Jochen Burghardt 
  
Repetition-Free Derivability from a Regular Grammar is NP-Hard

Keywords: Regular grammar, repetition-free derivation, NP-hard

We prove the NP-hardness of the problem whether a given word can be derived from a given regular grammar without repeated occurrence of any nonterminal.

Introduction

Let a regular word grammar G be given. We ask whether a given word ω can be derived from G without repeated occurrence of any nonterminal. We prove in Sect. 3 that the problem of deciding this property is NP-hard in general. As a consequence, it is NP-hard also for all superclasses of regular grammars, such as context-free, context-sensitive, and unrestricted grammars.

In Sect. 4, we present some ideas to prove the NP-hardness of a related problem, viz. of determining the length of the longest word repetition-free derivable from a given grammar. However, we didn't yet succeed in finding a proof for that claim.

In Sect. 5, we present the original motivation of considering repetition-free derivations, which was a rather particular problem from artificial intelligence.

The problem of deciding repetition-free derivability looks quite similar to that of deciding the existence of a Hamiltonian path in a given undirected graph, which is well-known to be NP-complete [Sip97, Thm.7.35, Sect.7.5, p.262]. However, both problems differ in • presence of terminals/edge labels, • the set of nonterminals/nodes in a derivation/path (arbitrary vs. full set), and • the admitted start and end nonterminals/nodes of a derivation/path (fixed start and end symbols vs. arbitrary nodes), respectively.

For this reason, a reduction of the Hamiltonian path problem to the repetition-free derivability problem is not immediate obvious.

Definitions

Definition 1 (Regular grammar) Following [HU79, Sect.9.1/4.2, p.217/79], a regular (word) grammar G is defined as a tuple N , Σ, R, S , where N and Σ are disjoint finite sets of nonterminal and terminal symbols, respectively, S ∈ N is called the start symbol, and R is a finite set of rules of the form A ::= bC or A ::= b, where A, C ∈ N and b ∈ Σ.

A derivation from G is a finite sequence

S → a 1 X 1 → a 1 a 2 X 2 → . . . → a 1 a 2 . . . a n-1 X n-1 → a 1 a 2 . . . a n-1 a n X n → a 1 a 2 . . . a n-1 a n a n+1
where a 1 , . . . , a n+1 ∈ Σ are terminal symbols, X 1 , . . . , X n ∈ N are nonterminal symbols, and

S ::= a 1 X 1 , X 1 ::= a 2 X 2 , . . . ,
X n-1 ::= a n X n , and X n ::= a n 1 are rules from R. We say that the nonterminals X 1 , . . . , X n occur in that derivation.

A word ω ∈ Σ * is derivable from G is a derivation S → . . . → ω exists. The language produced by G is denoted by L(G), it is defined as the set of all words derivable from G. 2

Definition 2 (Conjunctive normal form formula) Let a set {x 1 , . . . , x m } of propositional variables be given. A boolean formula in (3-literal) conjunctive normal form is given as a conjunction κ = κ 1 • . . . • κ n , where the j.th conjunct κ j has the form y j1 + y j2 + y j3 and each literal y jk satistifes y jk ∈ {x 1 , . . . , x m } ∪ {x 1 , . . . , x m }.

Given an assignment of truth values 0 or 1 to the variables x 1 , . . . , x m ,

• a literal x i and x i is satisfied if 1 and 0 has been assigned to x i , respectively;

• a conjunct κ j = y j1 + y j2 + y j3 is satisfied if at least one of its literals y j1 , y j2 , y j3 is; and

• the whole formula κ = κ 1 • . . . • κ n is satisfied if each of its conjuncts κ j is.
The formula is called satisfiable if it is satisfied by some assignment. It is well-known that the problem of deciding the satistfiability of a given 3-literal conjunctive normal form formula is NP-complete (e.g. [AHU74, Sect.10.4, Thm.10.4, p.384]). 2

S i-1 ::= a X i1 for i = 1, . . . , m S i-1 ::= a X i1 for i = 1, . . . , m
X ij ::= a X i,j+1 for i = 1, . . . , m and j = 1, . . . , n -1 X ij ::= a X i,j+1 for i = 1, . . . , m and j = 1, . . . , n -1

X in ::= a S i for i = 1, . . . , m
X in ::= a S i for i = 1, . . . , m S m ::= bT 0 T j-1 ::= c γ jk for j = 1, . . . , n and k = 1, 2, 3 γ jk ::= e T j for j = 1, . . . , n and k = 1, 2, 3

T n ::= d
where the mapping γ is defined by We reduce the satisfiability problem for conjunctive normal forms, which is wellknown to be NP-complete [AHU74, Thm.10.3, Sect.10.4, p.379], to the repetitionfree derivability problem. We give the mapping of a former to a latter problem in Def. 3, and prove it a reduction in Cor. 6, based essentially on Lem. 5.

γ jk = X ij for y jk = x i γ jk = X ij for y jk = x i
Definition 3 (Grammar corresponding to a conjunctive normal form) Given a conjunctive normal form formula as in Def. 2, we define a "corresponding" a regular grammar G = N , Σ, R, S 0 as follows.

Let N = {S 0 , . . . , S m , T 0 , . . . , T n } ∪ {X ij , X ij | 1 i m ∧ 1 j n} be the set of nonterminal symbols, let Σ = {a, b, c, d} be the set of terminal symbols. Let the rules R be as shown in Fig 1 . We refer to the topmost 7 and the next 3 lines as the upper and lower grammar part, respectively. 2 Example 4 (Conjunctive normal form and corresponding grammar) As an example, the conjunctive normal form corresponds to the grammar shown in Fig. 2, where different colors indicate different variables, while light and dark shades indicate unnegated and negated occurrences, respectively. The S j ::= . . . rules of the lower part are shown bottom right, its γ j+1,k ::= . . . are integrated as alternatives in the upper part's rules. See also the illustration in Fig. 3, where upper and lower part are strictly separated, and their common nonterminals (like X 11 ) are shown twice. Observe that no nonterminal occurs multiply in the upper part alone, and likewise none does in the lower. 2 y jk x i sat initial final rep Lemma 5 (Repetition-Free derivability) Given a conjunctive normal form formula κ as in Def. 2, and its corresponding grammar G as in Def. 3, the word ω = a (n+1)•m b(ce) n d has a repetition-free derivation from G iff κ has a satisfying variable assignment.

(x 1 + x 2 + x 4 ) • (x 2 + x 3 + x 4 ) • (x 1 + x 2 + x 4 ) Fig. 2. Example grammar in Exm. 4 S 0 d d X 11 X 11 E E X 12 X 12 E E X 13 X 13 d d S 1 d d X 21 X 21 E E X 22 X 22 E E X 23 X 23 d d S 2 d d X 31 X 31 E E X 32 X 32 E E X 33 X 33 d d S 3 d d X 41 X 41 E E X 42 X 42 E E X 43 X 43 d d S 4 . . . S 4 E T 0 ¨¨B E r r r j X 11 X 21 X 41 r r r j E ¨¨B T 1 ¨¨B E r r r j X 22 X 32 X 42 r r r j E ¨¨B T 2 ¨¨B E r r r j X 13 X 23 X 43 r r r j E ¨¨B T 3
x i 0 -X ij X ij + x i 0 + X ij X ij - x i 1 + X ij X ij - x i 1 -X ij X ij +
PROOF. First, note that symbols a and b are only produced by the upper grammar part; similarly, symbols c and d are only produced by the lower one. Therefore, in order to derive a word starting with a (n+1)•m b, the rules of the upper grammar part must be applied (n + 1) • m + 1 times, leading to an initial derivation part

S 0 * → a (n+1)•m S m → a (n+1)•m bT 0 .
Similarly, a word ending in (ce) n d can be derived only by applying the lower part rules 2 • n + 1 times, leading to a final derivation part T 0 * → (ce) n T n → (ce) n d. Hence, each derivation of ω from G can be decomposed into an initial and a final part with those properties.

Next, observe that the transitive closure of the relation on N , defined by A B if A ::= zB is an upper part rule for some z ∈ Σ, is asymmetric, i.e. an ordering relation. Therefore, a part of a derivation of ω from G that uses only rules from G's upper part cannot have any nonterminal repetition. For a similar reason, no derivation part using only rules from the lower part can have any nonterminal repetition. Hence, the only way a nonterminal repetition can occur in a derivation of ω is to repeat a nonterminal from the initial derivation part in the final part.

There are 2 m different initial derivation parts S 0 * → a (n+1)•m bT 0 . For each i = 1, . . . , m, either all of X i1 , . . . , X in but none of X i1 , . . . , X in occur in an initial derivation part, or vice versa. Each assignment of the variables x 1 , . . . , x m corresponds uniquely to an initial derivation part such that x i is assigned 1 iff X ij occurs in the part but X ij does not, for j = 1, . . . , n.

Assume some fixed initial derivation part S 0 * → a (n+1)•m bT 0 has been chosen, corresponding to some fixed truth value assignment to x 1 , . . . , x m . As Fig. 4 demonstrates, a subsequent derivation T j-1 → cγ jk → ceT j causes a repetition iff the literal y ik in the jth conjunct isn't true in the chosen assignment:

• Column y jk lists the possible forms that this literal can take, where i is choosen such that y jk ∈ {x i , x i }, • column x i lists the possible truth values assigned to x i , • column "sat" shows for each possibility whether the literal y jk is satisfied ("+") or not ("-"),

• column "initial" shows, for each possibility, the nonterminal of the initial derivation part corresponding to the assignment to x i , • column "final" shows, for each possibility, the nonterminal γ jk of the final derivation part T j-1 → cγ jk → ceT j , • column "rep" shows, for each possibility, whether the latter nonterminal of the final part is a repetition of that from the initial part.

Since each possible path T j-1 →→ ceT j involves some γ jk , each such path causes a nonterminal repetition iff the jth conjunct, y j1 + y j2 + y j3 , isn't satisfied by the assignment.

Since the only way to have a repetition is between the initial part and some T j-1 →→ ceT j part, we have: Each derivation of ω starting with the chosen initial derivation part leads to a repetition iff the corresponding truth value assignment doesn't satisfy the formula.

Hence, no repetition-free derivation of ω exists iff the formula is unsatisfiable. 2

Corollary 6 (Repetition-Free Derivability from a Regular Grammar is NP-Hard)

The task to decide whether a given word ω has a derivation without nonterminal repetition from a given regular grammar G is NP-hard.

PROOF. Let a conjunctive normal form formula κ be given as in Def. 2. Let G be the corresponding grammar as in Def. 3, let ω = a (n+1)•m b(ce) n d. By Lem. 5, the NP-complete problem to decide whether κ is satisfiable can be reduced to the task to decide whether ω is derivable from G without nonterminal repetition. 2

Example 7 (Satisfiability and repetion-free derivability) Continuing Exm. 4, we consider derivations of the word ω = a 16 b(ce) 3 d; this word is derivable in a large number of ways. Each derivation contains an initial segment like e.g.

S 0 → a X 11 → aa X 12 → a 3 X 13 → a 4 S 1 → a 5 X 21 → a 6 X 22 → a 7 X 23 → a 8 S 2 → a 9 X 31 → a 10 X 32 → a 11 X 33 → a 12 S 3 → a 13 X 41 → a 14 X 42 → a 15 X 43 → a 16 S 4 → a 16 b T 0 ,
where for each variable x i either all nonterminals X i1 , X i2 , X i3 , or all nonterminals X i1 , X i2 , X i3 occur; this corresponds to an assignment of 0 or 1 to x i . In our initial segment example, the derivation corresponds to the assigment x 1 = x 3 = 0 and x 2 = x 4 = 1. In a final segment, we have derivations like

T 0 → cX 11 → ceT 1 → cecX 22 → (ce) 2 T 2 → (ce) 2 cX 43 → (ce) 3 T 3 → (ce) 3 b.
Such a derivation may contain a repetition of a nonterminal from the initial segment.

In our example, T 0 → cX 11 → ceT 1 contains the repetition of X 11 , and correspondingly the propositional variable occurrence x 1 in the first conjunct is not satisfied by the above assignment. However, T 0 → cX 41 → ceT 1 does not contain a repetition, and the first conjunct is satisfied by the assignment since x 4 is. 2

4 Longest repetition-free derivable words

We suspect that the correspondance from Def. 3 between formula κ and grammar G, or a slightly modified version, can also be used to prove NP-hardness of the problem of determining the length of the longest word derivable from a given grammar without repetition.

We already achieved, in Lem. 8, to establish that no word longer than ω from Lem. 5, i.e. longer than (n + 1) • (m + 2) symbols, can be derived repetition-free from G.

If ω was the only word of its length that was repetition-free derivable from G, we had that the longest repetition-free derivable word has length (n + 1) • (m + 2) iff κ is satisfiable, and a properly shorter length otherwise. However, as Exm. 9 shows, there are other words of length (n + 1) • (m + 2) that are repetition-free derivable from G, but don't correspond to a truth value assignment in an obvious way. If we always could construct from such a word a corresponding satisfying assignment, we had proven the suspected NP-hardness result.

Lemma 8 (Upper bound for repetition-free derivable words) No word longer than (n + 1) • (m + 2) can be derived repetition-free from the grammar G from Def. 3.

PROOF.

Let ψ be a word that can be derived repetition-free from G. First, ψ contains exactly one symbol d. Next, every production of a symbol b or e increases the number of nonterminals from {T 0 , . . . , T n } that occurred in the derivation, hence ψ can contain at most n + 1 such symbols.

We now prove an upper bound on the total number of a and c symbols in ψ. Assign a pair s * , j * to every intermediate word in the derivation chain of ψ, where

• s * is the number of nonterminals from {S 0 , . . . , S m } that already occurred, and • j * is the current "conjunction index", i.e.

• j * = j if the current nonterminal is T j or some X ij or X ij ,

• j * = 0 if the current nonterminal is some S i , and • j * = n if the current word doesn't contain a nonterminal.

We inspect the grammar rules from Fig. 1 to show that the current pair is properly increased wrt. the lexicographical order whenever a symbol a or c is produced:

• If S i-1 ::= aX i1 or S i-1 ::= aX i1 is applied, s * remains unchanged, while j * is increased from 0 to 1. • If or X ij ::= aX i,j+1 or X ij ::= aX i,j+1 is applied, s * remains unchanged, while j * is increased from j to j + 1. • If X in ::= aS i or X in ::= aS i is applied, s * is increased, while j * is reset to 0.

• If T j-1 ::= cγ jk is applied for some k ∈ {1, 2, 3}, s * remains unchanged, while j * is increased from j -1 to j.

The remaining rules don't modify the current pair:

• If S m ::= bT 0 is applied, s * remains unchanged, and j * remains 0.

• If γ jk ::= eT j is applied for some k ∈ {1, 2, 3}, s * remains unchanged, and j * remains j. • If T n ::= d is applied, s * remains unchanged, and j * remains n.

Since S 0 occurrs in every intermediate word, we have 1 s * m+1 and 0 j * n for every possible pair s * , j * . Hence, there are (m + 1) • (n + 1) possible pairs, and the current pair can be increased at most (m + 1) • (n + 1) -1 times. Therefore, there are at most that much a and c occurrences in ψ.

Summing up, the length of ψ cannot exceed 1 + n + 1 + (m + 1)

• (n + 1) -1 = (m + 2) • (n + 1) symbols. 2
Example 9 (Length issues) Continuing Exm. 4 and 7, observe that there are repetition-free derivable words of length (m + 2) • (n + 1) that are different from ω and don't correspond to a truth value assignment. An examples is

S 0 → a X 11 * → a 5 X 21 * → a 9 X 31 * → a 13 X 41
→ a 13 e T 1 → a 13 ec X 42 → a 13 ece T 2 → a 13 ecec X 43 → a 13 ececa S 4 → a 13 ececab T 0 → a 13 ececabc X 21 → a 13 ececabca X 22 → a 13 ececabcaa X 23 → a 13 ececabcaae T 3 → a 13 ececabcaaed This derivation cannot correspond to a variable assignment, since it contains e.g. both X 21 and X 21 . By Lem. 8, no longer word can be derived from the example grammar.

As a side remark, there are shorter words derivable from S 0 without repetition, such as S 0 → aX 11 → aeT 1 → aecX 22 → aeceT 2 → aececX 13 → ae(ce) 2 T 3 → ae(ce) 2 d and S 0 → aX 11 → aaX 12 → a 3 X 13 → a 4 eT 3 → a 4 ed. Note that the former derivation also no longer corresponds to a variable assignment, since it contains both X 11 and X 13 . When repetitions are allowed, arbitrarily long words can be derived, e.g.

S 0 * → a 16 b T 0 → a 16 bc X 41 → a 16 bc a X 42 * → a 16 bc a 3 S 4 *
→ a 16 bc a 3 bc X 41 * → a 16 bc (a 3 bc) r e(ce) 2 d for any r 0. 2 S i-1 ::= a X in for i = 1, . . . , m S i-1 ::= a X in for i = 1, . . . , m X ij ::= a X i,j-1 for i = 1, . . . , m and j = n, . . . , 2 X ij ::= a X i,j-1 for i = 1, . . . , m and j = n, . . . , 2 X i1 ::= a S i for i = 1, . . . , m X i1 ::= a S i for i = 1, . . . , m S m ::= bT 0 T j-1 ::= c γ jk for j = 1, . . . , n and k = 1, 2, 3 γ jk ::= e T j for j = 1, . . . , n and k = 1, 2, 3

T n ::= d
where the mapping γ is defined by In an attempt to remedy the above problems, we modified the grammar from Def. 3 as shown in Fig. 5. In the upper part, the X ij are chained in reverse order, as are the X ij . The corresponding example grammar for Exm. 4 is illustrated in Fig. 6.

γ jk = X ij for y jk = x i γ jk = X ij for y jk = x i
S 0 d d X 13 X 13 E E X 12 X 12 E E X 11 X 11 d d S 1 d d X 23 X 23 E E X 22 X 22 E E X 21 X 21 d d S 2 d d X 33 X 33 E E X 32 X 32 E E X 31 X 31 d d S 3 d d X 43 X 43 E E X 42 X 42 E E X 41 X 41 d d S 4 . . . S 4 E T 0 ¨¨B E r r r j X 11 X 21 X 41 r r r j E ¨¨B T 1 ¨¨B E r r r j X 22 X 32 X 42 r r r j E ¨¨B T 2 ¨¨B E r r r j X 13 X 23 X 43
Almost similar to Lem. 8, we established a length upper bound of (n+1)•(m+2) for repetition-free derivations from the reversed grammar, see Lem. 10. The requirement that a word contains a "b" symbol could possibly be overcome if the upper and the lower part were concatenated in reverse order, i.e. by deleting the rules S m ::= bT 0 and t n ::= d, adding instead the rules S m ::= d and T n ::= bS 0 , and changing the start symbol to be T 0 . However, we didn't elaborate this modification.

Lemma 10 (Upper bound for repetition-free derivable words (reversed grammar))

For n 2, no word longer than (n + 1) • (m + 2) and containing a "b" symbol can be derived repetition-free from the grammar G from Def. 3.

PROOF.

Let ψ be a word that can be derived repetition-free from G. Let a, c, and e denote the number of occurrences of "a", "c", and "e" in ψ, respectively.

Assign a "conjunction index" to every nonterminal as follows:

• assign j to each X ij , for i = 1, . . . , m and j = 1, . . . , n,

• assign n + 1 to each S i , for i = 0, . . . , m, and • assign j + 1 to each T j , for j = 0, . . . , n.

Observe the following properties:

• Each increase of the conjunction index in the derivation requires some S i or T j to occur; neither an occurrence of S 0 nor one of T 0 leads to an increase. • More precisely, the conjunction index is increased from 1 to n + 1 when some S i occurs, and from j to j + 1 when some T j occurs. • Hence, the conjunction index can experience at most a total increase of mn + n, if all m + n rules producing a S i or T j are used. • Both the initial and the final conjunction index is n + 1.

• Hence the conjunction index' total increase must equal the total decrease.

• If rule S m ::= bT 0 is applied, decreasing the conjunction index from n + 1 to 1, at most mn "a"-producing rules can be applied, each of them decreasing the conjunction index by 1. That is, there are at most 1+mn decreasing rule applications. • Each grammar rule changes the conjunction index, except where a "c" is produced, by a rule T j-1 ::= cγ jk . • Adding up the upper bound for the number of rule applications that increase, decrease, and keep the conjunction index, and the inevitable final one T n ::= d, we get (m + n) + (mn + 1) + n + 1 = (n + 1)(m + 2). 2

Example 11 (Length issues (reversed grammar)) For the reversed grammar scheme, there are still derivable words of length (m + 2) • (n + 1) that are different from ω and don't correspond to a truth value assignment. An example, based on the grammar for ( One of the typical tasks in classical intelligence tests is to guess a plausible construction law for a given sequence of values. For example, the sequence 0; 2, 4, 6, 8 has construction laws like v p * 2 and v 1 + 2, where v p and v 1 denotes the position 2 within the sequence and the previous sequence value, 3 respectively. Given a sequence s and a set Σ of admitted arithmetic operations, the set of all construction law terms for s that can be built from Σ can be computed as a regular tree grammar 4 by E-generalization 5 [Hei95], [Bur05, Sect.5.2, p.28-29].

x 1 + x 2 + x 4 ) • (x 1 + x 3 + x 1 ) • (x 1 + x 2 + x 2 ) is the following. S 0 → a X 13 → aa X 12 → aae T 2 → aaec X 23 → aaeca X 22 → aaecaa X 21 → aaeca 3 S 2 → aaeca 4 X 33 * → aaeca 8 X 43 * → aaeca 11 S 4 → aaeca 11 b T 0 → aaeca 11 bc
As a formalization of Occam's Razor, a law term should be as small as possible w.r.t. some user-definable notion of size; we call such a term guessable from the sequence. For any reasonable notion of size, a law term 6 should be discarded if a proper subterm constructs the same sequence, too. In the grammar setting, the latter condition amounts to discarding each term whose derivation uses a nonterminal repeatedly on the same term path. This is where repetion-free derivations come into play.

Based on our formalization, one may investigate various properties of a given intelligence test. Given Σ, a sequence s, and a proper prefix sequence s , one may e.g. ask whether some law term t for s is guessable already from s . 7 Since the law term grammar for s is a quotient of the grammar G for s, w.r.t. some equivalence relation ≡, we are searching for a term t whose derivation from G has no repetitions w.r.t. ≡.

Corollary 14 below shows that this search task unfortunately is NP-hard already for the special case of regular word grammars. 8 It uses the technical result from Lem. 5.

Before giving the Corollary, we formalize some of the notions introduced above.

Definition 12 (Repetition-free derivation modulo equivalence) Given a regular grammar G and an equivalence relation ≡ on its set N of its nonterminals, define a derivation from G to be repetition-free mod. ≡ if it doesn't contain two nonterminals that are equivalent mod. ≡. 2

2 starting with 0 3 Since v 1 is undefined at position 0, the first value cannot be constructed that way. We indicate by a semi-colon the first sequence position where a construction law shall apply. 4 an extension of regular word grammars that share their closure and decidability properties, while describing sets of trees (i.e. terms), rather than words; their terminal symbols are function symbols of arbitrary arity; see e.g. [CDG + 08] 5 i.e. anti-unification w.r.t. an equational background theory defining the semantics of operations in Σ 6 e.g. (if v p < 5 then v p * 2 else 9) for the above example sequence 7 In that case, being asked for a plausible continuation of s , a valid answer would be s, based on the construction law t as a rationale. As a counter-example, the term (if v p < 5 then v p * 2 else 9) is guessable from 0, 2, 4, 6, 8, 9, but from none of its proper prefixes, since the subterm v p * 2 constructs each of them. It is obvious that every derivation from G can be "lifted" to a derivation from G, by replacing each nonterminal by its equivalence class. Hence, L(G ) ⊆ L(G), similar to the the well-known property for quotient automata. 2 Corollary 14 (Existence of repetition-free derivations mod. equivalence is NPhard) Given a regular grammar G and an equivalence relation ≡ on the set of its nonterminals, the problem to decide whether some word ω ∈ L(G ) has a derivation from G without repetitions mod. ≡, is NP-hard in general.

PROOF. Let a conjunctive normal form formula κ be given as in Def. 2.

We construct a regular grammar G and an equivalence relation ≡ on its set N of nonterminal symbols such that: a word ω ∈ L(G ) exists that has a repetition-free derivation mod. ≡ iff κ has a satisfying variable assignment.

Let N = {S 0 , . . . , S m , T 0 , . . . , T n } ∪ {X ij , X ij , X ij , X ij | 1 i m ∧ 1 j n}. Let the rules of G be as shown in Fig 1, except that the mapping γ is now defined as

• γ jk = X ij for y jk = x i , and • γ jk = X ij for y jk = x i . Define (≡) such that • X ij ≡ X ij for i = 1, . . . , m and j = 1, . . . , n, • X ij ≡ X ij for i = 1, . . . , m and j = 1, . . . , n, and • no other nontrivial equivalences hold.

Observe that the grammar G doesn't have any recursion involved, so its language is finite. In fact, ω = a (n+1)•m b(ce) n d from Lem. 5 is the only word that can be derived from G , but there are lots of different derivations that accomplish this. Furthermore, the quotient grammar G / ≡ just yields the grammar G from Def. 3. Each derivation from G corresponds to a derivation from G, but not vice versa, as observed in Def. 13.

A derivation of some word, i.e. ω, from G is repetition-free mod. ≡ iff that derivation, taken from G, is repetition-free, that is, iff (by Lem. 5) κ is satisfiable. 2

Cor. 14 subdues our hope to find an efficient algorithm to decide whether a law term (constructed from a given set of operators) for a given sequence s is guessable from a given prefix s .

Note, however, that repetition-free derivability mod. ≡ is a necessary, but not sufficient condition for t being minimal w.r.t. some notion of size. There are repetitionfree (mod. ≡) derivable terms that are nevertheless non-minimal w.r.t. every reasonable notion of size. For example, v p + v 1 is a construction law term for the sequence 1; 2, 4, 7, none of its subterms is a law for its proper prefix 1; 2, 4, 10 yet every admitted definition of a size notion will either make v 1 + v 1 a smaller or equal term, or v p + v p , both are laws for 1; 2, 4.

As a consequence, the above guessability task could still be efficiently decidable.
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  8 i.e. even when all involved operator symbols are unary or nullary Definition 13 (Quotient grammar) Let G = N , Σ , R , S be a regular grammar, and ≡ be an equivalence relation on N . Similar to the construction of a quotient of a finite automaton, 9 we can define the quotient grammar G = G / ≡ of G by ≡ to be G = N , Σ, R, S , where• the nonterminal alphabet N = N / ≡ of G is the set of all equivalence classes of nonterminals from N , • the terminal alphabet Σ = Σ of G is shared with G ,• the rules R of G are obtained by replacing all nonterminals in all rules in R by their equivalence classes, and • the start symbol S = S / ≡ of G is the equivalence class of the start symbol of G .

  X 11 → aaeca 11 bce T 1 → aaeca 11 bcec X 12 → aaeca 11 bceca X 11 → aaeca 11 bcecaa S 1 → aaeca 11 bceca 3 X 23 → aaeca 11 bceca 3 e T 3 → aaeca 11 bceca 3 ed Note that the 2nd and 3rd conjunct of the conjunctive normal form are trivial, as they contain a variable and its negation. It is not yet clear whether there are similar counter-examples for non-trivial normal forms. 2 5 Application to sequence guessing A modification of Cor. 6 can be applied to a problem in artificial intelligence; this was our original motivation to investigate repetition-free derivations.

Hopcroft et. al. explain their algorithm on nondeterministic finite automata, using the number of states for s. However, carrying-over to regular grammars is straight-forward.

S 0 ::= aX | aX 11 X 11 ::= aX | eT 1 X 12 ::= aX X 13 ::= aS 1 S 1 ::= aX | aX 21 X 21 ::= aX X 22 ::= aX | eT 2 X 23 ::= aS 2 S 2 ::= aX | aX 31 X 31 ::= aX X 32 ::= aX | eT 2 X 33 ::= aS 3 S 3 ::= aX | aX 41 X 41 ::= aX | eT 1 X 42 ::= aX X 43 ::= aS 4 | eT 3 S 4 ::= bT 0 X 11 ::= aX 12 X 12 ::= aX 13 X 13 ::= aS 1 | eT 3 X 21 ::= aX 22 | eT 1 X 22 ::= aX 23 X 23 ::= aS 2 | eT 3 X 31 ::= aX 32 X 32 ::= aX 33 X 33 ::= aS 3 X 41 ::= aX 42 X 42 ::= aX 43 | eT 2 X 43 ::= aS 4 T 0 ::= cX 11 | cX 21 | cX 41 T 1 ::= cX 22 | cX 32 | cX 42 T 2 ::= cX 13 | cX 23 | cX 43 T 3 ::= d

This definition is used in connection with minization of deterministic finite automata, but often left implicit in textbooks (e.g. [HU79, Sect.3.4, p.65-71]); see e.g. [GJ07, p.5] for an explicit definition.