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Abstract. We theoretically study the heat conduction in a harmonic chain with
a stochastic force field, in contact with two Langevin thermal baths at different
temperatures. In particular, we investigate the interplay between the thermal
baths properties and the size of the system. To this aim, we introduce a stochastic
force field, which is simple enough to be energy-conserving for each particle of the
chain, but sufficiently aleatory to induce the ballistic to diffusive transition in
the conductive behavior of the chain. When this stochastic force field is absent,
we observe a ballistic behavior strongly dependent on the characteristic collision
frequency of the thermal baths for any size of the system. On the other hand,
when the stochastic force field is activated, the diffusive behavior is established
and the effect of the thermal baths is removed in the thermodynamic limit.
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1. Introduction

While the thermal conduction in macroscopic objects is
well described by the Fourier diffusive law, the thermal
transport in low dimensional and nanostructured
materials can show a ballistic behavior, which
have potential applications in nanodevices thermal
management [1], thermoelectric efficiency [2], and
quantum informatics [3]. The transition between
diffusive and ballistic regimes of heat transport
[4–6] has been experimentally observed in several
systems including silicon nanowires [7–10], doped
silicon nanowires [11], carbon or silicon nanotubes [12,
13], silicon membranes [14–17], rarefied air chambers
[18], liquids [19], and graphene ribbons [20, 21]. In
spite of these recent refined measurements, since
the time of the Fourier’s early work [22], the
microscopic foundations of heat conduction still remain
partially unexplained. In particular, the theoretical
interpretation of the ballistic to diffusive transition
represents a crucial problem of the out-of-equilibrium
statistical mechanics.

From the historical point of view, since the 19th
century, the advancement of the out-of-equilibrium
statistical mechanics received a great impulse by the
observation of the Brownian motion [23, 24] and by
its thoroughgoing interpretations of Einstein [25, 26]
and Smoluchowski [27]. These investigations led
Perrin to accurately measure the Avogadro number
[28], definitively confirming the atomistic hypothesis.
In this context, the Langevin stochastic differential
equation was successufully stated [29], and analysed
through the Fokker-Planck methodology [30–32]. More
recently, Sekimoto defined the concept of heat for a
given fluctuating trajectory [33, 34], leading to the
origin of the stochastic thermodynamics. At the same
time, the concepts of entropy and entropy production
have been generalized to deal with the Brownian
motion [35, 36], allowing for the demonstration of the
laws of thermodynamics [37–40], and other fluctuation
theorems [41–44], on the base of the Langevin
postulates.

The development of these concepts is at the base
of the understanding of the thermal transfer in solids
and nanomaterials. Indeed, the simplest introduced
idealization of a heat conducting system is a chain
of N masses in contact at its extremities with two
thermal baths at different temperatures. On the one
hand, if the chain is characterized by purely harmonic
interactions, heat diffusion (Fourier) is not established,
and a ballistic regime with thermal conductivity κ ∝ N
is theoretically observed [45]. In this case, the system
has been analyzed in a stationary non equilibrium
state, by obtaining, through the Langevin-Fokker-
Planck formalism, the closed form expression for the
covariance matrix of the positions of particles in the

chain [45]. On the other hand, in the ballistic
regime, the chain elements transfer energy in each
mode without interactions all along the length, and
the only exchange of energy between modes takes place
at the boundaries through the interaction with the
thermal baths. To obtain a diffusive heat transfer,
characterized by a finite value of κ for N → ∞, some
form of anharmonicity, disorder and/or randomness
must be included in the system [46], in order to
foster the energy exchange among the modes. Since
this is a scale-dependent process (see the finite mean
free path of phonons in a solid), deviations from
the ballistic regime would grow with the system size,
eventually yielding the expected diffusive behavior in
the thermodynamic limit.

However, the minimal conditions for observing
Fourier conduction in an anharmonic chain are not well
defined [46, 47]. The related problem of ergodicity in
a chain of anharmonic oscillators was first studied by
Fermi, Pasta and Ulam (FPU) in a seminal numerical
experiment [48], with the well-known result that
equipartition was not observed (see Ref. [49] for the
long time scale of the FPU problem). More recently,
it has been proved that the strong nonlinearity regime
entails the so-called anomalous diffusion (with κ ∝ Nξ,
0 < ξ < 1) [50–54]. From then on, several ad
hoc models have been proposed in the attempt to
reproduce the diffusive conduction in simple systems.
Without any pretension to being exhaustive, one could
cite: the ding-a-ling model [55]; the ding-dong model
[56, 57]; the Lorentz gas model [58]; the Frenkel-
Kontorova model [59, 60]; the anharmonic chain with
weak interparticle potential [61]; the 2D harmonic
lattice model with missing bond defects [62]; the
chain of coupled rotators [63]; the pinned anharmonic
chain [64]; the harmonic chain with inner stochastic
reservoirs obeying the self-consistent condition [65–67];
the harmonic chain with graded mass distribution [68];
the lattice billiard [69]; the chain with conservative
stochastic dynamics [70–77]. In all these cases, more
or less complex perturbations to the initial harmonic
chain have been introduced to force the energy
exchange between the mode and to eventually generate
a diffusive heat transport. However, depending on
the working conditions, the thermal bath features may
influence the value of κ, thus weakening the concept
of thermal conductivity as an intrinsic property of the
system [45, 46, 78]. For instance, κ depends on the
collision frequency when Langevin thermal baths are
used [45,46]. Also, it has been proved that the thermal
bath spectral properties can change the anomalous
diffusive response of a system [78].

In this paper, we attempt to clarify this issue
by considering a quite simple stochastic perturbation
of the harmonic force field. We show that switching
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Figure 1. (color online) Structure of the chain conducting the heat flow J between the reservoirs at temperatures TL and TR > TL.

on the perturbation describes the transition from the
ballistic to the diffusive regime for increasing values
of N , thus capturing the scale effects of the heat
conduction in terms of the interplay between: (i)
the collision frequency β of the Langevin thermal
baths, and (ii) the intensity µ of the stochastic
perturbation. The final result is a scale-dependent
thermal conductivity κ = aN/(b+ µN), with a and
b parameters independent of N and µ, and only
b depending on the collision frequency β. The
two limiting cases are: µ = 0 (zero stochastic
perturbation), the conductivity is purely ballistic and
linear with N , and a function of the thermal bath
properties (through b); and the thermodynamic limit
(N → ∞) with µ 6= 0, which leads to diffusive
heat transfer with a finite conductivity κdiff = a/µ,
thereby assigning a well-defined intrinsic meaning to
the concept of thermal conductivity of a macroscopic
system. We also study the relation between the elastic
constants of the harmonic interactions of the chain
and its final heat conductivity. The origin of the
ballistic-diffusive transition is finally discussed with
reference to possible applications to nanoscience and
nanotechnology.

2. Stochastic force field

In the following we will consider a system of N particles
of given mass linked by harmonic springs, in contact
with two ”thermostats”, and subject to a perturbation
inducing non-linearity of the response (see Fig.1).
Since a nonlinear model cannot be studied analytically,
we introduce an effective stochastic perturbation to
mimic the chaotic effects arising in a real nonlinear
system. A minimal example of such perturbation
can be constructed as the cross product of the
instantaneous velocity ~v(t) and a random noise ~n(t).
By construction, such a “vector-velocity” perturbation
randomly modifies the direction of the velocity of a
particle while conserving its modulus. While the two-
dimensional version of this stochastic process has been
introduced in the literature [77, 79], here we analyze
and discuss its three-dimensional implementation. The
(Langevin) stochastic dynamics of a single particle

would be written:

d~v

dt
= −γ~v +

√
µ~v ∧ ~n, (1)

with µ the amplitude of the perturbation and γ a
friction coefficient. The noise can be taken as Gaussian,
with the standard properties of expectation value
equal to zero for the first moment E{nj(t)}=0, and
E{ni(t1)nj(t2)}=2δijδ(t1 − t2) for the second moment
(it is the so-called white or uncorrelated Gaussian
noise) [80–82].

This stochastic differential equation with multi-
plicative noise for the variable ~v(t) is not completely
defined mathematically. It gets a precise meaning
only after choosing a convention for the stochastic in-
tegrals, by specifying a parameter 0 ≤ α ≤ 1 that
defines the point at which an integrated function is
evaluated in each interval of the adopted Riemann
sum [80–82]. More specifically, if we consider an ar-
bitrary system of differential equations d~x

dt = f(~x, t),
we can write on a time interval ∆t the evolution
∆~x =

∫ t+∆t

t
f(~x, t)dt, where ∆~x = ~x(t + ∆t) − ~x(t).

And the integral can be approximated through the ex-
pression ∆~x = f(~x + α∆~x, t)∆t, where α determines
the position at which we calculate the function f in the
interval (t, t+ ∆t). Now, the important point is that if
f is a deterministic function, α does not influence the
result for small values of ∆t; on the other hand, if f
has a stochastic character, α may strongly affect the
result, in particular when multiplicative white noises
are present as in our model [80–82]. It is important to
remember that the uncorrelated white noise is an ideal-
ization of real physical processes, which we interpret as
fluctuations. From a physical point of view, the Fisk-
Stratonovich approach, with α = 1/2 [83, 84], should
be adopted since it can be obtained as the limiting pro-
cess of a coloured noise (with finite energy) towards an
uncorrelated white one (with diverging energy) [80–82].
However, for the sake of generality, in the following de-
velopment we maintain an arbitrary value of α (includ-
ing the Itô (α = 0) [85] and the Hänggi-Klimontovich
(α = 1) [86, 87] particular cases), and will later show
that α does not influence the system response (for fur-
ther details on the stochastic interpretation see also
Ref. [88]). In particular, α does not influence the ther-
mal conductivity of the system under investigation.
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In our model, the precise value of this parameter is
linked to the amplitude of the perturbation, µ, and to
the friction coefficient, γ. By writing down the Fokker-
Planck equation [80–82] for the probability density
W (~v, t) of the velocity vector ~v,

∂W

∂t
= γ

∂

∂vi
(viW ) + 4αµ

∂

∂vi
(viW )

+
∂2

∂vi∂vj
[µ (δijvpvp − vivj)W ] , (2)

associated to Eq.(1), we determine the time evolution
of E{~v · ~v} and E{

√
~v · ~v} as:

d

dt
E{~v · ~v} = 2 [−γ + 2 (1− 2α)µ]E{~v · ~v}, (3)

d

dt
E{
√
~v · ~v} = [−γ + 2 (1− 2α)µ]E{

√
~v · ~v}, (4)

and we conclude that the dynamics can simultaneously
conserve E{~v · ~v} and E{

√
~v · ~v} with the choice γ =

2 (1− 2α)µ. It is interesting to observe that under
the Stratonovich interpretation (α = 1/2) [84], the
viscous dissipative term in Eq.(1) vanishes (γ =
0). This can be understood by observing that the
usual rules of calculus remain unchanged within the
Stratonovich interpretation of the stochastic calculus.
Therefore, through the scalar product of Eq.(1) and ~v,
we directly obtain the time-invariance of E{~v · ~v} with
γ = 0. However, the other stochastic interpretations
require the dissipative term with the pertinent collision
frequency γ = 2 (1− 2α)µ.

This choice has, moreover, much wider impli-
cations. In fact, by adopting a stochastic calculus
based on the as-defined α, the complete, generalized
Langevin equation for a particle embedded in a poten-
tial energy field V (~r), in contact with a Langevin ther-
mal bath, and subjected to the force in Eq.(1), can be
written as:
d~r

dt
=

~p

m
, (5)

d~p

dt
= − ∂V

∂~r
− γ~p+

√
µ~p ∧ ~n− β~p+

√
βKbTm~na. (6)

The corresponding Fokker-Planck equation [80–82],
governing the probability density W (~r, ~p, t), can be
eventually obtained as:

∂W

∂t
= − pi

m

∂W

∂xi
+ β

∂

∂pi
(piW ) +

∂V

∂xi

∂W

∂pi
(7)

+ βKbTm
∂2W

∂pi∂pi
+ (γ + 4αµ)

∂

∂pi
(piW )

− 6µW − 4µpi
∂W

∂pi
+ µ(δijpkpk − pipj)

∂2W

∂pi∂pj
,

where the first four terms correspond to the classical
Klein-Kramers equation [89–91] and the others to
the stochastic perturbation. For γ = 0 and µ =
0, the system obviously attains the canonical Gibbs
distribution at large times [82, 91, 92]. However, we

proved through Eq.(7) that this is true also for γ 6= 0
and µ 6= 0, provided that γ = 2 (1− 2α)µ. This
means that the stochastic perturbation here introduced
does not modify the thermodynamic equilibrium, if it
exists. Equivalently, it implies that the effect of the
stochastic perturbation could only be observed in the
non-equilibrium regime. This is a central point for our
application to the heat conduction problem.

Interestingly enough, to better understand the
effect of the introduced stochastic perturbation in the
out-of-equilibrium evolution, we can investigate the
Brownian diffusion of a free particle (we let V = 0
and γ = 2 (1− 2α)µ in Eqs.(5), (6) and (7)). Through
the Fokker-Planck formalism, we obtain the evolution
of the average values of coordinates and momenta,
namely (d/dt)E{~r} = 1

mE{~p} and (d/dt)E{~p} =
− (β + 2µ)E{~p}, and of the covariances, as follows

d

dt
E{xnxm} =

1

m
E{xmpn}+

1

m
E{xnpm}, (8)

d

dt
E{xnpm} =

1

m
E{pnpm} − (β + 2µ)E{xnpm}, (9)

d

dt
E{pnpm} = − 2(β + 3µ)E{pnpm}+ 2βKbTδnm

+ 2µδnmE{pkpk}. (10)

By solving these differential equations (starting from
the initial deterministic condition ~r(0) = 0 and ~p(0) =
0), we easily obtain that E{xnxm} = E{xnpm} =
E{pnpm} = 0 when n 6= m, and

E{x2
n} =

2KbTt

m(β + 2µ)
− KbT

mβ(β − 2µ)
e−2βt

+
4βKbT

m(β − 2µ)(β + 2µ)2
e−(β+2µ)t

+
(3β + 2µ)KbT

mβ(β2 + 4βµ+ 4µ2)
, (11)

E{xnpn} =
KbT

β + 2µ
+

KbT

β − 2µ
e−2βt

− 2βKbT

(β − 2µ)(β + 2µ)
e−(β+2µ)t, (12)

E{p2
n} = mKbT

(
1− e−2βt

)
. (13)

It means that the diffusion coefficient D = 2KbT
m(β+2µ) ,

appearing in the relation E{x2
n} = Dt (see Eq.(11) for

large t), is simply modified with respect to the case
with µ = 0 by substituting β with β + 2µ. Hence, the
Stokes law assumes the form m(β+2µ) = 6πηR, where
η is the fluid viscosity and R the radius of the diffusing
particle [82]. From Eq.(13), we also deduce that the
out-of-equilibrium evolution of the kinetic energy is not
influenced by the elastic collisions.

3. Heat conduction in the mass-spring chain

After discussing these key premises and their implica-
tions, we can now move to the study of the complete
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system represented in Fig.1. We consider a chain of
particles, with positions ~ri and momenta ~pi, described
by the generalized Langevin equations (i = 1, ..., N):

d~ri
dt

=
~pi
mi

, (14)

d~pi
dt

= − ki (~ri − ~ri−1)− ki+1 (~ri − ~ri+1)

− k0i (~ri − ~r0i)− γi~pi +
√
µi~pi ∧ ~ni

+ δi1

(
−β~p1 +

√
βKbTLm1~nL

)
+ δiN

(
−β~pN +

√
βKbTRmN~nR

)
, (15)

where ~r0i = (0, 0, i`) are the unperturbed positions
(i = 1, ..., N), ~r0 = (0, 0, 0), ~rN+1 = (0, 0, (N +
1)`) define the two extremes of the chain, β is the
Langevin collision frequency, ~ni (i = 1, ..., N) are
the multiplicative noises, ~nL and ~nR are the additive
noises of the left and right Langevin thermal baths
with temperatures TL and TR, respectively, applied
only to the particles at extremities. The choice γi =
2 (1− 2α)µi ensures that all the properties described
above for the single particle case are also retained for
the elements of the chain. Furthermore, the masses
mi may be subjected to an external linear pinning
(k0i), in addition to nearest neighbor linear interactions
(ki). In this model, the particles move in the whole 3D
space and this is useful for further generalizations to
arbitrary (possibly heterogeneous) 2D or 3D lattices.

To define the heat flow J between the two ends of
the system (“left” and “right”), we perform the scalar
product between ~p1/m1 (or ~pN/mN ) and the Newton
equation of the first (or last) particle of the chain, and
identify the heat rates through the relations:

dQD
dt

= E

{
−β ~pd · ~pd

md
+

√
βKbTD
md

~nD · ~pd

}
(16)

(with D = L, d=1 on the left; or D = R,
d=N on the right), consistently with the Sekimoto
interpretation of the heat transfer along the trajectory
of a stochastic system [33, 34, 93]. By averaging the
result under nonequilibrium stationary state (NESS),
and taking into account that the power of the
stochastic perturbation is zero, we get:

dQL
dt

=
k01 + k1 + k2

m1
E{~r1 · ~p1} −

k2

m1
E{~r2 · ~p1}, (17)

and

dQR
dt

=
k0N + kN + kN+1

mN
E{~rN · ~pN}

− kN
mN

E{~rN−1 · ~pN}. (18)

Of course, at NESS, J = dQL

dt
= −dQR

dt
. Therefore,

the thermal characterization of the chain can be carried
out from Eqs.(17) and (18) if we are able to determine

the covariances E{~ri · ~pj} between coordinates and
momenta at stationary state.

To simplify the treatment, we define a state vector
X = (~r1, ..., ~rN , ~p1, ..., ~pN )T ∈ R6N , by which Eqs.(14)
and (15) can be rewritten as:

d

dt
X =

A+

3N∑
ξ=1

nξBξ

X + CNa + V, (19)

where A and Bξ are 6N × 6N matrices; C is a 6N × 6
matrix and V ∈ R6N ; Na = (~nL, ~nR)T ∈ R6 describes
the additive noises; moreover, nξ are the components
of the multiplicative noise vector (~n1, ..., ~nN )T . The
entries of these matrices and vectors can be directly
obtained by comparison with the structure of Eqs.(14)
and (15).

The final stochastic differential equation describes
a generalization of the Ornstein-Uhlenbeck process
with multiplicative noises. Although the multiplicative
noises generally prevent the solutions to be a Gaussian
process, we can obtain a closed set of linear equations
for the average state E{X} and for the covariance
matrix Λ = E{XX T }. Indeed, the Fokker-Planck
equation [80–82] for W (X , t), associated with Eq.(19),
can be written as

∂W

∂t
= − ~∇ · [(SX + V)W ] + ~∇ ·

(
CCT ~∇W

)
+ ~∇ ·

∑
ξ

B2
ξXW

+ ~∇ ·

∑
ξ

BξXTr (Bξ)W


+ ~∇ ·

∑
ξ

BξX
(
~∇W · BξX

) , (20)

and allows to obtain

d

dt
E{X} = SE{X}+ V, (21)

d

dt
Λ = SΛ + ΛST + 2

∑
ξ

BξΛBTξ + 2CCT + T , (22)

where S = A + 2α
∑
ξ B2

ξ , and T = VE{X}T +

E{X}VT . We remark that if Bξ=0 ∀ ξ, the classical
results concerning the Ornstein-Uhlenbeck process [94,
95] are perfectly retrieved. Anyway, if one is interested
in the NESS, characterized by (d/dt)E{X} = 0 and
(d/dt)Λ = 0, the covariances can be directly calculated
as the solution of a sparse linear system with 36N2

unknowns. It assumes the final form

0 = SΛ + ΛST + 2
∑
ξ

BξΛBTξ

+ 2CCT − VVTS−T − S−1VVT , (23)

whose solution for Λ can be found through the
numerical method discussed in the Appendix.

For the purpose of comparing our result for J
with the classical diffusive constitutive equation J =
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Figure 2. (color online) Plot of κ versus N showing the
transition between ballistic and diffusive (Fourier) conduction.
We adopted the parameters: ki = 1∀i, mi = 1∀i, β = 1,
KbTL = 1, KbTR = 2, k0i = 0∀i. All quantities are in arbitrary
units.

−κ∂T∂x , in our chain we define the thermal conductivity
κ = JN`/(TL − TR), where J is calculated through
Eqs.(17) and (18). We remark that the calculation of
J and κ based on the method of the covariances is
exact.

Figure 2 shows the behavior of κ vs. N . The
conductivity is clearly ballistic (linear response of κ
versus N) for µ = 0, and goes into diffusive for
increasing values of µ (κ becoming independent of N
for long chains). While there is no finite critical value
of µ required for this transition, for small values of
µ it is necessary to use longer chains to observe the
transition.

In Fig.3, we show the distribution of kinetic energy
(i.e., temperature) along the chain for both the ballistic
and diffusive behavior. It can be observed that for
the ballistic case no temperature gradient is created
between the reservoirs and, accordingly, the thermal
conductivity is diverging for increasing N . On the
other hand, at increasing values of µ the temperature
tends to become linear within the chain, thereby
implying that the thermal flux must become Fourier-
like, J ∝ N−1; as noted above, there is no critical
value of the perturbation, for large enough N . We
also note that the kinetic energies of the first and last
particles are coherent with the temperatures of the
lateral Langevin thermal baths, being 1

2m1
~p1 · ~p1 =

3
2KbTL on the left and 1

2mN
~pN · ~pN = 3

2KbTR on the
right, for large values of µ.

In the conventional, macroscopic analysis of
thermal conductivity, the length dependence is usually
advocated by “boundary scattering” terms in the
Matthiessen’s empirical rule κ = κ∞N/(c + N). In
Fig.4 we plot the same data of Fig.2 as µκ vs. µN
for both the pinned (k0i 6= 0) and unpinned (k0i = 0)
linear chain, and all the results for any value of µ and

5 10 15
1.5

2

2.5

3

Figure 3. (color online) Plot of the kinetic energy 1
2mi

~pi · ~pi
of each particle versus the position i in the chain. We adopted
the parameters: N = 15, ki = 1∀i, mi = 1∀i, β = 1, KbTL = 1,
KbTR = 2, k0i = 0∀i. All quantities are in arbitrary units.

N collapse on a universal response µκ = φ(µN) with:

φ(z) =
az

b+ z
, (24)

that is coherent with the Matthiessen’s rule, despite
that no empirical assumptions about length-scale
effects exist in our model of conductivity. It
means that κ = aN/(b+ µN), with a and b
parameters independent of N and µ and depending
on the other properties of the system, as discussed
below. We underline that this behavior is in good
qualitative agreement with most of experimental
results concerning the size-dependent behavior of
the thermal conductivity in nanosystems [7–21]. It
is also important to stress that, as anticipated,
the conductivity is independent of the parameter
α, proving that any particular choice of stochastic
calculus is irrelevant to the physics of the system.

To complete this analysis of the thermal conduc-
tion we must now examine the role of the thermal
baths. In Fig.5, left panel, we plot κ for a variable β,
that is the ”collision frequency” of the Langevin baths
applied at the extremities of the chain. The result-
ing conductivity strongly depends on β showing that,
in general, the thermal response depends not only on
the properties of the chain, but also on those of the
heat baths. This is consistent with earlier investiga-
tions [45,46,78], which discussed the role of the spectral
properties of the reservoirs on the conduction regimes.
The continuous curves in the left panel of Fig.5 repre-
sent a fit to the data, through Eq.(24) with a constant
value of a (independent of β) and:

1

b
=

1

b0

pβ√
(β2

0 − β2)2 + p2β2
. (25)

This choice of b (a kind of second-order band-pass
linear filter, suggested by the bell shape of the data
points) is the only one that appears to precisely fit
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Figure 4. (color online) Plot of µκ versus µN showing the
collapse of all data of Fig.2 (circles) to the same response given
by µκ = φ(µN) with φ(z) = az/(b + z) (continuous lines).
The circles correspond to several results with 5 ≤ N ≤ 15 and
0 ≤ µ ≤ 2. We adopted the parameters: ki = 1∀i, mi = 1∀i,
β = 1, KbTL = 1, KbTR = 2, k0i = 0 (top curve) and k0i = 0.5
(bottom curve). All quantities are in arbitrary units.

the analytical results, over more than 4 decades of
β. It appears to suggest that the harmonic force
field of the chain can be “tuned” to the frequency
of the thermal bath by a sort of damped resonance
mechanism, implicit in the second-order character of
the equations of motion (Eqs.(14)-(15)).

However, a key feature is that the conductivity
becomes independent of β in the thermodynamic limit.
In the right panel of the same Fig.5, we compare
the “reduced conductivity” 1

Nµ
κµ

a−κµ (see Eq.(24))

calculated for various N and µ values (circles), and
the fit with Eq.(25) (continuous line), vs. log10 β
spanning the very large interval [-2,2]; the collapse of
all data on a single curve for each harmonic field proves
the accuracy of the representation of κ by Eqs.(24)
and (25). Thus, for N → ∞ the conductivity takes
the value a/µ, independent of β and, consequently,
independent of the characteristics of the thermal baths.
Notably, this holds for both unpinned and pinned
systems. The present model is therefore consistent
with the general belief that the thermal conductivity
is an intrinsic property of any macroscopic system.

We finally investigate the relation between the
elastic constant ki = k ∀i of the chain (with k0i =
0 ∀i) and the resulting heat conduction κ. To do
this, we consider the chain with all the parameters
fixed, except for the size N and the elastic constant
k, which are considered variable over a large range. It
is interesting to plot the ratio k/κ (elastic constant over
heat conductivity) as function of the elastic constant
k (see Fig.6). Indeed, we observe a linear behavior
of k/κ versus k for any value of N . It means that
k/κ = ck + d, where c and d are two parameters not
depending on the elastic constant k. This result allows
us to affirm that the dependence of κ on k is described
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1

1.5

Figure 5. (color online) Effect of the collision frequency β on the
conduction properties. Left panel: the circles represent κ versus
log10 β for different values of µ. The solid lines are obtained
through Eqs.(24) and (25). Right panel: the point represent
1
Nµ

κµ
a−κµ versus log10 β showing the collapse of all data (with

a constant value of a, −2 ≤ log10 β ≤ 2, 0.1 ≤ µ ≤ 0.6 and
10 ≤ N ≤ 15). The two solid lines are obtained with Eq.(25). We
adopted the parameters: ki = 1, mi = 1, KbTL = 1, KbTR = 2,
k0i = 0 (unpinned) and k0i = 0.5 (pinned). All quantities are in
arbitrary units.

by the simple expression κ = k
ck+d , where c and d are

two parameters not depending on the elastic constant
k. We directly deduce that there is a maximum value
of conductivity we can not exceed by simply increasing
the elastic constant of the mass-spring chain. In other
words limk→∞ κ = 1/c, which is a limited quantity,
depending on N and on the other parameters of the
system. This behavior can be seen in Fig.7, where we
plotted the heat conduction versus the elastic constant.

4. Discussion and conclusions

In conclusion, the proposed “vector-velocity” stochas-
tic perturbation of the harmonic chain seems to be the
simplest choice able to reproduce the ballistic to dif-
fusive transition of thermal conduction, as thoroughly
demonstrated by means of an ad hoc generalization
of the Ornstein-Ulhenbeck process with multiplicative
noises.

The origin of the diffusive behavior of the thermal
conduction must be ascribed to the nonlinear character
of the interaction forces between the particles (atoms
or molecules) of the system under investigation.
Indeed, it is well known that a linear (or harmonic)
crystal exhibits a ballistic behavior with a thermal
conductivity increasing with the size of the system.
However, nonlinear systems typically show a complex
time evolution that can be only observed through
numerical simulations, which prevent a transparent
understanding of the underlying physical phenomena.
Nevertheless, nonlinear interactions cause a chaotic
dynamics of the particles motion. This chaotic regime
can be therefore effectively represented by non-thermal
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Figure 6. (color online) Plot of the ratio k/κ (elastic constant
over heat conductivity) as function of the elastic constant k for
different values of N = 2, ..., 15 (circles: results obtained through
the proposed model; straight lines: least squares approximation
of the circles). We adopted the parameters: ki = k ∀i (variable
in the range [0, 20]), mi = 1∀i, β = 1, KbTL = 1, KbTR = 2,
k0i = 0, µ = 0.5. All quantities are in arbitrary units.

fluctuations mimicking the nonlinear collisions among
the system particles (e.g., atoms in a crystalline
solids). This is the idea followed in our investigation,
where each particle is subjected to the stochastic
perturbation defined in Eq.(1). Finally, this random
perturbation is the result of the chaotic regime
induced by the system nonlinearity. However, in our
system, the energy must be exclusively exchanged
at the two extremities in contact with the thermal
bath. Therefore, the added stochastic perturbation
applied to each particle, must be energy-conserving.
For this reason, our perturbation is described by a
cross product between velocity and noise (similarly
to a random magnetic field). It means that the
direction of the velocity can fluctuate but not its
intensity, and the kinetic energy is conserved. This
construction guarantees that no energy enter or leave
the system through the inner particles. Hence, we
provided evidence that the simplest energy conserving
perturbation is able to explain the ballistic-diffusive
transition of the heat conduction. Importantly, this
result shows that the most relevant property of the
perturbation mimicking the particle collisions is its
energy-conserving character. Other refined details
describing the added perturbation are not relevant
(i.e., spectral properties, probabilistic distributions or
implementation mechanisms). Indeed, we observed
the ballistic-diffusive transition with a classical white
Gaussian noise, which stands for the simplest set
of assumptions. Moreover, the representation of
the nonlinear collisions with a linear stochastic
perturbation allows a complete analysis of the problem,
which leads to closed form expressions for the behavior
of the system. Indeed, the elaboration of the

0 5 10 15 20
0

2

4

6

8

10

12

Figure 7. (color online) Heat conductivity κ as function of the
elastic constant k for different values of N = 2, ..., 15 (circles:
results obtained through the proposed model; continuous curves:
correspond to the least squares approximations of Fig.6). We
adopted the parameters: ki = k ∀i (variable in the range [0,
20]), mi = 1∀i, β = 1, KbTL = 1, KbTR = 2, k0i = 0, µ = 0.5.
All quantities are in arbitrary units.

Fokker-Planck formalism for this system leads to
a generalization of the Ornstein-Ulhenbeck process
with multiplicative noises and to a closed set of
equations for the covariances of the particle positions
at the stationary state. The knowledge of the
covariance matrix can be finally related to the thermal
conductivity of the system, which can be therefore
easily calculated.

The results show that the ballistic to diffusive
transition is observed with increasing size of the
system and the process is well described by the so-
called Matthiessen’s rule. While this scaling law has
been previously introduced on the base of empirical
arguments, it is here obtained through a rigorous
mathematical model. Importantly, the present model
sheds light on the role of the thermal baths, proving
that the collision frequency influences the transport
properties only in the limit of small finite systems,
yielding an intrinsic value of the thermal conductivity
in the thermodynamic limit. It means that the
conductivity is influenced by the thermal reservoirs
structure only in small systems and their features can
not modify the heat conductivity in very large (ideally
infinite) systems. This is reassuring from the point of
view of the definition of conductivity, which is generally
considered as a material (macroscopic) property,
independent of the external conditions. Moreover, we
proved that the conductivity is an increasing function
of the elastic constant describing the interactions
among the system particles. Nevertheless, there is an
upper bound of thermal conductivity, which can not
be exceeded by simply increasing this elastic constant.
Therefore, for an increasing mechanical stiffness of the
material, we always observe a consistent saturation of
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the thermal conductivity.
These results may find applications to nanoscale

thermal problems, in which one tries to optimize
the heat conductivity of a nanosystem between two
thermal baths for a finite and small N [96]. Indeed,
the present model suggests that it is always possible
to tune the thermal baths collision frequency or the
harmonic force field of the system to maximize (e.g. for
heat dissipation) or minimize (e.g. for thermoelectric
optimization) the thermal conductivity.

While being a paradigmatic model for the under-
standing of the ballistic-diffusive transition, our chain
with energy conserving stochastic perturbations should
be improved to better represent more realistic situa-
tions. One possible analysis should investigate the re-
lationship between the parameters of our system (e.g.,
a and b of Eq.(24)) and the real physical microscopic
features of the material. In our approach, this link is
difficult since the stochastic perturbation introduced
describes the nonlinear particles collisions, and its in-
tensity µ is therefore related to the nonlinear part of
the interatomic potential energy. Another extension
concerns the non-stationary out-of-equilibrium regime
of the thermal conduction. Since the Fokker-Planck
formalism is not limited to the NESS, our approach can
be easily exploited to investigate situations where the
reservoirs temperatures, and therefore the heat fluxes,
are time varying. It would be also interesting to com-
pare these results with those obtained from a model
with true nonlinearities, in order to validate the ap-
proach based on the stochastic perturbation and to bet-
ter understand the relation between our system param-
eters and the real nonlinear behavior of the particles
interactions. To conclude, our model can be applied to
the analysis of the thermal conduction of a given sys-
tem under other externally applied linear effects. For
example, it could be generalized to study the effect of
a magnetic field on the thermal conductivity.

Appendix: Numerical determination of the
covariance matrix

We discuss here the numerical approach adopted
to numerically solve Eq.(23). We define first the
Kronecker product of two matrix A and B through the
block matrix

A⊗ B =


a11B a12B a13B · · ·
a21B a22B a23B · · ·
a31B a32B a33B · · ·

...
...

...
. . .

 . (26)

This operation is non-commutative and is useful to
convert equations like Eq.(23) to a standard linear
system. To do this, we also need to define the
vectorization of a matrix. This operation converts a

matrix A into a column vector Â by juxtaposing the
consecutive rows of the matrix and transposing the
result

A =


a11 a12 a13 · · ·
a21 a22 a23 · · ·
a31 a32 a33 · · ·
...

...
...

. . .

⇒
Â = [a11 a12 a13 ... a21 a22 a23 ... a31 a32 a33 ...]

T
. (27)

The important relation between Kronecker product
and vectorization is given by the following properties

A = BC ⇒ Â = (B ⊗ I) Ĉ =
(
I ⊗ CT

)
B̂, (28)

Z = ABC ⇒ Ẑ = (A⊗ I)
(
I ⊗ CT

)
B̂, (29)

where I is the identity matrix. We can rewrite Eq.(23)
as follows

0 = SΛ + ΛST + 2
∑
ξ

BξΛBTξ +Q, (30)

where

Q = 2CCT − VVTS−T − S−1VVT . (31)

Previous properties allows for converting Eq.(30) into
the following vectorized form

0 =

S ⊗ I + I ⊗ S + 2
∑
ξ

(Bξ ⊗ I) (I ⊗ Bξ)

 Λ̂ + Q̂,

(32)

and to get its solution as

Λ̂ = −

S ⊗ I + I ⊗ S + 2
∑
ξ

(Bξ ⊗ I) (I ⊗ Bξ)

−1

Q̂,

(33)

which can be calculated with standard numerical
procedure (Gaussian elimination, factorizations and so
on).
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[85] Itô K 1950 Nagoya Math. J. 1 35
[86] Hanggi P and Thomas H 1982 Phys. Rep. 88 207
[87] Klimontovich Y L 1995 Statistical Theory of Open Systems

(Dordrecht: Kluver Academic)
[88] Sokolov I M 2010 Chem. Phys. 375 359
[89] Klein O 1921 Arkiv für Matematik, Astronomi och Fysik

16 1
[90] Kramers H A 1940 Physica 7 284
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