A method for selecting solution constructors in narrowing is presented. The method is based on a sort discipline that describes regular sets of ground constructor terms as sorts. It is extended to cope with regular sets of ground substitutions, thus allowing different sorts to be computed for terms with different variable bindings. An algorithm for computing signatures of equationally defined functions is given that allows potentially infinite overloading. Applications to formal program development are sketched.

Motivation

Solving equations by narrowing has important applications, e.g. in the area of formal software development. However, the usual narrowing strategies are only able to restrict the set of application positions1 . Ordered paramodulation [START_REF] Bachmair | On restrictions of ordered paramodulation with simplification[END_REF] is able to provide a succession in which the defining equations have to be selected, but it cannot guarantee that an appropriate one is selected first. Bockmayr [START_REF] Bockmayr | Beitrge zur Theorie des logisch-funktionalen Programmierens[END_REF] has shown that, under certain general conditions, narrowing strategies essentially enumerate the whole term universe rather than specifically selecting the appropriate equations of a defined function to narrow with or the appropriate constructor to insert into the solution. In this paper, we present an approach for restricting the set of applicable defining equations in a narrowing step that is based on the dynamic computation of function signatures, rather than their declaration by a user.

The main idea is as follows2 : As e.g. in [START_REF] Fribourg | A narrowing procedure for theories with constructors[END_REF], we distinguish between constructors and equationally defined functions; each well-defined ground term can be reduced to a ground constructor term, viz. its unique normal form. For a term v, let V be the set of all possible values of v, i.e., the set of all normal forms of admitted ground constructor instances of v. Then, a goal equation v 1 = v 2 cannot be solved if V 1 ∩ V 2 = {}; in this case, it can be pruned from the search space of narrowing. Unfortunately, V 1 and V 2 are undecidable in general; to overcome this problem, we will define computable upper approximations V 1 ⊃ V 1 and V 2 ⊃ V 2 , respectively, and base the pruning decision on the consideration of V 1 ∩ V 2 .

To this end, we provide a framework of "extended sorts" to describe infinite sets of ground constructor terms like V in a closed form, which is based on regular tree grammars (e.g. [START_REF] Thatcher | Generalized finite automata theory with an application to a decision problem of second-order logic[END_REF]). It is essential that extended sorts are closed wrt. intersection and that their inhabitance can be decided in order to conduct the above disjointness test. Moreover, set equality and subsort property can be decided, and V = V always holds if v is a constructor term.

An algorithm for computing the extended sort V from a term v is presented. In terms of conventional order-sorted rewriting, we thereby achieve potentially infinite overloading, since for an arbitrary input sort S we can compute a signature f : S → f [S] rather than being restricted to a few user-defined signatures which are generally too coarse for the disjointness test to be successfully applied. It is clear that the impact of this test on search-space reduction depends on the expressiveness of the sort framework and on the quality of signature approximation.

Consider, for example, the theory comprising equations a. to i. in Fig. [START_REF] Uribe | Sorted unification using set constraints[END_REF]. When trying to solve a goal equation like val(x) = s 5 (0) wrt. this theory, conventional strategies are unable to decide which of the equations g., h., i. is to be used for a first narrowing step. Narrowing (at root position) with equation g., h., and i. results in the new goal equations 0 = s 5 (0), dup(val(x )) = s 5 (0), and s(dup(val(x ))) = s 5 (0), respectively. While the first one is obviously false, the unsatisfiability of the second one can be detected as our algorithm computes the sort of its left-hand side as Even and recognizes that this is disjoint from its right-hand side's sort, {s 5 (0)}; similarly, the third one is considered to be "possibly satisfiable" by the disjointness test. Hence, narrowing only makes sense with equation i., and any solution to the above goal equation must take the form x = x :: i. In Sect. 7 and App. B, examples of the pruning of infinite search-tree branches are given. Note that if a user were to declare the signatures + : N at×N at → N at, dup : N at → N at, and val : Bin → N at, the disjointness test would allow narrowing with equations h. and i. In more complicated applications, a user cannot know in advance which signatures might become essential to disjointness tests in the course of the narrowing proof. This example also shows that it is important to consider variable bindings during the computation of a term's sort in order to get good approximations. For example, when computing a signature for dup, the term x + x should be assigned the sort Even, whereas x + y can only be assigned N at, assuming that x and y range over N at. In conventional order-sorted approaches, the mapping from a term to its sort is usually a homomorphic extension of the sort assignment of variables, thus necessarily ignoring variable bindings, e.g.: sortof (x + x) = get range f rom signatures(+, sortof (x), sortof (x)) = get range f rom signatures(+, sortof (x), sortof (y)) = sortof (x + y).

Instead, we use infinite sets of ground substitutions to denote sorts of variables, e.g. {[x := s i (0), y := s j (0)] | i, j ∈ IN } to indicate that x and y range over N at. The mapping from a term to its set of possible values can then be achieved by applying each element of the substitution set, e.g.:

{[x := s i (0)] | i ∈ IN } (x + x) = {[x := s i (0)] (x + x) | i ∈ IN } = {s i (0) + s i (0) | i ∈ IN }.
Similarly, {[x := s i (0), y := s j (0)] | i, j ∈ IN } (x + y) = {s i (0) + s j (0) | i, j ∈ IN }. Both sets are different, hence the chance of finding different approximations for them within our extended sort framework is not forfeited 3 . In Fig. 13, we show that Even can in fact be obtained as the sort of x + x; obtaining N at for x + y is similar.

In order to have finite descriptions of such ground substitution sets, we express ground substitutions as ground constructor terms ("t-substitutions") in a lifted algebra, allowing sets of them to be treated as tree languages ("t-sets"), and, in particular, to be described by regular tree grammars ("regular t-sets"). Regular t-sets can also express simple relations between distinct variables, allowing e.g. the representation of certain conditional equations by unconditional ones.

We provide a new class of tree languages, called "extended sorts", which can be described by applying substitutions from a regular t-set σ to an arbitrary constructor term u with vars(u) ⊂ dom(σ). In this way, the set of ground-constructor instances of an arbitrary constructor term can be expressed as an extended sort.

Regular string languages have been used e.g. by Mishra [START_REF] Mishra | Towards a theory of types in Prolog[END_REF] as a basis for sort inference on Horn clauses. Owing to the restriction to string languages describing admissible paths in term trees, he is only able to express infinite sets that are closed wrt. all constructors; e.g. the set of all lists of naturals containing at least one 0 cannot be modeled. Comon [START_REF] Comon | Equational formulas in order-sorted algebras[END_REF] uses regular tree languages to describe sets of ground constructor terms as sorts, and the corresponding automaton constructions to implement sort operations. He provides a transformation system to decide first-order formulas with equality and sort membership as the only predicates. He shows the decision of inductive reducibility as an application. However, he does not consider equationally defined functions, e.g. (∀x, y x+y = y+x) → 0+1 = 1+0 reduces to (∀x, y x+y = y+x) → f alse in his calculus.

Uribe [START_REF] Uribe | Sorted unification using set constraints[END_REF] provides a unification algorithm for order-sorted terms in the presence of semilinear term declarations. The set of all ground constructor instances of a constructor term can then be described by a regular tree automaton with equality tests for direct subterms; allowing equality tests for arbitrary subterms makes the disjointness of two tree languages undecidable [START_REF] Tommasi | Automates d'Arbres avec Tests d'galits entre Cousins Germains[END_REF]. In our approach, arbitrary equality constraints may be imposed on subterms up to a fixed finite depth, whereas below that depth no equality constraints are allowed at all. Antimirov [1] suggested allowing regular t-sets with equality tests in extended sorts, thus extending the class of describable tree languages. This approach still remains to be investigated. This paper is organized as follows. After a short introduction on regular sorts in Sect. 2, regular substitution sets and extended sorts are presented in Sect. 3 -5. In Sect. 6, the algorithm for computing signatures of equationally defined functions is given. It is shown that an unsorted rootnarrowing calculus from [START_REF] Hlldobler | Foundations of Equational Programming[END_REF] remains complete if extended by appropriate sort restrictions. Section 7 sketches the application of narrowing to synthesize programs from formal specifications. Appendices A and B contain two case studies in program synthesis. For a full version including all proofs, see [START_REF] Burghardt | Eine feinkrnige Sortendisziplin und ihre Anwendung in der Programmkonstruktion[END_REF].

Regular Sorts

Definition 1.

Let V be a countable set of variables, CR a finite set of term constructor symbols, each with fixed arity, F a finite set of symbols for non-constructor functions, and S a countable set of sort names. Let ar(g) denote the arity of a function symbol g. For a set 4 of symbols X ⊂ V ∪ CR ∪ F ∪ S, let T X be the set of terms formed of symbols from X; we abbreviate T X∪Y to T X,Y . For example, the elements of T CR , T CR,V , and T CR,F ,V are called ground constructor terms, constructor terms, and terms, respectively; the set T CR,F ,V,S is introduced in Sect. 6 for technical reasons. Let identifiers like u, u , u i , . . . always denote members of T CR,V ; similarly, v ∈ T CR,F ,V , w ∈ T CR,F ,V,S , x, y, z ∈ V, f ∈ F, g ∈ F ∪ CR, cr ∈ CR, and S ∈ S. Definition 2. v 1 , . . . , v n denotes an n-tuple, v i | p(v i ), i = 1, . . . , n denotes a tuple containing each v i such that p(v i ) holds. We assume the existence of at least one nullary (e.g. nil) and one binary constructor (e.g. cons), so we can model arbitrary tuples as constructor terms. To improve readability, we sometimes write the application of a unary function f to its argument x as f •x; x :S stands, in the following, for the variable or constant x of sort S. We define the elementwise extension of a function f : for any two occurrences of the same variable, the lists of function symbols on each path from the root to an occurrence are equal. We write

A → B to a set A ⊂ A by f [A ] := {f (a) | a ∈ A }. A × B
v 1 = v 2 to express that v 1 is a proper subterm of v 2 ; we write v 1 v 2 for v 1 = v 2 ∨ v 1 = v 2 .
The depth of a position in a term is its distance from the root. We distinguish between "ordinary" substitutions, defined as usual (denoted by β, γ, . . .), and "t-substitutions", defined as constructor terms in Sect. [x 1 := v 1 , . . . , x n := v n ] denotes the substitution that maps each x i to v i . β | V denotes the domain restriction of β to a set V of variables. We assume all substitutions to be idempotent. If β 1 and β 2 agree on the intersection of their domains, β 1 • • β 2 denotes a "parallel composition" of them, i.e. 

(β 1 • • β 2 ) (x) := β 1 x if x ∈ dom(β 1 ) β 2 x if x ∈ dom(β 2 ) β 1 • • β 2 is undefined if β 1 and
β = mgu(v 1 , v 2 )
, however, we will additionally assume that v 1 and v 2 have disjoint variables and write β as β 1 • • β 2 with dom(β 1 ) = vars(v 1 ) and dom(β 2 ) = vars(v 2 ). mgu is tacitly extended to finite sets of terms.

We follow the approach of [START_REF] Burghardt | Eine feinkrnige Sortendisziplin und ihre Anwendung in der Programmkonstruktion[END_REF] in describing regular sets of ground constructor terms as fixed points of sort equations, which is equivalent to the approach using finite tree automata [START_REF] Comon | Equational formulas in order-sorted algebras[END_REF], but provides a unique methodology for algorithms and proofs. < is an irreflexive partial, hence well-founded, order. For example, the sort system consisting of A . = B and B . = A is forbidden. Each occurring sort name has to be defined. In examples, we generally use arbitrary sort expressions built from sort names, constructors, and "|" on the right-hand side of a sort definition. Any such sort system can be transformed to meet the above requirements while maintaining the least-fixed-point semantics given below. Let X be an arbitrary mapping from sort names S to subsets S X of T CR . X is extended to sort expressions as follows:

(S 1 | S 1 ) X = S X 1 ∪ S X 2 cr(S 1 , . . . , S n ) X = cr[S X 1 × . . . × S X n ] cr X = {cr}
We say that X 1 ⊂ X 2 if S X1 ⊂ S X2 for all sort names S. According to Thm. 5 below, for each admitted system of sort definition there exists exactly one mapping M , such that S M = S M for each sort definition S . = S . The semantics of a sort expression S is then defined as S M .

Theorem 5. Each admitted system of sort definitions has exactly one fixed point.

Proof. If M and M are fixed points of the sort definitions, use induction on the the lexicographic combination of and .

< to show ∀u ∀S u ∈ S M ⇒ u ∈ S M . Definition 6. For a sort name S, let use(S) denote the set of all sort names that occur directly or indirectly in the definition of S. For example, use(Bin) = {O, I, Bin, Bino, Bini}, cf. Fig. 1 and2.

A subset T ⊂ T CR is called regular if a system of sort definitions exists, such that T = S M for some sort expression S. Note that u M = {u} for all u ∈ T CR , e.g., s(0) M = {s(0)}. The empty sort is denoted by ⊥; it can be defined e.g. by ⊥ . = s(⊥). The uniqueness of fixed points validates the following induction principle, which is used in almost all correctness proofs of sort algorithms, cf. Alg. [START_REF] Klein | The parser generating system PGS[END_REF][START_REF] Mishra | Towards a theory of types in Prolog[END_REF]37,40,41,42, and 47. Theorem 7. Let p be a family of unary predicates, indexed over the set of all defined sort names. Show for each defined sort name S:

∀u ∈ T CR p S (u) ↔ p S1 (u) ∨ . . . ∨ p Sn (u) if S . = S 1 | . . . | S n ∀u ∈ T CR p S (u) ↔ ∃u 1 , . . . , u n ∈ T CR u = cr(u 1 , . . . , u n ) ∧p S1 (u 1 ) ∧ . . . ∧ p Sn (u n ) if S . = cr(S 1 , . . . , S n ) ∀u ∈ T CR p S (u) ↔ u = cr if S . = cr
Then, ∀u ∈ T CR u ∈ S M ↔ p S (u) holds for each defined sort name S.

Proof. The mapping S → {u ∈ T CR | p S (u)} is a fixed point of the sort definitions, hence the only one by Thm. 5.

Theorem 8. Let p be a family of unary predicates, indexed over the set of all defined sort names. Show for each defined sort name S:

∀u ∈ T CR p S (u) ← p S1 (u) ∨ . . . ∨ p Sn (u) if S . = S 1 | . . . | S n ∀u 1 , . . . , u n ∈ T CR p S (cr(u 1 , . . . , u n )) ← p S1 (u 1 ) ∧ . . . ∧ p Sn (u n ) if S . = cr(S 1 , . . . , S n ) ∀u ∈ T CR p S (cr) if S . = cr
Then, ∀u ∈ S M p S (u) holds for each defined sort name S.

Proof. Use Scott's fixed-point induction. The Thm. remains valid even if .

< is not irreflexive.

Corollary 9. For each sort name S, we provide the following structural induction principle: show for each sort definition S . = cr(S 1 , . . . , S n ) such that S ∈ use(S), and S M ⊂ S M :

∀u 1 , . . . , u n ∈ T CR ( i=1...n S M i ⊂S M u i ∈ S M i ∧ p(u i )) -→ p(cr(u 1 , . . . , u n ))
Then, ∀u ∈ S M p(u) holds. S M ⊂ S M can be decided using Alg. 12 below.

Proof. Use Thm. 8 with p S (u) :⇔ p(u) if S ∈ use(S) and S M ⊂ S M true else .

Figure 2 shows an induction principle for sort Bin from Fig. 1, using Cor. 9. Algorithms for computing the intersection and the relative complement of two regular sorts, as well as for deciding the inhabitance of a sort, and thus of the subsort and sort equivalence property, are given below. They consist essentially of distributivity rules, constructor-matching rules, and loop-checking rules. The latter stop the algorithm, when it calls itself recursively with the same arguments, and generate a corresponding new recursive sort definition. 

S M ⊂ Bin M S . = cr(. . .) S ∈ use(Bin) ↓ ↓ O + - I + - Bin -+ p(nil) N il + + ∀u1 u1 ∈ Bin M ∧ p(u1) → p(u1 :: o) Bino + + ∀u1 u1 ∈ Bin M ∧ p(u1) → p(u1 :: i) Bini + + ∀u ∈ Bin M p(u) Fig. 2. Induction principle for sort Bin inf (Bin 2 , Bin1) = Sort1 . = inf (N il, Bin1) | inf (Bino 2 , Bin1) | inf (Bini 1 , Bin1) by 2. inf (N il, Bin1) = Sort2 . = inf (N il, Bino1) | inf (N il, Bini0) by 3. inf (Bino 2 , Bin1) = Sort3 . = inf (Bino 2 , Bino1) | inf (Bino 2 , Bini0) by 3. inf (Bini 1 , Bin1) = Sort4 . = inf (Bini 1 , Bino1) | inf (Bini 1 , Bini0) by 3. inf (N il, Bino1) = Sort5 . = ⊥ by 5. inf (N il, Bini0) = Sort6 . = ⊥ by 5. inf (Bino 2 , Bino1) = Sort7 . = inf (Bin 2 , Bin1) :: inf (O, O) by 4. inf (Bino 2 , Bini0) = Sort8 . = inf (Bin 2 , Bin0) :: inf (O, I) by 4. inf (Bini 1 , Bino1) = Sort9 . = inf (Bin 1 , Bin1) :: inf (I, O) by 4. inf (Bini 1 , Bini0) = Sort10 . = inf (Bin
u ∈ S M 1 ∩ S M 2 if S = inf (S 1 , S 2 ) u ∈ S M else it can be shown that inf (S 1 , S 2 ) M = S M 1 ∩ S M 2 .
The else-case in the definition of p S (u) causes only trivial proof obligations; in later applications of Thm. 7, it will be tacitly omitted for the sake of brevity. The algorithm obviously needs at most #use(S 1 ) * #use(S 2 ) recursive calls to compute inf (S 1 , S 2 ).

Algorithm 11. The following algorithm computes the relative complement of two regular sorts. For technical reasons, the second argument may be an arbitrary union of sort names. Let S 1 , . . . , S m be sort names, let S be a new sort name. Define dif f (S 1 , S 2 | . . . | S m ) = S, where a new sort definition is introduced for S: Using Thm. 7 with

1. If dif f (S 1 , S 2 | . . . | S m )
p S (u) :⇔ u ∈ S M 1 \ (S M 2 ∪ . . . ∪ S M m ) if S = dif f (S 1 , S 2 ) and p S l 1 ,...,lm (u) :⇔ ∃u 1 , . . . , u n u = cr(u 1 , . . . , u n ) ∧ n i=1 u i ∈ (S M 1i \ j 2, lj =i S M ji ) if S l1,...,lm was defined in rule 4., it can be shown that dif f (S 1 , S 2 | . . . | S m ) M = S M 1 \ (S M 2 ∪ . . . ∪ S M m ).
The algorithm needs at most #use(S 1 ) * 2 #use(S2) recursive calls to compute dif f (S 1 , S 2 ). Algorithm 12. Let S be a sort name, define inh(S, Occ) = A, B, C, D where A is a finite set of ground constructor terms, B ∈ {true, f alse}, C, D, and Occ are finite sets of sort names, as follows: Hence, 

dif f (Bin, Bin1) = Sort18 . = dif f (N il, Bin1) | dif f (Bino, Bin1) by 2. | dif f (Bini, Bin1) dif f (N il, Bin1) = Sort19 . = dif f (N il, Bino1 | Bini0) by 3. dif f (Bino, Bin1) = Sort20 . = dif f (Bino, Bino1 | Bini0) by 3. dif f (Bini, Bin1) = Sort21 . = dif f (Bini, Bino1 | Bini0) by 3. dif f (N il, Bino1 | Bini1) = Sort22 . = dif f (N il, Bino1) by 6. dif f (N il, Bino1) = Sort23 . = N il by 7. dif f (Bino, Bino1 | Bini0) = Sort24 . = Sort25 | Sort26 | Sort27 | Sort28 by 4. Sort25 Sort26 Sort27 Sort28 . = . = . = . = dif f (Bin, Bin1 | Bin0 ) :: dif f (O, ⊥ ) dif f (Bin, Bin1 ) :: dif f (O, I ) dif f (Bin, Bin0 ) :: dif f (O, O ) dif f (Bin, ⊥ ) :: dif f (O, O | I ) 1,1 1,2 2,1 2,2 dif f (Bini, Bino1 | Bini0) = Sort29 . = Sort30 | Sort31 | Sort32 | Sort33 by 4. Sort30 Sort31 Sort32 Sort33 . = . = . = . = dif f (Bin, Bin1 | Bin0 ) :: dif f (I, ⊥ ) dif f (Bin, Bin1 ) :: dif f (I, I ) dif f (Bin, Bin0 ) :: dif f (I, O ) dif f (Bin, ⊥ ) :: dif f (I, O | I ) 1,1 1,2 2,1 2,2 dif f (Bin, Bin1 | Bin0) = ⊥ by similar computations dif f (Bin, Bin1) = Sort18 by 1. dif f (Bin, Bin0) = ⊥ by similar computations dif f (Bin, ⊥) = Bin by 8. dif f (O, ⊥) = O by 8. dif f (O, I) = O by 7. dif f (O, O) = ⊥ by 5. dif f (O, O | I) = ⊥ by 
Sort18 . = Sort19 | Sort20 | Sort21 Sort19 . = Sort22 Sort20 . = Sort24 Sort21 . = Sort29 Sort22 . = Sort23 Sort23 . = N il Sort24 . = Sort25 | Sort26 | Sort27 | Sort28 Sort25 . = ⊥ :: O Sort26 . = Sort18 :: O Sort27 . = ⊥ :: ⊥ Sort28 . = Bin :: ⊥ Sort29 . = Sort30 | Sort31 | Sort32 | Sort33 Sort30 . = ⊥ :: I Sort31 . = Sort18 
E := {u | ∃S ∈ D, u ∈ S M u
u}; all following statements are proven by induction on the computation tree of inh(S, Occ).

Show

D ⊂ Occ ∩ C, hence E = {} if Occ = {}. 4. If B = f alse, show S M ⊂ A ∪ E. 5. Show A ⊂ S M . 6. If A = {}, show S M ⊂ E
by induction on the computation tree, and (nested) induction on u ∈ S M . 7. If Occ = {}, from 5. ("⇐"), 3. and 6. ("⇒") follows S M = {} iff A = {}. 8. Show B ⇔ f alse iff S contains no loops (iff S M is finite by the pumping lemma). 9. If Occ = {}, from 5. ("⊂"), 3. and 4. ("⊃") follows A = S M if B ⇔ f alse.

Using the sort definitions from Fig. 1, Fig. 3 shows the computation of the intersection of Bin 2 and Bin 1 by Alg. 10; the result may be simplified to Sort 1 . = Sort 1 :: o | Bin 1 :: i, which uses the sloppy notation for sort definitions mentioned in Def. 4, and intuitively denotes all binary lists with one or two i-digits. Figure 4 shows the computation of the complement of Bin 1 relative to Bin by Alg. 11; the result may be simplified to Sort 18 . = nil | Sort 18 :: o which is equivalent to Bin 0 .

In [START_REF] Burghardt | Eine feinkrnige Sortendisziplin und ihre Anwendung in der Programmkonstruktion[END_REF], sort definitions may include "constraint formulas" which are not to be considered by the sort algorithms, but rather collected and passed to an external prover in which the sort algorithms are meant to be embedded. A sort definition (cf. Def. 

T-Substitutions

In this section, we apply the formalism from Sect. 2 to define possibly infinite regular sets of ground substitutions. We define suitable free constructors from which ground substitutions can be built as terms of a lifted algebra T * (V →CR) . We call such terms t-substitutions. Note that the classical approach, constructing substitutions by functional composition from simple substitutions, cannot be used, since functional composition is not free but obeys e.g. the associativity law. We provide the necessary notions and properties of t-substitutions and of sets of them, called t-sets. All results in this section hold for arbitrary t-sets.

We first define suitable free constructors from which ground substitutions can be built as terms of a lifted algebra. Expressed informally, to build a substitution term corresponding to [x 1 := u 1 , . . . , x n := u n ] with u i ground, we "overlay" the u i to obtain the substitution term; on the right, an example is shown for [x := cons(0, nil), y := s(s(0))].

x := cons ( 0 , nil ) y := s ( s ( 0 ) ) cons x s y (0 x s y (0 y ),nil x ) Definition 13. Given a set V ⊂ V of variables, define the constructors for t-substitutions with domain V as the set (V → CR) of all total mappings from V to CR. T-substitution constructors are denoted by cr, cr , . . . , the empty mapping by ε. Function application is written as cr x , the arity is defined as ar(cr) := max x∈dom(cr) ar(cr x ). For V ⊂ V, let cr| V denote the restriction of cr to the variables in V , i.e. dom(cr| V ) = V and (cr| V ) x = cr x for all x ∈ V . For cr and cr such that cr x = cr x for all x ∈ dom(cr) ∩ dom(cr ), let cr • cr denote the "parallel composition" of cr and cr , i.e. dom(cr • cr ) = dom(cr) ∪ dom(cr ), and

(cr • cr ) x = cr x if x ∈ dom(cr) cr x if x ∈ dom(cr ) .
Note that cr • cr is undefined if cr and cr do not agree on their domain intersection.

Example 14.

In examples, we write e.g. 0 x s y to denote the mapping (x → 0, y → s). We have

0 x s y ∈ ({x, y} → CR), ar(0 x s y ) = max(0, 1) = 1, (0 x s y )| {y} = s y , and (0 x s y ) • (s y cons z ) = 0 x s y cons z .
Definition 15. Once we have defined t-substitution constructors, we inherit the initial term algebra T (V →CR) over them. However, we have to exclude some nonsense terms. Define the subset T * (V →CR) ⊂ T (V →CR) of admissible t-substitutions with domain V as the least set such that

cr(σ 1 , . . . , σ ar(cr) ) ∈ T * (V →CR) if cr ∈ (V → CR) and σ i ∈ T * ({x∈V |ar(crx) i}→CR) for i = 1, . .

. , ar(cr).

We denote t-substitutions by σ , τ , µ , . . . . Sets of t-substitutions are called t-sets and are denoted by σ, τ, µ, . . . . 

(V →CR) if cr ∈ (V → CR
) is a nullary t-substitution constructor. For example, we have 0 y ∈ T * ({y}→CR) , and hence 0 x s y (0 y ) ∈ T * ({x,y}→CR) , but neither 0 y ∈ T * ({x,y}→CR) , nor 0 x s y (0 x 0 y ) ∈ T * (V →CR) for any V . Figure 5 shows some more t-substitutions together with their intended semantics.

Definition 17. Since T * (V1→CR) ∩ T * (V2→CR) = {} for V 1 = V 2 , we may define dom(σ ) := V iff σ ∈ T * (V →CR)
. Let (V → CR) be the set of all partial mappings from V to CR; define the set of admissible t-substitutions with a subset of V as domain by

T * (V →CR) := V ⊂V,V finite T * (V →CR) .
Definition 18. Define the t-substitution application σ u by

σ (cr(u 1 , . . . , u k )) := cr[σ u 1 × . . . × σ u k ] σ (cr) := {cr} (cr(σ 1 , . . . , σ n ))(x) := cr x [σ 1 x × . . . × σ ar(crx) x] if x ∈ dom(cr), n > 0 (cr)(x) := {cr x } if x ∈ dom(cr), n = 0 (cr(σ 1 , . . . , σ n ))(x) := {} if x ∈ dom(
cr) σ u yields a set with at most one ground constructor term. Application is extended elementwise to t-sets by σu := σ ∈σ σ u.

Note that, in contrast to an ordinary substitution β, a t-substitution σ is undefined outside its domain, i.e. it returns the empty set. We have εu = {} if u contains variables, εu = u if u is ground, and always ⊥u = {}.

Lemma 19. σ = τ iff σ x = τ x for all x ∈ V, where "=" on the left-hand side denotes the syntactic equality in T * (V →CR) .

Although constructors may be written in different ways, e.g. 0 x s y = s y 0 x , the initiality condition

cr(u 1 , . . . , u n ) = cr (u 1 , . . . , u n ) ⇒ cr = cr ∧ n = n ∧ u 1 = u 1 ∧ . . . ∧ u n = u n is satisfied in T * (V →CR)
. The desired equivalence of term equality and function equality from Lemma 19 is the reason for restricting t-substitutions to a subset T * (V →CR) of the initial algebra T (V →CR) , excluding nonsense terms like e.g. 0 x s y (0 x 0 y ) and 0 x s y (0 x 1 y ) which would contradict the initiality requirement.

Lemma 20. T * (V →CR) corresponds to the set of all ordinary ground substitutions in the following sense: For each σ there exists a β, such that σ u = {βu} whenever vars(u) ⊂ dom(σ ). Conversely, for each β there exists a σ with the respective property; cf. Fig. 5 which shows some example correspondences.

Proof. Induction on σ with

β cr(σ 1 ,...,σ n ) (x) := cr x (β σ 1 x, . . . , β σ n x). Conversely: define {σ β } := ♦ • x∈dom(β) [x := βx]. Then, σ β u = {βu} whenever vars(u) ⊂ dom(β). Definition 21. Define the t-substitution restriction σ | V by cr| V as defined in Def. 13 if ar(cr) = 0 (cr(σ 1 , . . . , σ n ))| V := (cr| V ) (σ 1 | V , . . . , σ m | V ) if ar(cr) > 0 and ar(cr| V ) = m Restriction is extended elementwise to t-sets by σ| V := {σ | V | σ ∈ σ}. Definition 22. Define the parallel composition of t-substitutions σ • τ by cr(σ 1 , . . . , σ n ) • cr (τ 1 , . . . , τ m ) :=      (cr • cr ) [(σ 1 • τ 1 ) × . . . × (σ n • τ n ) × {τ n+1 } × . . . × {τ m }] if cr • cr is defined, and n m (cr • cr ) [(σ 1 • τ 1 ) × . . . × (σ m • τ m ) × {σ m+1 } × . . . × {σ n }] if cr • cr is defined, and m n {} if cr • cr is undefined σ • τ yields a set with at most one t-substitution. Parallel composition is extended elementwise to t-sets by σ • τ := σ ∈σ,τ ∈τ σ • τ . Note that σ • τ = {} if σ and τ do not agree on dom(σ )∩dom(τ ).
Definition 23. Define the lifting of a ground constructor term u to a t-substitution [x := u], using the notation from Def. 13, by

[x := cr] := (x → cr) if ar(cr) = 0 [x := cr(u 1 , . . . , u n )] := (x → cr) ([x := u 1 ], . . . , [x := u n ]) if ar(cr) = n > 0 Lifting is extended elementwise to sets of ground constructor terms by [x := S] := {[x := u] | u ∈ S}. (0xsyconsz(0y0z, nilz)) (x) = {0} (0xsyconsz(0y0z, nilz)) (y) = {s(0)} (0xsyconsz(0y0z, nilz)) (z) = {cons(0, nil)} (0xsyconsz(0y0z, nilz)) (cons(x, cons(y, nil)))= {cons(0, cons(s(0), nil))} (0xsyconsz(0y0z, nilz)) (x ) = {} (0xsyconsz(0y0z, nilz))| {x} = 0x (0xsyconsz(0y0z, nilz))| {y} = sy(0y) (0xsyconsz(0y0z, nilz))| {z} = consz(0z, nilz) (0xsyconsz(0y0z, nilz))| {x,y} = 0xsy(0y) (0xsyconsz(0y0z, nilz))| {x,z} = 0xconsz(0z, nilz) (0xsyconsz(0y0z, nilz))| {y,z} = syconsz(0y0z, nilz) (0x) • (sy(0y)) = {0xsy(0y)} (0xsy(0y)) • (0xconsz(0z, nilz)) = {0xsyconsz(0y0z, nilz)} (0xconsz(0z, nilz)) • (syconsz(0y0z, nilz)) = {0xsyconsz(0y0z, nilz)} (0xsy(0y)) • (syconsz(0y0z, nilz)) = {0xsyconsz(0y0z, nilz)} (0xsy(0y)) • (0yconsz(0z, nilz)) = {} [x := 0] = 0x [y := s(0)] = sy(0y) [z := cons(0, nil)]
= consz(0z, nilz) Fig. 6. Some example computations according to Defs. 18 -23

Definition 24. Let β be an ordinary idempotent substitution with n 1, let σ be a t-substitution with ran(β) ⊂ dom(σ ) and dom(β)∩dom(σ

) = {}, define σ •β := ♦ • x∈dom(β) [x := σ βx]. We always have dom(σ • β) = dom(β), (σ • β)v = σ (βv) for all v with vars(v) ⊂ dom(β), and (σ • β)/ β = σ .
For a t-set σ with the same domain as σ , define σ

• β := σ ∈σ σ • β. We have dom(σ • β) = dom(β), (σ • β)v = σ(βv) for all v with vars(v) ⊂ dom(β), and (σ • β)/ β = σ.
Lemma 25. Some properties of application, restriction, parallel composition, and abstraction are:

-σ | V u = σ u if vars(u) ⊂ V ; σ | V u = {}, else -dom(σ | V ) = dom(σ ) ∩ V -(σ | V 1 )| V 2 = σ | V 1 ∩V 2 -σ ⊂ τ ⇒ σ| V ⊂ τ| V -σ| V u = σu if vars(u) ⊂ V -(σ ∩ τ )| V = σ| V ∩τ| V -• is associative -σ • τ = (σ • τ| T \S ) ∩ (σ| S\T • τ ) where S = dom(σ), T = dom(τ ) -σ u = τ u ⇔ σ | vars(u) = τ | vars(u) . -σ x 1 , . . . , x n = σ x 1 , . . . , σ x n -σ x 1 , . . . , x n ⊂ σx 1 , . . . , σx n .
Definition 26. Define the factorization σ / β of a t-substitution σ wrt. to an ordinary substitution β with dom(β) ⊂ dom(σ ) as follows, let k := ar(cr x ): Show by induction on #dom(β) that both conditions together imply a.

1. σ / [x1:=u1,...,xn:=un] := σ / [x1:=u1] • . . . • σ / [xn:=un] if n > 1 2. cr(σ 1 , . . . , σ n )/ [x:=crx(u1,...,u k )] := σ 1 / [x:=u1] • . . . • σ k / [x:=u k ] if k > 0 3. cr(σ 1 , . . . , σ n )/ [x:=crx] := {ε} if k = 0 4. cr(σ 1 , . . . , σ n )/ [x:=cr (u1,...,u k )] := {} if cr x = cr 5. σ / [x:=y] := [y := σ x] if x = y ∈ V σ / β
Lemma 30. Let u 1 , . . . , u n have pairwise disjoint variables, and let vars(u i ) ⊂ dom(σ i ). Then,

σ 1 u 1 = . . . = σ n u n iff u 1 , . . . , u n are simultaneously unifiable by β 1 • • . . .• • β n with dom(β i ) = vars(u i ) and σ 1 / β1 = . . . = σ n / βn = {}. Proof. "⇒": Unifiability is obvious, minimality of β i implies σ i u i ∩ β i u i = {}, hence σ i / βi = {} by 29. According to 27, σ i / βi β i u i = σ i u i = σ j u j = σ j / βj β j u j = σ j / βj β i u i , hence σ i / βi = σ j / βj . "⇐": According to 27, we have σ i u i = σ i / βi β i u i = σ j / βj β j u j = σ j u j .
Domain conditions as in Lemma 30 can always be satisfied by bounded renaming, factorizing by a renaming substitution, cf. Alg. 47 below. If u 1 and u 2 cannot be unified, σ 1 u 1 and σ 2 u 2 are always disjoint.

Theorem 31. Let β = mgu(u 1 , u 2 ), dom(β) = vars(u 1 , u 2 ), vars(u i ) ⊂ dom(σ i ), dom(σ 1 ) ∩ dom(σ 2 ) = {}, and u = βu 1 ; then σ 1 u 1 ∩ σ 2 u 2 = (σ 1 • σ 2 )/ β u. Proof. 5 "⊂": Suppose σ 1 u 1 = σ 2 u 2 ⊂ σ 1 u 1 ∩ σ 2 u 2 , let γ be a renaming substitution; then, (σ 1 • σ 2 ) u 1 , u 2 = (σ 1 • σ 2 ) u 2 , u 1 * = (σ 1 • σ 2 )/ γ γ u 2 , u 1 . Applying Lemma 30 yields (σ 1 • σ 2 )/ β = {}, since β • γ -1 = mgu( u 1 , u 2 , u 2 , u 1 ), hence σ 1 u 1 = (σ 1 • σ 2 ) u 1 * = (σ 1 • σ 2 )/ β βu 1 = (σ 1 • σ 2 )/ β u ⊂ (σ 1 • σ 2 )/ β u; similarly, σ 2 u 2 ⊂ (σ 1 • σ 2 )/ β u. "⊃": Suppose (σ 1 • σ 2 )/ β ⊂ (σ 1 • σ 2 )/ β , i.e. (σ 1 • σ 2 )/ β = {} hence σ 1 / β = {}, and (σ 1 • σ 2 )/ β u = σ 1 / β βu 1 * = σ 1 u 1 ⊂ σ 1 u 1 ; similarly, (σ 1 • σ 2 )/ β u ⊂ σ 2 u 2 .
The equations marked " * =" hold by Lemma 27.

Theorem 32. σu = {} iff σ| vars(u) ∩T * (vars(u)→CR) = {}. Note that T * ({x1,...,xn}→CR) = compose({abstract(x 1 , T CR ), . . . , abstract(x n , T CR )}) is regular since T CR is regular. Theorem 33. Let u, u 1 , . . . , u n have pairwise disjoint variables, let β i • • γ i = mgu(u, u i ) exist for all i. Then, σu ⊂ τ 1 u 1 ∪ . . . ∪ τ n u n iff ∀i (σ/ βi \ τ i / γi ) β i u ⊂ n j=1, j =i τ j u j and σ ⊂ n i=1
• β i . Note that we provide no algorithm to decide the latter condition.

Proof. "⇒": Let σ ∈ σ such that σ / βi = {} and σ / βi ⊂ τ i / γi for all i.

By assumption, j ∈ {1, . . . , n} and τ j ∈ τ j exist such that σ u = τ j u j . By 30, σ / βj = τ j / γi = {}, hence j = i, and σ / βi β i u = σ u = τ j u j by 27. Next, consider an arbitrary σ ∈ σ. By assumption, i and τ i ∈ τ i exist such that σ u = τ i u i . By 30 and 27, σ / βi β i u = σ u; hence, {σ } = σ / βi • β i ⊂ • β i "⇐": Let σ ∈ σ; by assumption, an i exists such that σ = τ • β i for some τ ∈ . By 30, σ / βi = {}. Case distinction:

σ / βi ⊂ τ i / γi , then by assumption σ u = σ / βi β i u = τ j u j for some j = i and

τ j ∈ τ j . -σ / βi = τ i / γi = {} for some τ i ∈ τ i , then σ u = σ / βi β i u = τ i / γi γ i u i = τ i u i .
Theorem 34. Let u, u 1 , . . . , u n have pairwise disjoint variables, let u be unifiable with each u i . For I ⊂ {1, . . . , n} let 6 , let J be the set of all I with existing mgu.

β I • • • i∈I β I,i = mgu({u} ∪ {u i | i ∈ I}) if it exists, dom(β I ) = vars(u), dom(β I,i ) = vars(u i )
Let σ I := {σ ∈ σ | σ / β {i} = {} ↔ i ∈ I}. Then, σu ⊂ τ 1 u 1 ∪ . . . ∪ τ n u n iff σ I / β I ⊂ i∈I τ i / β I,i
for all I ∈ J. The latter condition reads σ {} ⊂ {} for I = {}. Note that the σ I are not regular, in general.

Proof. First observe ( * ): for σ ∈ σ I , {u} ∪ {u i | i ∈ I} is simultaneously unifiable since σ / β {i} β {i} u = σ u = σ / β {i} β {i},i u i for all i ∈ I. "⇒": Let σ ∈ σ I for some I ∈ J; by assumption, σ u = τ i u i for some i and τ i ∈ τ i . Applying 30 to σ u = τ i u i yields σ / β {i} = {}; hence i ∈ I. Applying 30 to ( * ) and σ u = τ i u i yields σ / β I = τ i / β I,i = {}. "⇐": Let σ ∈ σ, and let I := {i | σ / β {i} = {}}. Then, σ ∈ σ I , and I ∈ J by ( * ). By 35.1 below, it follows that σ / β I = {}, hence σ / β I = τ i / β I,i for some i ∈ I and τ i ∈ τ i by assumption. Hence,

σ u = σ / β I β I u = τ i / β I,i β I,i u i = τ i u i . Lemma 35. Using the notions of 34, let I, I 1 , I 2 , I 3 ∈ J with I 1 ⊂ I 2 ∩ I 3 and I 2 = I 3 , σ ∈ σ, σ 2 ∈ σ I2 , σ 3 ∈ σ I3 , then: 1. σ / β I = {} iff ∀i ∈ I σ / β {i} = {}; 2. σ 2 / β I 1 = σ 3 / β I 1 ; 3. σ I2 / β I 1 = σ/ β I 1 \ I3∈J,I2 =I3⊃I1 σ I3 / β I 1 .
Proof.

"⇒": Let

i ∈ I, then σ u = σ / β I β I u = σ / β I β I,i u i ; by 30, σ / β {i} = {}. 1. "⇐": Let I = {i 1 , . . . , i m }, then σ u = σ / β {i 1 } β {i1} u = σ / β {i 1 } β {i1},i1 u i1 = . . . = σ / β {im} β {im} u = σ / β {im } β {im},im u im , hence σ / β I = {} by 30. 2.: By 1., we have σ 2 / β I 1 = {} = σ 3 / β I 1 ; assume σ 2 / β I 1 = σ 3 / β I 1 . W.l.o.g., let i ∈ I 3 \ I 2 , then σ 2 u = σ 2 / β I 1 β I1 u = σ 3 / β I 1 β I1 u = σ 3 u = σ 3 / β {i} β {i} u = σ 3 / β {i} β {i},i u i , hence σ 2 / β {i} = {} contradicting i ∈ I 2 . 3. "⊂": Let σ ∈ σ I2 , then σ ∈ σ and σ / β I 1 = σ / β I 1 for all σ ∈ σ I3 , I 2 = I 3 ⊃ I 1 by 2. 3. "⊃: Let σ ∈ σ with σ / β I 1 = {}; define I := {i ∈ {1, . . . , n} | σ / β {i} = {}}, then I ∈ J, since σ • ♦ • i∈I σ / β {i} β {i} unifies {u} ∪ {u i | i ∈ I},
and I 1 ⊂ I, since σ / β {i} = {} for all i ∈ I 1 by 1.

Case distinction: (a) I = I 2 ; then σ / β I 1 ⊂ σ I / β I 1 , with I 2 = I ⊃ I 1 , hence I is one of the I 3 , i.e., σ / β I 1 is not contained in the right hand side, and we have nothing to show. (b) I = I 2 ; then, σ / β I 1 is contained in the left hand side.

Example 36. Let J = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}}, then 35.3 yields following equations, where e.g. σ {i,j} is written as σ ij ; similarly for β:

σ 12 / β12 = σ/ β12 σ 13 / β13 = σ/ β13 σ 12 / β1 = σ/ β1 \(σ 1 / β1 ∪ σ 13 / β1 ) σ 1 / β1 = σ/ β1 \(σ 12 / β1 ∪ σ 13 / β1 ) σ 12 / β2 = σ/ β2 \σ 2 / β2 σ 2 / β2 = σ/ β2 \σ 12 / β2 σ 13 / β3 = σ/ β3 \σ 3 / β3 σ 3 / β3 = σ/ β3 \σ 13 / β3

Regular T-Sets and Algorithms

In this section, we introduce the notion of a regular t-set and provide algorithms to compute with them. We obtain a decidability result for a class of Horn clauses that is isomorphic to regular t-sets (Cor. 43). We present some simple relations like x < y that can be expressed by regular t-sets (Figs. 7 and8), and operations on relations that can be computed (Fig. 9).

Using the result from Sect. 3, we can describe regular sets of ground substitutions as subsets of the initial term algebra T * (V →CR) . We will only consider t-sets with a unique domain dom(σ ) = V σ for all σ ∈ σ; define dom(σ) := V σ . The empty t-set is again denoted by ⊥; it will be clear from the context whether ⊥ denotes the empty sort or the empty t-set. For each finite V , V := T * (V →CR) is expressible as a regular set. We write for V when V is clear from the context; note that T * (V →CR)

is not expressible since infinitely many t-substitution constructors exist.

We immediately inherit the mechanisms and algorithms given in Sect. 2, i.e. for intersection, relative complement, and inhabitance. In addition, the operations defined in 18, 21, 22, and 23 can be computed for regular t-sets.

Algorithm 37. The following algorithm computes the elementwise application of a regular t-set to a variable. Let σ be the name of a regular t-set, and let S be a new sort name. Define apply(σ, x) = S, where the algorithm introduces a new sort definition for S: T-sets, described as regular sets: Although t-substitutions are homomorphic wrt. all constructors in CR, t-sets are generally not; e.g., using the definitions from Fig. 7, N at M x<y ( x, y ) N at M x<y (x), N at M x<y (y) , cf. Lemma 25. Such t-sets can express certain relations between distinct variables, e.g. N at x<y always assigns a value to x that is less than the value assigned to y. Figure 8 shows some more nontrivial relations that are expressible by regular t-sets. Figure 9 shows operations on relations that can be computed for t-sets.

N atx . = 0x | sx(N atx) ={[x := s i (0)] | i ∈ IN } N aty . = 0y | sy(N aty) ={[y := s i (0)] | i ∈ IN } N atx=y . = 0x0y | sxsy(N atx=y) ={[x := s i (0), y := s i (0)] | i ∈ IN } N atx,y . = 0x0y | sxsy(N atx,y) | 0xsy(N aty) | sx0y(N atx) ={[x := s i (0), y := s j (0)] | i, j ∈ IN } N atx<y . = 0xsy(N aty) | sxsy(N atx<y) ={[x := s i (0), y := s j (0)] | i, j ∈ IN, i < j}
Definition 38. We call a t-set σ independent if it is homomorphic on linear terms, i.e. if σ x 1 , . . . , x n = σx 1 , . . . , σx n , otherwise we call it "dependent". An independent t-set assigns the value of one variable independently of the value of the others, e.g. N at x,y in Fig. 7. A finite union σ 1 ∪ . . . ∪ σ n of independent t-sets σ i is called semi-independent. The intersection of two (semi-)independent t-sets is again (semi-)independent; the union of two semi-independent t-sets is trivially semi-independent.

Algorithm 39. The following algorithm computes the elementwise application of a regular t-set to a linear constructor term. Let u be a linear constructor term, let σ be the name of a regular t-set such that σ| vars(u) is independent. Define apply(σ, cr(u 1 , . . . , u n )) . = cr(apply(σ, u 1 ), . . . , apply(σ, u n )); if u ∈ V, compute apply(σ, u) by Alg. 37. Then, apply(σ, u) M = σ M u.

Algorithm 40. The following algorithm computes the elementwise restriction of a regular t-set to a set of variables. Let σ be the name of a regular t-set, V ⊂ V, and let τ be a new name for a regular t-set. Define restrict(σ, V ) = τ , where the algorithm introduces a new t-set definition for τ :

1. If restrict(σ, V ) has already been called earlier, τ is already defined (loop check).

Else, if

σ . = σ 1 | . . . | σ n , define τ . = restrict(σ 1 , V ) | . . . | restrict(σ n , V ) 3. Else, if σ . = cr(σ 1 , . . . , σ n ), define τ . = (cr| V ) (restrict(σ 1 , V ), . . . , restrict(σ m , V )), where m = ar(cr| V ). Using Thm. 7 with p τ (τ ) :⇔ τ ∈ σ M | V if τ = restrict(σ, V ), it can be shown that restrict(σ, V ) M = σ M | V .
The algorithm needs at most #use(σ) recursive calls to compute restrict(σ, V ). If σ is (semi-)independent, then so is restrict(σ, V ).

Algorithm 41. The following algorithm computes the elementwise parallel composition of two regular t-sets σ and τ . Let µ be a new name for a regular t-set. Define compose(σ, τ ) = µ, where the algorithm introduces a new t-set definition for µ:

1. If compose(σ, τ ) has already been called earlier, µ is already defined (loop check).

Else

, if σ . = σ 1 | . . . | σ n , define µ . = compose(σ 1 , τ ) | . . . | compose(σ n , τ ). 3. Else, if τ . = τ 1 | . . . | τ n , define µ . = compose(σ, τ 1 ) | . . . | compose(σ, τ n ). 4. Else, if σ . = cr(σ 1 , . . . , σ n ), τ .
= cr (τ 1 , . . . , τ m ), cr and cr agree on their domain intersection, and w.l.o.g. n m, define µ . = (cr • cr ) (compose(σ 1 , τ 1 ), . . . , compose(σ n , τ n ), τ n+1 , . . . , τ m ). 5. Else, if σ . = cr(σ 1 , . . . , σ n ), τ .

= cr (τ 1 , . . . , τ m ), and cr and cr do not agree on their domain intersection, define µ . = ⊥.

Using Thm. 7 with p µ (µ

) :⇔ µ ∈ σ M • τ M if µ = compose(σ, τ ), it can be shown that compose(σ, τ ) M = σ M • τ M .
The algorithm needs at most #use(σ) * #use(τ ) recursive calls to compute compose(σ, τ ). If σ and τ are both (semi-)independent, then so is compose(σ, τ ). We write compose({σ 1 , . . . , σ n }) for compose(σ 1 , compose(. . . , compose(σ n-1 , σ n ) . . .)).

Algorithm 42. The following algorithm computes the elementwise lifting of a regular sort to a regular t-set. Let S be the name of a regular sort, x ∈ V, and let σ be a new name for a regular t-set. Define abstract(S, x) = σ, where the algorithm introduces a new t-set definition for σ:

1. If abstract(S, x) has already been called earlier, σ is already defined (loop check). Similarly, regular t-sets correspond to Horn clauses of the following form: p(cr 1 (x 1 ), . . . , cr m (x m )) ← p 1 (y 1 ) ∧ . . . ∧ p 1 (y n ) where x i := x i1 , . . . , x iai for i = 1, . . . , m, and y j := x ij | i = 1, . . . , m, j ar(cr i ) for j = 1, . . . , n with n := max i=1,...,m ar(cr i ). The relation between x i and y j is shown in the above diagram. If all term constructors cr i have the same arity n, the y j are the column vectors of an m × n matrix built from the x i as line vectors. For example, the definition Lgth x,y . = 0 x nil y | s x snoc y (Lgth x,y , N at y ) corresponds to the Horn clauses lgth(0, nil) and lgth(s(x), snoc(y 1 , y 2 )) ← lgth(x, y 1 ) ∧ nat(y 2 ). We thus have the following Corollary 43. The satisfiability of any predicate defined by Horn clauses of the above form can be decided. The set of such predicates is closed wrt. conjunction, disjunction, and negation.

Algorithm 44. The following algorithm "duplicates" each t-substitution σ in σ, i.e., it composes σ with a renamed copy of itself. Let σ be the name of a regular t-set, let β be an ordinary idempotent 

= x ])) restriction σ| V bounded renaming σ/ β conjunction σ ∩ τ disjunction σ | τ negation \ σ
For example, using the definitions from Fig. 8, restrict(P refx,y,z, {x, y}) yields the length function on snoclists, and apply(compose(P refx,y,z, abstract(y, s 3 (0))), x) yields the regular sort of all snoc-lists of length 3. Algorithm 46. If σ is regular and βx ∈ V for all x ∈ dom(β), σ • β is again regular; in general, it is not. In the former case, the following algorithm computes a regular t-set definition for σ • β:

1. If β = β 1 • • β 2 such
that β 1 and β 2 are each injective, i.e. renamings, let γ be a renaming on ran(β 2 ), then σ Algorithm 47. The following algorithm computes f act(σ, β) if βx ∈ V for all x. Let σ be a regular t-set, let µ be a new name for a regular t-set; define f act(σ, β) = µ, where a new t-set definition is introduced for µ:

• β = f act(dup(σ, γ), β -1 1 • • (β -1 2 • γ -1 )).
1. If f act(σ, β) has been called earlier, µ is already defined (loop checking). 

. = σ 1 | . . . | σ n , define f act(σ, β) := f act(σ 1 , β) | . . . | f act(σ n , β). 4. Else, if σ . = cr(σ 1 , . . . , σ n ), dom(β) ⊂ dom(cr), and βx = cr x (u x,1 , . . . , u x,ar(crx) ) for all x ∈ dom(β), define f act(σ, β) := compose({ f act(σ 1 , [x := u x,1 | x ∈ dom(β), ar(cr x ) 1]), . . . , f act(σ n , [x := u x,n | x ∈ dom(β), ar(cr x ) n])}). 5. Else, define f act(σ, β) := ⊥.
Using the lexicographic combination of the size of range terms of β and .

<, it can be shown that the algorithm always terminates and yields f act(σ, β) M = σ M / β for β = [ ]. The algorithm needs at most depth(β) recursive calls to compute f act(σ, β). If σ is semi-independent, then so is f act(σ, β).

Algorithm 50. Let β be pseudolinear, dom(β) ⊂ dom(σ), V := {x ∈ dom(β) | βx ∈ V}. Define the finite set hom(σ, β) of ordinary homogenizing substitutions for β wrt. σ:

1. If σ . = σ 1 | . . . | σ n , define hom(σ, β) := hom(σ 1 , β) ∪ . . . ∪ hom(σ n , β). 2. Else, if σ . = cr(σ 1 , . . . , σ n ), let γ 0 := [βx := cr x (y x,1 , . . . , y x,ar(crx) ) | x ∈ V ] where the y x,i are new variables, define hom(σ, β) := (hom(σ, γ 0 • β) • γ 0 )| ran(β) . 3. Else, if σ . = cr(σ 1 , . . . , σ n ), β not homogeneous, V = {}, and βx = cr x (u x1 , . . . , u x ar(crx) ) for all x ∈ dom(β), define hom(σ, β) := • n i=1 hom(σ i , [x := u xi | x ∈ dom(β), ar(cr x ) i]). 4. Else, if β homogeneous, define hom(σ, β) := {[x := y x | x ∈ ran(β)]},
where each y x is a new variable. 5. Else, define hom(σ, β) := {}.

Then, for each γ ∈ hom(σ, β): Then, σ M / β is the infinite set of complete binary trees A that is minimal with 0 x 0 y ∈ A and cr x cr y (σ , σ ) ∈ A for σ ∈ A. σ/ β x is a similar set of complete binary trees which cannot be written as τ 1 u 1 ∪ . . . ∪ τ n u n with regular τ i .

1. γ • β is homogeneous, 2. dom(γ) = ran(β),
Proof.

Show

σ ∈ A ⇒ σ ∈ σ M / β by induction on σ . 2. Show σ M / β = {0 x 0 y } ∪ (σ M / [x:=x1,y:=y ] • σ M / β / [x :=x2,y :=x1] ) • [x := cr(x 1 , x 2 )] by direct computation. 3. Show σ M / [x:=x1,y:=y ] • σ / [x :=x2,y :=x1] = σ / [x :=x2,y :=x1] • cr y (σ | y , σ | y )
by induction on σ using 2. 4. Show σ M / β ⊂ A by induction on the order σ 1 < σ 2 :⇔ σ 1 x = σ 2 x using 3. and 4.

Show that no infinite set of complete binary trees can be represented as τ u with regular

t-set τ and constructor term u by induction on u, using in the base case 37 and a pumping lemma.

Theorem 54. If σ is independent, then σ/ β = ♦ • x∈dom(β) σ/ [x:=βx] .
The right-hand side can be algorithmically computed using 49, since [x := βx] is always homogeneous.

Algorithm 55. Let σ be the name of a regular t-set. The following algorithm decides whether σ ⊂ • β, i.e. whether σ / β = {} for all σ ∈ σ.

Define div(σ, β) :⇔ x∈dom(β) div(σ, [x := βx]) ∧ x,x ∈dom(β),x =x y∈vars(βx)∩vars(βx ) single(apply(f act(σ, [x := βx]), y) | apply(f act(σ, [x := βx ]), y)); where div(σ, [x := u]) is computed as follows:

1. If σ . = σ 1 | . . . | σ n , define div(σ, [x := u]) :⇔ div(σ 1 , [x := u]) ∧ . . . ∧ div(σ n , [x := u]). 2. Else, if σ . = cr(σ 1 , . . . , σ n ) and u = cr x (u 1 , . . . , u k ), define div(σ, [x := u]) :⇔ k i=1 div(σ i , [x := u i ]) ∧ 1 i<j k y∈vars(ui)∩vars(uj ) single(apply(f act(σ i , [x := u i ]), y) | apply(f act(σ j , [x := u j ]), y)). 3. Else, if σ . = cr(σ 1 , . . . , σ n ) and u = cr (u 1 , . . . , u k ) with cr = cr x , define div(σ, [x := u]) :⇔ f alse. 4. Else, if u ∈ V (also u = x), define div(σ, [x := u]) :⇔ x ∈ dom(σ).
Using the lexicographical combination of and .

<, the correctness and termination of the computation of div(σ, [x := u]) can be shown by induction on σ, u . The proof, as well as the correctness proof for div(σ, β), uses the fact that σy ∪ τ y is a singleton set for all y ∈ dom(σ) ∩ dom(τ ) iff σ • τ = {} for all σ ∈ σ, τ ∈ τ . The algorithm needs at most #use(σ) recursive calls to decide div(σ, [x := u]).

Extended Sorts

In this section, we discuss several possible ways of defining a class of sorts that can express more subsets of T CR than regular tree languages. In particular, we define a class called "extended sorts" that can express for arbitrary u ∈ T CR,V the set of all possible values U of u, mentioned in Sect. 1, as an extended sort. We define the notion of an "annotated term" σ v where the t-set σ indicates the set of admitted ground constructor instances of v's variables, i.e. their sort.

The results obtained in Sect. 4 allow us to define three different language classes which are all proper extensions of regular tree languages. In each class, a language of ground constructor terms is described by applying regular t-sets σ to constructor terms u, the classes differing in the form that is allowed for σ and u:

1. σu with σ semi-independent, u arbitrary.

The intersection can be computed using Thms. 31 and 54. The subset property σu ⊂ τ 1 u 1 (hence equivalence and inhabitance) can be decided using Thm. 34 and Lemma 35, since we have J = {{}, {1}}, σ {} ⊂ {} ⇔ div(σ, β {1} ), and σ {1} / β {1} = σ/ β {1} . However, this class is not closed wrt. union. Any regular sort S M from Sect. 2 can be expressed as [x := S M ] x, but the converse is false, e.g. N at M x x, x is not a regular sort, as can be shown using a pumping lemma [START_REF] Burghardt | Eine feinkrnige Sortendisziplin und ihre Anwendung in der Programmkonstruktion[END_REF]. 2. σ 1 u 1 ∪ . . . ∪ σ n u n with σ i independent, u i arbitrary. This is a proper superclass of the class given in 1. The intersection can be computed using Thms. 31 and 54; union is trivial; inhabitance can be decided using Thm. 32. However, we do not provide an algorithm to decide the subset property in general. Again, any regular sort S M can be expressed as [x := S M ] x. 3. σ 1 u 1 ∪ . . . ∪ σ n u n with σ i arbitrary, u i ∈ T for some set T such that for any u, u ∈ T , β = mgu(u, u ) is always pseudolinear if it exists, and again βu ∈ T . The intersection can be computed using Thms. 31, and 51. Inhabitance can be decided as in class 2., but again we do not provide an algorithm to decide subsort in general. If we take T to be the set of all constructor terms in which variables occur only at a fixed unique depth n, the requirements to T are fulfilled, and each regular sort can be expressed. As shown in section 4, dependent regular t-sets can express certain relations between distinct variables, e.g. the conditional equation x :Nat < y :Nat → f (x, y) = g(x, y) can be expressed unconditionally by f (x, y) = g(x, y), where the value combinations of x and y are restricted by N at x<y from Fig. 7. Since we have the problem that Thms. 31 and 34 use factorization σ/ β which is not always a regular t-set, cf. Ex. 53, we have to restrict T as above. It is an unsolved problem whether a superclass of 2. exists that allows dependent t-sets but is still closed wrt. the required operations, especially intersection.

All classes follow the philosophy of allowing arbitrary nonlinearities up to a finite depth and forbidding any below. Since class 1. is sufficient to represent the set of all possible values U of an arbitrary constructor term u, we will use this class in the rest of this paper. In classical order-sorted approaches, each variable in a term is assigned a sort, e.g. x :Nat + x :Nat

. We will, instead, use a semiindependent t-set to specify the set of possible ground instances, written e.g. (N atx) (x + x), with the informal meaning that each ("admissible") substitution instantiating x + x must be extendable to a ground substitution contained in N at M

x . This approach still allows variable bindings in a term to be reflected by its sort, as sketched in Sect. 1; what we lose is the possibility of expressing nontrivial relations between variables.

Definition 56. We define an annotated term as a pair of a semi-independent regular t-set σ and an (unsorted) term v; it is written as σ v. The t-set σ denotes the admitted instances of v, cf. the use of σ v in Defs. 61 and 74 below.

Definition 57. We call an expression of the form σu with semi-independent regular σ and u ∈ T CR,V an extended sort. The set of all possible values U of an annotated term σ u is always an extended sort, viz. U = σu. Sets of the form σv, where v contains non-constructor functions, will be approximated by extended sorts later, cf. Sect. 6.

Corollary 58. A sorted equation σ u 1 = σ u 2 between annotated constructor terms is solvable iff an (unsorted) mgu β of u 1 and u 2 exists and σ/ β = {}. The latter set contains the admissible ground instances of variables in ran(β). An equation system σ1 u 1 = τ1 u 1 ∧ . . . ∧ σn u n = τn u n can be reduced to a single equation σ u 1 , . . . , u n = σ u 1 , . . . , u n by defining σ :

= ♦ • n i=1 σ i • τ i .
Example 59. Using the definitions from 53, σ x, y ∩ {x ,y } x , cr(y , x ) cannot be represented as an extended sort.

Proof. Observe that β = β • • [x := x , y := y ] = mgu( x, y , x , cr(y , x ) ), and (σ • {x ,y } )/ β = σ/ β ; hence, by 31, σ x, y ∩ {x ,y } x , cr(y , x ) = (σ • {x ,y } )/ β x , cr(y , x ) = σ/ β x , cr(y , x ) , the latter cannot be written as τ 1 u 1 ∪ . . . ∪ τ n u n with τ i regular, by an argument similar to 53.5.

Equational Theories

In this section, we extend the previous formalism to allow equationally defined functions f . We allow defining equations of the form given in Def. 60, thus ensuring the "executability" of f . Signatures of such a function are computed from its defining equations by the rg algorithm presented below in Alg. 73, which will play a central role in pruning the search space of narrowing. The algorithm takes a regular t-set and a term with non-constructor functions and computes an upper approximation by an extended sort, e.g. rg([x, y := N at], x + y) = [z := N at] z. In terms of Sect. 1, we have rg(σ, v) = V where σ denotes the values over which the variables in v may range. The rg algorithm consists of local transformations like rewriting and some simplification rules (cf. Def. 64), global transformations looking at a sequence of local transformation steps and recognizing certain kinds of self-references (cf. Lemma 67), and an approximation rule. Only the main rules can be discussed here; the complete algorithm is given in [START_REF] Burghardt | Eine feinkrnige Sortendisziplin und ihre Anwendung in der Programmkonstruktion[END_REF].

In Theorem 75, a narrowing calculus from [START_REF] Hlldobler | Foundations of Equational Programming[END_REF] is equipped with sorts. In [START_REF] Burghardt | Eine feinkrnige Sortendisziplin und ihre Anwendung in der Programmkonstruktion[END_REF], the calculus is shown to remain complete if the applicability of its main rule is restricted by the disjointness test from Sect. 1.

Definition 60. In the rest of this section, we assume that f has the following defining equations:

µ1 f (u 11 , . . . , u 1n ) = µ1 v 1 , . . ., µm f (u m1 , . . . , u mn ) = µm v m ,
where vars(v i ) ⊂ vars(u i1 , . . . , u in ). We assume that the variables of different defining equations are disjoint. Define dom(f, I) := i∈I µ i u i1 , . . . , u in , and dom(f ) := dom(f, {1, . . . , m}).

Definition 61. Define the rewrite relation induced by the defining equations by:

σ v 1 → σ v 2 iff
1. a defining equation µ f (u 1 , . . . , u n ) = µ v, a substitution β, and a term v (x) linear in x exist such that v 1 = v (βf (u 1 , . . . , u n )), v 2 = v (βv), 2. and for all σ ∈ σ there exists µ ∈ µ such that for all x ∈ vars(u 1 , . . . , u n )

ε σ βx → * ε µ x if ε σ βx is well-defined.
While the former condition is merely rewriting by pattern matching, the latter is an analogue to the classical well-sortedness requirement for β, requiring any well-defined variable instance to be admitted by the defining equation's sort. A ground term is called well-defined if it is reducible to a ground constructor term. → * and ↔ * are defined as usual; the definition of → is recursive, but wellfounded. We require confluence and termination of → , ensuring T CR ⊂ T CR,F /↔ * , where T CR,F /↔ * denotes the set of equivalence classes of terms in T CR,F modulo ↔ * . In other words, ↔ * does not identify terms in T CR , but new irreducible terms like nil + nil may arise which we will regard as "junk terms" and exclude from equation solutions. For a well-defined ground term v, let nf (v) ∈ T CR denote its unique normal form; for

A ⊂ T CR,F , let nf [A] := {nf (v) | v ∈ A, v well-defined}.
Figure 10 shows a comparison of classical order-sorted terms and annotated terms. The applicability of → is not decidable in general owing to the well-sortedness condition 61.2. It is possible to compute sufficiently large t-sets µ i for the defining equations such that 61.2 becomes trivial, cf. Alg. 71; however, if the µ i are too large, well-sorted terms arise that are not well-defined. As in any ordersorted term rewriting approach, we cannot overcome both problems simultaneously.

Range sorts are computed using expressions of the form (w 1 : u 1 ) . . . (w n : u n ), which can intuitively be thought of as generalized equation systems; the semantic is the set of all t-substitutions making each u i equal (↔ * ) to an element of w i . For example, (N at : , y := s(z Assume that for each f ∈ F a set F f ⊂ F of admitted function symbols for arguments of f is given. The following algorithm finds minimal independent t-sets µ i such that the applicability of → becomes trivial if only subterms starting with a g ∈ F f appear at the argument positions of f . max f . = max f,v1 | . . . | max f,vm where max f,w for w ∈ T CR,F ,V is defined by: max f,g(w1,...,wn) := max g if g ∈ F max f,cr(w1,...,wn) . = cr(max f,w1 , . . . , max f,wn

x) denotes {[x := s i (0)] | i ∈ IN }, and (x + x : z) can be evaluated to {[x := s i (0), z := s 2 * i (0)] | i ∈ IN }.
:Nat )] sortof (γx) = N at+N at = sortof (x) sortof (γy) = s(N at) ⊂ sortof (y) γ = [x := z + z, y := s(z)] and τ = [z := N at], nf [τ γ x, y ] = { s 2•i (0), s i+1 (0) | i ∈ IN } ⊂ N at, N at
) if cr ∈ CR max f,x . = g∈F f max g if x ∈ V Define µ i = compose({abstract(x, max f,x ) | x ∈ vars(u i1 , . . . , u ini )}). Then, f (v 1 , . . . , v n ) → v iff 61.1 is satisfied and (v i ∈ V or v i = g(v i ) with g ∈ CR ∪ F f ).
Example 72. For the functions defined by the unstarred equations of Fig. 15, allowing arbitrary argument terms for + and dup, but only constructor terms from Bin as arguments for val, one gets

F + = F dup = {+, dup, val}, F val = {}, and max + . = max +,x | s(max + ) max +,x . = max + | max dup | max val max dup . = max + max val . = 0 | max dup | s(max dup )
or, simplified:

max + . = N at max +,x . = N at max dup . = N at max val .
= N at which corresponds to the implicit t-set shown in Fig. 15.

Algorithm 73. To compute rg(σ, v), start with the expression (σ) (v : z), where z is new, and repeatedly apply rules in the following order: global rules, approximation rule, simplifying local rules (like Defs. 64.2 and 64.3), and rewriting (Def. 64.1). Apply approximation only if certain conditions make it necessary; apply all other rules wherever possible. By setting certain parameters in the termination criterion, the trade-off between computation time and precision of the result can be controlled. On termination, an expression (σ 1 ) (u

1 : z) | . . . | (σ n ) (u n : z) with regular t-sets σ i is obtained. The final result is then rg(σ, v) := σ 1 u 1 | . . . | σ n u n , satisfying nf [σ M v] ⊂ rg(σ, v) M . x + 0 = x x + s(y) = s(x) + y (N at : x) (N at : y) (x + y : z) = (N at : x) (N at : y) (x : x1) (y : 0) (x1 : z) 64.1 | (N at : x) (N at : y) (x : x1) (y : s(y1)) (s(x1) + y1 : z) = (N at : x) (x : z) simplification | (N at : x1) (N at : y1) (s(x1) + y1 : z) = (N at : x) (x : z) 64.1 | (N at : x2) (x2 : z) + simplification | (N at : x1) (N at : y2) (s(s(x1)) + y2 : z) = . . . = (N at : x) (x : z) 64.1 | (N at : x) (N at : y) (s i (x) + y : z) + simplification = . . .

Fig. 11. Nonterminating sort rewriting computation

The termination of Alg. 73 has to be artificially enforced. Certainly, the rewrite relation → is Noetherian, i.e. each computation chain starting from a term will terminate. However, Alg. 73 computes with sorts that represent infinitely many terms in general, and the length of their computation chains may increase unboundedly. Hence, sort rewriting need not terminate even though term rewriting terminates. As an example, consider the equational theory and the computation shown in Fig. 11.

In principle, Alg. 73 can be stopped after every step, using the approximation by max f ; in other words, there is a trade-off between computation time and the precision of the result. We suggest the following termination criterion: applying Rule 64.1 to an expression (f (. . .) : . . .) is allowed only if less than #use(dom(f )) rewrite steps wrt. f have occurred in the current path 7 . The -heuristicjustification considers that f is defined recursively over the structure of dom(f ) and that no more than #use(dom(f )) rewrite steps are necessary to "get back to the starting expression", thus making e.g. Rule 67 applicable. Since all other local and global transformations except 64.1 can be applied only a finite number of times, this criterion ensures termination. The defining equations of a function f need not be independent in a logical / axiomatic sense; arbitrarily many "derived" equations may be added, cf. Fig. 13. Accordingly, it suffices to use only a subset of the equations for a rewrite step by 64.1, provided dom(f ) is still completely covered (cf. the role of the index set I in 64.1). Since it is not possible to select a suitable I at the time the rewrite step is conducted we proceed the other way round: we use all equations for f in each rewrite step, making a global transformation applicable not only if all alternatives have the required form but even when a subset of alternatives has the required form and confinement to these alternatives still leads to index sets completely covering dom(f ) in all relevant rewrite steps.

Index sets: f1 : {1, 2} {1, 3} f2 : {1, 2} {2, 3} f3 : {1, 2} f4 : {1, 2} {2, 3} e 
In this way, supplying additional derived function equations may result in making "better" global transformations applicable, and hence in enhancing the precision of the computed sort. Thus, we may get an effect similar to that obtained by term declarations in [START_REF] Schmidt-Schau | Computational Aspects of an Order-Sorted Logic with Term Declarations[END_REF].

The test for applicability of a global transformation works as follows: for each alternative (σ) that does not meet the applicability criterion, delete all complete index sets in the last rewrite step leading to (σ). If no index set remains, omit this rewrite step, and delete in turn all complete index sets in the previous rewrite step in the computation tree. If no previous rewrite step exists, the global transformation cannot be made applicable. If a complete index set still exists in the first, highest-level rewrite step after all deletions are done, the transformation has been made applicable.

As an example, consider the computation tree shown in Fig. 12. Rewrite steps have been conducted for functions Taking the definitions in Fig. 15, we can compute rg(N atx, x + x):

f 1 , f 2 , f 3 , f 4 , transforming alternative a into b | c | d, and in turn to e | f | g | h | i | j | k | l (
(N at : x) (x + x : z) = (N at : x) (x1 : z) (x : x1) (x : 0) | (N at : x) (x1 : z) (x : 0) (x : x1) | (N at : x) (s(x1 + y1) : z) (x : x1) (x : sy1) | (N at : x) (s(x1 + y1) : z) (x : sx1) (x : y1) = (0 : z) | (N at : y1) (sy1 + y1 : z1) (sz1 : z) | (N at : x1) (x1 + sx1 : z1) (sz1 : z) = (0 : z) | (N at : y2) (ssy2 +y2 : z2) (ssz2 : z) | (N at : y2) (y2 + y2 : z2) (ssz2 : z) | (N at : y2) (y2 + y2 : z2) (ssz2 : z) | (N at : x2) (x2 +ssx2 : z2) (ssz2 : z) = (0 : z) | (N at : y2) (y2 + y2 : z2) (ssz2 : z) = (Even : z)
where the new sort definition Even . = 0 | s(s(Even)) is generated. The performed steps are: Rule 64.1 with equations a.-d.; simplification; Rule 64.1 with c.-d. twice in parallel, including simplification; deletion of the 2nd, 4th, and 5th alternative, since they are covered by the 3rd one; this makes Lemma 67 applicable as the final step. Definition 74. A substitution β is called a solution of an equation σ v 1 = σ v 2 iff a t-set τ exists that denotes the sorts of variables in the ran(β) such that

1. τ βv 1 ↔ * τ βv 2 , 2. ∀τ ∈ τ ∃σ ∈ σ ∀x ∈ vars(v 1 , v 2 ) τ βx well-defined ⇒ τ βx ↔ * σ x,
or equivalently: nf [τ β x 1 , . . . , x n ] ⊂ σ x 1 , . . . , x n , where {x 1 , . . . , x n } = vars(v 1 , v 2 ), similar to the classical well-sortedness requirement for β, and 3. nf [τ βv 1 ] = {}, i.e. the solution has at least one well-defined ground instance.

Theorem 75. An arbitrary narrowing calculus preserving solution sets remains complete if restricted appropriately by sorts. For example, for lazy narrowing [START_REF] Hlldobler | Foundations of Equational Programming[END_REF], abbreviating τ := σ • vars(u1,...,un) , we get for the main rules:

(ln) τ v 1 = τ u 1 ∧ . . . ∧ τ v n = τ u n ∧ τ v = τ v σ f (v 1 , . . . , v n ) = σ v f (u 1 , . . . , u n ) = v defining equation inh(inf (rg(τ, v), rg(τ, v ))), inh(inf (rg(τ, v 1 ), rg(τ, u 1 ))), . . . inh(inf (rg(τ, v n ), rg(τ, u n ))), (d) τ u 1 = τ v 1 ∧ . . . ∧ τ u n = τ v n σ f (u 1 , . . . , u n ) = σ f (v 1 , . . . , v n ) inh(inf (rg(τ, u 1 ), rg(τ, v 1 ))),. . . , inh(inf (rg(τ, u n ), rg(τ, v n )))
In rule (ln), the remaining equations τ v 1 = τ u 1 , . . . , τ v n = τ u n can often be solved by purely syntactic unification. In this case, the non-disjointness criteria inh(inf (rg(τ, v 1 ), rg(τ, u 1 ))),. . . , inh(inf (rg(τ, v n ), rg(τ, u n ))) are trivially satisfied and may be omitted in practical implementations. Note that the variables in defining equations have to be assigned the sort . Starting from a conditional narrowing calculus, nontrivially sorted defining equations become possible. To support formal program development, we employ the paradigm of implementation proof, starting from an "abstract" operation ao on abstract data of sort as 1 or as 2 which are to be implemented by a corresponding "concrete" operation co on concrete data of sorts cs 1 or cs 2 , respectively. The connection between abstract and concrete data is established by representation func-

(Bin : x) (val•x : z) = (Bin : x) (x : nil) (0 : z) Def. val | (Bin : x) (x : x1 :: o) (dup•val•x1 : z) | (Bin : x) (x : x1 :: i) (s•dup•val•x1 : z) = (0 : z) | (Bin : x1) (dup•val•x1 : z) | (Bin : x1) (dup•val•x1 : z1) (s•z1 : z) = (0 : z) Def. dup | (Bin : x1) (val•x1 : 0) (0 : z) | (Bin : x1) (val•x1 : s•x2) (s•s•dup•x2 : z) | (Bin : x1) (val•x1 : 0) (0 : z1) (s•z1 : z) | (Bin : x1) (val•x1 : s•x2) (s•s•dup•x2 : z1) (s•z1 : z) = (0 : z) | (Bin : x1) (val•x1 : s•x2) (dup•x2 : z2) (s•s•z2 : z) | (Bin : x1) (val•x1 : 0) (s•0 : z) | (Bin : x1) (val•x1 : s•x2) (dup•x2 : z2) (s•s•s•z2 : z) (⊂) = (0 : z) ( * ) | (Bin : x1) (max val : s•x2) (dup•x2 : z2) (s•s•z2 : z) | (Bin : x1) (max val : 0) (s•0 : z) | (Bin : x1) (max val : s•x2) (dup•x2 : z2) (s•s•s•z2 : z) = (0 : z) ( * * ) | (N at : s•x2) (dup•x2 : z2) (s•s•z2 : z) | (N at : 0) (s•0 : z) | (N at : s•x2) (dup•x2 : z2) (s•s•s•z2 : z) = (0 : z) dup, see above | (s•s•Even : z) | (s•0 : z) | (s•s•s•Even : z) = (
cs 1 cs 2 as 1 as 2 E E T T co ao r 1 r 2
tions r 1 : cs 1 → as 1 and r 2 : cs 2 → as 2 , representing each concrete data term as an abstract one. Different concrete terms may represent the same abstract term. Thus, it is possible to perform the computation on the concrete level, and interpret the result on the abstract level. The correspondence between the concrete and abstract operation imposes correctness requirements on the concrete operation.

We wish to synthesize the concrete operation co as the Skolem function for y in the formula ∀x ∃y ao(r 1 (x)) = r 2 (y). A suitable method for the constructive correctness proof is induction on the form of a data term x ∈ cs 1 , leading to a case distinction according to (one of) the head constructor(s) of x. In each case, we have to solve an equation ao(r 1 (x i )) = r 2 (y) wrt. y. The synthesized function co is then given by equations co(x i ) = β i y, where x i is a data term starting with the i th constructor, and β i is the solving substitution for this case. After having solved an equation, one still has to check whether the solution β i y is of the required sort cs 2 , if not, a different solution must be found.

The sort discipline presented here supports specifically this method. Besides allowing recursive sort definitions of cs 1 , cs 2 , as 1 , and as 2 as well as recursive function definitions of ao, r 1 , and r 2 , the induction principle from Thm. 9 provides the case distinction and proof goals for an induction on x ∈ cs M 1 . The sort discipline is able to cope with the additional problems of synthesis as compared with verification, i.e., to direct the construction of the solution term, to the extent that disjoint subsorts of a concrete sort are assigned with disjoint subsorts of the corresponding abstract sort. In this manner, the sort of an "abstract" term indicates which "concrete" terms are representing it.

As an example, consider the formal development of algorithms for binary numbers, Consider the sort and function definitions in Fig. 15. All terms are sorted by the t-set [x := N at] • [y := N at] • [z := Bin], which is omitted in the equations for the sake of brevity. Equations marked by " * " are redundant and can be proven by structural induction. The rightmost column contains the sort computed by rg for each equation; all sorts happen to be regular. We have axioms defining the "representation function" val : Bin -→ N at, and an auxiliary function dup to duplicate natural numbers which uses the addition + on natural numbers. The main contribution of the sorts is the computation of rg(N at x , dup(x)) = [z := Even] z = Even, where the sort definition Even . = 0 | s(s(Even)) is automatically introduced. Although only independent t-sets are involved in the example, the variable bindings in x + x are reflected by its sort, viz. Even. For this range-sort computation, the redundant equation d. is necessary, cf. Fig. 13.

Taking the easiest example, let us synthesize an algorithm incr for incrementing a binary number; the synthesis of algorithms for addition and multiplication is shown in App. A. The goal ∀c ∃z s(val(c)) = val(z) is proved by structural induction on c, the appropriate induction scheme being provided by Thm. 9, cf. Fig. 2. For example, in case c = c :: o, we have to solve the equation s(val(c :: o)) = val(z) wrt. z, and the sorted narrowing rule from Thm. 75 is only applicable to equation i. since the left-hand side's sort is computed as s(Even). Note that, in order to get the full benefit of the sort calculus, narrowing should be applied only at the root of a term, since then additional sort information is supplied from the other side of the equation; this is the reason for using lazy narrowing. The employed calculus' drawback of admitting only trivially sorted defining equations is overcome by subsequently checking the solutions obtained for well-sortedness.

Narrowing with equation h. instead of i. would lead into an infinite branch8 , trying to solve an equation s(dup(. . .)) = dup(. . .). Such infinite branches are cut off by the sorts, especially by the global transformation rules which detect certain kinds of recursion loops. This seems to justify the computational overhead of sort computation. Thanks to the provided proof methodology based on regular t-sets, new global rules for detecting new recursion patterns can easily be added if required.

The control information provided by the sort calculus acquires particular importance in "proper" narrowing steps, i.e., the ones actually contributing to the solution term. While conventional narrowing procedures essentially enumerate each element of the constructor term algebra and test whether it is a solution, the presented sort calculus approaches the solutions directly, depending on the precision of computed range sorts.

The sort algorithms, especially rg, perform, in fact, simple induction proofs. For example, it is easy to prove by induction that x + x always has sort Even, and that sorts Even and s(Even) are disjoint, once these claims have been guessed or intuitively recognized. However, while a conventional induction prover would not propose these claims as auxiliary lemmas during the proof of ∀c ∃z s(val(c)) = val(z), they are implicitly generated by the sort algorithms. The sort calculus allows the "recognition of new concepts", so to speak, although only within the rather limited framework given by the sort language. In [START_REF] Heinz | Lemma discovery by anti-unification of regular sorts[END_REF], an approach to the automatic generation of more complex auxiliary lemmas is presented based on E-generalization using regular sorts, too. A prototype support system written in Quintus-Prolog takes a total of 41 seconds user time on a Sparc 1 to automatically conduct the 9 induction proofs, with 135 narrowing subgoals necessary for the development of incrementation, addition, and multiplication algorithms on binary numbers, cf. App. A. In the form of a paper case study from the area of compiler construction, an implementation of sets of lists of natural numbers by ordered son-brother trees has been proved, cf. App. B. The algorithm for inserting a new list into a tree is used to construct comb vectors for parse table compression; it is specified as an implementation of ({•} ∪ •). The use of sorts reduces the search space of the synthesis proof to that of a verification proof, i.e. it uniquely determines all proper narrowing steps or solution constructors. The computed signatures are too complex for there to be much likelihood of their being declared by a user who does not know the proof in advance.

On page 45, a protocol of the synthesis session is given. Pure induction proofs, i.e. ones that do not solve an equation wrt. some variable, are omitted. The notation in the Prolog implementation differs slightly from the one used in this paper. The predicate "init sort system" computes a range sort for every defining equation. The predicate "solve" tries to solve the given equation; every time the actual narrowing step is not uniquely determined by the sorts, the user is shown a menu and prompted to make a decision. During the session, the user always had to decide to start an induction, indicated by "ind", optionally followed by a list of induction variables. Note that none of the proofs required any further user interaction. The execution trace shows the actual subgoal on entry into "solve", and the solved subgoal together with the solving substitution on exit. At the end of the session, an example computation (5 * 6 = 30) is performed (predicate "eval term") using the newly synthesized algorithms, and the sort definitions (incomplete), proved laws, and function-defining equations are listed. Functions f 24 , f 188 , and f 429 compute the successor of a binary number, the sum of two binary numbers, and the product of two binary numbers, respectively.

Starting on page 50, the search space is shown in particular for the synthesis of the incr algorithm. Figures 18 to 20 show the search space in cases where no sorts are used to control narrowing; Fig. 21 shows the search space where sorts are used. 

u + 0 = u nat u + s v = s(u + v) s sort 4 u * 0 = 0 0 u * (s v) = u * v + u 0 | nat |

B Case Study "Comb Vector Construction"

In this section, we demonstrate the use of the sort discipline by applying it in a paper case study from the area of compiler construction. The parser generating system PGS is a tool for generating a syntax analyzer for a programming language or, in general, any structured input [START_REF] Klein | The parser generating system PGS[END_REF]. The user of PGS has to specify the language to be analyzed by a grammar. The main applications of PGS are in the area of compiler construction, e.g. parsing, syntax analysis or syntax-directed translation.

PGS uses a comb vector technique to compress the two-dimensional array representation of parse tables. A parse table can be merged into one array, called cont, where the beginning of each original row is indicated by an entry in an additional array called base. In order to be able to distinguish between error and non-error entries, an array called row is introduced in parallel to cont, containing the row number from which the associated entry in the cont array originated.

Given a two-dimensional array, one way of constructing a comb vector is to enter each row into a search tree, lexicographically sorted by the list of its distances. The tree is a son-brother tree, a vertical link pointing to the first son of a node, a horizontal link to the next brother. There are two kinds of nodes, depending on whether a vertical link is necessary or not. A node which has a vertical link corresponds to a distance; brother nodes of this kind are in ascending order with respect to it. A node without a vertical link corresponds to a row number (shown in italics in Fig. 22).

The tree is then traversed in post order, and the corresponding rows are entered into the comb vector. Figure 22 shows an example two-dimensional array together with the constructed search tree. For example, the path down, right, down, down corresponds to the distance list 1, 3, 0 of row 4. Figure 23 shows the constructed comb vector and its access function.

Our aim is to define the data structure of a search tree and to construct an algorithm for inserting a list of distances into a search tree. For the sake of simplicity, we do not distinguish between distances and row numbers, representing both by natural numbers. its set of distance lists can be represented by add(1+1+3+nil l , add(1+3+0+4+nil l , add(1+3+2+nil l , add(1+3+5+nil l , add(2+1+nil l , mt))))).

To form a valid search tree, a term has to satisfy the following conditions: a vertical link may not be nil t (38,39), the horizontal link of a node2 never points to a node1 (39), each horizontal chain of node1s is in ascending order (first line of 38). This leads to the sort definitions: 

Matrix Distances Search tree 1 • A • • B • • • 2 1 2 1 3 1 0 3 2 5 4 c c c c c E E E E 2 C • D • • • E • 1,3 3 • • • F • G • H 1,1 4 I • J • • • K L 1,3,0 5 M • N • • • O • 1,3
T ree . = nil t | T ree1 | T ree2 ( 
The definition of T ree1 makes use of a constraint predicate, cf. the remarks at the end of Sect. 2. T ree1 and T ree2 denote the sort of all search trees starting with a node1 and a node2, respectively. The constraint predicate is defined by the axiom n 1 < node1(n 2 , t 3 , t 4 ) ↔ n 1 < n 2 . 
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 3 and denoted by σ , τ , . . .. Application of a substitution β to a term v is written in prefix form, i.e. βv. For an ordinary substitution β, let dom(β) := {x ∈ V | βx = x}, and ran(β) := x∈dom(β) vars(βx).

Definition 4 .

 4 We allow sort definitions of the following syntax: SortName . = SortName | . . . | SortName, SortName . = Constructor(SortName, . . . , SortName) Let . < be the transitive closure of the relation S i .. < S :⇔ S . = S 1 | . . . | S n . We admit finite systems of sort definitions such that .

  For example, consider the sort definition Bin . = nil | Bin :: o | Bin :: i from Fig. 15 on page 40, which denotes the lists of binary digits, where "o" denotes zero, "i" denotes one, and :: is an infix-snoc, i.e. reversed cons. The sort definition can be transformed into the corresponding definitions shown in Fig. 1, which obey Def. 4, by introducing new auxiliary sort names N il, Bino, Bini, O, and I.

Fig. 4 .

 4 Fig. 4. Example computation of sort difference

TFig. 5 .

 5 Fig. 5. Examples of t-substitutions

  yields a set with at most one t-substitution; it is extended elementwise to t-sets by σ/ β := σ ∈σ σ / β . Note that [y := σ x] is a singleton or empty set by Defs. 18 and 23. Factorization by the identity substitution is undefined. We have dom(σ / β ) = ran(β) if σ / β = {}.Lemma 27. (Pattern-Matching Properties) a. σ / β βu = σ u, if σ / β = {} b. σ/ β βu = σu ∩ βuProof. a. Induction on n = #dom(β): show n = 1 by induction on u, show n n + 1 by induction on u. b. follows from a. Example 28. We have (0 x s y (0 y ))/ [y:=s(z)] = 0 y / [y:=z] by Def. 26.2 = [z := (0 y )(y)] by Def. 26.5 = [z := {0}] by Def. 18 = {0 z } by Def. 23 but (0 x s y (0 y ))/ [y:=s(s(z))] = 0 y / [y:=s(z)] by Def. 26.2 = {} by Def. 26.4 and {0 z }([y := s(z)](y)) = {0 z }(s(z)) = {s(0)} = (0 x s y (0 y ))(y) by Def. 18. Lemma 29. The following propositions are equivalent: a. σ / β = {} b. σ u ∩ βu = {} for all u with vars(u) ⊂ dom(β) c. σ u ∩ βu = {} for some u with vars(u) = dom(β) Proof. a. ⇒ b. by induction on u; b. ⇒ c. trivial; c. ⇒ a. Show σ u = τ βu ⇒ σ x = τ βx for all τ ∈ and x ∈ vars(u) by induction on u. Show σ u ∩ τ βu = {} ⇒ σ / [xi:=ui] y = σ / [xj:=uj ] y for all τ ∈ and y ∈ vars(u i ) ∩ vars(u j ), x i , x j ∈ vars(u).

Fig. 7 .

 7 Fig. 7. Examples of regular t-sets

2 .

 2 Else, if S . = S 1 | . . . | S n , define σ . = abstract(S 1 , x) | . . . | abstract(S n , x). 3. Else, if S . = cr(S 1 , . . . , S n ), define σ . = (x → cr) (abstract(S 1 , x), . . . , abstract(S n , x)).Using Thm. 7 with p σ (σ ) :⇔ σ ∈ [x := S M ] if σ = abstract(S, x), it can be shown that abstract(S, x) M = [x := S M ]. The algorithm needs at most #use(S) recursive calls to compute abstract(x, S). abstract(x, S) always yields an independent t-set.Regular sorts from Sect. 2 can be shown to correspond to Horn clauses with unary predicates and thus decide this theory class by extending the form of sort expressions allowed on the right-hand side of a sort definition to include intersections, too.

Fig. 8 .

 8 Fig. 8. Some relations expressible by regular t-sets

Fig. 9 . 1 .

 91 Fig. 9. Computable operations on relations in t-set form

2 .

 2 Any other β can be represented as β 1 • . . . • β n such that 1 #{x | β i x = y} 2 for all y and for all i, i.e. each β i has the form required by 1.; then σ • β = (. . . (σ • β 1 ) • . . .) • β n .

  3. for each σ ∈ σ with σ / β = {} there exists a γ ∈ hom(σ, β) such that σ / γ•β = {}, and 4. for each σ ∈ σ with σ / β = {} there exists at most one γ ∈ hom(σ, β) such that σ / γ•β = {}.Proof. Use the lexicographic combination of the size of range terms of β and .< as termination ordering and as induction ordering for 1. to 4. The algorithm needs at most #use(σ) * depth(β) recursive calls to compute hom(σ, β). Theorem 51. If σ regular and β pseudolinear, then σ/ β u = γ∈hom(σ,β) σ/ γ•β γu for all u with vars(u) ⊂ ran(β), where the σ/ γ•β are regular. Proof. Regularity follows from 50 and 49. Since for each {} = σ / β ∈ σ/ β there exists exactly one γ with σ / γ•β = {} by 50, the claimed equality follows from 34. Example 52. Consider the definition of nat x<y in Fig. 7; let β := [x := x , y := s(y )]. We first homogenize β wrt. nat x<y by 50, yielding hom(nat x<y , β) = {[x := 0, y := y ], [x := s(x ), y := y ]}. Then, using 49, we factorize nat x<y wrt. the homogeneous substitutions [x := 0, y := y ]•β and [x := s(x ), y := y ] • β, yielding f act(nat x<y , [x := 0, y := s(y )]) = nat y and f act(nat x<y , [x := s(x ), y := s(y )]) = nat x <y , respectively. Using 51, we can thus compute nat x<y / β x , y as nat y 0, y | nat x <y s(x ), y . Example 53. Let σ . = 0 x cr y (0 y , 0 y ) | cr x cr y (σ, σ), and β = [x := x , y := cr(y , x )].

w

  where dom(σ) = {x1, . . . , xm} sort sortof (w) σw def. eq. f (l1, . . . , ln) = r where µ f (l1, . . . , ln) = µ r where y1 :t1 , . . . , ym :tm dom(µ) = {y1, . . . , ym} rewriting v(βf (l1, . . . , ln)) → v(βr) where σ v(βf (l1, . . . , ln)) → σ v(βr) where ∀y ∈ V sortof (βy) ⊂ sortof (y) ∀σ ∈ σ ∃µ ∈ µ ∀y ∈ V ε σ βy → * ε µ y equation w1 = w2 where x1 :s1 , . . . , xm :sm σ w1 = σ w2 solution γw1 ↔ * γw2 where γw1 ↔ * γw2 and τ where ∀x ∈ W sortof (γx) ⊂ sortof (x) nf [τ γ x1, . . . , xm ] ⊂ σ x1, . . . , xm and nf [τ β u1, . . . , un ] = {} w, w1, w2 ∈ TCR,F,V , l1, . . . , ln ∈ TCR,V , σ, τ, µ ⊂ T * (V →CR) , W = vars(w) = vars(w1, w2) = {x1, . . . , xm} = dom(σ), V = vars(l1, . . . , ln) = {y1, . . . , ym} =N at] x + x sort N at + N at = N at [x := N at] (x + x) = Even def. eq. a :=N at] a + 0 = [a:=N at] a [a,b:=N at] a+s(b) = [a,b:=N at] s(a+b) [a,b:=N at] s(a)+b = [a,b:=N at] s(a+b) β = [a := x + x, b := y] [x,y:=N at] s(x + x + s(y)) → [x,y:=N at] s(s(x + x + y)) where β = [a := x + x, b := y] sortof (βa) = N at+N at = sortof (a) for [x := s i (0), y := s j (0)] sortof (βb) = N at = sortof (b) choose [x := s 2•i (0), y := s j (0)] equation s(s(x :Nat )) = y :Nat + y :Nat [x,y:=N at] s(s(x)) = y + y solution γ = [x := z :Nat + z :Nat
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 10 Fig. 10. Comparison of classical order-sorted terms and annotated terms
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 12 Fig. 12. Applying a global transformation in an example computation tree
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 13 Fig. 13. Range sort computation for x + x
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 14 Fig. 14. Range sort computation for val
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 15 Fig. 15. Sort and function definitions for synthesis of binary arithmetic algorithms
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 16 Fig. 16. Implementation proofs for binary arithmetic

  s nat ?solve(s(val(c)) = val(x), S). s val c = val x 1 [dup val x 19 = s val c] ← [x := x 19 : o] 2 [dup val x 23 = val c] ← [x := x 23 : i] ind s val nil = val x s 0 = val x dup val x 27 = 0 0 = val x 27 0 = val x 27 ← [x 27 := nil] dup val x 27 = 0 ← [x 27 := nil] s 0 = val x ← [x := nil : i] s val nil = val x ← [x := nil : i] s val(c 25 : o) = val x s dup val c 25 = val x s dup val c 25 = val x ← [x := c 25 : i] s val(c 25 : o) = val x ← [x := c 25 : i] s val(c 26 : i) = val x s s dup val c 26 = val x dup val x 38 = s s dup val c 26 val f 24 (c 26 ) = val x 38 val f 24 (c 26 ) = val x 38 ← [x 38 := f 24 (c 26 )] dup val x 38 = s s dup val c 26 ← [x 38 := f 24 (c 26 )] s s dup val c 26 = val x ← [x := f 24 (c 26 ) : o] s val(c 26 : i) = val x ← [x := f 24 (c 26 ) : o] s val c = val x ← [x := f 24 (c)] S = [x := f 24 (c)] ?solve(0 + a = a, S). S = [ ] ?solve(s(a) + b = s(a + b), S). S = [ ] ?solve(dup(a) + dup(b) = dup(a + b), S). S = [ ] ?solve(val(c) + val(d) = val(x), S). val c + val d = val x 1 [0 = val c + val d] ← [x := nil] 2 [dup val x 141 = val c + val d] ← [x := x 141 : o] 3 [s dup val x 153 = val c + val d] ← [x := x 153 : i] 4 [0 = val d] ← [u 162 := val x, x := c] 5 [s(u 186 + v 187 ) = val x, s v 187 = val d] ← [u 186 := val c] ind val nil + val nil = val x 0 + val nil = val x 0 + 0 = val x 0 = val x 0 = val x ← [x := nil] 0 + 0 = val x ← [x := nil] 0 + val nil = val x ← [x := nil] val nil + val nil = val x ← [x := nil] val nil + val(d 191 : o) = val x 0 + val(d 191 : o) = val x 0 + dup val d 191 = val x dup val d 191 = val x dup val d 191 = val x ← [x := d 191 : o] 0 + dup val d 191 = val x ← [x := d 191 : o] 0 + val(d 191 : o) = val x ← [x := d 191 : o] val nil + val(d 191 : o) = val x ← [x := d 191 : o] val nil + val(d 192 : i) = val x 0 + val(d 192 : i) = val x 0 + s dup val d 192 = val x s(0 + dup val d 192 ) = val x s dup val d 192 = val x s dup val d 192 = val x ← [x := d 192: i] s(0 + dup val d 192 ) = val x ← [x := d 192 : i] 0 + s dup val d 192 = val x ← [x := d 192 : i] 0 + val(d 192 : i) = val x ← [x := d 192 : i] val nil + val(d 192 : i) = val x ← [x := d 192 : i] val(c 189 : o) + val nil = val x val(c 189 : o) + 0 = val x dup val c 189 + 0 = val x dup val c 189 = val x dup val c 189 = val x ← [x := c 189 : o] dup val c 189 + 0 = val x ← [x := c 189 : o] val(c 189 : o) + 0 = val x ← [x := c 189 : o] val(c 189 : o) + val nil = val x ← [x := c 189 : o] val(c 189 : o) + val(d 191 : o) = val x dup val c 189 + val(d 191 : o) = val x dup val c 189 + dup val d 191 = val x dup(val c 189 + val d 191 ) = val x dup val f 188 (c 189 , d 191 ) = val x dup val f 188 (c 189 , d 191 ) = val x ← [x := f 188 (c 189 , d 191 ) : o] dup(val c 189 + val d 191 ) = val x ← [x := f 188 (c 189 , d 191 ) : o] dup val c 189 + dup val d 191 = val x ← [x := f 188 (c 189 , d 191 ) : o] dup val c 189 + val(d 191 : o) = val x ← [x := f 188 (c 189 , d 191 ) : o] val(c 189 : o) + val(d 191 : o) = val x ← [x := f 188 (c 189 , d 191 ) : o] val(c 189 : o) + val(d 192 : i) = val x dup val c 189 + val(d 192 : i) = val x dup val c 189 + s dup val d 192 = val x s(dup val c 189 + dup val d 192 ) = val x s dup(val c 189 + val d 192 ) = val x s dup val f 188 (c 189 , d 192 ) = val x s dup val f 188 (c 189 , d 192 ) = val x ← [x := f 188 (c 189 , d 192 ) : i] s dup(val c 189 + val d 192 ) = val x ← [x := f 188 (c 189 , d 192 ) : i] s(dup val c 189 + dup val d 192 ) = val x ← [x := f 188 (c 189 , d 192 ) : i] dup val c 189 + s dup val d 192 = val x ← [x := f 188 (c 189 , d 192 ) : i] dup val c 189 + val(d 192 : i) = val x ← [x := f 188 (c 189 , d 192 ) : i] val(c 189 o) + val(d 192 : i) = val x ← [x := f 188 (c 189 , d 192 ) : i] val(c 190 : i) + val nil = val x val(c 190 : i) + 0 = val x s dup val c 190 + 0 = val x s dup val c 190 = val x s dup val c 190 = val x ← [x := c 190 : i] s dup val c 190 + 0 = val x ← [x := c 190 : i] val(c 190 : i) + 0 = val x ← [x := c 190 : i] val(c 190 : i) + val nil = val x ← [x := c 190 : i] val(c 190 : i) + val(d 191 : o) = val x val(c 190 : i) + dup val d 191 = val x s dup val c 190 + dup val d 191 = val x s(dup val c 190 + dup val d 191 ) = val x s dup(val c 190 + val d 191 ) = val x s dup val f 188 (c 190 , d 191 ) = val x s dup val f 188 (c 190 , d 191 ) = val x ← [x := f 188 (c 190 , d 191 ) : i] s dup(val c 190 + val d 191 ) = val x ← [x := f 188 (c 190 , d 191 ) : i] s(dup val c 190 + dup val d 191 ) = val x ← [x := f 188 (c 190 , d 191 ) : i] s dup val c 190 + dup val d 191 = val x ← [x := f 188 (c 190 , d 191 ) : i] val(c 190 : i) + dup val d 191 = val x ← [x := f 188 (c 190 , d 191 ) : i] val(c 190 : i) + val(d 191 : o) = val x ← [x := f 188 (c 190 , d 191 ) : i] val(c 190 : i) + val(d 192 : i) = val x s dup val c 190 + val(d 192 : i) = val x s dup val c 190 + s dup val d 192 = val x s(s dup val c 190 + dup val d 192 ) = val x s s(dup val c 190 + dup val d 192 ) = val x s s dup(val c 190 + val d 192 ) = val x s s dup val f 188 (c 190 , d 192 ) = val x dup val x 248 = s s dup val f 188 (c 190 , d 192 ) val f 24 (f 188 (c 190 , d 192 )) = val x 248 val f 24 (f 188 (c 190 , d 192 )) = val x 248 ← [x 248 := f 24 (f 188 (c 190 , d 192 ))] dup val x 248 = s s dup val f 188 (c 190 , d 192 ) ← [x 248 := f 24 (f 188 (c 190 , d 192 ))] s s dup val f 188 (c 190 , d 192 ) = val x ← [x := f 24 (f 188 (c 190 , d 192 )) : o] s s dup(val c 190 + val d 192 ) = val x ← [x := f 24 (f 188 (c 190 , d 192 )) : o] s s(dup val c 190 + dup val d 192 ) = val x ← [x := f 24 (f 188 (c 190 , d 192 )) : o] s(s dup val c 190 + dup val d 192 ) = val x ← [x := f 24 (f 188 (c 190 , d 192 )) : o] s dup val c 190 + s dup val d 192 = val x ← [x := f 24 (f 188 (c 190 , d 192 )) : o] s dup val c 190 + val(d 192 : i) = val x ← [x := f 24 (f 188 (c 190 , d 192 )) : o] val(c 190 : i) + val(d 192 : i) = val x ← [x := f 24 (f 188 (c 190 , d 192 )) : o] val c + val d = val x ← [x := f 188 (c, d)] S = [x := f 188 (c, d)] ?solve(a + b + b = a + dup(b), S). S = [ ] ?solve(a * dup(b) = dup(a * b), S). S = [ ] ?solve(dup(val(c)) + val(d) = val(f 188 (c : o, d)), S). S = [ ] ?solve(val(c) * val(d) = val(x), S). (val c) * (val d) = val x 1 [0 = (val c) * (val d)] ← [x := nil] 2 [dup val x 412 = (val c) * (val d)] ← [x := x 412 : o] 3 [s dup val x 419 = (val c) * (val d)] ← [x := x 419 : i] 4 [0 = val x, 0 = val d] ← [u 420 := val c] 5 [u 427 * v 428 + u 427 = val x, s v 428 = val d] ← [u 427 := val c] ind[d]. (val c) * (val nil) = val x (val c) * 0 = val x 0 = val x 0 = val x ← [x := nil] (val c) * 0 = val x ← [x := nil] (val c) * (val nil) = val x ← [x := nil] (val c) * (val(d 430 : o)) = val x (val c) * (dup val d 430 ) = val x dup(val c) * (val d 430 ) = val x dup val f 429 (c, d 430 ) = val x dup val f 429 (c, d 430 ) = val x ← [x := f 429 (c, d 430 ) : o] dup(val c) * (val d 430 ) = val x ← [x := f 429 (c, d 430 ) : o] (val c) * (dup val d 430 ) = val x ← [x := f 429 (c, d 430 ) : o] (val c) * (val(d 430 : o)) = val x ← [x := f 429 (c, d 430 ) : o] (val c) * (val(d 431 : i)) = val x (val c) * (s dup val d 431 ) = val x (val c) * (dup val d 431 ) + val c = val x dup(val c) * (val d 431 ) + val c = val x dup val f 429 (c, d 431 ) + val c = val x val f 188 (f 429 (c, d 431 ) : o, c) = val x val f 188 (f 429 (c, d 431 ) : o, c) = val x ← [x := f 188 (f 429 (c, d 431 ) : o, c)] dup val f 429 (c, d 431 ) + val c = val x ← [x := f 188 (f 429 (c, d 431 ) : o, c)] dup(val c) * (val d 431 ) + val c = val x ← [x := f 188 (f 429 (c, d 431 ) : o, c)] (val c) * (dup val d 431 ) + val c = val x ← [x := f 188 (f 429 (c, d 431 ) : o, c)] (val c) * (s dup val d 431 ) = val x ← [x := f 188 (f 429 (c, d 431 ) : o, c)] (val c) * (val(d 431 : i)) = val x ← [x := f 188 (f 429 (c, d 431 ) : o, c)] (val c) * (val d) = val x ← [x := f 429 (c, d)] S = [x := f 429 (c, d)]
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 223 Fig. 22. Search-tree construction for comb vectors
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 24 Fig. 24. Specification of the insert algorithm

  denotes the Cartesian product of sets A and B. For a finite set A, we denote its cardinality by #A. We tacitly extend notations like

n i=1 A i to several binary operators defined in this paper, e.g. n i=1 S i := S 1 | . . . | S n . Definition 3. Let vars(v 1 , . . . , v n ) denote the set of variables occurring in any of the terms v i . A term is called linear if it contains no multiple occurrences of the same variable; it is called pseudolinear, if any two occurrences of the same variable are at the same depth; it is called semilinear if,

  β 2 do not agree on dom(β 1 ) ∩ dom(β 2 ). A substitution β is called linear if the term βx 1 , . . . , βx n is linear, where {x 1 , . . . , x n } = dom(β); similarly, β is called pseudolinear if βx 1 , . . . , βx n is pseudolinear. We use the common notions of renaming substitution and most general unifier

  The following algorithm computes the intersection of two regular sorts. Let S 1 and S 2 be sort names, let S be a new sort name. Define inf (S 1 , S 2 ) = S, where a new sort definition is introduced for S:1. If inf (S 1 , S 2 ) has already been called earlier, S is already defined (loop check).

	Algorithm 10. 2. Else, if S 1 . = S 11 | . . . | S 1n , define S 3. Else, if S 2 . = S 21 | . . . | S 2n , define S 4. Else, if S 1 . = cr(S 11 , . . . , S 1n ) and S 2 define S . = cr(inf (S 11 , S 21 ), . . . , inf (S 1n , S 2n )) . = inf (S 11 , S 2 ) | . . . | inf (S 1n , S 2 ) . = inf (S 1 , S 21 ) | . . . | inf (S 1 , S 2n ) . = cr(S 21 , . . . , S 2n ), 5. Else, define S . = ⊥
	Using Thm. 7 with p S (u) :⇔	
			1 , Bin0) :: inf (I, I)	by 4.
	inf (Bin 2 , Bin1) = Sort1		by 1.
	inf (O, O) = Sort11	. = O	by 4.
	inf (Bin 2 , Bin0) = Sort12	. = Bin 2 by similar computations
	inf (O, I) = Sort13	. = ⊥	by 5.
	inf (Bin 1 , Bin1) = Sort14	. = . . . by similar computations
	inf (I, O) = Sort15	. = ⊥	by 5.
	inf (Bin 1 , Bin0) = Sort16	. = inf (Bin 1 , Bin)	by 3.
	inf (I, I) = Sort17	. = I	by 4.
	inf (Bin 1 , Bin) = Bin 1 by similar computations
	Hence,		
	Sort1	. = Sort2 | Sort3 | Sort4,
	Sort2	. = Sort5 | Sort6,
	Sort3	. = Sort7 | Sort8,
	Sort4	. = Sort9 | Sort10,
	Sort5	. = ⊥	
	Sort6	. = ⊥	
	Sort7	. = Sort1 :: Sort11,
	Sort8	. = Sort12 :: Sort13,
	Sort9	. = Sort14 :: Sort15,
	Sort10	. = Sort16 :: Sort17,
	Sort16	. = Bin 1	
	Sort11	. = O	
	Sort12 = Bin 2	
	Sort13	. = ⊥	
	Sort14	. = . . .	
	Sort15	. = ⊥	
	Sort17	. = I	
		Fig. 3. Example computation of sort infimum

  has already been called earlier, S is already defined (loop check). 2. If S 1 . = S 11 | . . . | S 1n , define S . = dif f (S 11 , S 2 | . . . | S m ) | . . . | dif f (S 1n , S 2 | . . . | S

	3. If S i 4. If S 1	m ) = dif f (S 1 , S 2 | . . . | S i-1 | S i+1 | . . . | S m | S i1 | . . . | S in ) . = cr(S m1 , . . . , S mn ), with n > 0, = S i1 | . . . | S in for 2 i m, define S . . = cr(S 11 , . . . , S 1n ) . . . , S m .
	let S l1,...,lm be a new sort name for each l 1 , . . . , l m ∈ {1, . . . , n}, define S . = n l1=1 . . . n lm=1 S l1,...,lm and S l1...lm . = cr(dif f (S 11 , j 2, lj=1 S j1 ), . . . , dif f (S 1n , j 2, lj=n S jn )). 5. If S 1 . = cr, S 2 . = cr and m = 2, define S . = ⊥ 6. If S 1 . = cr(. . .) and S m . = cr (. . .) with cr = cr and m > 2, define S . = dif f (S 1 , S 2 | . . . | S m-1 ) 7. If S 1 . = cr(. . .) and S m . = cr (. . .) with cr = cr and m = 2, define S . = S 1 8. If S 2 . = ⊥ and m = 2, define S . = S 1 .

  1. If S ∈ Occ, define inh(S, Occ) = {}, f alse, {S}, {S} 2. Else, if S . = S 1 | . . . | S n , define inh(S, Occ) = A 1 ∪ . . . ∪ A n , B, C, D 3. Else, if S . = cr(S 1 , . . . , S n ), define inh(S, Occ) = cr[A 1 × . . . × A n ], B, C, D 4. Else, if S . = cr, define inh(S, Occ) = {cr}, f alse, {S}, {}where A i , B i , C i , D i := inh(S i , Occ ∪ {S}) for i = 1, . . . , n, B := B 1 ∨ . . . ∨ B n ∨ S ∈ C 1 ∪. . .∪C n , C := C 1 ∪ . . . ∪ C n ∪{S}, and D := (D 1 ∪ . . . ∪ D n ) \ {S}. A is used to decide S M = {}, B is true if a loop occurs in the definition of S, C is used to compute B, and D is used only for proof technical reasons and need not be computed in a practical implementation. Let inh(S, {}) = A, B, C, D . Then, S M = {} iff A = {}; S M finite iff B ⇔ f alse, and in this case A = S M . Occ 1 < Occ 2 :⇔ Occ 2 Occ 1 to show termination and complexity; note that Occ 1 , Occ 2 is bounded from above by the finite set use(S). 2. Let inh(S, Occ) = A, B, C, D , and

	The algorithm needs
	at most #use(S) * 2 #use(S) recursive calls to compute inh(S, {}). Define single(S) :⇔ inh(S, {}) =
	{u}, f alse, C, D for some u, C, D.
	Proof.
	1. Use

  2. Else, if σ . = σ 1 | . . . | σ n , define µ . = f act(σ 1 , β) | . . . | f act(σ n , β). 3. Else, if σ . = cr(σ 1 , . . . , σ n ) with dom(β) ⊂ dom(cr), and cr x = cr y whenever βx = βy, define cr : ran(β) → CR by cr βx := cr x , define µ . = cr (f act(σ 1 , β), . . . , f act(σ ar(cr ) , β)). Using the induction principle from Thm. 7, lifted to t-sets, with p µ (σ ) :⇔ σ ∈ σ M / β if µ = f act(σ, β), it can be shown that f act(σ, β) M = σ M / β . The algorithm needs at most #use(σ) recursive calls to compute f act(σ, β). Definition 48. β is called homogeneous if all variables in the range of β occur at the same depth, i.e., if βx ∈ V for each x ∈ dom(β), or if βx = cr x (u x1 , . . . , u x ar(crx) ) for all x ∈ dom(β) and appropriate u xi , and [x := u xi | x ∈ dom(β), ar(cr x ) i] is again homogeneous for each i.

	4. Else, define µ	. = ⊥.

Algorithm 49. The following algorithm computes f act(σ, β) if β is homogeneous. Let σ be a regular t-set, define f act(σ, β) by:

1. If β = [ ], define f act(σ, β) := {ε}. 2. Else, if βx ∈ V

for all x, compute f act(σ, β) by Alg. 47. 3. Else, if σ

  only applications of 64.1 are shown). The complete index sets for each function are listed in the table. Suppose a global transformation were applicable if we could restrict our attention to f | g | h | k | l (shown in bold face). The procedure described above results in selection of the index set {2, 3} for both, f 2 and f 4 , and {1, 3} for f 1 , deleting alternative c, as well. Hence, the transformation has been made applicable.

  ?eval term(f 429 (nil : i : o : i, nil : i : i : o), T ). T = nil : i : i : i : i : o ?listing( . =), listing(law), listing(def ). | s s sort 1 . law s val v 43 = val f 24 (v 43 ). law 0 + v 50 = v 50 . law s v 87 + v 88 = s(v 87 + v 88 ). law dup v 117 + dup v 118 = dup(v 117 + v 118 ). law val v 254 + val v 255 = val f 188 (v 254 , v 255 ). law v 340 + v 341 + v 341 = v 340 + dup v 341 . law v 356 * (dup v 357 ) = dup v 356 * v 357 . law dup val v 397 + val v 398 = val f 188 (v 397 : o, v 398 ). law (val v 446 ) * (val v 447 ) = val f 429 (v 446 , v 447 ). def f 24 (v 35 : o) = v 35 : i. def f 24 (v 42 : i) = f 24 (v 42 ) : o. def f 188 (nil, nil) = nil. def f 188 (nil, v 201 : o) = v 201 : o. def f 188 (nil, v 207: i) = v 207 : i. def f 188 (v 215 : o, nil) = v 215 : o. def f 188 (v 224 : o, v 225 : o) = f 188 (v 224 , v 225 ) : o. def f 188 (v 231 : o, v 232 : i) = f 188 (v 231 , v 232 ) : i. def f 188 (v 238 : i, nil) = v 238 : i. def f 188 (v 244 : i, v 245 : o) = f 188 (v 244 , v 245 ) : i. def f 188 (v 252 : i, v 253 : i) = f 24 (f 188 (v 252 , v 253 )) : o. def f 429 (v 433 , nil) = nil. def f 429 (v 442 , v 443 : o) = f 429 (v442 , v 443 ) : o. def f 429 (v 444 , v 445 : i) = f 188 (f 429 (v 444 , v 445 ) : o, v 444 ).

	nat bin sort 1 . = 0 | s nat. . = nil | bin : o | bin : i. . = 0

def val nil = 0. def val(x : o) = dup val x. def val(x : i) = s dup val x. def dup 0 = 0. def dup s u = s s dup u. def u + 0 = u. def u + s v = s(u + v). def u * 0 = 0. def u * (s v) = u * v + u.

def f 24 (nil) = nil : i.

  : N at, t 1 : T ree1 | T ree2, t 2 : T ree1) n < t 2 (38) | node1(n : N at, t 1 : T ree1 | T ree2, t 2 : T ree2 | nil t )

		37)
	T ree1 = node1(n T ree2 . . = node2(N at, T ree2 | nil t ) List . = nil l | N at+List Set . = mt | add(List, Set)	(39) (40)

  (w 1 : u 1 ) . . . (w n : u n ))

	homogeneous	48 26	restrict(σ, V )	40 22
	i	4 8	rewrite relation	61 30
	independent	38 22	rg	59 29
	Induction Principle	6 8	rg c	78 39
	inf (S 1 , S 2 )	10 12	rg(σ, v)	73 35
	inhabitance	9 9	S	1 7
	inh(S, Occ)	12 12	S	1 7
	intersection	9 9	semantics	4 8
	junk terms	61 30	semi-independent	38 22
	lazy narrowing	75 37	semilinear	3 7
	Lex x<y	42 23	(σ)	62 32
	lifting	23 17	single(S)	12 12
	linear	3 7	S M	4 8
	linear	3 7	snoc	4 8
	(ln)	75 37	solution of an equation	74 37
	local transformation rules	64 32	sort definitions	4 8
	loop-checking rules	9 9	sort equivalence	9 9
	M	4 8	sort expressions	4 8
	max f	70 34	sort names	1 7
	max f	71 34	sort system	4 8
	mgu(v 1 , v 2 )	3 7	Sorted Narrowing	74 37
	most general unifier	3 7	Sorted Rewriting	60 30
	M tch x,y	42 23	SortN ame	4 8
	N at	78 39	subsort	9 9
	N at x	36 21	substitution	3 7
	N at x,y	36 21	Sum x,y,z	42 23
	N at x<y	36 21	S X	4 8
	N at x=y	36 21	T CR	1 7
	N at y	36 21	T CR,F /↔ *	61 30
	nf [A]	61 30	T CR,F ,V	1 7
	nf c	78 39	T CR,F ,V,S	1 7
	nf (v)	61 30	T CR,V	1 7
	non-constructor functions	1 7	T (V →CR)	15 15
	o	4 8	T X	1 7
	ordinary substitution	3 7	T X,Y	1 7
	parallel composition	13 15	T * (V →CR)	15 15
	parallel composition	22 17	T * (V →CR)	17 16
	parallel composition	3 7	terms	1 7
	partial mappings	17 16	t-sets	15 15
	P ref x,y,z	42 23	t-substitutions	15 15
	pseudolinear	3 7	tuple	2 7
	pseudolinear	3 7	u	1 7
	ran(β)	3 7	use(S)	6 8
	Rank of a T-Substitution	64 32	v	1 7
	rank(σ , (w 1 : u 1 ))	65 32	V	1 7
	rank(σ , 65 32 regular 6 8 relative complement 9 9 renaming substitution 3 7 restriction 13 15 restriction 21 17 restriction 3 7	v 1 v 1 v 2 v 2 = v 1 , . . . , v n v i | p(v i ), i = 1, . . . , n val variables	3 7 3 7 2 7 2 7 78 39 1 7

Cf. e.g. the mathematical definition of the notion of strategy in[START_REF] Echahed | On Completeness of Narrowing Strategies[END_REF].

Notations and naming conventions are consistent with Def. 1 below.

Schmidt-Schauß[START_REF] Schmidt-Schau | Computational Aspects of an Order-Sorted Logic with Term Declarations[END_REF] admits "term declarations", allowing the user to declare different sorts for terms with different bindings. In our approach, however, the sorts are to be computed automatically.

"⊂" denotes subset or equality, " " denotes proper subset.

Remember that e.g. σ 1 u1 yields a set of ground constructor terms with at most one element.

I.e. β {} is a renaming substitution on u

For an extended sort S = σu, we define use(S) = use(σ).

Cf. Figs. 19 and 21 in App. A, where the search space for this example is shown for both unsorted and sorted narrowing.

Definition 62. Define w M ⊂ T CR,F ,V by: S M := S M as in Def. 4 for S ∈ S g(v 1 , . . . , v n ) M := {g(v 1 , . . . , v n ) | v 1 ∈ v M 1 , . . . , v n ∈ v M n } for g ∈ CR ∪ F x M := {x} for x ∈ V For w ∈ T CR,S , w M agrees with Def. 4. For w ∈ T CR,F ,V we always have w M = {w}. We tacitly extend the operations of Sect. 3 to T CR,F ,V by treating function symbols from F like constructors from CR, e.g. (0 x ) (x + x) = {0 + 0}. Let (w : u) M := {σ | dom(σ ) = vars(w, u), ∃w ∈ w M , u ∈ u M σ w ↔ * σ u } and ((w 1 : u 1 ) (w 2 : u 2 )) M := (w 1 : u 1 ) M • (w 2 : u 2 ) M . We write (σ) to denote an expression (w 1 : u 1 ) . . . (w n : u n ) such that ((w 1 : u 1 ) . . . (w n : u n )) M = σ, e.g. (N at x,y ) denotes (N at : x)(N at : y), but note that σ need neither be independent nor even regular. The terms are unsorted in order to deal with t-sets explicitly; ( σ w : τ u) can be written as (σ) (τ ) (w : u). Note that the t-substitutions in (w : u) M always yield ground constructor terms.

Lemma 63. Let ε f (w 1 , . . . , w n ) → * ε u, for w 1 , . . . , w n ∈ T CR,F and u ∈ T CR ; let I ⊂ {1, . . . , m} such that nf [ w 1 , . . . , w n ] ∩ dom(f, I) = nf [ w 1 , . . . , w n ] ∩ dom(f ); then, i ∈ I and µ i ∈ µ i exists such that w j → * µ i u ij for j = 1, . . . , n and µ i v i → * u.

Proof. Consider the first reduction at root position within the chain ε f (w 1 , . . . , w n ) ↔ * ε u.

Definition 64. The following local transformation rules for rg are defined (excerpt): Proof. Use 63 for correctness of rule 1.; correctness of 2. and 3. follows by simple computations.

Only one proper approximation rule is needed, viz. (w 1 : u 1 ) . . . (w n : u n ) M ⊂ (w 2 : u 2 ) . . . (w n : u n ) M ; all other rules can be made exact by including the left-hand side in the right-hand side.

Applying local transformations creates a computation tree with alternatives (separated by "|") as nodes, each alternative having a unique computation path from the root, cf. Fig. [START_REF] Thatcher | Generalized finite automata theory with an application to a decision problem of second-order logic[END_REF]. Global transformations operate on such computation trees. A proof methodology ("rank induction") is provided in Def. 65 and Lemma 66 for their verification that also allows the introduction of new global rules, if necessary, for some class of applications.

Definition 65. Let σ ∈ ((w 1 : u 1 ) . . . (w n : u n )) M , then e.g. σ w 1 ↔ * σ u 1 , where σ u 1 ∈ T CR is in normal form. Owing to confluence and termination, each "→ " chain starting from σ w 1 ends after finitely many steps at σ u 1 . Define rank(σ , (w 1 : u 1 )) as the length of the longest such chain, which always exists. Define rank(σ , (w 1 : u 1 ) . . . (w n : u n )) := n i=1 rank(σ , (w i : u i )). We always have rank(σ , (σ)) ∈ IN and rank(σ , (τ )) = 0 for τ regular t-set.

Lemma 66. Let (σ) = (σ 1 ) | . . . | (σ m ) be the result of repeated application of the rules from Def. 64, let z ∈ dom(σ) ∩ dom(σ 1 ) ∩ . . . ∩ dom(σ m ). Then for each σ ∈ (σ) M , an i ∈ {1, . . . , m} and a σ i ∈ (σ i ) M exists such that σ z = σ i z and rank(σ , (σ)) rank(σ i , (σ i )) + n i , where n i denotes the number of applications of Def. 64.1 in the path from (σ) to (σ i ).

Proof. Induction on the number of applications of rules from Def. 64.

Lemma 67. (Global Transformation: Loop-Checking Rule) Assume z ∈ dom(σ) ⊃ vars(v) x and a computation tree of the form (σ

where in each alternative's path at least one application of rule 64.1 occurred. Then, ((σ) (v : z)) M ⊂ (S : z) M , where S is a new sort name defined by S .

where in each alternative's path at least one application of Def. 64.1 occurred. Then, (σ)

provided (u i : u j ) M = {} for all i ∈ {k + 1, . . . , m}, j ∈ {1, . . . , k}. Intuitively, constructor terms u 1 , . . . , u k may be produced as the value of z or v only in alternatives 1, . . . , k, but this in turn requires a constructor term u 1 , . . . , u k . Hence, there is no recursion basis, i.e. v may not have a u i as its value, i.e. the first k alternatives are superfluous.

We abbreviate u(y, u 12 , . . . , u 1k ) to u(y, u 1 ). Assume

Intuitively, a constructor term of the form u(v, . . .) can occur only in two places:

in one of the alternatives 1, . . . , n 1 , v having the form v i (v ) where u(v , . . .) occurred earlier; or in one of the alternatives n 1 + 1, . . . , n 2 , v having the form v i . Thus, it is always true that v ∈ S M .

Algorithm 70. The following algorithm provides an initial, coarse approximation max f of the range sorts for an equationally defined function f . max f . = max µ1,v1 | . . . | max µm,vm where max µ,w for w ∈ T CR,F ,V is defined by: max µ,g(w1,...,wn) := max g if g ∈ F max µ,cr(w1,...,wn) . = cr(max µ,w1 , . . . , max µ,wn

f , as can be shown by induction on the length of the → chain.

Algorithm 71. Assume f is defined by the (yet unsorted) equations f (u 11 , . . . , u 1n1 ) = v 1 . . . f (u m1 , . . . , u mnm ) = v m Proof. Rules may be restricted using the fact that the solution set of

To prove the completeness of assigning sorts to variables in goal equations, observe that each definition of a regular t-set σ can be transformed into a definition of a function f σ admitted by Def. 61 such that σ ∈ σ M iff f σ (σ x 1 , . . . , σ x n ) = true, where dom(σ) = {x 1 , . . . , x n } and true ∈ CR. Hence, a sorted equation σ v 1 = σ v 2 can be simulated without sorts by

Assigning non-trivial sorts to variables in defining equations is possible for conditional calculi in a similar way.

Lemma 76. Let σ be independent, and let x be new; then, the equation

provided the approximation rule was not used in rg computation.

Lemma 76 shows that the amount of search space reduction by the sorts depends only on the quality of approximations by rg and the expressiveness of our sort language. Without the reflection of variable bindings in sorts, such a result is impossible, even if no "occur check" and no nonconstructor functions are involved, e.g. x, y = 0, s(0) is solvable, but x, x = 0, s(0) is not.

It is possible to extend the presented framework to cope with unfree constructors, too. This allows us, for example, to define a sort Set of sets of natural numbers, cf. App. B. As we show below, it is sufficient to be able to compute the closure of a sort wrt. the congruence relation induced by the equations between constructors.

Definition 77. Assume we are given certain equations between constructors in addition to the equations for defined functions. As in Def. 61, we define the rewrite relation → c to be induced by the equations between constructors. We do not require → c to be confluent, nor to be Noetherian. For the union of both equation sets, we similarly define → cd . We require the defining equations to be compatible with the constructor equations, i.e.

whenever at least one of the two normal forms exists. Note that the sort algorithms work only on free sorts and hence ignore the relation

Proof. "⇐" trivial; "⇒" by induction on the length of the ↔ cd * chain.

In each equivalence class wrt. ↔ c * , we may select an arbitrary element and declare it to be the normal form, thus defining nf c . We adapt the notion of solution of an equation system from Def. 74 by replacing ↔ * with ↔ cd * , leaving condition 74.3 unchanged. Then, using Lemma 78, we can show that an equation

If we have an algorithm rg c to compute upper approximations for nf c [•], similar to rg for nf [•], we can extend the sorted narrowing rules from Def. 75 to cope with unfree constructors by replacing rg(τ, v) with rg c (rg(τ, v)), etc. However, such an algorithm is not provided here.

Appendix A Case Study "Binary Arithmetic"

In this appendix, the synthesis of algorithms for incrementation, addition, and multiplication of binary numbers is shown. Figure 16 gives an overview of the induction proofs conducted, together with the induction variable, the computation time (in seconds on a Sparc 1 under Quintus Prolog), and the number of subgoals. a and b denote (Skolem) constants, while x denotes a variable with respect to which the equation is to be solved. Note that in our paradigm, universally quantified variables are skolemized into constant symbols; induction is performed over just some of these constants. Figure 17 lists the synthesized algorithms.

...

... 

⊕ : N at × Set → Set pointwise prefixes a set of distance lists by a new distance:

∪ : Set × Set → Set is the ordinary set union:

We have the following equations between constructors: add(l1, add(l2, s)) = add(l2, add(l1, s)) (49) add(l, add(l, s)) = add(l, s)

Finally, we need the following derived lemma: Using the terminology introduced in Sect. 7, we have as 1 = Set × (N at + List), as 2 = Set, ao(s, l) = add(l, s), cs 1 = T ree × List, cs 2 = T ree, co(t, l) = insert(t, l) is to be synthesized, r 1 (t, l) = rep(t), l , and r 2 (t) = rep(t).

The specification uses several auxiliary functions defined in Fig. 25. Expressed in informal terms, it says: "Given a tree t and a non-empty distance list l, find a tree T that contains the same distance lists as t and additional l"; and in formal terms: ∀t ∈ T ree M , l ∈ (N at+List) M ∃T ∈ T ree M rep•T = add(l, rep•t). The insert function will be synthesized as Skolem function for T .

Using Alg. 73, we obtain the following range sorts of rep, cf. Fig. 26:

Since the data type Set is built up from unfree constructors (cf. Eqns. ( 49) and ( 50)), we have to somehow compute the normal form sorts, cf. the remarks at the end of Sect. Intuitively, a term of sort Sort 54 denotes a set of distance sequences of which at least one has a length 2, while a term of sort Sort 55 denotes a set of distance sequences of length 1. Sort 52 , Sort 53 , and mt are pairwise disjoint, as are Sort 54 , Sort 55 , and mt. These signatures are too complex for there to be much likelihood of their being declared by a user who does not know the proof in advance. The estimation of range sorts, especially of rep, with such precision that inputs starting with different constructors result in disjoint output sorts is the main contribution of the sort discipline to searchspace reduction in this example.

When verifying by hand, without use of the sort discipline, some intuition is needed to find out which values rep(node1(n, t 1 , t 2 )) can have:

First, we always have rep(node2(n, t)) = add(n+nil l , rep(t)) = mt. Then, rep(node1(n, t1, t2)) = n⊕rep(t1) ∪ rep(t2), where t2 may be nilt and thus rep(t2) = mt, but t1 has again the form node1(n , t 1 , t 2 ) 9 and thus (by I.H.) rep(t1) = mt, hence also n⊕rep(t1) = mt. Thus, we always have rep(node1(n, t1, t2)) = mt. Finally, rep(t1) contains at least one distance sequence of length 1 (for t1 = node2(n , t ) trivial, for t1 = node1(n , t 1 , t 2 ) by I.H.); that is why n⊕rep(t1) ⊂ rep(node1(n, t1, t2)) has to contain at least one distance sequence of length 2.

The "intuition" in this argumentation consists in recognizing two induction hypotheses and verifying them as valid. The main difficulty here consists in recognizing suitable hypotheses; checking of their validity could probably be carried out by an arbitrary induction prover. It is precisely this task of recognition that is performed by the sort discipline. The two implicitly made inductions in the intuitive argumentation correspond to applications of the global transformation rules from Lemmas 68 and 69, cf. Fig. 26.

Figures 28 to 35 show the synthesis proof. Variables are denoted by upper-case letters, constants by lower-case letters. A number in the right-hand column refers to the equation that has been used for narrowing (rule (ln) in Thm. 75), an exponent " -" denoting the reversed equation; "dec" and "I.H." mean the application of the decomposition rule (rule (d) in Thm. 75), and the induction hypothesis, respectively. Narrowing steps that are not uniquely determined by the sort discipline are marked with " * ". They all occur as a series of backward applications of laws for ⊕ or ∪ in order to get the right-hand side close to the syntactic structure of the left-hand side and then perform a decomposition. Application of the induction hypothesis is marked with "( * )" since it need only be taken into account if the actual equation's sort is too large to determine a narrowing step uniquely.

In cases that do not use the induction hypothesis, the sort restrictions enable us to find the solution automatically. For example, in case 2.1 (t = node2(n 1 , t 2 ), l = n 4 +nil l , cf. Fig. 30), owing to sort restrictions, only Eqn. (44) can be used in the narrowing step, since the right-hand side has the sort add(N at+nil l , Sort 53 ) ⊂ Sort 53 . In cases that actually use the induction hypothesis, the sort restrictions prune the search space to the size of a verification proof, solving the additional problems of synthesis. Moreover, the use of the sort discipline allows us to perform the crucial proper narrowing step as the very first one, providing syntactic information at the equations' left-hand side, which can be used by subsequent steps concerned with E-unification wrt. the Set equations.

The breaking-down of case 3.2 (t = node1(n 1 , t 2 , t 3 ), l = n 4 +n 5 +l 6 ) into three subcases 3.2.1 -3.2.3 can be done automatically. Each solution has to fulfill the additional requirement that insert(. . .) ∈ T ree M , since this is not ensured by the narrowing process itself. After having found the solution T = node1(n 4 , insert(nil t , n 5 +l 6 ), t) shown in Fig. 33, it can be determined that T ∈ T ree M only if insert(nil t , n 5 +l 6 ) ∈ T ree1 M ∪ T ree2 M and n 4 < n 1 . The former condition is delayed until the synthesis of the algorithm is complete and can then be verified by an easy induction. The latter condition is intended to be passed to a prover in which the sort algorithms are embedded; it must be able to detect that n 4 < n 1 ⇔ true and to initiate the search for further solutions of case 3.2. In this way, the solutions shown in Figs. 34 and 35 are found. Finally, the prover must be able to detect that all subcases have been covered, i.e.

The synthesized algorithm is shown in Fig. 27. 9 Or node2(n , t ), see above. 

Answer substitution:

Answer substitution: 

Answer substitution: