions as well and assume f (. . . , ∞, . . .) := ∞ for all f . 3 := 0, 3

i 1 , 3 • i 2 , t 2 := i 1 + i 2 , 3 • X i 1 , t 1 • i 2 , t 2 := i 1 + i 2 , X if t 1 = 3 i 1 , t 1 + i 2 , 3 • X := i 1 + i 2 + 1, X i 1 , t 1 + i 2 , t 2 := i 1 + i 2 , X if t 2 = 3 • X f ( i 1 , t 1 , . . . , i n , t n ) := i 1 + . . . + i n , X for all other f ∈ Σ
This example can be generalized to an arbitrary linear term t (x 1 , . . . , x n ).

The following Lemma characterizes the weight measures wg that can be defined by appropriate weight functions in our framework.

Lemma 1.

Let D, (<), and a mapping φ : T -→ D be given. There exist weight functions f : 

D n -→ D such that ∀t ∈ T : wg(t) = φ(t) iff 1. φ(t ) φ(t) if t
) := min{[f (t 1 , . . . , t n )] | n i=1 x i [t i ]}. -We have f ([t 1 ], . . . , [t n ]) = [f (t 1 , . . . , t n )] for all t 1 , . . . , t n ∈ T : f ([t 1 ], . . . , [t n ]) [f (t 1 , . . . , t n )] is obvious, since n i=1 [t i ] [t i ]. For any t i with [t i ] [t i ] we have by repeated application of 2'. that [f (t 1 , . . . , t n )] [f (t 1 , . . . , t n )]. Hence, [f (t 1 , . . . , t n )] min{[f (t 1 , . . . , t n )] | n i=1 [t i ] [t i ]} = f ([t 1 ], . . . , [t n ]).
-Each f is increasing:

f (x 1 , . . . , x n ) = min{[f (t 1 , . . . , t n )] | n i=1 x i [t i ]} Def. f min{t j | n i=1 x i [t i ]} by 1'. x j -Each f is monotonic: Let n i=1 x i y i , then: f (x 1 , . . . , x n ) = min{[f (t 1 , . . . , t n )] | n i=1 x i [t i ]} Def. f min{[f (t 1 , . . . , t n )] | n i=1 y i [t i ]} since n i=1 y i [t i ] ⇒ n i=1 x i [t i ] = f (y 1 , . . . , y n ) Def. f -wg(t) = [t] for all terms t
follows immediately by induction on t.

As an application of Lem. 1, let D = T ∪ {∞}, ordered by a (reflexive) total simplification ordering ( ) [DJ90, Sect. 5.2], and let φ be the identity function. Property 1. and 2. is satisfied, since ( ) contains the subterm ordering and is closed under context application, respectively. Then wg(t) = t for each term t, i.e., no two distinct terms have the same weight, and wg(N ) yields the least term of L(N ) wrt. ( ).

In the rest of this paper, we assume a fixed given grammar G = Σ, N , R . For a nonterminal N ∈ N , we tacitly assume its defining rule to be

N ::= f 1 (N 11 , ..., N 1n 1 ) | . . . | f m (N m1 , ..., N mnm ).

Simple Fixpoint Algorithm

First, we adapt the classical algorithm from [START_REF] Aiken | Implementing regular tree expressions[END_REF] to our framework.

Algorithm 2.

(Naive fixpoint language weight computation) Let x

(i) N ∈ D be defined by -x (0) 
N := ∞ for each N , and

-x (k+1) N := min{f i (x (k) N i1 , . . . , x (k) N in i ) | 1 i m} for each N and k = 1, . . . , nt.
In the k'th computation cycle, all x 

Lemma 3.

Given the settings of Alg. 2, we have for all nonterminals N of G, all t ∈ L(N ), and

all k ∈ IN , that hg(t) k ⇒ x (k) N wg(t).

Proof. Induction on k:

k = 0: trivial, since no ground terms of height 0 exist.

-k k + 1: if t = f i (t 1 , . . . , t n i ) ∈ L(N ) has a height k + 1
, and assuming the rule N ::= m i=1 f i (N i1 , . . . , N in i ), we have hg(t j ) k for j = 1, . . . , n, and

x (k+1) N f i (x (k) N i1 , . . . , x (k) N in i ) Alg. 2 f i (wg(t 1 ), . . . , wg(t n i )) t j ∈ L(N ij ) for j = 1, . . . , n i , I.H., f i monotonic = wg(t) Def. wg Lemma 4.
Given the settings of Alg. 2, we have for all nonterminals N that x

(k) N < ∞ ⇒ ∃t ∈ L(N ) : hg(t) k ∧ x (k) N = wg(t).
Proof. Induction on k:

-k = 0: trivial, since x (0) N = ∞. -k k + 1: Assume the rule N ::= m i=1 f i (N i1 , . . . , N in i ). First, we have ∞ > x (k+1) N assumption = min{f i (x (k) N i1 , . . . , x (k) N in i ) | 1 i m} Alg. 2 = f l (x (k) N l1 , . . . , x (k) N ln l
) for some l ∈ {1, . . . , m} Def. min

x (k) N lj for j = 1, . . . , n l f l increasing If n l = 0, f l ∈ L(N ) and wg(f l ) = f l = x (k+1) N
as above, and we are done. If n l > 0, by induction hypothesis, for each j = 1, . . . , n l exists some t j ∈ L(N lj ) with hg(t j ) k and x (k)

N lj = wg(t j ), hence f l (t 1 , . . . , t n l ) ∈ L(N ) ∧ hg(f l (t 1 , . . . , t n l )) k + 1, and wg(f l (t 1 , . . . , t n l )) = f l (wg(t 1 ), . . . , wg(t n l )) Def. wg = f l (x (k) N l1 , . . . , x (k) N ln l ) property of the t j = min{f i (x (k) N i1 , . . . , x (k) N in i ) | 1 i m} Def. l = x (k+1) N Alg. 2
(Note that this induction step holds even for k = 1, since x

N < ∞ requires some nullary f l in the rule of N .)

Lemma 5. x (k) N = min{wg(t) | t ∈ L(N ), hg(t) k}. Proof. For x (k) N = ∞, we have min{wg(t) | t ∈ L(N ), hg(t) k} = ∞ by Lemma 3. For x (k)
N < ∞, let t 0 be the term obtained by Lemma 4. Then:

x (k) N min{wg(t) | t ∈ L(N ), hg(t) k} Lemma 3 wg(t 0 ) since t 0 ∈ L(N ), hg(t 0 ) k = x (k) N Lemma 4 Corollary 6. (Correctness of Alg. 2) x (nt) N = wg(N ) for all N .
Proof.

If L(N ) = {}, we have by Cor. 5 that x

(k) N = ∞ = wg(N ) for all k.
Else, by the pumping lemma for regular tree languages [CDG + 99, Sect. 1.2], we can find for each term t ∈ L(N ) with hg(t) > k nt a smaller one t ∈ L(N ) with hg(t ) nt.

Since all weight functions f are increasing, the well-known construction of t from t ensures that wg(t ) wg(t); i.e., t does not contribute to the minimum wg(N ). Hence:

wg(N ) = min{wg(t) | t ∈ L(N )} Def. wg = min{wg(t) | t ∈ L(N ), hg(t) k} see above = x (k) N Cor. 5
Next, we apply Barzdins' liquid-flow technique in a straight forward way to Alg. 2. The basic idea is to recompute an alternative only if some of its argument values has changed, i.e. belongs to the water front.

Algorithm 7. (Barzdins' liquid-flow technique)

The weights of all nonterminals can be computed in time O(nt • al • ar), using the following fixpoint algorithm. Maintain a set F ⊆ N , called water front in [START_REF] Barzdin | Rapid construction of algebraic axioms from samples[END_REF], such that

F (k+1) = {N ∈ N | x (k+1) N < x (k) N } for all k ∈ IN . Define -x (0) N := ∞ for each N , -x (1) N := min{f i | 1 i m, f i ∈ Σ 0 } for each N , and -x (k+1) N := min({x (k) N } ∪ {f i (x (k) N i1 , . . . , x (k) N in i ) | 1 i m, n i j=1 N ij ∈ F (k) }) for each N and each k ∈ IN .
-Stop the computation after cycle (k + 1), if F (k+1) is empty.

In cycle (1), the entire grammar has to be inspected once, to compute x (1) N and at the same time F (1) . In each later cycle, we tacitly assume that we need to inspect only those alternatives f i (N i1 , . . . , N in i ) for which N ij ∈ F (k) for some j ∈ {1, . . . , n i }.

As in [START_REF] Barzdin | Rapid construction of algebraic axioms from samples[END_REF], an appropriate pointer structure, linking each nonterminal N ij (domain node in [START_REF] Barzdin | Rapid construction of algebraic axioms from samples[END_REF]) to all alternatives (functional nodes) it occurs in, is assumed to have been built before cycle (0), by inspecting the whole grammar once.

Below we will show linear complexity under certain restrictive requirements to the weight functions.

It is easy to see by induction on k that each x (k) N has the same value in Alg. 7 as in Alg. 2. Since

F (k) = {} ⇒ x (k+1) N = x (k) N ∧ F (k+1)
= {}, the algorithm may stop in this case. 

Q0 ::= a Qn+1 ::= q(Pn+1) | j(Qn) Pn+1 ::= p(Qn) q(x) := x p (x) := 2 • x j (x) := 2 • x + 1 a := 0 L(Qn) hg wg qp . . . qp a 2 • n + 1 0 j . . . j a n + 1 2 n -1
k Q0 P1 Q1 P2 Q2 P3 Q3 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 a 0 2 p a 0 j a 1 3 qp a 0 p j a 2 j j a 3 4 p qp a 0 j qp a 1 (qp j a 2) p j j a 6 j j j a 7 5 qp qp a 0 p j qp a 2 j j qp a 3 (qp j j a 6) 6 p qp qp a 0 j qp qp a 1 (qp j qp a 2) 7 qp qp qp a 0 The grammar has 2 • n max + 1 rules and 3 • n max + 1 alternatives. Since we have at most unary functions, we can omit parentheses around function arguments in terms to enhance readability and to indicate the connection to word grammars.

Observe that each term t in L(Q n ) can be read as a binary number in reversed notation2 , e.g. L(Q 3 ) qpj j a = 110, and that by construction the weight wg(t) corresponds to this binary number, e.g. wg(qpj j a) = 6.

In this correspondence, L(Q n ) is the set of all binary numbers with exactly n digits; in particular, each L(Q n ) is finite. Hence, both a term of maximal height and of maximal weight exists, by construction, it has minimal weight and minimal height, respectively; cf. Fig. 1 (right).

Figure 2 shows the cycles of Alg. 2 in computing the weights of each Q n and P n , where n max = 3. For each nonterminal N , the right entry in its column shows the value of x (k)

N while the left entry shows a term of this weight in L(N ). Empty entries mean that x

(k) N = x (k-1) N
. Entries in parentheses are computed by the algorithm, but don't lead to an update, since they are larger than their predecessors.

The algorithm stops after cycle (7), since there are 7 distinct nonterminals in the grammar. Since Alg. 7 computes the same values as Alg. 2, Fig. 2 illustrates both algorithms simultaneously. The water front F (k) consists of all nonterminals having a nonempty entry in line k, except for k = 0.

Next, we give a sufficient criterion for Alg. 7 to run in linear time. Define

l 0 := min{f | f ∈ Σ 0 }, h 0 := max{f | f ∈ Σ 0 }, l(x) := min{f (l 0 , ..., x, ..., l 0 ) | f ∈ Σ 1 }, and h(x) := max{f (x, . . . , x) | f ∈ Σ 1 }.
In the definition of l(x), the minimum ranges over all argument positions of x, e.g. l(x) = min{g(x, l 0 ), g(l 0 , x)} if Σ 1 = Σ 2 = {g}. Note that the maxima in the definitions of h 0 and h(x) are well-defined since they range over a finite set each.

Lemma 8.

In the settings of Alg. 2, we have for each

N ∈ N and each k ∈ IN that x (k+1) N < x (k)
N iff some t ∈ L(N ) exists with hg(t) = k + 1 and wg(t) < wg(t ) for each t ∈ L(N ) with hg(t ) k.

Proof. Follows immediately from Cor. 5, since min A < min B iff ∃a ∈ A\B ∀b ∈ B : a < b for arbitrary ordered sets.

Lemma 9. If some p 0 ∈ IN exists such that #{d ∈ D | l i (l 0 ) d h i (h 0 )} p 0 for all i ∈ IN , then each x (•)
N can change its value at most p 0 times during the execution of Alg. 2. (Here, l i (l 0 ) denotes the i-fold application of l to l 0 , etc.) Proof.

1. l(•) and h(•) are monotonic and increasing: If x y, then f (l 0 , ..., x, ..., l 0 ) f (l 0 , ..., y, ..., l 0 ) for all f ∈ Σ 1 , and hence l(x) l(y). Since x f (l 0 , ..., x, ..., l 0 ) for all f ∈ Σ 1 , we have x l(x). Similar for the monotonicity and increasingness of h. 2. l 0 f h 0 for all f ∈ Σ 0 :

Obvious. 3. l(max{x 1 , . . . , x n }) f (x 1 , . . . , x n ) h(max{x 1 , . . . , x n }) for all x 1 , . . . , x n in the range of wg and all f ∈ Σ 1 : Since each x i is in the range of wg, we have l 0 x i . W.l.o.g. let x 1 = max{x 1 , . . . , x n }. Then, l(x 1 )

f (x 1 , l 0 , ..., l 0 ) Def. l f (x 1 , . . . , x n ) l 0 x i f (x 1 , . . . , x 1 ) x i x 1 h(x 1 )
Def. h 4. l hg(t)-1 (l 0 ) wg(t) h hg(t)-1 (h 0 ) for all t ∈ T : Induction on t: If t = f is a constant, we have l hg(t)-1 (l 0 ) = l 0 f = wg(t) h 0 = h hg(t)-1 (h 0 ). If t = f (t 1 , . . . , t n ), we have hg(t i ) = hg(t) -1 for some i ∈ {1, . . . , n}, and hg(t j ) hg(t) -1 for all j = 1, . . . , n. Hence, l hg(t)-1 (l 0 ) l(wg(t i )) since l hg(t)-2 (l 0 ) = l hg(t i )-1 (l 0 ) wg(t i ) by I.H. 

} := {k + 1 ∈ IN | x (k+1) N < x (k)
N } and k 1 < . . . < k p . From Cor. 8, we obtain t 1 , . . . , t p ∈ L(N ) such that hg(t i ) = k i and wg(t i ) = x (k i ) N for i = 1, . . . , p. From 4., we thus have l kp-1 (l 0 ) wg(t p ) = x (kp) N < . . . < x (k 1 ) N = wg(t 1 ) h k 1 -1 (h 0 ) . . . h kp-1 (h 0 ). Hence, by assumption p p 0 .

Let us compute the time requirements of Alg. 7 under the assumption of Lem. 9. Let C N denote the number of cycles where x (•) N changes its value during the computation, i.e. where x (k+1) N

< x (k)

N . From Lem. 9, we get C N p 0 for all N ∈ N and some p 0 ∈ IN depending not on the grammar, but only on the choice of the weight functions. A certain alternative f i (x In the binary numbers example from above, the computation still takes O(n 2 max ) cycles since the requirements of Lem. 9 are not satisfied. In general, these requirements are violated as soon as there are two weight functions f and g such that f (x) < g(x) for all x ∈ D and g is strictly monotonic3 , since then

(k) N i1 , . . . , x (k) N in i ) is recomputed n i j=1 C N ij
l i (l 0 ) f i (l 0 ) < g(f i-1 (l 0 )) < g 2 (f i-2 (l 0 )) < . . . < g i (l 0 ) h i (h 0 ).
At least, the requirements hold if wg(t) = hg(t), thus we can duplicate the result of Barzdin [START_REF] Barzdin | Rapid construction of algebraic axioms from samples[END_REF], and improve the time complexity for the optimization of Aiken and Murphy [START_REF] Aiken | Implementing regular tree expressions[END_REF] based on detecting nonterminals producing the empty language.

In the following section, we present an improved algorithm which takes at most O(al • log nt) time in any case.

Lazy Propagation Algorithm

As we saw above, a naive transfer of Barzdins' liquid-flow technique to our framework is not sufficient to obtain a sub-quadratic weight computation algorithm, except for very special cases. The reason for this is essentially that the algorithm considers terms in order of increasing height, cf. Lem. 5, but terms with small height may have large weight and vice versa. For example, in Fig. 2, the value x

(2)

Q 1 = 1 is propagated to x (3) P 2 = 2

and x

(3) Q 2 = 3; in the next cycle, the value improves to x

(3) Q 1 = 0, and both propagations have to be redone, leading to x (4)

P 2 = 0 and x (4) Q 2 = 1, of which the latter is still non-optimal.
The basic idea of the following improved liquid-flow algorithm is to defer propagation of a x (k) N value until we safely know it is the final, minimal one for N , following the motto less haste more speed . The algorithm may need more computation cycles4 , but in each cycle less updates are made, and, more important, the right updates are made.

Algorithm 10. (Lazy propagation)

The weights of all nonterminals can be computed using the following improved fixpoint algorithm.

Maintain three sets of nonterminals F (k) , M (k) , and D (k) , called water front, minimals, and done, respectively. For N ∈ N , let x 

(k) N } ∪ {f i (x (k) N i1 , . . . , x (k) N in i ) | 1 i m ∧ n i j=1 N ij ∈ D (k) }) F (k+1) := (F (k) ∪ {N | x (k+1) N < x (k) N }) \ D (k) , M (k+1) := {N ∈ F (k+1) | ∀N ∈ F (k+1) : x (k+1) N x (k+1) N }, and 
D (k+1) := D (k) ∪ M (k+1) . Stop if F (k+1) = {}.
Informally, this algorithm works as follows. When an x

(•) N value changes, i.e. x (k+1) N < x (k)
N , we add N to the water front F (k+1) , as does Alg. 7. However, only those N having minimal x (k+1) N values in F (k+1) are used for propagation. They are collected in the set minimal , i.e. M (k+1) , and added to the set done, i.e. D (k+1) .

In Lem. 12 below, we will show that their x At first glance, we observe the following facts about Alg. 10. Lemma 11.

1. D (k) = k i=0 M (i)
, where all M (i) are pairwise disjoint. 2. D (k) ⊆ D (k+1) , and k) , then N ∈ D (k) by 1., and we have x

D (k) ⊂ D (k+1) ⇔ M (k+1) = {} ⇔ F (k+1) = {}. 3. x (k) N x (k+1) N . 4. N ∈ F (k) ∪ D (k) iff x (k) N < ∞; both implies ∃k : N ∈ D (k ) . 5. If N ∈ M (k) and N ∈ D (k-1) , then x (k) N x (k) N . 6. N ∈ F (k+1) \ F (k) iff x (k+1) N < ∞ = x (k) N . Proof. 1. D (k) = k i=0 M (i) follows from Def. D (•) . To see the disjointness, note that N ∈ M (k) ⇒ N ∈ F (k) ⇒ N ∈ D (k-1) by Def. M (k) , F (k) . 2. D (k) ⊆ D (k+1) follows from Def. D (k+1) . D (k) ⊂ D (k+1) ⇔ M (k+1) = {} follows from 1. M (k+1) = {} ⇔ F (k+1) = {} follows from Def. M (k+1) . 3. Follows from Def. x (k+1) N . 4. First, we show N ∈ F (k) ∪ D (k-1) ⇒ x (k) N = ∞ by induction on k: k = 0: x (0) N = ∞ for all N . k k + 1: N ∈ F (k+1) ∧ N ∈ D (k) ⇒ x (k+1) N = x (k) N ∧ N ∈ F (k) ∧ N ∈ D (k-1) by Def. F (•) and 2. ⇒ x (k+1) N = x (k) N = ∞ by I.H. Next, if N ∈ F (k) , let k be minimal with that property, then x (k) N x (k ) N < x (k -1) N ∞, using 3. If N ∈ D (k) , then N ∈ M (k ) ⊆ F (k ) for some k k by 1.; hence x (k) N x (k ) N < ∞ by 3. Finally, assume for contradiction N ∈ F (k) and N ∈ D (k ) for all k ∈ IN . Then N ∈ F (k +1) for all k k by Def. F (k +1) . From 2., we get #D (k+nt+1) > nt, where nt = #N , which contradicts D (k+nt+1) ⊆ N . 5. If N ∈ F (k) , we have x (k) N x (k) N by Def. M (k) . If N ∈ F (k) ⊇ M (
(k) N ∞ = x (k)
N by 4. 6. "⇒":

N ∈ F (k) and N ∈ F (k+1) ⇒ x (k+1) N < x (k) N and N ∈ D (k) Def. F (k+1) ⇒ x (k) N = ∞ by 4. "⇐": x (k+1) N < ∞ = x (k) N ⇒ N ∈ F (k+1) ∨ N ∈ D (k) Def. F (k+1)
and

N ∈ F (k) ∪ D (k) by 4. ⇒ N ∈ F (k) and N ∈ F (k+1)
We now prove the core property of Alg. 10: the values corresponding to nonterminals in the done set don't change any more.

Lemma 12.

If N ∈ D (k) and k k , then x (k) N = x (k ) N .
Proof.

We show

∀k ∈ IN ∀k k ∀N ∈ M (k) ∀N ∈ D (k-1) : x (k) N x (k ) N
by induction on k . The case k = 0 is trivial, since then k = 0 and x (0)

N = ∞ = x (0) 
N . In the case k k + 1, we have to show

x (k) N x (k +1) N for k k + 1 and N ∈ M (k) , N ∈ D (k-1) .
We are done by Lem. 11.5 if k = k + 1, so let k k in the following. Consider the definition of x

(k +1) N . If x (k +1) N = x (k )
N , we are done immediately, using the I.H.

x (k) N x (k ) N . If x (k +1) N = f i (x (k ) N i1 , . . . , x (k ) N in i
) for some i ∈ {1, . . . , m} with N i1 , . . . , N in i ∈ D (k ) , we distinguish the following cases:

-N ij ∈ D (k-1) for all j ∈ {1, . . . , n i }:

Note that this implies k > 0 or n i = 0. By Lem. 11.1, for each j = 1, . . . , n i some

k j k -1 exists with N ij ∈ M (k j ) .
We have for all j ∈ {1, . . . , n i }:

x (k j ) N ij x (k ) N ij by I.H., since N ij ∈ M (k j ) , hence N ij ∈ D (k j -1)
, and

k j k x (k-1) N ij by Lem. 11.3, since k -1 k x (k j ) N ij by Lem. 11.3, since k j k -1
That is, all these terms are equal; in particular, x

(k-1) N ij = x (k ) N ij
for all j. Hence:

x (k) N x (k) N by Lem. 11.5, since N ∈ M (k) , N ∈ D (k-1) f i (x (k-1) N i1 , . . . , x (k-1) N in i ) by Alg. 10, since N ij ∈ D (k-1) for all j = f i (x (k ) N i1 , . . . , x (k ) N in i ) as shown above = x (k +1) N
by assumption -N ij ∈ D (k-1) for some j ∈ {1, . . . , n i }:

x (k) N x (k ) N ij by I.H., since N ∈ M (k) , N ij ∈ D (k-1) , k k f i (x (k ) N i1 , . . . , x (k ) N in i ) since f i is increasing = x (k +1) N
by assumption

This completes the induction proof. Now, if N ∈ D (k) , then N ∈ M (k ) for some k k, and we get x Proof.

1.

N ∈ D (k)

⇒ N ∈ M (k ) for some k k by Lem. 11.1

⇒ N ∈ D (k -1)
by Lem. 11.1

⇒ x (k ) N x (k ) N x (k) N x (k ) N
by Lem. 12 and 11.3, since k k k

2. N ∈ D (k)
⇒ N ∈ M (k ) for some k k by Lem. 11.1

∧ N ∈ D (k -1) by Lem. 11.2, since k -1 k -1 ⇒ x (k) N x (k ) N x (k ) N
by Lem. 11.3 and 12, since k k k Lemma 14.

F (k+1) = (F (k) ∪ {N | x (k+1) N < x (k) N }) \ M (k) .
Proof. "⊆": obvious, since D (k) ⊇ M (k) by 11.1. "⊇": If N ∈ F (k) and N ∈ M (k) , then N ∈ D (k-1) by Def.

F (k) , hence N ∈ D (k) = D (k-1) ∪ M (k) by 11.1. If x (k+1) N < x (k) N and N ∈ M (k) , then N ∈ D (k) , since else x (k+1) N = x (k)
N by Lem. 12.

Lemma 15. N ∈ D (k) ⇒ ∃t ∈ L(N ) : wg(t) = x (k) N .
Proof. Induction on k: Consider again the grammar and the weight functions from Fig. 1. Figure 3 shows the cycles of Alg. 10 in computing the weights of each Q n and P n , where n max = 2.

-k = 0: trivial, since D (0) = {}. k Q0 P1 Q1 P2 Q2 x F D x F D x F D x F D x F D 0 ∞ ∞ ∞
For each nonterminal N , we show (from left to right) a term of weight x . The algorithms stops after cycle 6 since F (6) = {}. Note that each alternative of each rule is evaluated just once.

Partial weight orderings

It would be desirable to provide an equivalent to Alg. 21 for a partial weight order (<) on D. This would allow us to define weight functions such that wg(t) is the set of distinct variables occuring in t. In many applications, a term is more interesting if it contains fewer distinct variables. For example, if terms denote transformation rules, f (x) g(x) is usually preferred over f (x) g(y). However, we have the following negative results.

Lemma 25.

There is no total nontrivial order (<) on the power set ℘(V) of variables such that V ⊆ W ⇒ V W for all V, W ⊆ V and (∪) is monotonic wrt. (<).

Proof. Let x, y, z ∈ V. If {x, y} < {x, z}, then {y} {x, y} < {x, z} and trivially {x, z} {x, z}; hence {x, y, z} {x, z} by monotonicity. Similarly, {x, z} < {x, y} implies {x, y, z} {x, y}. In each case, there are two sets V = W such that V W V .

Definition 26.

It is straight-forward to generalize the definitions from Sect. 2 to non-total orderings. A partial order (<) on the power set ℘(V) of variables can be defined by: v

1 < v 2 ⇔ v 1 v 2 for all v 1 , v 2 ⊆ V.
If we define x = {x} for each variable x ∈ V, and f (v 1 , . . . , v n ) = v 1 ∪ . . . ∪ v n for each n-ary function, including constants, we get wg(t) = var(t). That is, a weight is a set of variables.

Not every set of weights has a unique minimal element, since (<) is not total. Therefore, we define for a set T of terms

wg(T ) = {v ⊆ V | (∃t ∈ T : wg(t) = v) ∧ (¬∃t ∈ T : wg(t) < v)}.
In contrast to Sect. 2, wg(T ) ⊆ D is a set of weights rather than a single weight.

The following notion is needed for Lem. 29 below.

Definition 27.

For m sets S 1 , . . . , S m of sets, define

• m i=1 S i = { m i=1 s i | m i=1 s i ∈ S i } as their pointwise union.
For example, if S 1 = {{a, b, c}, {a, d, e}} and S 2 = {{b, c, d}, {d, e}}, we have

• 2 i=1 S i = {{a, b, c, d}, {a, b, c, d, e}, {a, d, e}}.
Lemma 28.

The pointwise set union from Def. 27 has the following properties: A ij ∈ {x j , (¬x j )} for i = 1, . . . , m and j = 1, . . . , n i .

1. If m i=1 s ∈ S i , then s ∈ • m i=1 S i . 2. If s ∈ • m i=1 S i , then m i=1 ∃s i ∈ S i : s i ⊆ s. 3. If #s = n and m i=1 s i ∈S i #s i = n, then m i=1 s ∈ S i ⇔ s ∈ • m i=1 S i . Proof. 1. By Def. 27, s = m i=1 s is an element of • m i=1 S i . 2. If s = m i=1 s i ,
We use a signature Σ = {c, d} ∪ {y 1 , . . . , y n } ∪ {z 1 , . . . , z n } and consider y 1 , . . . , y n and z 1 , . . . , z n as variables. Consider the following grammar:

C ::= c(D 1 , . . . , D m ). D i ::= ψ(A i1 ) | . . . | ψ(A in i ), i = 1, . . . , m.
P j ::= y j , j = 1, . . . , n.

N j ::= z j , j = 1, . . . , n.

F j ::= y j | z j , j = 1, . . . , n,
where ψ is a mapping from atoms to alternatives defined by:

ψ(x j ) = d(F 1 , . . . , P j , . . . , F n ) ψ(¬x j ) = d(F 1 , . . . , N j , . . . , F n )
The grammar has 1 + m + n • 3 rules and 1 + ( m i=1 n i ) + n • 4 alternatives, while the conjunctive normal form has m i=1 n i atoms. Observe that the set L(C ) of all terms derivable from C is finite, since the grammar does not contain recursive rules; similarly, all L(D i ) are finite. If α is a nonterminal or an alternative, define ξ(α) = {var(t) | t ∈ L(α)}.

For example, from (x 1 ∨ ¬x 3 ) ∧ (¬x 2 ∨ x 3 ), we obtain the grammar We call a mapping σ : {x 1 , . . . , x n } -→ {true, false} a truth value assignment. Each such mapping can be homomorphically extended to all propositional formulas over {x 1 , . . . , x n }.

C ::= c(D 1 , D 2 ), D 1 ::= d(P 1 , F 2 , F 3 ) | d(F 1 , F 2 , N 3 ), D 2 ::= d(F 1 , N 2 , F 3 ) | d(F 1 , F 2 , P 3 ),
Define V = {{w 1 , . . . , w n } | n j=1 w j ∈ {y j , z j }}. Each member of V is a set of cardinality n. Define a bijective mapping ρ from truth value assignments to V by ρ(σ) = {y j | σ(x j ) = true} ∪ {z j | σ(x j ) = false}.

Observe the following facts:

1. Each ξ(ψ(A ij )) is a subset of V :

This follows from the definition of ψ(A ij ). In the example, ξ(ψ(¬x 3 )) = {{y 1 , y 2 , z 3 }, {y 1 , z 2 , z 3 }, {z 1 , y 2 , z 3 }, {z 1 , z 2 , z 3 }}. 2. Each ξ(D i ) is a subset of V :

This follows from 1, using L(D i ) = n i j=1 L(ψ(A ij )) and the definition of ξ. In the example, we have ξ(D 1 ) = {{y 1 , y 2 , y 3 }, {y 1 , y 2 , z 3 }, {y 1 , z 2 , y 3 }, {y 1 , z 2 , z 3 }, {z 1 , y 2 , z 3 }, {z 1 , z 2 , z 3 }}, ξ(D 2 ) = {{y 1 , y 2 , y 3 }, {y 1 , z 2 , y 3 }, {y 1 , z 2 , z 3 }, {z 1 , y 2 , y 3 }, {z 1 , z 2 , y 3 }, {z 1 , z 2 , z 3 }}. The inclusion from the definition of wg. The equality follows from the definitions of ξ, L, and var. In the example, we have wg(C ) = {{y 1 , y 2 , y 3 }, {y 1 , z 2 , y 3 }, {y 1 , z 2 , z 3 }, {z 1 , z 2 , z 3 }, {z 1 , y 2 , y 3 , z 3 }} and e.g. {y 1 , z 1 , y 2 , y 3 } ∈ ξ(C ) \ wg(C ). Hence, the NP complete problem to decide the satisifiability of a conjunctive normal form C has been reduced to the problem to compute the minimal cardinality of a set from wg(C ).

An atom

N

  are computed from all x (k-1) N by the above formula. When the algorithm stops after the nt'th cycle, we have x (nt) N = wg(N ) by Cor. 6 below. Since in each cycle all alternatives are evaluated, we get a time complexity of O(nt • al • ar).

Fig. 1 .

 1 Fig. 1. Example grammar, weight functions, and minimal / maximal terms

Fig. 2 .

 2 Fig. 2. Algorithm 2 / 7 running on the example grammar

n i j=1 p 0

 0 ar • p 0 times during algorithm execution. Altogether, there are at most al • ar • p 0 recomputations of alternatives, requiring time O(al • ar 2 • p 0 ), including updating the respective x (•) N . Initialization of the pointer structure and cycles (0) and (1) requires time O(al • ar + nt + al). Hence, we get an overall time requirement of O(al • ar 2 • p 0 ), i.e. the algorithm runs linear in the number of alternatives.

N

  := ∞; let F (0) := {}, M (0) := {}, D (0) := {}, and, for simplicity of proofs, D (-1) := {}. For each N and each k ∈ IN , define x (k+1) N := min({x

N

  value in fact doesn't change any further. This is what is intuitively expected, since only larger values are in circulation.

  from Lem. 11.3, i.e. all these values are equal.Corollary 13.Let N, N ∈ N , k k , N ∈ D(k) , and N ∈ D (k-1) . Then:

N

  , a flag indicating whether N ∈ F (k) , and flag indicating whether N ∈ D (k) . A "+" flag indicates that the corresponding relation holds, an empty flag field indicates the contrary. An empty x field means that x (k) N = x (k-1) N

P 1 :

 1 := y 1 , P 2 ::= y 2 , P 3 ::= y 3 ,N 1 ::= z 1 , N 2 ::= z 2 , N 3 ::= z 3 , F 1 ::= y 1 | z 1 , F 2 ::= y 2 | z 2 , F 3 ::= y 3 | z 3 .

  A ij is satisfied by a truth value assignment σ iff ρ(σ) ∈ ξ(ψ(A ij )):If A ij = x j , then ξ(ψ(A ij )) = ξ(d(F 1 , . . . , P j , . . . , F n )) Def. ψ = {var(t) | t ∈ L(d(F 1 , . . . , P j , . . . , F n ))} Def. ξ = {{w 1 , . . . , y j , . . . , w n } | k =j w k ∈ {y k , z k }} Def. L, var, F k , P j = {v ∈ V | y j ∈ v} Def. V Hence, A ij is satisfied by σ ⇔ σ(x j ) = true A ij = x j ⇔ y j ∈ ρ(σ) Def. ρ ⇔ ρ(σ) ∈ ξ(ψ(A ij ))by the above argumentIf A ij = (¬x j ), then similarly ξ(ψ(A ij )) = {v ∈ V | z j ∈ v}; and σ satisfies A ij iff ρ(σ) ∈ ξ(ψ(A ij )). 4. A disjunct D i is satisfied by a truth value assignment σ iff ρ(σ) ∈ ξ(D i ): σ satisfies D i ⇔ ∃j : σ satisfies A ij Def. D i ⇔ ∃j : ρ(σ) ∈ ξ(ψ(A ij )) by 3 ⇔ ρ(σ) ∈ n i j=1 ξ(ψ(A ij )) ⇔ ρ(σ) ∈ ξ( n i j=1 ψ(A ij )) Def. ξ, L ⇔ ρ(σ) ∈ ξ(D i ) Def. D i 5. wg(C ) ⊆ ξ(C ) = • m i=1 ξ(D i ):

  6. C is satisfied by a truth value assignment σ iff ρ(σ) ∈ ξ(C ):σ satisfies C ⇔ ∀i : σ satisfies D i Def. C ⇔ ∀i : ρ(σ) ∈ ξ(D i ) by 4 ⇔ ρ(σ) ∈ • m i=1 ξ(D i )by 2 and Lem. 28.3⇔ ρ(σ) ∈ ξ(C ) by57. Let v be a member of wg(C ) with least cardinality. C is satisfiable iff #v = n:#v = n ⇒ ∀i : v ∈ ξ(D i )by Lem. 28.3, using 5 and 2⇒ v ∈ V by 2 ⇒ ∃σ : v = ρ(σ) ρ bijective ⇒ σ satisfies C by 6 ⇒ #v n since v has minimal cardinality in ξ(C )⇒ #v = n by 5, 2, and Lem. 28.2

  is a subterm of t, and 2. φ(t 1 ) φ(t 2 ) ⇒ φ(f (. . . , t 1 , . . .)) φ(f (. . . , t 2 , . . .)).

	Proof.	
	"⇒": Let wg(t) = φ(t). Let t be a subterm of t = c[t ]; then wg(t )	wg(t)
	follows from increasingness of weight functions by induction on the height of the
	context c[•]. Property 2. follows directly from monotonicity.	
	"⇐":	
	-First note that by 2. and the symmetry of ( ), t 1 ∼ t 2 :⇔ φ(t 1 ) = φ(t 2 ) defines
	a congruence relation on T .	
	We denote by [t] ∈ T / ∼ the congruence class of t ∈ T .	
	We thus obtain an injective mapping φ * : (T / ∼ ) -→ D defined by φ * ([t]) := φ(t).
	In the following, we may thus assume w.l.o.g. that T / ∼ ⊆ D,	
	i.e. φ * ([t]) = [t] = φ(t).	
	Assumptions 1. and 2. then read:	
	1'. [t ] [t] if t is a subterm of t, and	
	2'. [t 1 ] [t 2 ] ⇒ [f (. . . , t 1 , . . .)] [f (. . . , t 2 , . . .)].	
	-For x 1 , . . . , x n ∈ D, define f (x 1 , . . . , x n	

  then s i ⊆ s for each i. 3. Follows from 1 and 2. The problem to compute minimal nonterminal weights wrt. (<) from Def. 26 is NP hard. Proof. Let a conjunctive normal form C be given. Let {x 1 , . . . , x n } be the set of propositional variables occurring in C. Without loss of generality, we assume C ⇔ D 1 ∧ . . . ∧ D m and D i ⇔ A i1 ∨ . . . ∨ A in i for i = 1, . . . , n i , where

	Lemma 29.

I.e., each non-empty subset S of D contains a minimal element min S ∈ S. We additionally define min{} := ∞.

Think of "q" and "p " as forming the left and right half of the digit "0", respectively, think of "j " as of the digit "1", and ignore "a".

I.e., x < y ⇒ g(x) < g(y). We use unary functions for simplicity; the argument is similar for higher arity functions.

In fact, this is not the case, as shown in Lem. 20 below.

⇒ N ∈ M (k ) ⊆ F (k ) for some k k + 1 by Lem. 11.1

for some k k by Def.

, . . . , x

) for some i with ∀j : N ij ∈ D (k -1) by Alg. 10 Let k be the maximal k with that property, i.e., let 

) for some i with ∀j : N ij ∈ D (k -1) by Def. k = f i (wg(t 1 ), . . . , wg(t n i ))

for some

Lemma 16.

Let N ∈ N with L(N ) = {} be given. Then, a derivation N * -→ t exists such that each subterm t of t is minimal wrt. the nonterminal ν(t ) it has been derived from (Note that in a nondeterministic grammar, ν(•) is well-defined only in the context of a given derivation). We call such a t thoroughly minimal.

Proof.

We show that for each derivation of a minimal t wrt. N a derivation of some thoroughly minimal t wrt. N exists, by induction on the structure of t:

and t be minimal wrt. N . Since t i ∈ L(N i ) = {}, we can find a derivation N i * -→ t i of some minimal t i wrt. N i . By I.H., we find for i = 1, . . . , n a derivation N i * -→ t i of some thoroughly minimal t i wrt. N i . Let t := f (t 1 , . . . , t n ), then wg(t ) = f (wg(N 1 ), . . . , wg(N n )) f (wg(t 1 ), . . . , wg(t n )) = wg(t) = wg(N ), hence t is minimal, and therefor also thoroughly minimal, wrt. N .

Lemma 17.

If wg(N ) < ∞, then N ∈ D (k) for some k.

Proof.

If wg(N ) < ∞, we can find some derivation N * -→ t of some thoroughly minimal t wrt. N by Lem. 16. We show that t thoroughly minimal wrt. N and wg(t) < ∞ implies x (k) N wg(t) and N ∈ D (k) for some k ∈ IN , by induction on the structure of t: Let t = f (t 1 , . . . , t n ). Then N -→ f (N 1 , . . . , N n ) for some N i , each t i is thoroughly minimal wrt. N i , and wg(N i ) = wg(t i ) wg(t) < ∞. By I.H., we get some k i with x

Nn ) by Alg. 10, since

In this case, we reached a fixpoint, i.e.

, and

= min({x

= {}, we reached a fixpoint:

Assume for contradiction F (k+1) = {}. By Lem. 11.2, we have N ∈ M (k+1) ⊆ F (k+1) for some N with wg(N ) = ∞. By Lem. 15,

for some k by Lem. 17 Proof. Induction on t:

i.e., N ::= . . . f (N 1 , . . . , N n ) . . . and t j ∈ L(N j ) for j = 1, . . . , n.

If wg(t j ) = ∞ for some j, then x

Nn ) by Alg. 10, since N j ∈ D (k) for all j by Lem. 

, while all other definitions remain unchanged. N , and each F (k) has the same value in Alg. 21 as in Alg. 10.

Proof. "x (k)

N ": Induction on k using Lem. 12. "F (k) ": follows immediately from Lem. 14.

To estimate the complexity of Alg. 21, we need the following Lemma 23. For each alternative f i (x

) holds for at most one k.

Proof. For each j ∈ {1, . . . , n i }, N ij is in at most one M (k) by Lem. 11.1. Denoting this k by k j , we have N ij ∈ D (k) for all k < k j , again by Lem. 11.1. Hence, the formula can hold at most for k = max{k 1 , . . . , k n i }. Proof. Due to the different access modes, the sets F (•) , M (•) , and D (•) can be implemented by a heap [AHU74, Sect. 3.4], a linked list, and a bit vector, respectively. Due to Lem. 11.6, it is sufficient to enter a nonterminal N into the heap iff x

N is decreased for the first time.

We add a counter in the range {0, . . . , ar} to each alternative N ::= . . . f i (N i1 , . . . , N in i ) . . . , which counts the number of N ij with N ij ∈ D (k) . It is initially 0 and is increased when some N ij is added to D (k) and we visit all alternatives N ij occurs in. If the counter of an alternative reaches its arity n i , we know that the formula

holds, and evaluate the alternative, setting x

It may be neccessary to reorder the heap F (•) to get N to its appropriate place. Since the value of x (•) N cannot have grown, it is sufficient to move N upwards in the heap. After evaluation, the alternative will not be considered any more during the algorithm.

For a certain alternative, increasing and checking the counter takes at most ar • O(1) time, evaluation of f takes O(ar) time, reordering the heap takes O(log nt) time, and all other set operations are dominated by the latter. Hence, the overall time complexity is O(al • (ar + log nt)). The memory complexity is obvious, since the input grammar dominates all other data structures, including the counters.

If we omit the counters, we get a time complexity of O(al • (ar 2 + log nt)), since each of the n i times we visit an alternative N ij occurs in, we have to test whether k) . For small values of ar, this complexity may be acceptable, and we can avoid to extend a possibly huge input grammar by additional counter fields. If alternatives are stored in prefix form in memory, i.e. one word for f , followed by n i words for N i1 , . . . , N in i , it is sufficient to add two binary flags to each nonterminal of each alternative, one indicating whether it has been visited, the other indicating whether it is the rightmost argument of its alternative. The latter flag should be set in the word for f , too, in order to delimit the memory area for N i1 , . . . , N in i to the left.