
HAL Id: hal-02948081
https://hal.science/hal-02948081v1

Submitted on 24 Sep 2020 (v1), last revised 16 Nov 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proving array properties using data abstraction
Julien Braine, Laure Gonnord

To cite this version:
Julien Braine, Laure Gonnord. Proving array properties using data abstraction. Numerical and
Symbolic Abstract Domains (NSAD), Nov 2020, Virtual, United States. �hal-02948081v1�

https://hal.science/hal-02948081v1
https://hal.archives-ouvertes.fr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Proving array properties using data abstraction
Julien Braine

Univ Lyon, EnsL, UCBL, CNRS, Inria,
LIP, F-69342, LYON Cedex 07, France

julien.braine@ens-lyon.fr

Laure Gonnord
Univ Lyon, EnsL, UCBL, CNRS, Inria,
LIP, F-69342, LYON Cedex 07, France

laure.gonnord@ens-lyon.fr

Abstract
This paper presents a framework to abstract data structures
within Horn clauses that allows abstractions to be easily
expressed, compared, composed and implemented. These
abstractions introduce new quantifiers that we eliminate
with quantifier elimination techniques [3].

Experimental evaluation show promising results on clas-
sical array programs [16].

Keywords abstraction, data structures, Horn clauses, array
properties

1 Introduction
Static analysis of programs containing non-bounded data-
structures is a challenging problem as most interesting prop-
erties require quantifiers. Even stating that all elements of an
array are equal to 0 requires it. A common way to reduce the
complexity of such problems is abstraction using program
transformation [15] or abstract interpretation [6, 9, 11].
In this paper, we suggest a new technique that we name

data abstraction that takes advantage that we are abstracting
data-structures. Inspired by previous work on arrays [3, 16],
we combine quantifier instantiation with abstract interpre-
tation. We obtain a transformation from Horn clauses to
Horn clauses, a format with clear semantics to which pro-
grams with assertions can be reduced. The goal is to provide
a framework in which abstractions on data structures can
be easily expressed, compared, composed and implemented
and decorrelate them from the back-end solving. Example
1 will be our motivating and running example illustrating
how we handle programs with arrays. Proving this program
is challenging as it mixes the difficulty of finding universally
quantified invariants with modulo arithmetic.
In Section 2, we introduce Horn clauses, the transforma-

tion of our running example, and Galois connections, in
Section 3, we formally give our data abstraction technique,
in Section 4, we give an instance of such an abstraction on
arrays and in Section 5 we give the experimental results of
our tool and compare it with the Vaphor tool [16].

Example 1. Running example: the following program ini-
tializes an array to even values, then increases all values by
one and checks that all values are odd. We wish to prove
that the assertion is verified.

NSAD’2020, November 15-18, 2020, Chicago, USA
2020.

for (k = 0 ; k<N ; k ++) / / Program po i n t Fo r 1
a [k] = rand () ∗ 2 ;

for (k = 0 ; k<N ; k ++) / / Program po i n t Fo r 2
a [k] = a [k] + 1 ;

for (k = 0 ; k<N ; k ++) / / Program po i n t Fo r 3
a s s e r t (a [k] % 2 == 1) ;

2 Preliminaries
2.1 Horn clauses
A Horn clause is a logical formula over free variables and
predicates. The only constraint is that Horn clauses are "in-
creasing", that is, there can be at most one positive predicate
in the clause. Horn clauses are usually written in the follow-
ing form : 𝑃1 (# »

𝑒𝑥𝑝𝑟𝑠1) ∧ . . . ∧ 𝑃𝑛 (# »
𝑒𝑥𝑝𝑟𝑠𝑛) ∧ 𝜙 → 𝑃 ′(# »

𝑒𝑥𝑝𝑟𝑠 ′)
where :
• # »
𝑒𝑥𝑝𝑟𝑠1, . . . ,

»
𝑒𝑥𝑝𝑟𝑠𝑛, 𝜙,

»
𝑒𝑥𝑝𝑟𝑠 ′ are expressions possibly

containing free variables.
• 𝑃1, . . . , 𝑃𝑛 are the "negative" predicates
• 𝑃 ′ is the positive predicate or some expression

The semantics of such a Horn clause is the following:
∀𝑣𝑎𝑟𝑠, 𝑃1 (# »

𝑒𝑥𝑝𝑟𝑠1)∧. . .∧𝑃𝑛 (# »
𝑒𝑥𝑝𝑟𝑠𝑛)∧𝜙 ⇒ 𝑃 ′(# »

𝑒𝑥𝑝𝑟𝑠 ′) where
𝑣𝑎𝑟𝑠 are the free variables of the expressions. We say a set of
Horn clauses is satisfiable if and only if there exists values
(sets) for each predicate that satisfy all the Horn clauses.

Programs with assertions can be transformed into Horn
clauses using tools such as SeaHorn [1] or JayHorn [14],
and in Example 2 we give the transformation of Example 1
into Horn clauses. The key idea is to create a predicate per
program point and express the constraints on each program
point using Horn clauses.

Example 2. Running example in Horn clauses where all
predicates 𝐹𝑜𝑟𝑖 have arity 3 (1 array and 2 integer parame-
ters). Clause (4) in bold, will be used throughout the paper.

𝐹𝑜𝑟1(𝑎, 𝑁 , 0) (1)
𝐹𝑜𝑟1(𝑎, 𝑁 , 𝑘) ∧ 𝑘 < 𝑁 → 𝐹𝑜𝑟1(𝑎[𝑘 ← 𝑟 ∗ 2], 𝑁 , 𝑘 + 1) (2)

𝐹𝑜𝑟1(𝑎, 𝑁 , 𝑘) ∧ 𝑘 ≥ 𝑁 → 𝐹𝑜𝑟2(𝑎, 𝑁 , 0) (3)
𝑭 𝒐𝒓2(𝒂, 𝑵 , 𝒌) ∧ 𝒌 < 𝑵 → 𝑭 𝒐𝒓2(𝒂[𝒌 ← 𝒂[𝒌] + 1], 𝑵 , 𝒌 + 1) (4)

𝐹𝑜𝑟2(𝑎, 𝑁 , 𝑘) ∧ 𝑘 ≥ 𝑁 → 𝐹𝑜𝑟3(𝑎, 𝑁 , 0) (5)
𝐹𝑜𝑟3(𝑎, 𝑁 , 𝑘) ∧ 𝑘 < 𝑁 ∧ 𝑎[𝑘]%2 ≠ 1→ 𝑓 𝑎𝑙𝑠𝑒 (6)

𝐹𝑜𝑟3(𝑎, 𝑁 , 𝑘) ∧ 𝑘 < 𝑁 → 𝐹𝑜𝑟3(𝑎, 𝑁 , 𝑘 + 1) (7)

1

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

NSAD’2020, November 15-18, 2020, Chicago, USA Julien Braine and Laure Gonnord

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

2.2 Galois connection
A Galois connection [5] is a way of expressing a general
abstraction. In our case, we abstract predicates, that is, sets
of possible values from a concrete set C to an abstract setA.

A Galois connection is defined by
• 𝛼 : P(C) → P(A) gives the abstraction of a predicate
• 𝛾 : P(A) → P(C) gives the concrete values an ab-
stracted predicate represents.

Two properties are required for 𝛼,𝛾 :
• 𝑆 ⊆ 𝛾 (𝛼 (𝑆)) for soundness.
• ∀𝑆#, 𝛼 (𝛾 (𝑆#)) ⊆ 𝑆# for minimal precision loss.

3 Data abstraction
In this section, we present our main contribution: data ab-
straction. We abstract the Horn clauses, and then show how
to remove the added quantifiers.

3.1 Data abstraction in Horn clauses
Definition 1 introduces data abstractions, that is, abstractions
whose goal is to reduce the complexity of elements (such
as arrays) by a set of simpler values (such as integers) and
Example 3 gives an example of such an abstraction.

Definition 1. Data abstraction (𝜎, 𝐹𝜎).
Let C andA be sets . A data abstraction is a couple (𝜎, 𝐹𝜎)

where 𝜎 is a function from C to P(A) and 𝐹𝜎 is a formula
encoding its inclusion relation : 𝐹𝜎 (𝑎#, 𝑎) ≡ 𝑎# ∈ 𝜎 (𝑎)1.
It defines a Galois connection from P(C) to P(A) by :
• 𝛼𝜎 (𝑆 ⊆ C) =

⋃
𝑒∈𝑆

𝜎 (𝑒)

• 𝛾𝜎 (𝑆# ⊆ A) = {𝑒 ∈ C|𝜎 (𝑒) ⊆ 𝑆#}

Example 3. 𝐶𝑒𝑙𝑙1 abstraction of an array: abstracting an
array by the set of its cells (i.e. couples of index and value).
𝜎𝐶𝑒𝑙𝑙1 (𝑎) = {(𝑖, 𝑎[𝑖])} 𝐹𝜎𝐶𝑒𝑙𝑙1

((𝑖, 𝑣), 𝑎) ≡ 𝑣 = 𝑎[𝑖]

In Algorithm 1we give the implementation of such abstrac-
tions in Horn clauses and Example 4 unrolls its execution.
The key idea consists in replacing a predicate 𝑃 (𝑒𝑥𝑝𝑟) by
𝑒𝑥𝑝𝑟 ∈ 𝛾 (𝑃#) for a new predicate 𝑃#.

Algorithm 1. Abstracting in Horn clauses.
Input :

𝐻 be a Horn problem1. 𝑃 the predicate to abstract.2.
𝑃# an unused predicate.3. 𝐹𝜎 .4.

Computation : for each clause 𝐶 of 𝐻 , for each 𝑃 (𝑒𝑥𝑝𝑟)
for some 𝑒𝑥𝑝𝑟 in 𝐶 , replace 𝑃 (𝑒𝑥𝑝𝑟) by ∀𝑎#, 𝐹𝜎 (𝑎#, 𝑒𝑥𝑝𝑟) →
𝑃# (𝑎#), where 𝑎# is a new unused variable.

Example 4. Execution of Algorithm 1 with 𝐶𝑒𝑙𝑙1.
Input :

Clauses of Example 2.1. 𝐹𝑜𝑟22.
𝐹𝑜𝑟2#3. 𝜎𝐶𝑒𝑙𝑙1 applied to 𝑎.4.

1Classically, we denote abstracts elements (∈ A) with sharps (#).

Output : Consider Clause 4 from the example on page 1.
After applying Algorithm 1 and naming the introduced quan-
tified variables (𝑖#, 𝑣#) and (𝑖 ′#, 𝑣 ′#), we obtain:

(∀𝑖#, 𝑣#, 𝑣# = 𝑎[𝑖#] → 𝐹𝑜𝑟2# (𝑖#, 𝑣#, 𝑁 , 𝑘)) ∧ 𝑘 < 𝑁 →
(∀𝑖 ′#, 𝑣 ′#, 𝑣 ′# = 𝑎[𝑘 ← 𝑎[𝑘]+1] [𝑖 ′#] → 𝐹𝑜𝑟2# (𝑖 ′#, 𝑣 ′#, 𝑁 , 𝑘+1))
In this section, we have a general scheme to abstract Horn

problems with a data abstraction, however, new quantifiers
(∀𝑎#) are introduced that solvers [8, 12] have trouble solving.

3.2 Removing the introduced quantifiers :
instantiation

Our abstraction has introduced new quantifiers in our Horn
clauses. Here, we give an algorithm to remove those quan-
tifiers using a technique called quantifier instantiation [3]
which consists in replacing a universal quantifier, i.e. a pos-
sibly infinite conjunction, by a conjunction over some finite
set 𝑆 . In other words, an expression of the form ∀𝑞, 𝑒𝑥𝑝𝑟 (𝑞)
is transformed into an expression of the form

∧
𝑞∈𝑆

𝑒𝑥𝑝𝑟 (𝑞).

Algorithm 2 removes the quantifiers in two steps :
• Remove useless quantifiers: 𝑒𝑥𝑝𝑟 → (∀𝑞, 𝑒𝑥𝑝𝑟 ′) with
(𝑞 ∉ 𝑒𝑥𝑝𝑟) is semantically equivalent to 𝑒𝑥𝑝𝑟 → 𝑒𝑥𝑝𝑟 ′

• Instantiate the other ∀ thanks to a heuristic 𝑖𝑛𝑠𝑡𝑠 .

Algorithm 2. Instantiation algorithm.
Input :
• 𝐶 , a clause (after abstraction).
• 𝑖𝑛𝑠𝑡𝑠 , a function that to a quantifier of𝐶 and the abstracted
value 𝑒𝑥𝑝𝑟 , returns an instantiation set 𝑆 .

Computation :
• Remove universal quantifiers in the goal of the clause.
• For each remaining instance of∀𝑎#, 𝐹𝜎 (𝑎#, 𝑒𝑥𝑝𝑟) → 𝑃# (𝑎#),
replace it by

∧
𝑎#∈𝑖𝑛𝑠𝑡𝑠 (𝑎#,𝑒𝑥𝑝𝑟)

𝐹𝜎 (𝑎#, 𝑒𝑥𝑝𝑟) → 𝑃# (𝑎#)

Example 5. Example of instantiation from Example 4

(∀𝑖#, 𝑣#, 𝑣# = 𝑎[𝑖#] → 𝐹𝑜𝑟2# (𝑖#, 𝑣#, 𝑁 , 𝑘) ∧ 𝑘 < 𝑁) →
(∀𝒊′#, 𝒗 ′#, 𝑣 ′# = 𝑎[𝑘 ← 𝑎[𝑘]+1] [𝑖 ′#] → 𝐹𝑜𝑟2# (𝑖 ′#, 𝑣 ′#, 𝑁 , 𝑘+1))
After the first step (i.e. removing ∀𝒊′#, 𝒗 ′#), we obtain:

(∀𝑖#, 𝑣#, 𝑣# = 𝑎[𝑖#] → 𝐹𝑜𝑟2# (𝑖#, 𝑣#, 𝑁 , 𝑘)) ∧ 𝑘 < 𝑁 →
(𝑣 ′# = 𝑎[𝑘 ← 𝑎[𝑘] + 1] [𝑖 ′#] → 𝐹𝑜𝑟2# (𝑖 ′#, 𝑣 ′#, 𝑁 , 𝑘 + 1))

Using 𝑖𝑛𝑠𝑡𝑠 ((𝑖#, 𝑣#), 𝑎) = {(𝑘, 𝑎[𝑘]), (𝑖 ′#, 𝑎[𝑖 ′#])} (this choice
is explained in Section 4.2) and slight simplifications, we get:

(𝑭 𝒐𝒓2#(𝒌, 𝒂[𝒌], 𝑵 , 𝒌)∧𝑭 𝒐𝒓2#(𝒊′#, 𝒂[𝒊′#], 𝑵 , 𝒌)∧𝑘 < 𝑁) →
𝐹𝑜𝑟2# (𝑖 ′#, 𝑎[𝑘 ← 𝑎[𝑘] + 1] [𝑖 ′#], 𝑁 , 𝑘 + 1)

which can be proven to be a clause without quantifiers equiv-
alent to the clause before instantiation.

In this Section, we have given a data abstraction tech-
nique that from a abstraction formula 𝐹𝜎 and an instantia-
tion heuristic 𝑖𝑛𝑠𝑡𝑠 transforms predicates on variables of the

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

NSAD’2020, November 15-18, 2020, Chicago, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

concrete domain into predicates over the abstract domain.
The abstraction is always sound and its preciseness depends
on 𝑖𝑛𝑠𝑡𝑠 . We show in Section 5 using array abstraction that
the precision loss does not impact our experiments.

4 Abstracting arrays : Cell abstractions
To illustrate our data abstraction technique, we show how to
handle the cell abstractions of Monniaux and Gonnord [16].

4.1 Cell abstractions
Cell abstractions consist in viewing arrays by (a finite num-
ber of) their cells. However, instead of abstracting arrays
by specific cells such as the first, the last or the second cell,
. . . , we use parametric cells (i.e. cells with a non fixed index).
𝐶𝑒𝑙𝑙1 of Example 3 corresponds to one parametric cell. In
Definition 2, we extend 𝐶𝑒𝑙𝑙1 to 𝐶𝑒𝑙𝑙𝑛 .

Definition 2. Cell abstractions 𝐶𝑒𝑙𝑙𝑛 .
𝜎𝐶𝑒𝑙𝑙𝑛 (𝑎) = {(𝑖1, 𝑎[𝑖1], . . . , 𝑖𝑛, 𝑎[𝑖𝑛])} and

𝐹𝜎𝐶𝑒𝑙𝑙𝑛
((𝑖1, 𝑣1, . . . , 𝑖𝑛, 𝑣𝑛), 𝑎) ≡ 𝑣1 = 𝑎[𝑖1] ∧ . . . ∧ 𝑣𝑛 = 𝑎[𝑖𝑛].

Cell abstractions are of great interest because of their
expressivity: many interesting concrete properties can be
expressed as abstract properties. Furthermore, our data ab-
straction framework allows us to formalize other existing
array abstractions using compositions from cell abstractions.

Example 6 gives examples of expressible properties by cell
abstractions and Example 7 shows how to construct some
common abstractions from cell abstraction.

Example 6. Properties expressed with cell abstractions.
For each concrete property in the table, we give a cell ab-

straction that allows to capture it with an abstract property.

Concrete Abstraction Abstract
𝑎[0] = 0 𝐶𝑒𝑙𝑙1 𝑖1 = 0⇒ 𝑣1 = 0
𝑎[𝑛] = 0 𝐶𝑒𝑙𝑙1 𝑖1 = 𝑛 ⇒ 𝑣1 = 0

𝑎[0] = 𝑎[𝑛] 𝐶𝑒𝑙𝑙2 (𝑖1 = 0 ∧ 𝑖2 = 𝑛) ⇒ 𝑣1 = 𝑣2
∀𝑖, 𝑎[𝑖] = 0 𝐶𝑒𝑙𝑙1 𝑣1 = 0
∀𝑖, 𝑎[𝑖] = 𝑖2 𝐶𝑒𝑙𝑙1 𝑣1 = 𝑞21
∀𝑖, 𝑎[𝑛] ≥ 𝑎[𝑖] 𝐶𝑒𝑙𝑙2 𝑖2 = 𝑛 ⇒ 𝑣2 ≥ 𝑣1

Example 7. Array abstractions from cell abstractions.

Array smashing : 𝜎𝑠𝑚𝑎𝑠ℎ (𝑎) = {𝑎[𝑖]}. This abstraction
keeps the set of values reached but loses all information
linking indices and values. It is the composition of 𝐶𝑒𝑙𝑙1 and
"forgetting 𝑖1", that is, the data abstraction 𝜎𝑓 𝑜𝑟𝑔𝑒𝑡 (𝑖1) = ⊤

Array slicing [6, 9, 11] : There are several variations, and
for readabilitywe present the one that corresponds to "smash-
ing each slice" and pick the slices] − ∞, 𝑖 [, [𝑖, 𝑖],]𝑖,∞[

𝜎𝑠𝑙𝑖𝑐𝑒 (𝑎) = {(𝑎[𝑗1], 𝑎[𝑖], 𝑎[𝑗3]), 𝑗1 < 𝑖 ∧ 𝑗3 > 𝑖}
It is the composition of 𝐶𝑒𝑙𝑙3 and knowing if 𝑖1, 𝑖2, 𝑖3 are in
the slice: 𝜎𝑟𝑚 (𝑖1, 𝑖2, 𝑖3) = {𝑖1 < 𝑖∧𝑖2 = 𝑖∧𝑖3 > 𝑖}. This creates
a Boolean which, after simplification, can be removed.

4.2 Instantiating Cell abstractions
The data abstraction framework, requires an instantiation
heuristic 𝑖𝑛𝑠𝑡𝑠 . Inspired by [4, 16], we create the heuristics
𝑖𝑛𝑠𝑡𝑠𝐶𝑒𝑙𝑙𝑛 of Definition 3.
The idea behind this heuristic is that relevant indices for
clause instantiation are those that are read and this is how
the instantiation set in Example 5 was constructed.

Definition 3. Instantiation heuristic for 𝐶𝑒𝑙𝑙𝑛 .
Let 𝐶 be a clause after the step 1 of Algorithm 2.

𝑖𝑛𝑠𝑡𝑠𝐶𝑒𝑙𝑙𝑛 (𝑞, 𝑒𝑥𝑝𝑟) =
{(𝑒, 𝑒𝑥𝑝𝑟 [𝑒]) |∃𝑒 ′, 𝑒 ′[𝑒] ∈ 𝐶}𝑛 if it’s non empty
{⊤, 𝑒𝑥𝑝𝑟 [⊤]}𝑛with ⊤ being any value otherwise

4.3 Completely removing arrays : ackermanisation
Motivation Although predicates do not have arguments
of array types after abstraction, clauses still use the arrays to
express the transition relation. Removing those arrays is a
theoretically solved issue as we do not have any quantifiers
in our clauses [4]. However, we experimentally noticed that
doing so in our prepossessing improves the solver’s results.

Technique The axiom 𝑎[𝑖 ← 𝑣] [𝑗] ≡ 𝑖𝑡𝑒 (𝑖 = 𝑗, 𝑣, 𝑎[𝑗])
is applied to remove array writes (𝑖𝑡𝑒 denotes if-then-else).
Then, for each index 𝑒𝑥𝑝𝑟 at which an array 𝑎 is read, we
create a fresh variable 𝑣𝑒𝑥𝑝𝑟 and replace 𝑎[𝑒𝑥𝑝𝑟] by 𝑣𝑒𝑥𝑝𝑟 in
the clause, then, for any pair of indices 𝑒𝑥𝑝𝑟1, 𝑒𝑥𝑝𝑟2 added,
we generate the constraint 𝑒𝑥𝑝𝑟1 = 𝑒𝑥𝑝𝑟2 → 𝑣𝑒𝑥𝑝𝑟1 = 𝑣𝑒𝑥𝑝𝑟2 .
Example 8 illustrates this technique.

Example 8. Ackermanisation of arrays.

Simple example: an array read clause after 𝐶𝑒𝑙𝑙1
𝑃 (𝑖, 𝑎[𝑖]) ∧ 𝑃 (𝑗, 𝑎[𝑗]) ∧ 𝑣 = 𝑎[𝑖] → 𝑃 ′(𝑗, 𝑎[𝑗], 𝑣)

is transformed into with 𝑎𝑖 , 𝑎 𝑗 new variables:

𝑃 (𝑖, 𝑎𝑖) ∧ 𝑃 (𝑗, 𝑎 𝑗) ∧ (𝑖 = 𝑗 ⇒ 𝑎𝑖 = 𝑎 𝑗) ∧ 𝑣 = 𝑎𝑖 → 𝑃 ′(𝑗, 𝑎 𝑗 , 𝑣)

Running clause from Example 5 on page 2.
Removing array writes yields :

(𝐹𝑜𝑟2# (𝑘, 𝑎[𝑘], 𝑁 , 𝑘) ∧𝐹𝑜𝑟2# (𝑖 ′#, 𝑎[𝑖 ′#], 𝑁 , 𝑘) ∧𝑘 < 𝑁) →
𝐹𝑜𝑟2# (𝑖 ′#, 𝑖𝑡𝑒 (𝑘 = 𝑖 ′#, 𝑎[𝑘] + 1, 𝑎[𝑖 ′#]), 𝑁 , 𝑘 + 1)

and removing array reads with 𝑎𝑖′# , 𝑎𝑘 new variables:

(𝐹𝑜𝑟2# (𝑘, 𝑎𝑘 , 𝑁 , 𝑘) ∧ 𝐹𝑜𝑟2# (𝑖 ′#, 𝑎𝑖′# , 𝑁 , 𝑘) ∧ 𝑘 < 𝑁

∧ (𝑘 = 𝑖 ′# → 𝑎𝑘 = 𝑎𝑖′#)) →
𝐹𝑜𝑟2# (𝑖 ′#, 𝑖𝑡𝑒 (𝑘 = 𝑖 ′#, 𝑎𝑘 + 1, 𝑎𝑖′#), 𝑁 , 𝑘 + 1)

In this Section, we have shown that our data abstraction
framework can handle cell abstractions and, by composi-
tion, other simpler array abstractions. Furthermore, we can
optionally completely remove arrays from the Horn problem.

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

NSAD’2020, November 15-18, 2020, Chicago, USA Julien Braine and Laure Gonnord

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

5 Experiments
Benchmarks Weused themini-java benchmarks [16]. How-
ever, we modified them to add optional invariant hints, in-
creased readability by reducing the number of intermediate
variables, and assertions are now checked through a loop
instead of checking a random index (i.e. instead of checking
that 𝑎[𝑘] verifies the property for a random 𝑘 , we iterate
with a loop 0 ≤ 𝑘 < 𝑁 and check that 𝑎[𝑘] verifies the
property). We divided our experiments in several categories:

1. Our running example
2. The mini-java benchmarks [16] without hints
3. The mini-java benchmarks [16] with hints
4. The buggy (the assertion is wrong) mini-java bench-

marks [16] to check for soundness of our tool.

Toolchain We used the following toolchain :
1. The mini-java to Horn converter used [16] to convert

programs into Horn clauses with an added option to
handle hints. It also contains options to handle the
syntactical output of the clauses without changing
their semantics (i.e. such as naming conventions).

2. One of the following abstraction method from Horn
clauses to Horn clauses:
• No abstraction: we keep the original file.
• The Vaphor abstraction [16] (i.e. excluding the part
that converts mini-java to Horn clauses) tool.
• Our data abstraction tool (removing arrays in predi-
cates using 𝐶𝑒𝑙𝑙1 abstraction).
• Our data abstraction tool with ackermanisation.

3. The Z32 Horn solver with a 30s timeout.
The code for all tools is available on github3. The version
used of each tool is tagged with "NSAD20".

Results Our experimental results are summarized in Table
1. It contains, for each different toolchain and each category
of example, the number of examples for which:
• The solver computed the desired result () (i.e. sat
if the example is not buggy, unsat otherwise) with
default syntax options
• The solver returned an undesired result () (i.e. unsat
when the example was not buggy and sat otherwise)
with default syntax options
• The solver returned unknown (i.e. the solver aban-
doned) or timed-out (), that is took more than 30s
seconds with default syntax options
• The solver computed the desired result in at least one
of the syntax options (≥ 1)

We have no case of problems in the toolchain and results
are identical with a timeout of 120 seconds. All results can
be found and reproduced using our array benchmark reposi-
tory4.
2version 4.8.8 - 64 bit
3https://github.com/vaphor
4https://github.com/vaphor/array-benchmarks

Analysis The experimental results show that
1. The tool seems sound (without bugs) : no buggy ex-

ample becomes not buggy.
2. 𝐶𝑒𝑙𝑙1 abstraction with our instantiation heuristic is

expressive enough that the solver never returns that
there is a bug when there was not one initially. Even
better, we know that the invariant is expressible in the
abstract domain as the column ≥ 1 for𝐶𝑒𝑙𝑙1 ackerman-
ised on hinted examples is equal to #exp.

3. Data abstraction behaves better than Vaphor.
4. The Z3 solver is not yet good enough on integers to

find the necessary invariants without hints.
5. The Z3 solver is dependant on syntax as the column
≥ 1 is not equal to the column .

6. Increasing the timeout does not seem to help the solver
converge as results at timeout=30s are equal to results
at timeout=120s.

7. Completely removing arrays helps.
8. Non-hinted or non-abstracted versions timeout.

Discussion Points 1 and 2 show that the tool achieves its
purpose, that is, reducing invariants on arrays requiring
quantifiers to invariants without quantifiers on integers by
using the𝐶𝑒𝑙𝑙1 abstraction without losing precision (i.e. that
the invariants are expressible in the abstract domain). Future
work should use more array programs benchmarks [2] and
possibly use another front-end to handle them [1, 14].

Point 3 can be explained by several reasons. First, [16] does
not give an explicit technique on how to abstract multiple
arrays and the effective transformation in the tool seems less
expressive than applying𝐶𝑒𝑙𝑙1 abstraction to each array. Fur-
thermore, Horn solvers based on Sat Modulo Theory (SMT)
are very sensible to the SMT proofs. Our data-abstraction
tool implements several simple expression simplifying tech-
niques, which may lead to better convergence of the solver
by reducing the noise in SMT proofs.

Points 4 to 7 show that the Z3 tool is not yetmature enough
to handle the Horn clauses we have after abstraction. One
possible reason may be that the Z3 Horn solver heuristics
were optimized for Horn clauses directly constructed from
programs and not for the type of Horn clauses we generate af-
ter abstraction. A possible solution to improve predictability
and reduce the impact of syntax could be to solve the Horn
clauses using abstract interpretation. However, this would
require relational invariants and in many cases polyhedral
invariants [7] and this may be too expensive.

Point 8 shows that the proposed technique can not be used
to automatically generate invariants on Horn clauses con-
taining arrays, however, it succeeds to reduce the problem
of finding quantified invariants on arrays to solving integer
Horn clauses. It just seems the latter is still too hard and this
may change in the near future, possibly by using another
solver.

4

https://github.com/vaphor
https://github.com/vaphor/array-benchmarks

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

NSAD’2020, November 15-18, 2020, Chicago, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

Table 1. Experimental results

#exp Noabs VapHor 𝐶𝑒𝑙𝑙1 𝐶𝑒𝑙𝑙1 ackermanised
≥ 1 ≥ 1 ≥ 1 ≥ 1

Running 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
RunningHinted 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 1
NotHinted 11 0 0 11 0 1 0 10 0 0 0 11 0 0 0 11 0
Hinted 11 0 0 11 0 5 0 6 5 6 0 5 10 8 0 3 11
Buggy 4 4 0 0 4 4 0 0 4 4 0 0 4 4 0 0 4

6 Related Work
Numerous abstractions for arrays have been proposed in
the literature, among which array slicing [6, 9, 11]. In Exam-
ple 7 we showed how they are expressible in our framework.
Similarly to Monniaux and Alberti [15] we think that discon-
necting the array abstraction from other abstractions and
from solving enables to better use back-end solvers. Like
Monniaux and Gonnord [16] we use Horn Clauses to encode
our program under verification, but we go a step further in
the use of Horn Clauses as an intermediate representation
useful to chain abstractions. Furthermore, our formalization
is cleaner when multiple arrays are involved.

Our instantiation method had been inspired from previous
work on solving quantified formula [3, 4, 10]. The paper [4]
does not consider Horn clauses, that is, expressions with
unknown predicates but only expressions with quantifiers.
The paper [3] does a very similar approach to ours, however,
they do not suggest to notion of data abstractions in a goal to
analyze them and they use trigger based instantiation. Both
instantiation methods of [3, 4] lead to bigger instantiation
sets than the one we suggest, and yet, we proved through
benchmarks that our instantiation set was sufficient for the
types of programs used [3]. Finally, the technique used in
[10] creates instantiation sets not as a prepossessing, but
while the solver is analyzing. This technique seems possibly
best for a universal way of handling quantifiers, however, it
is highly likely that the technique suffers of the same unpre-
dictability that Horn solvers have. In our case, we believe
that we can tailor the instantiation set to the abstraction and
analyze its precision.
Finally, other recent techniques focus on more powerful

invariants through proofs by induction proofs[13]. However,
as stated by the authors themselves, both techniques are
complimentary: their technique is less specialized and thus
has trouble where our approach may easily succeed but en-
ables other invariants: our data abstraction framework may
allow to abstract within their induction proofs.

7 Conclusion
In this paper we gave an abstraction framework for data
using Horn clauses. Using this framework, we successfully
described the cell abstractions[16] in a simple manner and

some other common array abstraction using composition.
The method has been implemented and shows interesting
preliminary experimental results.

Experiments show that the chosen solver Z3 seems to be
very unpredictable for the kind of Horn clauses we generate
and further investigation needs to be done. Another direction
is to experiment with other Horn clauses solving techniques.

Moreover, our tool is still work in progress and has to be
modularised since it does not implement the composition of
abstractions.

Finally, we plan to work on the precision of our abstraction
technique.

References
[1] Arie Arie Gurfinkel, Themesghen Kahsai, Anvesh Komuravelli, and

Jorge Navas. 2015. The SeaHorn Verification Framework. In CAV.
[2] Dirk Beyer. 2019. Automatic Verification of C and Java Programs:

SV-COMP 2019. In TACAS.
[3] Nikolaj Bjørner, Ken McMillan, and Andrey Rybalchenko. 2013. On

Solving Universally Quantified Horn Clauses. In SAS.
[4] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2006. What’s

Decidable About Arrays?. In VMCAI.
[5] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A

Unified Lattice Model for Static Analysis of Programs by Construction
or Approximation of Fixpoints. In POPL.

[6] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. 2011. A Para-
metric Segmentation Functor for Fully Automatic and Scalable Array
Content Analysis. SIGPLAN Not. (2011).

[7] Patrick Cousot and Nicolas Halbwachs. 1978. Automatic Discovery of
Linear Restraints among Variables of a Program. In PLDI.

[8] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An
Efficient SMT Solver. In TACAS.

[9] Denis Gopan, Thomas Reps, and Mooly Sagiv. 2005. A Framework for
Numeric Analysis of Array Operations. In PLDI.

[10] Arie Gurfinkel, Sharon Shoham, and Yakir Vizel. 2018. Quantifiers on
Demand. In ATVA.

[11] Nicolas Halbwachs and Matthias Péron. 2008. Discovering Properties
about Arrays in Simple Programs. In PLDI’08.

[12] Hossein Hojjat and Philipp Rümmer. 2018. The ELDARICA Horn
Solver. In FMCAD.

[13] Oren Ish-Shalom, Shachar Itzhaky, Noam Rinetzky, and Sharon
Shoham. 2020. Putting the Squeeze on Array Programs: Loop Verifica-
tion via Inductive Rank Reduction. In VMCAI.

[14] Temesghen Kahsai, Philipp Rümmer, and Martin Schäf. 2019. JayHorn:
A Java Model Checker: (Competition Contribution).

[15] David Monniaux and Francesco Alberti. 2015. A simple abstraction of
arrays and maps by program translation. In SAS.

[16] David Monniaux and Laure Gonnord. 2016. Cell morphing: from array
programs to array-free Horn clauses. In SAS.

5

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Horn clauses
	2.2 Galois connection

	3 Data abstraction
	3.1 Data abstraction in Horn clauses
	3.2 Removing the introduced quantifiers : instantiation

	4 Abstracting arrays : Cell abstractions
	4.1 Cell abstractions
	4.2 Instantiating Cell abstractions
	4.3 Completely removing arrays : ackermanisation

	5 Experiments
	6 Related Work
	7 Conclusion
	References

