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Abstract
We theoretically study the heat conduction in a harmonic chain with a stochastic force field, in
contact with two Langevin thermal baths at different temperatures. In particular, we investigate the
interplay between the thermal baths properties and the size of the system. To this aim, we introduce a
stochastic force field, which is simple enough to be energy-conserving for each particle of the chain,
but sufficiently aleatory to induce the ballistic to diffusive transition in the conductive behavior of the
chain. When this stochastic force field is absent, we observe a ballistic behavior strongly dependent
on the characteristic collision frequency of the thermal baths for any size of the system. On the other
hand, when the stochastic force field is activated, the diffusive behavior is established and the effect
of the thermal baths is removed in the thermodynamic limit.

Keywords: heat conduction, stochastic methods, transport processes

(Some figures may appear in colour only in the online journal)

1. Introduction

While the thermal conduction in macroscopic objects is well
described by the Fourier diffusive law, the thermal transport
in low dimensional and nanostructured materials can show a
ballistic behavior, which have potential applications in
nanodevices thermal management [1], thermoelectric effi-
ciency [2], and quantum informatics [3]. The transition
between diffusive and ballistic regimes of heat transport [4–6]
has been experimentally observed in several systems includ-
ing silicon nanowires [7–10], doped silicon nanowires [11],
carbon or silicon nanotubes [12, 13], silicon membranes
[14–17], rarefied air chambers [18], liquids [19], and gra-
phene ribbons [20, 21]. In spite of these recent refined mea-
surements, since the time of the Fourier’s early work [22], the
microscopic foundations of heat conduction still remain par-
tially unexplained. In particular, the theoretical interpretation
of the ballistic to diffusive transition represents a crucial
problem of the out-of-equilibrium statistical mechanics.

From the historical point of view, since the 19th century,
the advancement of the out-of-equilibrium statistical mechanics

received a great impulse by the observation of the Brownian
motion [23, 24] and by its thoroughgoing interpretations of
Einstein [25, 26] and Smoluchowski [27]. These investigations
led Perrin to accurately measure the Avogadro number [28],
definitively confirming the atomistic hypothesis. In this context,
the Langevin stochastic differential equation was successufully
stated [29], and analysed through the Fokker-Planck methodol-
ogy [30–32]. More recently, Sekimoto defined the concept of
heat for a given fluctuating trajectory [33, 34], leading to the
origin of the stochastic thermodynamics. At the same time, the
concepts of entropy and entropy production have been gen-
eralized to deal with the Brownian motion [35, 36], allowing for
the demonstration of the laws of thermodynamics [37–40], and
other fluctuation theorems [41–44], on the base of the Langevin
postulates.

The development of these concepts is at the base of the
understanding of the thermal transfer in solids and nanoma-
terials. Indeed, the simplest introduced idealization of a heat
conducting system is a chain of N masses in contact at its
extremities with two thermal baths at different temperatures.
On the one hand, if the chain is characterized by purely
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harmonic interactions, heat diffusion (Fourier) is not estab-
lished, and a ballistic regime with thermal conductivity κ ∝ N
is theoretically observed [45]. In this case, the system has
been analyzed in a stationary non equilibrium state, by
obtaining, through the Langevin-Fokker-Planck formalism,
the closed form expression for the covariance matrix of the
positions of particles in the chain [45]. On the other hand, in
the ballistic regime, the chain elements transfer energy in each
mode without interactions all along the length, and the only
exchange of energy between modes takes place at the
boundaries through the interaction with the thermal baths. To
obtain a diffusive heat transfer, characterized by a finite value
of κ for  ¥N , some form of anharmonicity, disorder and/
or randomness must be included in the system [46], in order
to foster the energy exchange among the modes. Since this is
a scale-dependent process (see the finite mean free path of
phonons in a solid), deviations from the ballistic regime
would grow with the system size, eventually yielding the
expected diffusive behavior in the thermodynamic limit.

However, the minimal conditions for observing Fourier
conduction in an anharmonic chain are not well defined
[46, 47]. The related problem of ergodicity in a chain of
anharmonic oscillators was first studied by Fermi, Pasta and
Ulam (FPU) in a seminal numerical experiment [48], with the
well-known result that equipartition was not observed (see
Ref.[49] for the long time scale of the FPU problem). More
recently, it has been proved that the strong nonlinearity
regime entails the so-called anomalous diffusion (with
k xµ < <xN , 0 1) [50–54]. From then on, several ad hoc
models have been proposed in the attempt to reproduce the
diffusive conduction in simple systems. Without any preten-
sion to being exhaustive, one could cite: the ding-a-ling
model [55]; the ding-dong model [56, 57]; the Lorentz gas
model [58]; the Frenkel-Kontorova model [59, 60]; the
anharmonic chain with weak interparticle potential [61]; the
2D harmonic lattice model with missing bond defects [62];
the chain of coupled rotators [63]; the pinned anharmonic
chain [64]; the harmonic chain with inner stochastic reservoirs
obeying the self-consistent condition [65–67]; the harmonic
chain with graded mass distribution [68]; the lattice billiard
[69]; the chain with conservative stochastic dynamics
[70–77]. In all these cases, more or less complex perturba-
tions to the initial harmonic chain have been introduced to
force the energy exchange between the mode and to even-
tually generate a diffusive heat transport. However, depend-
ing on the working conditions, the thermal bath features may
influence the value of κ, thus weakening the concept of
thermal conductivity as an intrinsic property of the system

[45, 46, 78]. For instance, κ depends on the collision fre-
quency when Langevin thermal baths are used [45, 46]. Also,
it has been proved that the thermal bath spectral properties
can change the anomalous diffusive response of a system
[78].

In this paper, we attempt to clarify this issue by considering
a quite simple stochastic perturbation of the harmonic force field.
We show that switching on the perturbation describes the
transition from the ballistic to the diffusive regime for increasing
values of N, thus capturing the scale effects of the heat con-
duction in terms of the interplay between: (i) the collision fre-
quency β of the Langevin thermal baths, and (ii) the intensity μ

of the stochastic perturbation. The final result is a scale-depen-
dent thermal conductivity ( )k m= +aN b N , with a and b
parameters independent of N and μ, and only b depending on the
collision frequency β. The two limiting cases are: μ=0 (zero
stochastic perturbation), the conductivity is purely ballistic and
linear with N, and a function of the thermal bath properties
(through b); and the thermodynamic limit (  ¥N ) with
m ¹ 0, which leads to diffusive heat transfer with a finite con-
ductivity k m= adiff , thereby assigning a well-defined intrinsic
meaning to the concept of thermal conductivity of a macroscopic
system. We also study the relation between the elastic constants
of the harmonic interactions of the chain and its final heat
conductivity. The origin of the ballistic-diffusive transition is
finally discussed with reference to possible applications to
nanoscience and nanotechnology.

2. Stochastic force field

In the following we will consider a system of N particles of
given mass linked by harmonic springs, in contact with two
‘thermostats’, and subject to a perturbation inducing non-
linearity of the response (see figure 1). Since a nonlinear
model cannot be studied analytically, we introduce an effec-
tive stochastic perturbation to mimic the chaotic effects aris-
ing in a real nonlinear system. A minimal example of such
perturbation can be constructed as the cross product of the
instantaneous velocity ( )

v t and a random noise ( )
n t . By

construction, such a ‘vector-velocity’ perturbation randomly
modifies the direction of the velocity of a particle while
conserving its modulus. While the two-dimensional version
of this stochastic process has been introduced in the literature
[77, 79], here we analyze and discuss its three-dimensional
implementation. The (Langevin) stochastic dynamics of a

Figure 1. Structure of the chain conducting the heat flow  between the reservoirs at temperatures TL and TR>TL.
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single particle would be written:

( )
   g m= - + 
v

t
v v n

d

d
, 1

with μ the amplitude of the perturbation and γ a friction coef-
ficient. The noise can be taken as Gaussian, with the standard
properties of expectation value equal to zero for the first moment

{ ( )} = n t 0j , and { ( ) ( )} n t n ti j1 2 =2 ( )d d -t tij 1 2 for the
second moment (it is the so-called white or uncorrelated Gaus-
sian noise) [80–82].

This stochastic differential equation with multiplicative
noise for the variable ( )

v t is not completely defined mathema-
tically. It gets a precise meaning only after choosing a conven-
tion for the stochastic integrals, by specifying a parameter

a 0 1 that defines the point at which an integrated function
is evaluated in each interval of the adopted Riemann sum
[80–82]. More specifically, if we consider an arbitrary system
of differential equations ( )

= f x t,dx

dt
, we can write on a time

interval Δt the evolution ( ) 
òD =

+D
x f x t dt,

t

t t
, where

( ) ( )  
D = + D -x x t t x t . And the integral can be approxi-
mated through the expression ( )  

aD = + D Dx f x x t t, , where
α determines the position at which we calculate the function f in
the interval ( + Dt t t, ). Now, the important point is that if f is a
deterministic function, α does not influence the result for small
values ofΔ t; on the other hand, if f has a stochastic character, α
may strongly affect the result, in particular when multiplicative
white noises are present as in our model [80–82]. It is important
to remember that the uncorrelated white noise is an idealization
of real physical processes, which we interpret as fluctuations.
From a physical point of view, the Fisk-Stratonovich approach,
with α=1/2 [83, 84], should be adopted since it can be
obtained as the limiting process of a coloured noise (with finite
energy) towards an uncorrelated white one (with diverging
energy) [80–82]. However, for the sake of generality, in the
following development we maintain an arbitrary value of α

(including the Itô (α=0) [85] and the Hänggi-Klimontovich
(α=1) [86, 87] particular cases), and will later show that α
does not influence the system response (for further details on the
stochastic interpretation see also Ref.[88]). In particular, α does
not influence the thermal conductivity of the system under
investigation.

In our model, the precise value of this parameter is linked
to the amplitude of the perturbation, μ, and to the friction
coefficient, γ. By writing down the Fokker-Planck equation
[80–82] for the probability density ( )

W v t, of the velocity
vector


v ,

( ) ( )

[ ( ) ] ( )

g am

m d

¶
¶

=
¶
¶

+
¶
¶

+
¶

¶ ¶
-

W

t v
v W

v
v W

v v
v v v v W

4

, 2

i
i

i
i

i j
ij p p i j

2

associated to equation (1), we determine the time evolution of
{ · }  v v and { · }  v v as:

{ · } [ ( ) ] { · } ( )   g a m= - + - 
t

v v v v
d

d
2 2 1 2 , 3

{ · } [ ( ) ] { · } ( )   g a m= - + - 
t

v v v v
d

d
2 1 2 , 4

and we conclude that the dynamics can simultaneously
conserve { · }  v v and { · }  v v with the choice g =

( )a m-2 1 2 . It is interesting to observe that under the Stra-
tonovich interpretation (α=1/2) [84], the viscous dis-
sipative term in equation (1) vanishes (γ=0). This can be
understood by observing that the usual rules of calculus
remain unchanged within the Stratonovich interpretation of
the stochastic calculus. Therefore, through the scalar product
of equation (1) and


v , we directly obtain the time-invariance

of { · }  v v with γ=0. However, the other stochastic
interpretations require the dissipative term with the pertinent
collision frequency ( )g a m= -2 1 2 .

This choice has, moreover, much wider implications. In
fact, by adopting a stochastic calculus based on the as-defined
α, the complete, generalized Langevin equation for a particle
embedded in a potential energy field ( )V r , in contact with a
Langevin thermal bath, and subjected to the force in
equation (1), can be written as:

( )
 
=

r

t

p

m

d

d
, 5

( )



    g m b b= -
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t
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d
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. 6b a

The corresponding Fokker-Planck equation [80–82], gov-
erning the probability density ( ) 

W r p t, , , can be eventually
obtained as:
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where the first four terms correspond to the classical Klein-
Kramers equation [89–91] and the others to the stochastic
perturbation. For γ=0 and μ=0, the system obviously
attains the canonical Gibbs distribution at large times
[82, 91, 92]. However, we proved through equation (7) that
this is true also for g ¹ 0 and m ¹ 0, provided that

( )g a m= -2 1 2 . This means that the stochastic perturbation
here introduced does not modify the thermodynamic equili-
brium, if it exists. Equivalently, it implies that the effect of the
stochastic perturbation could only be observed in the non-
equilibrium regime. This is a central point for our application
to the heat conduction problem.

Interestingly enough, to better understand the effect of
the introduced stochastic perturbation in the out-of-equili-
brium evolution, we can investigate the Brownian diffusion of
a free particle (we let V=0 and ( )g a m= -2 1 2 in
equations (5), (6) and (7)). Through the Fokker-Planck
formalism, we obtain the evolution of the average values of
coordinates and momenta, namely ( ) { } { } 

= t r pd d
m

1

and ( ) { } ( ) { } 
b m= - + t p pd d 2 , and of the covariances,
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as follows

{ } { } { } ( )= +  
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By solving these differential equations (starting from the
initial deterministic condition ( )

=r 0 0 and ( )
=p 0 0), we

easily obtain that { } { } { }= = =  x x x p p p 0n m n m n m when
¹n m, and
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It means that the diffusion coefficient
( )

=
b m+

D K T

m

2

2
b , appearing

in the relation { } = x Dtn
2 (see equation (11) for large t), is

simply modified with respect to the case with μ=0 by sub-
stituting β with β+2μ. Hence, the Stokes law assumes the
form ( )b m ph+ =m R2 6 , where η is the fluid viscosity and R
the radius of the diffusing particle [82]. From equation (12), we
also deduce that the out-of-equilibrium evolution of the kinetic
energy is not influenced by the elastic collisions.

3. Heat conduction in the mass-spring chain

After discussing these key premises and their implications, we
can now move to the study of the complete system repre-
sented in figure 1. We consider a chain of particles, with
positions


ri and momenta


pi, described by the generalized

Langevin equations (i=1, K, N):

( )
 

=
r

t

p

m

d

d
, 14i i
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where ( )
=r iℓ0, 0,i0 are the unperturbed positions (i=1,K,

N), ( ) ( ( ) ) 
= = ++r r N ℓ0, 0, 0 , 0, 0, 1N0 1 define the two

extremes of the chain, β is the Langevin collision frequency,
ni (i=1, K, N) are the multiplicative noises,


nL and


nR are

the additive noises of the left and right Langevin thermal
baths with temperatures TL and TR, respectively, applied only
to the particles at extremities. The choice ( )g a m= -2 1 2i i
ensures that all the properties described above for the single
particle case are also retained for the elements of the chain.
Furthermore, the masses mi may be subjected to an external
linear pinning (k0i), in addition to nearest neighbor linear
interactions (ki). In this model, the particles move in the
whole 3D space and this is useful for further generalizations
to arbitrary (possibly heterogeneous) 2D or 3D lattices.

To define the heat flow  between the two ends of the
system (‘left’ and ‘right’), we perform the scalar product
between


p m1 1 (or


p mN N) and the Newton equation of the

first (or last) particle of the chain, and identify the heat rates
through the relations:

⎧⎨⎩
⎫⎬⎭

·
· ( )

 
 b

b
= - +Q

t

p p

m

K T

m
n p

d

d
16D d d

d

b D

d
D d

(with D=L, d=1 on the left; or D=R, d=N on the
right), consistently with the Sekimoto interpretation of the
heat transfer along the trajectory of a stochastic system
[33, 34, 93]. By averaging the result under nonequilibrium
stationary state (NESS), and taking into account that the
power of the stochastic perturbation is zero, we get:
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Of course, at NESS, = = - Q

t

Q

t

d

d

d

d
L R . Therefore, the thermal

characterization of the chain can be carried out from
equations (17) and (18) if we are able to determine the cov-
ariances { · }  r pi j between coordinates and momenta at sta-
tionary state.

To simplify the treatment, we define a state vector
( )   

= ¼ ¼ Î r r p p, , , , ,N N
T N

1 1
6 , by which equations (14)

and (15) can be rewritten as:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )å= + + +

x
x x

=

     
t

n
d

d
, 19

N

a
1

3

where  and x are 6N×6N matrices;  is a 6N×6 matrix
and Î  ;N6 ( ) 

= Î n n,a L R
T 6 describes the additive

noises; moreover, nξ are the components of the multiplicative
noise vector ( ) 

¼n n, , N
T

1 . The entries of these matrices and
vectors can be directly obtained by comparison with the
structure of equations (14) and (15).

The final stochastic differential equation describes a gen-
eralization of the Ornstein-Uhlenbeck process with multiplicative
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noises. Although the multiplicative noises generally prevent the
solutions to be a Gaussian process, we can obtain a closed set of
linear equations for the average state { } and for the covar-
iance matrix { }L =  T . Indeed, the Fokker-Planck equation
[80–82] for ( )W t, , associated with equation (19), can be
written as

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

· [( ) ] · ( )

· · ( )

· ( · )
( )

  

 

 

¶
¶

=- + +  

+  å +  å

+  å 

x x x x x

x x x

  

    

   

W

t
W W

W W
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Tr

,

20

T

2

and allows to obtain

{ } { } ( )= +    
t

d

d
, 21

( )åL = L + L + L + +
x

x x     
t

d

d
2 2 , 22T T T

where a= + åx x  2 2, and { } { }= +     T T .
We remark that if x =0 ∀ ξ, the classical results concerning the
Ornstein-Uhlenbeck process [94, 95] are perfectly retrieved.
Anyway, if one is interested in the NESS, characterized by
( ) { } =td d 0 and ( )L =td d 0, the covariances can be
directly calculated as the solution of a sparse linear system with
36N2 unknowns. It assumes the final form

( )

= L + L + å L

+ - -
x x x

- -

   

    

0 2

2 , 23

T T

T T T T1

whose solution for Λ can be found through the numerical method
discussed in the appendix.

For the purpose of comparing our result for  with the
classical diffusive constitutive equation k= - ¶

¶
 T

x
, in our chain

we define the thermal conductivity ( )k = -Nℓ T TL R , where
 is calculated through equations (17) and (18). We remark that
the calculation of  and κ based on the method of the covar-
iances is exact.

Figure 2 shows the behavior of κ versus N. The con-
ductivity is clearly ballistic (linear response of κ versus N) for
μ=0, and goes into diffusive for increasing values of μ (κ
becoming independent of N for long chains). While there is
no finite critical value of μ required for this transition, for
small values of μ it is necessary to use longer chains to
observe the transition.

In figure 3, we show the distribution of kinetic energy
(i.e., temperature) along the chain for both the ballistic and
diffusive behavior. It can be observed that for the ballistic
case no temperature gradient is created between the reservoirs
and, accordingly, the thermal conductivity is diverging for
increasing N. On the other hand, at increasing values of μ the
temperature tends to become linear within the chain, thereby
implying that the thermal flux must become Fourier-like,
µ - N ;1 as noted above, there is no critical value of the

perturbation, for large enough N. We also note that the kinetic
energies of the first and last particles are coherent with the
temperatures of the lateral Langevin thermal baths, being

· 
=p p K T

m b L
1

2 1 1
3

21
on the left and · 

=p p K T
m N N b R
1

2

3

2N
on

the right, for large values of μ.
In the conventional, macroscopic analysis of thermal con-

ductivity, the length dependence is usually advocated by
‘boundary scattering’ terms in the Matthiessen’s empirical rule

( )k k= +¥N c N . In figure 4 we plot the same data of
figure 2 as μκversus μ N for both the pinned ( ¹k 0i0 ) and
unpinned ( =k 0i0 ) linear chain, and all the results for any value
of μ and N collapse on a universal response ( )mk f m= N with:

( ) ( )f =
+

z
az

b z
, 24

that is coherent with the Matthiessen’s rule, despite that no
empirical assumptions about length-scale effects exist in our
model of conductivity. It means that ( )k m= +aN b N , with a
and b parameters independent of N and μ and depending on the
other properties of the system, as discussed below. We underline
that this behavior is in good qualitative agreement with most of

Figure 2. Plot of κ versus N showing the transition between ballistic
and diffusive (Fourier) conduction. We adopted the parameters:

= " = "k i m i1 , 1i i , b = = = = "K T K T k i1, 1, 2, 0b L b R i0 . All
quantities are in arbitrary units.

Figure 3. Plot of the kinetic energy · 
p p

m i i
1

2 i
of each particle

versus the position i in the chain. We adopted the parameters:
= = " = "N k i m i15, 1 , 1i i , b = = =K T K T1, 1, 2b L b R ,
= "k i0i0 . All quantities are in arbitrary units.
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experimental results concerning the size-dependent behavior of
the thermal conductivity in nanosystems [7–21]. It is also
important to stress that, as anticipated, the conductivity is
independent of the parameter α, proving that any particular
choice of stochastic calculus is irrelevant to the physics of the
system.

To complete this analysis of the thermal conduction we
must now examine the role of the thermal baths. In figure 5,
left panel, we plot κ for a variable β, that is the ‘collision
frequency’ of the Langevin baths applied at the extremities of
the chain. The resulting conductivity strongly depends on β

showing that, in general, the thermal response depends not
only on the properties of the chain, but also on those of the
heat baths. This is consistent with earlier investigations
[45, 46, 78], which discussed the role of the spectral prop-
erties of the reservoirs on the conduction regimes. The con-
tinuous curves in the left panel of figure 5 represent a fit to the
data, through equation (24) with a constant value of a
(independent of β) and:

( )
( )b

b b b
=

- +b b

p

p

1 1
. 25

0 0
2 2 2 2 2

This choice of b (a kind of second-order band-pass linear
filter, suggested by the bell shape of the data points) is the
only one that appears to precisely fit the analytical results,
over more than 4 decades of β. It appears to suggest that the
harmonic force field of the chain can be ‘tuned’ to the fre-
quency of the thermal bath by a sort of damped resonance
mechanism, implicit in the second-order character of the
equations of motion (equations (14)–(15)).

However, a key feature is that the conductivity becomes
independent of β in the thermodynamic limit. In the right
panel of the same figure 5, we compare the ‘reduced con-
ductivity’

m
km
km-N a

1 (see equation (24)) calculated for various

N and μ values (circles), and the fit with equation (25)

(continuous line), versus blog10 spanning the very large
interval [-2,2]; the collapse of all data on a single curve for
each harmonic field proves the accuracy of the representation
of κ by equations (24) and (25). Thus, for  ¥N the con-
ductivity takes the value a/μ, independent of β and, conse-
quently, independent of the characteristics of the thermal
baths. Notably, this holds for both unpinned and pinned
systems. The present model is therefore consistent with the
general belief that the thermal conductivity is an intrinsic
property of any macroscopic system.

We finally investigate the relation between the elastic
constant = "k k ii of the chain (with = "k i0i0 ) and the
resulting heat conduction κ. To do this, we consider the chain
with all the parameters fixed, except for the size N and the
elastic constant k, which are considered variable over a large
range. It is interesting to plot the ratio k/κ (elastic constant
over heat conductivity) as function of the elastic constant k
(see figure 6). Indeed, we observe a linear behavior of k/κ
versus k for any value of N. It means that k = +k ck d ,
where c and d are two parameters not depending on the elastic
constant k. This result allows us to affirm that the dependence
of κ on k is described by the simple expression k =

+
k

ck d
,

where c and d are two parameters not depending on the elastic
constant k. We directly deduce that there is a maximum value
of conductivity we can not exceed by simply increasing the
elastic constant of the mass-spring chain. In other words

k =¥ clim 1k , which is a limited quantity, depending on N
and on the other parameters of the system. This behavior can
be seen in figure 7, where we plotted the heat conduction
versus the elastic constant.

Figure 4. Plot of μ κ versus μ N showing the collapse of all data of
figure 2 (circles) to the same response given by ( )mk f m= N with

( ) ( )f = +z az b z (continuous lines). The circles correspond to
several results with 5�N�15 and 0�μ�2. We adopted the
parameters: = " = "k i m i1 , 1i i , b = = =K T K T1, 1, 2,b L b R

=k 0i0 (top curve) and =k 0.5i0 (bottom curve). All quantities are
in arbitrary units.

Figure 5. Effect of the collision frequency β on the conduction
properties. Left panel: the circles represent κ versus blog10 for
different values of μ. The solid lines are obtained through
equations (24) and (25). Right panel: the point represent

m
km
km-N a

1

versus blog10 showing the collapse of all data (with a constant value
of b m-    a, 2 log 2, 0.1 0.610 and  N10 15). The two
solid lines are obtained with equation (25). We adopted the
parameters: = = =k m K T1, 1, 1i i b L , = =K T k2, 0b R i0

(unpinned) and =k 0.5i0 (pinned). All quantities are in
arbitrary units.
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4. Discussion and conclusions

In conclusion, the proposed ‘vector-velocity’ stochastic per-
turbation of the harmonic chain seems to be the simplest
choice able to reproduce the ballistic to diffusive transition of
thermal conduction, as thoroughly demonstrated by means of
an ad hoc generalization of the Ornstein-Ulhenbeck process
with multiplicative noises.

The origin of the diffusive behavior of the thermal con-
duction must be ascribed to the nonlinear character of the
interaction forces between the particles (atoms or molecules)
of the system under investigation. Indeed, it is well known
that a linear (or harmonic) crystal exhibits a ballistic behavior

with a thermal conductivity increasing with the size of the
system. However, nonlinear systems typically show a com-
plex time evolution that can be only observed through num-
erical simulations, which prevent a transparent understanding
of the underlying physical phenomena. Nevertheless, non-
linear interactions cause a chaotic dynamics of the particles
motion. This chaotic regime can be therefore effectively
represented by non-thermal fluctuations mimicking the non-
linear collisions among the system particles (e.g., atoms in a
crystalline solids). This is the idea followed in our invest-
igation, where each particle is subjected to the stochastic
perturbation defined in equation (1). Finally, this random
perturbation is the result of the chaotic regime induced by the
system nonlinearity. However, in our system, the energy must
be exclusively exchanged at the two extremities in contact
with the thermal bath. Therefore, the added stochastic per-
turbation applied to each particle, must be energy-conserving.
For this reason, our perturbation is described by a cross
product between velocity and noise (similarly to a random
magnetic field). It means that the direction of the velocity can
fluctuate but not its intensity, and the kinetic energy is con-
served. This construction guarantees that no energy enter or
leave the system through the inner particles. Hence, we pro-
vided evidence that the simplest energy conserving pertur-
bation is able to explain the ballistic-diffusive transition of the
heat conduction. Importantly, this result shows that the most
relevant property of the perturbation mimicking the particle
collisions is its energy-conserving character. Other refined
details describing the added perturbation are not relevant (i.e.,
spectral properties, probabilistic distributions or imple-
mentation mechanisms). Indeed, we observed the ballistic-
diffusive transition with a classical white Gaussian noise,
which stands for the simplest set of assumptions. Moreover,
the representation of the nonlinear collisions with a linear
stochastic perturbation allows a complete analysis of the
problem, which leads to closed form expressions for the
behavior of the system. Indeed, the elaboration of the Fokker-
Planck formalism for this system leads to a generalization of
the Ornstein-Ulhenbeck process with multiplicative noises
and to a closed set of equations for the covariances of the
particle positions at the stationary state. The knowledge of the
covariance matrix can be finally related to the thermal con-
ductivity of the system, which can be therefore easily
calculated.

The results show that the ballistic to diffusive transition is
observed with increasing size of the system and the process is
well described by the so-called Matthiessen’s rule. While this
scaling law has been previously introduced on the base of
empirical arguments, it is here obtained through a rigorous
mathematical model. Importantly, the present model sheds
light on the role of the thermal baths, proving that the col-
lision frequency influences the transport properties only in the
limit of small finite systems, yielding an intrinsic value of the
thermal conductivity in the thermodynamic limit. It means
that the conductivity is influenced by the thermal reservoirs
structure only in small systems and their features can not
modify the heat conductivity in very large (ideally infinite)
systems. This is reassuring from the point of view of the

Figure 6. Plot of the ratio k/κ (elastic constant over heat
conductivity) as function of the elastic constant k for different values
of N=2, K,15 (circles: results obtained through the proposed
model; straight lines: least squares approximation of the circles). We
adopted the parameters: ki=k ∀ i (variable in the range [0, 20]),

b= " =m i1 , 1i , m= = = =K T K T k1, 2, 0, 0.5b L b R i0 . All
quantities are in arbitrary units.

Figure 7. Heat conductivity κ as function of the elastic constant k for
different values of N=2, K,15 (circles: results obtained through
the proposed model; continuous curves: correspond to the least
squares approximations of figure 6). We adopted the parameters:

= "k k ii (variable in the range [0, 20]), b= " = =m i K T1 , 1,i b L

m= = =K T k1, 2, 0, 0.5b R i0 . All quantities are in arbitrary units.
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definition of conductivity, which is generally considered as a
material (macroscopic) property, independent of the external
conditions. Moreover, we proved that the conductivity is an
increasing function of the elastic constant describing the
interactions among the system particles. Nevertheless, there is
an upper bound of thermal conductivity, which can not be
exceeded by simply increasing this elastic constant. There-
fore, for an increasing mechanical stiffness of the material, we
always observe a consistent saturation of the thermal
conductivity.

These results may find applications to nanoscale thermal
problems, in which one tries to optimize the heat conductivity
of a nanosystem between two thermal baths for a finite and
small N [96]. Indeed, the present model suggests that it is
always possible to tune the thermal baths collision frequency
or the harmonic force field of the system to maximize (e.g. for
heat dissipation) or minimize (e.g. for thermoelectric optim-
ization) the thermal conductivity.

While being a paradigmatic model for the understanding
of the ballistic-diffusive transition, our chain with energy
conserving stochastic perturbations should be improved to
better represent more realistic situations. One possible ana-
lysis should investigate the relationship between the para-
meters of our system (e.g., a and b of equation (24)) and the
real physical microscopic features of the material. In our
approach, this link is difficult since the stochastic perturbation
introduced describes the nonlinear particles collisions, and its
intensity μ is therefore related to the nonlinear part of the
interatomic potential energy. Another extension concerns the
non-stationary out-of-equilibrium regime of the thermal
conduction. Since the Fokker-Planck formalism is not limited
to the NESS, our approach can be easily exploited to inves-
tigate situations where the reservoirs temperatures, and
therefore the heat fluxes, are time varying. It would be also
interesting to compare these results with those obtained from
a model with true nonlinearities, in order to validate the
approach based on the stochastic perturbation and to better
understand the relation between our system parameters and
the real nonlinear behavior of the particles interactions. To
conclude, our model can be applied to the analysis of the
thermal conduction of a given system under other externally
applied linear effects. For example, it could be generalized
to study the effect of a magnetic field on the thermal
conductivity.

Appendix: Numerical determination of the
covariance matrix

We discuss here the numerical approach adopted to numeri-
cally solve equation (23). We define first the Kronecker
product of two matrix  and  through the block matrix

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

···
···
···

( )

   

Ä = 

  
  
  

a a a
a a a
a a a

. 26

11 12 13

21 22 23

31 32 33

This operation is non-commutative and is useful to convert
equations like equation (23) to a standard linear system. To do
this, we also need to define the vectorization of a matrix. This
operation converts a matrix  into a column vector ̂ by
juxtaposing the consecutive rows of the matrix and trans-
posing the result

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

···
···
···

ˆ [ ] ( )
   

= 

=





a a a
a a a
a a a

a a a a a a a a a... ... ... . 27T

11 12 13

21 22 23

31 32 33

11 12 13 21 22 23 31 32 33

The important relation between Kronecker product and vec-
torization is given by the following properties

ˆ ( ) ˆ ( ) ˆ ( )=  = Ä = Ä        , 28T

ˆ ( )( ) ˆ ( )=  = Ä Ä       , 29T

where  is the identity matrix. We can rewrite equation (23)
as follows

( )å= L + L + L +
x

x x    0 2 , 30T T

where

( )= - -- -     2 . 31T T T T1

Previous properties allows for converting equation (30) into
the following vectorized form

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )( ) ˆ ˆ

( )

å= Ä + Ä + Ä Ä L +
x

x x        0 2 ,

32

and to get its solution as

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

ˆ ( )( ) ˆ

( )

åL = - Ä + Ä + Ä Ä
x

x x

-

        2 ,

33

1

which can be calculated with standard numerical procedure
(Gaussian elimination, factorizations and so on).
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