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Abstract
This paper presents a framework to abstract data structures
within Horn clauses that allows abstractions to be easily
expressed, compared, composed and implemented. These
abstractions introduce new quantifiers that we eliminate
with quantifier elimination techniques.

We study the case of arrays and our experimental evalua-
tion show promising results on classical array programs.
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1 Introduction
Static analysis of programs containing non-bounded data-
structures is a challenging problem as most interesting prop-
erties require quantifiers. Even stating that all elements of an
array are equal to 0 requires it. A common way to reduce the
complexity of such problems is abstraction using program
transformation [13] or abstract interpretation [8].
In this paper, we suggest a new technique that we name

data abstraction that takes advantage that we are abstracting
data-structures. Inspired by previous work on arrays [4, 14],
we combine quantifier instantiation with abstract interpre-
tation. We obtain a transformation from Horn clauses to
∗Partially funded by French ANR CODAS project (ANR-17-CE23-0004-01)
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Horn clauses, a format with clear semantics to which pro-
grams with assertions can be reduced. The goal is to provide
a framework in which abstractions on data structures can
be easily expressed, compared, composed and implemented
and decorrelate them from the back-end solving. Example
1 will be our motivating and running example. Proving this
program is challenging as it mixes the difficulty of finding
universally quantified invariants with modulo arithmetic.
In Section 2, we introduce Horn clauses, the transforma-

tion of our running example, and Galois connections, in
Section 3, we formally give our data abstraction technique,
in Section 4, we give an instance of such an abstraction on
arrays and in Section 5 we give the experimental results of
our tool and compare it with the Vaphor tool [14].
Example 1. Running example: the following program ini-
tializes an array to even values, then increases all values by
one and checks that all values are odd. We wish to prove
that the assertion is verified.
for ( k = 0 ; k<N ; k ++) / / Program po i n t Fo r 1

a [ k ] = rand ( ) ∗ 2 ;
for ( k = 0 ; k<N ; k ++) / / Program po i n t Fo r 2

a [ k ] = a [ k ] + 1 ;
for ( k = 0 ; k<N ; k ++) / / Program po i n t Fo r 3

a s s e r t ( a [ k ] % 2 == 1 ) ;

2 Preliminaries
2.1 Horn Clauses
A Horn clause is a logical formula over free variables and
predicates. The only constraint is that Horn clauses are "in-
creasing", that is, there can be at most one positive predicate
in the clause. Horn clauses are written in the following form:
𝑃1 ( #        »𝑒𝑥𝑝𝑟𝑠1) ∧ . . . ∧ 𝑃𝑛 ( #        »𝑒𝑥𝑝𝑟𝑠𝑛) ∧ 𝜙 → 𝑃 ′( #        »𝑒𝑥𝑝𝑟𝑠 ′) where:

• #        »𝑒𝑥𝑝𝑟𝑠1, . . . ,
#        »𝑒𝑥𝑝𝑟𝑠𝑛,𝜙,

#        »𝑒𝑥𝑝𝑟𝑠 ′ are expressions possibly
containing free variables.

• 𝑃1, . . . , 𝑃𝑛 are the "negative" predicates
• 𝑃 ′ is the positive predicate or some expression

The semantics of such a Horn clause is the following:
∀𝑣𝑎𝑟𝑠, 𝑃1 ( #        »𝑒𝑥𝑝𝑟𝑠1)∧. . .∧𝑃𝑛 ( #        »𝑒𝑥𝑝𝑟𝑠𝑛)∧𝜙 ⇒ 𝑃 ′( #        »𝑒𝑥𝑝𝑟𝑠 ′) where
𝑣𝑎𝑟𝑠 are the free variables of the expressions. We say a set
of Horn clauses is satisfiable if and only if there exist values
(sets) for each predicate that satisfy all the Horn clauses.

Programs with assertions can be transformed into Horn
clauses using tools such as SeaHorn [2] or JayHorn [12], and
Example 2 gives the transformation of Example 1 into Horn
clauses by creating a predicate per program point and ex-
pressing the constraints on each program point using clauses.
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Example 2. Running example in Horn clauses where all
predicates 𝐹𝑜𝑟𝑖 have arity 3 (1 array and 2 integer parame-
ters). Clause (4) in bold, will be used throughout the paper.

𝐹𝑜𝑟1(𝑎,𝑁 , 0) (1)
𝐹𝑜𝑟1(𝑎,𝑁 ,𝑘) ∧ 𝑘 < 𝑁 → 𝐹𝑜𝑟1(𝑎[𝑘  𝑟 ∗ 2],𝑁 ,𝑘 + 1) (2)

𝐹𝑜𝑟1(𝑎,𝑁 ,𝑘) ∧ 𝑘 ≥ 𝑁 → 𝐹𝑜𝑟2(𝑎,𝑁 , 0) (3)
𝑭 𝒐𝒓2(𝒂,𝑵 , 𝒌) ∧ 𝒌 < 𝑵 → 𝑭 𝒐𝒓2(𝒂[𝒌  𝒂[𝒌] + 1],𝑵 , 𝒌 + 1) (4)

𝐹𝑜𝑟2(𝑎,𝑁 ,𝑘) ∧ 𝑘 ≥ 𝑁 → 𝐹𝑜𝑟3(𝑎,𝑁 , 0) (5)
𝐹𝑜𝑟3(𝑎,𝑁 ,𝑘) ∧ 𝑘 < 𝑁 ∧ 𝑎[𝑘]%2 ≠ 1 → 𝑓 𝑎𝑙𝑠𝑒 (6)

𝐹𝑜𝑟3(𝑎,𝑁 ,𝑘) ∧ 𝑘 < 𝑁 → 𝐹𝑜𝑟3(𝑎,𝑁 ,𝑘 + 1) (7)

2.2 Galois Connection
A Galois connection [6] is a way of expressing a general
abstraction. In our case, we abstract predicates (i.e. sets of
possible values) on a concrete set C to an abstract set A.
A Galois connection is defined by
• 𝛼 : P(C ) → P(A): the abstraction of a predicate
• 𝛾 : P(A) → P(C ) gives the concrete values an ab-
stracted predicate represents.

Two properties are required:1. 𝑆 ⊆ 𝛾 (𝛼 (𝑆)) for soundness.
2. ∀𝑆#,𝛼 (𝛾 (𝑆#)) ⊆ 𝑆# for minimal precision loss.

3 Data Abstraction
In this section, we present our main contribution: data ab-
straction. We abstract the Horn clauses, and then show how
to remove the added quantifiers.

3.1 Data Abstraction in Horn Clauses
We propose the notion of data abstractions whose goal is to
reduce the complexity of elements (such as arrays) by a set
of simpler values (such as integers).

Definition 1. Data abstraction (𝜎, 𝐹𝜎 ).
LetC andA be sets . A data abstraction is a couple (𝜎, 𝐹𝜎 )

where 𝜎 is a function from C to P(A) and 𝐹𝜎 is a formula
encoding its inclusion relation : 𝐹𝜎 (𝑎#,𝑎) ≡ 𝑎# ∈ 𝜎 (𝑎)1.
It defines a Galois connection from P(C ) to P(A) by :
• 𝛼𝜎 (𝑆 ⊆ C ) = Ð

𝑎∈𝑆
𝜎 (𝑎)

• 𝛾𝜎 (𝑆# ⊆ A) = {𝑎 ∈ C |𝜎 (𝑎) ⊆ 𝑆#}
Example 3. 𝐶𝑒𝑙𝑙1 abstraction of an array: abstracting an
array by the set of its cells (i.e. couples of index and value).
𝜎𝐶𝑒𝑙𝑙1 (𝑎) = {(𝑖,𝑎[𝑖])} 𝐹𝜎𝐶𝑒𝑙𝑙1

((𝑖, 𝑣),𝑎) ≡ 𝑣 = 𝑎[𝑖]
Remark: abstracting a single array does not lose informa-
tion, but abstracting a set of arrays (using 𝛼) does.

In Algorithm 1we give the implementation of such abstrac-
tions in Horn clauses and Example 4 unrolls its execution.
The key idea consists in replacing a predicate 𝑃 (𝑒𝑥𝑝𝑟 ), that
is, 𝑒𝑥𝑝𝑟 ∈ 𝑃 , by 𝑒𝑥𝑝𝑟 ∈ 𝛾 (𝑃#) for a new predicate 𝑃# which
is created to represent 𝛼 (𝑃). Soundness of Algorithm 1, that

1Classically, we denote abstracts elements (∈ A) with sharps (#).

is, that if a Horn problem 𝐻 has a counter exemple, so does
the result of Algorithm 1 on 𝐻 , follows from 𝑃 ⊆ 𝛾 (𝛼 (𝑃)).
Algorithm 1. Abstracting in Horn clauses.
Input :

𝐻 : Horn problem1. 𝑃 : predicate to abstract.2.
𝑃#: unused predicate.3. 𝐹𝜎 .4.

Computation : for each clause 𝐶 of 𝐻 , for each 𝑃 (𝑒𝑥𝑝𝑟 ) in
𝐶 , replace 𝑃 (𝑒𝑥𝑝𝑟 ) by ∀𝑎#, 𝐹𝜎 (𝑎#, 𝑒𝑥𝑝𝑟 ) → 𝑃# (𝑎#), where
𝑎# is a new unused variable.

Example 4. Execution of Algorithm 1 with 𝐶𝑒𝑙𝑙1.
Input :

Clauses of Example 2.1. 𝐹𝑜𝑟22.
𝐹𝑜𝑟2#3. 𝜎𝐶𝑒𝑙𝑙1 applied to 𝑎.4.

Output : Consider Clause 4 from the example on page 2.
After applying Algorithm 1 and naming the introduced quan-
tified variables (𝑖#, 𝑣#) and (𝑖 ′#, 𝑣 ′#), we obtain:

(∀𝑖#, 𝑣# : 𝑣# = 𝑎[𝑖#] → 𝐹𝑜𝑟2# (𝑖#, 𝑣#,𝑁 ,𝑘)) ∧ 𝑘 < 𝑁

→ (∀𝑖 ′#, 𝑣 ′# : 𝑣 ′# = 𝑎[𝑘  𝑎[𝑘] + 1] [𝑖 ′#]
→ 𝐹𝑜𝑟2# (𝑖 ′#, 𝑣 ′#,𝑁 ,𝑘 + 1))

In this section, we have a general scheme to abstract Horn
problems with a data abstraction, however, new quantifiers
(∀𝑎#) are introduced that solvers [7, 10] have trouble solving.

3.2 Removing the Introduced Quantifiers :
Instantiation

Our abstraction has introduced new quantifiers in our Horn
clauses. Here, we give an algorithm to remove those quan-
tifiers using a technique called quantifier instantiation [4]
which consists in replacing a universal quantifier, i.e. a pos-
sibly infinite conjunction, by a conjunction over some finite
set 𝑆 . In other words, an expression of the form ∀𝑞, 𝑒𝑥𝑝𝑟 (𝑞)
is transformed into an expression of the form

Ó
𝑞∈𝑆

𝑒𝑥𝑝𝑟 (𝑞).
Algorithm 2 removes the quantifiers in two steps :
1. Remove useless quantifiers: 𝑒𝑥𝑝𝑟 → (∀𝑞, 𝑒𝑥𝑝 ′) with

(𝑞 ∉ 𝑒𝑥𝑝) becomes 𝑒𝑥𝑝𝑟 → 𝑒𝑥𝑝 ′, with 𝑞 a free variable.
2. Instantiate the other ∀ thanks to a heuristic 𝑖𝑛𝑠𝑡𝑠 .

Algorithm 2. Instantiation algorithm.
Input :
• 𝐶 , a clause (after abstraction).
• 𝑖𝑛𝑠𝑡𝑠 , a function that to a quantifier of𝐶 and the abstracted
value 𝑒𝑥𝑝𝑟 , returns an instantiation set 𝑆 .

Computation :
1. Remove universal quantifiers in the head of the clause.
2. For each instance of∀𝑎#, 𝐹𝜎 (𝑎#, 𝑒) → 𝑃# (𝑎#), replace

it by
Ó

𝑎#∈𝑖𝑛𝑠𝑡𝑠 (𝑎#,𝑒)
𝐹𝜎 (𝑎#, 𝑒) → 𝑃# (𝑎#)
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Example 5. Example of instantiation from Example 4

(∀𝑖#, 𝑣# : 𝑣# = 𝑎[𝑖#] → 𝐹𝑜𝑟2# (𝑖#, 𝑣#,𝑁 ,𝑘) ∧ 𝑘 < 𝑁 )
→ (∀𝒊′#, 𝒗 ′# : 𝑣 ′# = 𝑎[𝑘  𝑎[𝑘] + 1] [𝑖 ′#]

→ 𝐹𝑜𝑟2# (𝑖 ′#, 𝑣 ′#,𝑁 ,𝑘 + 1))
After the first step (i.e. removing ∀𝒊′#, 𝒗 ′#), we obtain:

(∀𝑖#, 𝑣# : 𝑣# = 𝑎[𝑖#] → 𝐹𝑜𝑟2# (𝑖#, 𝑣#,𝑁 ,𝑘)) ∧ 𝑘 < 𝑁

→ ((𝑣 ′# = 𝑎[𝑘  𝑎[𝑘] + 1] [𝑖 ′#]
→ 𝐹𝑜𝑟2# (𝑖 ′#, 𝑣 ′#,𝑁 ,𝑘 + 1)))

Using 𝑖𝑛𝑠𝑡𝑠 ((𝑖#, 𝑣#),𝑎) = {(𝑘,𝑎[𝑘]), (𝑖 ′#,𝑎[𝑖 ′#])} (this choice
is explained in Section 4.2) and slight simplifications, we get:

(𝑭 𝒐𝒓2#(𝒌, 𝒂[𝒌],𝑵 , 𝒌)∧𝑭 𝒐𝒓2#(𝒊′#, 𝒂[𝒊′#],𝑵 , 𝒌)∧𝑘 < 𝑁 )
→ 𝐹𝑜𝑟2# (𝑖 ′#,𝑎[𝑘  𝑎[𝑘] + 1] [𝑖 ′#],𝑁 ,𝑘 + 1)

which is clause without quantifiers equivalent to the clause
before instantiation due to our good choice of 𝑖𝑛𝑠𝑡𝑠 . How-
ever, for any choice of 𝑖𝑛𝑠𝑡𝑠 , soundness of Algorithm 2 is
ensured as Step 2 only happends on premises of the clause
(i.e. negative predicates) and ∀𝑞, 𝑒𝑥𝑝𝑟 (𝑞) → Ó

𝑞∈𝑆
𝑒𝑥𝑝𝑟 (𝑞).

In this Section, we have given a data abstraction tech-
nique that from a abstraction formula 𝐹𝜎 and an instantia-
tion heuristic 𝑖𝑛𝑠𝑡𝑠 transforms predicates on variables of the
concrete domain into predicates over the abstract domain.
The abstraction is always sound and its precision depends
on 𝑖𝑛𝑠𝑡𝑠 . We show in Section 5 using array abstraction that
the precision loss does not impact our experiments.

4 Abstracting Arrays : Cell Abstractions
To illustrate our data abstraction technique, we show how to
handle the cell abstractions of Monniaux and Gonnord [14].

4.1 Cell Abstractions
Cell abstractions consist in viewing arrays by (a finite num-
ber of) their cells. However, instead of abstracting arrays
by specific cells such as the first, the last or the second cell,
. . . , we use parametric cells (i.e. cells with a non fixed index).
𝐶𝑒𝑙𝑙1 of Example 3 corresponds to one parametric cell.

Definition 2. Cell abstractions 𝐶𝑒𝑙𝑙𝑛 .
𝜎𝐶𝑒𝑙𝑙𝑛 (𝑎) = {(𝑖1,𝑎[𝑖1], . . . , 𝑖𝑛,𝑎[𝑖𝑛])} and

𝐹𝜎𝐶𝑒𝑙𝑙𝑛
((𝑖1, 𝑣1, . . . , 𝑖𝑛, 𝑣𝑛),𝑎) ≡ 𝑣1 = 𝑎[𝑖1] ∧ . . . ∧ 𝑣𝑛 = 𝑎[𝑖𝑛].

Cell abstractions are of great interest because of their
expressivity: many interesting concrete properties can be
expressed as abstract properties. Furthermore, our data ab-
straction framework allows us to formalize other existing
array abstractions using compositions from cell abstractions.

Example 6 gives examples of expressible properties by cell
abstractions and Example 7 shows how to construct some
common abstractions from cell abstraction.

Example 6. Properties expressed with cell abstractions.
For each concrete property in the table, we give a cell ab-

straction that allows to capture it with an abstract property.
Concrete Abs Abstract property
𝑎[0] = 0 𝐶𝑒𝑙𝑙1 𝑖1 = 0 ⇒ 𝑣1 = 0
𝑎[𝑛] = 0 𝐶𝑒𝑙𝑙1 𝑖1 = 𝑛 ⇒ 𝑣1 = 0

𝑎[0] = 𝑎[𝑛] 𝐶𝑒𝑙𝑙2 (𝑖1 = 0 ∧ 𝑖2 = 𝑛) ⇒ 𝑣1 = 𝑣2
∀𝑖,𝑎[𝑖] = 0 𝐶𝑒𝑙𝑙1 𝑣1 = 0
∀𝑖,𝑎[𝑖] = 𝑖2 𝐶𝑒𝑙𝑙1 𝑣1 = 𝑖21

∀𝑖,𝑎[𝑛] ≥ 𝑎[𝑖] 𝐶𝑒𝑙𝑙2 𝑖2 = 𝑛 ⇒ 𝑣2 ≥ 𝑣1

Example 7. Array abstractions from cell abstractions.

Array smashing. : 𝜎𝑠𝑚𝑎𝑠ℎ (𝑎) = {𝑎[𝑖]}. This abstraction
keeps the set of values reached but loses all information
linking indices and values. It is the composition of𝐶𝑒𝑙𝑙1 and
"forgetting 𝑖1", that is, the data abstraction 𝜎𝑓 𝑜𝑟𝑔𝑒𝑡 (𝑖1) = ⊤
Array slicing. There are several variations, and for read-

ability we present the one that corresponds to "smashing
each slice" ?? and pick the slices ] −∞, 𝑖 [, [𝑖, 𝑖], ]𝑖,∞[
𝜎𝑠𝑙𝑖𝑐𝑒 (𝑎) = {(𝑎[ 𝑗1],𝑎[𝑖],𝑎[ 𝑗3]), 𝑗1 < 𝑖 ∧ 𝑗3 > 𝑖}

It is the composition of 𝐶𝑒𝑙𝑙3 and knowing if 𝑖1, 𝑖2, 𝑖3 are in
the slice:𝜎𝑟𝑚 (𝑖1, 𝑖2, 𝑖3) = {𝑖1 < 𝑖∧𝑖2 = 𝑖∧𝑖3 > 𝑖}. This creates
a Boolean which, after simplification, can be removed.

4.2 Instantiating Cell Abstractions
The data abstraction framework, requires an instantiation
heuristic 𝑖𝑛𝑠𝑡𝑠 . Inspired by [5, 14], we create the heuristics
𝑖𝑛𝑠𝑡𝑠𝐶𝑒𝑙𝑙𝑛 of Definition 3. The idea is that relevant indices for
clause instantiation are those that are read and this is how
the instantiation set in Example 5 was constructed.

Definition 3. Instantiation heuristic for 𝐶𝑒𝑙𝑙𝑛 .
Let 𝐶 be a clause after the step 1 of Algorithm 2.

𝑖𝑛𝑠𝑡𝑠𝐶𝑒𝑙𝑙𝑛 (𝑞, 𝑒𝑥𝑝𝑟 ) =
{(𝑒, 𝑒𝑥𝑝𝑟 [𝑒]) |∃𝑒 ′, 𝑒 ′[𝑒] ∈ 𝐶}𝑛 if this set is non empty
{(_, 𝑒𝑥𝑝𝑟 [_])}𝑛 with _ being any value otherwise

4.3 Entirely Removing Arrays: Ackermanisation[1]
Motivation. Although predicates do not have arguments

of array types after abstraction, clauses still use the arrays to
express the transition relation. Removing those arrays is a
theoretically solved issue as we do not have any quantifiers
in our clauses [5]. However, we experimentally noticed that
doing so in our preprocessing improves the solver’s results.

Technique. The axiom 𝑎[𝑖  𝑣] [ 𝑗] ≡ 𝑖𝑡𝑒 (𝑖 = 𝑗, 𝑣,𝑎[ 𝑗])
is applied to remove array writes (𝑖𝑡𝑒 denotes if-then-else).
Then, for each index 𝑒𝑥𝑝𝑟 at which an array 𝑎 is read, we
create a fresh variable 𝑣𝑒𝑥𝑝𝑟 and replace 𝑎[𝑒𝑥𝑝𝑟 ] by 𝑣𝑒𝑥𝑝𝑟 in
the clause, then, for each pair of indices 𝑒𝑥𝑝𝑟1, 𝑒𝑥𝑝𝑟2 added,
we generate the constraint 𝑒𝑥𝑝𝑟1 = 𝑒𝑥𝑝𝑟2 → 𝑣𝑒𝑥𝑝𝑟1 = 𝑣𝑒𝑥𝑝𝑟2 .
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Example 8. Ackermanisation of arrays.
Removing array writes on the running clause from Ex-

ample 5 yields :

(𝐹𝑜𝑟2# (𝑘,𝑎[𝑘],𝑁 ,𝑘)∧𝐹𝑜𝑟2# (𝑖 ′#,𝑎[𝑖 ′#],𝑁 ,𝑘)∧𝑘 < 𝑁 )
→ 𝐹𝑜𝑟2# (𝑖 ′#, 𝑖𝑡𝑒 (𝑘 = 𝑖 ′#,𝑎[𝑘] + 1,𝑎[𝑖 ′#]),𝑁 ,𝑘 + 1)

and removing array reads with 𝑎𝑖′# ,𝑎𝑘 new variables:

(𝐹𝑜𝑟2# (𝑘,𝑎𝑘 ,𝑁 ,𝑘) ∧ 𝐹𝑜𝑟2# (𝑖 ′#,𝑎𝑖′# ,𝑁 ,𝑘) ∧ 𝑘 < 𝑁

∧ (𝑘 = 𝑖 ′# → 𝑎𝑘 = 𝑎𝑖′# ))
→ 𝐹𝑜𝑟2# (𝑖 ′#, 𝑖𝑡𝑒 (𝑘 = 𝑖 ′#,𝑎𝑘 + 1,𝑎𝑖′# ),𝑁 ,𝑘 + 1)

5 Experiments
Benchmarks. We used the mini-java benchmarks [14].

We modified them to add loop invariants as optional hints,
increased readability by reducing the number of intermediate
variables, and assertions are now checked through a loop
instead of checking a random index (i.e. instead of checking
that 𝑎[𝑘] verifies the property for a random 𝑘 , we iterate
with a loop 0 ≤ 𝑘 < 𝑁 and check that 𝑎[𝑘] verifies the
property). We divided our experiments in several categories:

1. Our running example with and without hints
2. The mini-java benchmarks [14] without hints
3. The mini-java benchmarks [14] with hints
4. The buggy (the assertion is wrong) mini-java bench-

marks [14] to check for soundness of our tool.

Toolchain. We used the following toolchain :
1. The mini-java to Horn converter used [14] to convert

programs into Horn clauses with an added option to
handle hints. It also contains options to handle the
syntactical output of the clauses without changing
their semantics (i.e. such as naming conventions).

2. One of the following abstraction method from Horn
clauses to Horn clauses:
• No abstraction: we keep the original file.
• The Vaphor abstraction [14] (i.e. excluding the part
that converts mini-java to Horn clauses) tool.

• Our data abstraction tool (removing arrays in predi-
cates using 𝐶𝑒𝑙𝑙1 abstraction).

• Our data abstraction tool with ackermanisation.
3. The Z32 Horn solver with a 30s timeout.

The code for all tools and benchmarks is available on github3.
The version used of each tool is tagged with "NSAD20".

Results. Our experimental results are summarized in Ta-
ble 1. It contains, for each different toolchain and each cate-
gory of example, the number of examples for which:

• The solver computed the desired result ( ) (i.e. sat
if the example is not buggy, unsat otherwise) with
default syntax options

2version 4.8.8 - 64 bit
3https://github.com/vaphor

• The solver returned an undesired result ( ) (i.e. unsat
when the example was not buggy and sat otherwise)
with default syntax options

• The solver returned unknown (i.e. the solver aban-
doned) or timed-out ( ), that is took more than 30s
seconds with default syntax options

• The solver computed the desired result in at least one
of the syntax options (≥ 1)

We have no case of problems in the toolchain and results are
identical with a timeout of 120 seconds.

Analysis. The experimental results show that
1. The tool seems sound (without bugs) : no buggy ex-

ample becomes not buggy.
2. 𝐶𝑒𝑙𝑙1 abstraction with our instantiation heuristic is

expressive enough that the solver never returns that
there is a bug when there was not one initially. Even
better, we know that the invariant is expressible in the
abstract domain as the column ≥ 1 for 𝐶𝑒𝑙𝑙1 acker-
manised on hinted examples is equal to #exp.

3. Data abstraction behaves better than Vaphor.
4. The Z3 solver is not yet good enough on integers to

find the necessary invariants without hints.
5. The Z3 solver is dependant on syntax as the column

≥ 1 is not equal to the column .
6. Increasing the timeout does not seem to help the solver

converge as results at timeout=30s are equal to results
at timeout=120s.

7. Completely removing arrays helps.
8. Non-hinted or non-abstracted versions timeout.

Discussion. Points 1 and 2 show that the tool achieves
its purpose, that is, reducing invariants on arrays requiring
quantifiers to invariants without quantifiers on integers by
using the𝐶𝑒𝑙𝑙1 abstraction without losing precision (i.e. that
the invariants are expressible in the abstract domain). Future
work should use more array programs benchmarks [3] and
possibly use another front-end to handle them [2, 12].

Point 3 can be explained by several reasons. First, [14] does
not give an explicit technique on how to abstract multiple
arrays and the effective transformation in the tool seems less
expressive than applying𝐶𝑒𝑙𝑙1 abstraction to each array. Fur-
thermore, Horn solvers based on Sat Modulo Theory (SMT)
are very sensible to the SMT proofs. Our data-abstraction
tool implements several simple expression simplifying tech-
niques, which may lead to better convergence of the solver
by reducing the noise in SMT proofs.

Points 4 to 7 show that the Z3 tool is not yetmature enough
to handle the Horn clauses we have after abstraction. One
possible reason may be that the Z3 Horn solver heuristics
were optimized for Horn clauses directly constructed from
programs and not for the type of Horn clauses we generate
after abstraction. A possible solution to improve predictabil-
ity and reduce the impact of syntax could be to solve the
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Table 1. Experimental results

#exp Noabs VapHor 𝐶𝑒𝑙𝑙1 𝐶𝑒𝑙𝑙1 ackermanised
≥ 1 ≥ 1 ≥ 1 ≥ 1

Running 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
RunningHinted 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 1
NotHinted 11 0 0 11 0 1 0 10 1 0 0 11 0 0 0 11 0
Hinted 11 0 0 11 0 5 0 6 5 6 0 5 10 8 0 3 11
Buggy 4 4 0 0 4 4 0 0 4 4 0 0 4 4 0 0 4

Horn clauses using abstract interpretation. However, this
would require relational invariants which may be expensive.

Point 8 shows that the proposed technique can not be used
to automatically generate invariants on Horn clauses con-
taining arrays, however, it succeeds to reduce the problem
of finding quantified invariants on arrays to solving integer
Horn clauses. It seems the latter is still too hard and this may
change in the near future, possibly by using another solver.

6 Related Work
Numerous abstractions for arrays have been proposed in the
literature, among which array slicing [8]. In Example 7 we
showed how they are expressible in our framework. Similarly
to [13] we think that disconnecting the array abstraction
from other abstractions and from solving enables to better
use back-end solvers. Like [14] we use Horn Clauses to en-
code our program under verification, but we go a step further
in the use of Horn Clauses as an intermediate representation
useful to chain abstractions. Furthermore, our formalization
is cleaner when multiple arrays are involved.

Our instantiation method had been inspired from previous
work on solving quantified formula [4, 5, 9]. The paper [5]
does not consider Horn clauses, that is, expressions with
unknown predicates but only expressions with quantifiers.
The paper [4] does a very similar approach to ours, however,
they do not suggest the notion of data abstractions in a goal to
analyze them and they use trigger based instantiation. Both
instantiation methods of [4, 5] lead to bigger instantiation
sets than the one we suggest, and yet, we proved through
benchmarks that our instantiation set was sufficient for the
types of programs used [4]. Finally, the technique used in [9]
creates instantiation sets not as a prepossessing, but while
the solver is analyzing. This technique seems possibly best
for a universal way of handling quantifiers, however, it is
likely that the technique suffers of the same unpredictability
that Horn solvers have. We believe that we can tailor the
instantiation set to the abstraction and analyze its precision.
Finally, other recent techniques focus on more powerful

invariants through proofs by induction[11]. However, both
techniques are complementary: their technique is less spe-
cialized and thus has trouble where our approach may easily
succeed but enables other invariants: data abstraction may
allow to abstract within their induction proofs.

7 Conclusion
In this paper we gave an abstraction framework for data
using Horn clauses. Using this framework, we successfully
described the cell abstractions[14] in a simple manner and
some other common array abstraction using composition.
The method has been implemented and shows interesting
preliminary experimental results.

Experiments show that the chosen solver Z3 seems to be
very unpredictable for the kind of Horn clauses we generate
and further investigation needs to be done. Another direction
is to experiment with other Horn clauses solving techniques.
Moreover, we plan to improve our implementation by

parametrizing it with the desired data-abstraction, and on
the theoritical side, work on isolating a fragment on which
the 𝐶𝑒𝑙𝑙𝑛 heuristic is complete.
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