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Single-molecule force spectroscopy (SMFS) techniques allow for the measurements of several static and dynamic features of macromolecules of biological origin. In particular, the atomic force microscopy (AFM), used with a variable pulling rate, provides valuable information on the folding/unfolding dynamics of proteins. We propose here two different models able to describe the out-of-equilibrium statistical mechanics of a chain composed of bistable units. These latter represent the protein domains, which can be either folded or unfolded. Both models are based on the Langevin approach and their implementation allows for investigating the effect of the pulling rate and of the device intrinsic elasticity on the chain unfolding response. The theoretical results (both analytical and numerical) have been compared with experimental data concerning the unfolding of the titin and filamin proteins, eventually obtaining a good agreement over a large range of the pulling rates.

Introduction

The development of single-molecule force spectroscopy techniques has widely promoted the study of the mechanical and kinetic properties of several biological macromolecules, such as proteins [START_REF] Fisher | The study of protein mechanics with the atomic force microscope[END_REF][START_REF] Li | Atomic force microscopy reveals the mechanical design of a modular protein[END_REF][START_REF] Imparato | Reconstructing the free-energy landscape of a polyprotein by singlemolecule experiments[END_REF][START_REF] Hoffmann | Single molecule force spectroscopy using polyproteins[END_REF][START_REF] Hughes | The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding Rep[END_REF], nucleic acids (DNA [START_REF] Smith | Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads[END_REF][START_REF] Marko | Stretching DNA[END_REF][START_REF] Smith | Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules[END_REF][START_REF] Chaurasiya K R, Paramanathan | Biophysical characterization of DNA binding from single molecule force measurements[END_REF] and RNA [START_REF] Bonin | Analysis of RNA flexibility by scanning force spectroscopy[END_REF][START_REF] Lipfert | Double-stranded RNA under force and torque: similarities to and striking differences from double-stranded DNA[END_REF]) and polysaccharides [START_REF] Rief | Single molecule force spectroscopy on polysaccharides by atomic force microscopy[END_REF][START_REF] Li | Single-molecule force spectroscopy on polysaccharides by AFM -nanomechanical fingerprint of α-(1,4)-linked polysaccharides[END_REF][START_REF] Francius | Stretching polysaccharides on live cells using single molecule force spectroscopy[END_REF]. These methods include atomic-force microscopes (AFM), laser optical tweezers (LOT), and magnetic tweezers (MT) [START_REF] Strick T R | Stretching of macromolecules and proteins Rep[END_REF][START_REF] Ritort | Single-molecule experiments in biological physics: methods and applications[END_REF][START_REF] Neuman | Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscope[END_REF][18][START_REF] Miller | Single-molecule techniques in biophysics: a review of the progress in methods and applications Rep[END_REF].

Besides, micro-electromechanical systems (MEMS) have been designed to study, e.g., the DNA mechanical degradation under ionizing radiation [START_REF] Perret | Real-time mechanical characterization of DNA degradation under therapeutic X-rays and its theoretical modeling Microsystems &[END_REF][START_REF] Manca | Stochastic mechanical degradation of multi-cracked fiber bundles with elastic and viscous interactions[END_REF][START_REF] Manca | Scaling Shift in Multicracked Fiber Bundles[END_REF]. All these devices apply forces on chemical structures, allowing the quantification of the intrinsic elasticity of biochemical systems (force-extension response) [START_REF] Florin | Adhesion forces between individual ligand-receptor pairs[END_REF], which is considerably important for several reasons.

First, the functions of several macromolecules (for instance, proteins) are strongly related to the threedimensional conformation of their polymeric chain. Therefore, the capacity to preserve their geometrical configuration against external mechanical loads must be tested to quantify the ability to conserve their functions.

This can be directly done by forcespectroscopy methods, which can be used to unfold the native folded structure of a macromolecule. The controlled unfolding leads to the estimate of the strength, the energy landscape and the dynamic properties of the system under investigation [START_REF] Dudko | Decoding the mechanical fingerprints of biomolecules Q[END_REF].

Second, the static and dynamic response of macromolecules is crucial for assessing the equilibrium and out-of-equilibrium thermodynamics of small systems. Indeed, the direct measurement of the specific biophysical and biochemical properties in nanometric systems, where the thermal fluctuations play an important role, has allowed for the first time to test the theoretical results based on the statistical physics [START_REF] Bustamante | The Nonequilibrium Thermodynamics of Small Systems[END_REF][START_REF] Dieterich | Control of force through feedback in small driven systems[END_REF].

The typical single-molecule experiment is conducted by tethering the first end of the macromolecule and by moving its second end by means of the forcespectroscopy device. Ideally, it is able either to apply a constant force to the second end of the chain (Gibbs ensemble) or to prescribe the distance between the chain ends (Helmholtz ensemble) [START_REF] Rubi | Thermodynamics for Single-Molecule Stretching Experiments[END_REF][START_REF] Manca | Elasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensembles[END_REF][START_REF] Manca | Two-state theory of single-molecule stretching experiments[END_REF][START_REF] Prados | Sawtooth patterns in biomolecules force-extension curves: an equilibriumstatistical-mechanics theory[END_REF][START_REF] Bonilla | Theory of forceextension curves for modular proteins and DNA hairpins[END_REF]. In reality, intermediate cases can be generated by real devices with a finite intrinsic elasticity [START_REF] Bonilla | Theory of forceextension curves for modular proteins and DNA hairpins[END_REF][START_REF] Florio | Unveiling the influence of device stiffness in single macromolecule unfolding[END_REF][START_REF] Bellino | The influence of device handles in single-molecule experiments[END_REF]. The measured force-extension response typically exhibits a sawtooth pattern, corresponding to the sequential transitions of the macromolecule domains from the folded to the unfolded state. For practical reasons, these experiments are typically conducted by imposing a given pulling speed to the second end of the chain. This point has crucial effects on the force-extension relation, which shows a strong speed-dependent behaviour.

On the one hand, for very low pulling speeds, the system is not far from the thermodynamic equilibrium and its response can be studied by means of the classical canonical distribution of the statistical mechanics. This methodology has been specialized to deal with bistable units through the so-called spin variables approach. While this idea has been originally introduced to study the mechanics of muscles [START_REF] Huxley | Proposed mechanism of force generation in striated muscle[END_REF][START_REF] Hill | Theory of muscular contraction extended to groups of actin sites[END_REF], it is currently used to analyse many different twostate systems [START_REF] Giordano | Spin variable approach for the statistical mechanics of folding and unfolding chains Soft[END_REF][START_REF] Benedito | Thermodynamics of small systems with conformational transitions: the case of two-state freely jointed chains with extensible units[END_REF][START_REF] Benedito | Isotensional and isometric force-extension response of chains with bistable units and Ising interactions[END_REF][START_REF] Benedito | Full statistics of conjugated thermodynamic ensembles in chains of bistable units[END_REF][START_REF] Benedito | Unfolding pathway and its identifiability in heterogeneous chains of bistable units[END_REF][START_REF] Caruel | Muscle as a Metamaterial Operating Near a Critical Point[END_REF][START_REF] Caruel | Statistical mechanics of the Huxley-Simmons model[END_REF][START_REF] Caruel | Bi-stability resistant to fluctuations[END_REF][START_REF] Caruel | Physics of muscle contraction Rep[END_REF]. The bistable potential energy of each unit is approximated by two quadratic functions representing the folded and unfolded states. Moreover, the switching between these states is controlled by a discrete spin variable, which belongs to the phase space of the system. The partition function can be therefore calculated in closed form by integrating the continuous variables and summing the discrete ones. This allows for the theoretical determination of the sawtooth forceextension curve and of the macroscopic properties of the system at thermodynamic equilibrium [START_REF] Giordano | Spin variable approach for the statistical mechanics of folding and unfolding chains Soft[END_REF][START_REF] Benedito | Thermodynamics of small systems with conformational transitions: the case of two-state freely jointed chains with extensible units[END_REF][START_REF] Benedito | Isotensional and isometric force-extension response of chains with bistable units and Ising interactions[END_REF][START_REF] Benedito | Full statistics of conjugated thermodynamic ensembles in chains of bistable units[END_REF][START_REF] Benedito | Unfolding pathway and its identifiability in heterogeneous chains of bistable units[END_REF]. It is worth noticing that also other equilibrium statistical mechanics approaches have been developed to deal with this issue [START_REF] Prados | Sawtooth patterns in biomolecules force-extension curves: an equilibriumstatistical-mechanics theory[END_REF][START_REF] Bonilla | Theory of forceextension curves for modular proteins and DNA hairpins[END_REF][START_REF] Staple | Stretching and unfolding of multidomain biopolymers: a statistical mechanics theory of titin[END_REF][START_REF] Makarov | A Theoretical Model for the Mechanical Unfolding of Repeat[END_REF][START_REF] Tommasi | An energetic model for macromolecules unfolding in stretching experiments[END_REF][START_REF] Giordano | Helmholtz and Gibbs ensembles, thermodynamic limit and bistability in polymer lattice models Continuum[END_REF].

On the other hand, the most important case concerns the dynamic regime, where a finite pulling speed is considered.

Its typical values in AFM force-spectroscopy experiments range between 10 -2 and 10 2 µm/s [START_REF] Schlierf | Single-molecule unfolding force distributions reveal a funnel-shaped energy landscape[END_REF][START_REF] Schlierf | Temperature softening of a protein in single-molecule experiments[END_REF][START_REF] Carrion-Vazquez | Mechanical and chemical unfolding of a single protein: a comparison[END_REF][START_REF] Lei | Reversible unfolding and folding of the metalloprotein ferredoxin revealed by single-molecule atomic force microscopy[END_REF][START_REF] Xia | Single molecule force spectroscopy reveals that the oxidation state of cobalt ions plays an important role in enhancing the mechanical stability of proteins[END_REF][START_REF] Klamecka | Energy profile of nanobody-GFP complex under force[END_REF]. Recently, the introduction of the high-speed atomic force microscope (HS-AFM) has made it possible to attain speeds of about 10 4 µm/sec, almost two orders of magnitude faster than previous techniques [START_REF] Rico | High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations[END_REF][START_REF] Eghiaian | High-speed atomic force microscopy: imaging and force spectroscopy[END_REF][START_REF] Takahashi | αhelix unwinding as force buffer in spectrins[END_REF][START_REF] Valotteau | High-speed force spectroscopy: microsecond force measurements using ultrashort cantilevers[END_REF][START_REF] Rico | Heterogeneous and rate-dependent streptavidin-biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations[END_REF]. Along with experiments, molecular dynamics simulations have been performed to study the speed-dependent unfolding of bistable macromolecules [START_REF] Gräter | Mechanically induced titin kinase activation studied by force-probe molecular dynamics simulations[END_REF]. However, this approach is limited to pulling speeds larger than 10 3 µm/s and, therefore, it is not possible to draw a comparison with standard AFM experiments [START_REF] Lee | Discovery through the computational microscope[END_REF]. Indeed, for lower values of the pulling speed, the total computation time to observe the unfolding is too extended and therefore the simulation is not realizable with the available computational resources [START_REF] Eghiaian | High-speed atomic force microscopy: imaging and force spectroscopy[END_REF][START_REF] Takahashi | αhelix unwinding as force buffer in spectrins[END_REF][START_REF] Valotteau | High-speed force spectroscopy: microsecond force measurements using ultrashort cantilevers[END_REF][START_REF] Rico | Heterogeneous and rate-dependent streptavidin-biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations[END_REF][START_REF] Gräter | Mechanically induced titin kinase activation studied by force-probe molecular dynamics simulations[END_REF][START_REF] Lee | Discovery through the computational microscope[END_REF]. The advantage of the molecular dynamics is that the bistable character of the units directly comes from the molecular architecture of the system. Nevertheless, to reduce the complexity of the molecular dynamics simulations, a coarse grained model can be adopted and implemented through a kinetic Monte Carlo method [START_REF] Rief | Elastically coupled two-level systems as a model for biopolymer extensibility[END_REF][START_REF] King | Monte Carlo simulation of mechanical unfolding of proteins based on a simple twostate model[END_REF]. In this case, the bistability of each unit is simply described by a two-state potential energy characterized by the rates of the folding and unfolding processes. Hence, the reduced complexity of the model allows for considering a larger range of pulling speeds. Nonetheless, in this approach only the folding and unfolding rates are considered to describe the bistable characters of the units. By considering the Kramers theory [START_REF] Kramers | Brownian motion in a field of force and the diffusion model of chemical reactions[END_REF], the Bell approximation [START_REF] Bell | Models for the specific adhesion of cells to cells[END_REF], and the Evans-Ritchie more elaborated formalism [START_REF] Evans | Dynamic strength of molecular adhesion bonds[END_REF], we can assert that the folding and unfolding rates are directly related to the energy barrier ∆B and the energy jump ∆E between the two states, as well as the mechanical action applied to the system. This point allows to affirm that we can estimate energetic features of the macromolecule (e.g., ∆B and/or ∆E) from the force-extension response measured at different pulling speeds. In fact, the observed unfolding forces are influenced by the dynamic interplay between the transition rates and the applied pulling speed. Of course, much theroretical work has been done to apply the Kramers, Bell and Evans-Ritchie theories for decoding the force-spectroscopy data and yielding the energetic parameters that govern the biomolecular processes [START_REF] Dudko | Decoding the mechanical fingerprints of biomolecules Q[END_REF].

This approach has generated a powerful class of approximated results, which are of simple application in many different regimes and configurations [START_REF] Hummer | Kinetics from nonequilibrium single-molecule pulling experiments[END_REF][START_REF] Dudko | Beyond the conventional description of dynamic force spectroscopy of adhesion bonds[END_REF][START_REF] Dudko | Intrinsic rates and activation free energies from single-molecule pulling experiments[END_REF][START_REF] Dudko | Theory, analysis, and interpretation of single-molecule force spectroscopy experiments[END_REF][START_REF] Pierse | Kinetics and energetics of biomolecular folding and binding[END_REF][START_REF] Benichou | Rate Dependent Response of Nanoscale Structures Having a Multiwell Energy Landscape[END_REF][START_REF] Benichou | The rate dependent response of a bistable chain at finite temperature[END_REF].

In the present work, we propose an alternative approach based on the numerical implementation of the Langevin methodology. In particular, we propose two different complementary models describing a chain of bistable units under the action of the applied stretching. In the first case, the classical Langevin equations are equipped with the full description of an arbitrary potential energy mimicking the bistable units. In the second case, we introduce a snap spring model, based on the combination of the Langevin equation with the spin variables approach. It is particularly useful in order to have a dynamic description of the system with the direct access to the spin variables, which represent the configurational state of the macromolecule.

Both methods can be used to analyse force spectroscopy experimental data in order to estimate biological features of the macromolecules, such as ∆E, ∆B or other biochemical parameters. While the second model is useful to directly observe the spin variable dynamics, it is based on a less accurate description of the bistable behaviour of the units. In this sense, the proposed Langevin approaches can be placed in-between the molecular dynamics method from one side, and the kinetic Monte Carlo and the theoretical approximations from the other side. In any case, they allow for considering the whole range of pulling speeds used in real experiments, including those of classical AFM experiments. Finally, the Langevin approaches will be used to elucidate the role of the device in the single-molecule measurements and to interpret experimental data concerning filamin and titin proteins.

The paper is structured as follows. In Section 2, we introduce the Langevin approach and its numerical implementation for studying the nonequilibrium pulling experiments. In Section 3, we discuss the spin variable method, dealing with the case of very small pulling speeds. Then, in Section 4, we present a first series of numerical results concerning force spectroscopy devices with and without intrinsic elasticity. In addition, in Section 5, we discuss the comparison with experimental data (filamin and titin). Finally, in Section 6, we introduce the snap spring model and we show its behaviour via the analysis of the filamin unfolding.

Out of equilibrium statistical mechanics through the Langevin approach

To introduce the out-of-equilibrium statistical mechanics of the pulling process, we use the Langevin approach. It means that a friction term and a noise term are added to the equation of motion of each degree of freedom of the system. This stochastic evolution is coherent with the asymptotic behaviour of the system, which is represented by the classical canonical distribution of the statistical mechanics [START_REF] Manca | Statistical mechanics of holonomic systems as a Brownian motion on smooth manifolds[END_REF][START_REF] Giordano | Stochastic thermodynamics of holonomic systems[END_REF]. For a particle in motion within the three-dimensional space, the exact Newton dynamic equation is

m d 2 r dt 2 = - ∂V ∂ r -mβ d r dt + √ Dm n, (1) 
where V is the potential energy describing the force field applied to the particle, β is the friction coefficient (per unit mass, the so-called collision frequency) and D is the diffusion coefficient (per unit mass) given by the Einstein relation D = K B T β [START_REF] Risken | The Fokker-Planck equation[END_REF][START_REF] Coffey | The Langevin equation[END_REF]. Moreover, in Eq.(1), r is the position vector of the particle, m is its mass and n is a random process. As usual, we assume the following hypotheses on n: n(t) ∈ R 3 is a Gaussian stochastic process, E{ n(t)} = 0, and E{n i (t 1 )n j (t 2 )} = 2δ ij δ(t 1 -t 2 ) (here E means "expected value", δ ij is the Kronecker delta, and δ(.) is the Dirac delta function). It is well known that these properties are sufficient to obtain a correct thermodynamic behaviour for the system [START_REF] Manca | Statistical mechanics of holonomic systems as a Brownian motion on smooth manifolds[END_REF][START_REF] Giordano | Stochastic thermodynamics of holonomic systems[END_REF][START_REF] Risken | The Fokker-Planck equation[END_REF][START_REF] Coffey | The Langevin equation[END_REF]. In typical biological environments the coefficient mβ describing the friction is quite large. It means that we can neglect the inertial term within the Newton equation of motion. This simplification is sometimes named Smoluchowski approximation and it is valid in the so-called overdamped regime [START_REF] Risken | The Fokker-Planck equation[END_REF][START_REF] Coffey | The Langevin equation[END_REF]. Hence, for large values of β we can write

m d r dt = - 1 β ∂V ∂ r + √ Dm β n, (2) 
being the inertial term negligible. This approach can be adopted to develop the model for a one-dimensional chain of N bistable units, unfolded through a force spectroscopy device (see Fig. 1a). In this case, we can write the system of stochastic differential equations 

m dx i dt = - 1 β U (x i -x i-1 ) ℓ χℓ x ∆B 0 U (x) χ 0 ℓ x α x β ∆E ℓ χℓ ℓ ℓ ℓ χℓ ℓ ℓ k d WITHOUT DEVICE DEVICE WITH k F k U a) b) c) k 0 ℓ d s = 0 s = 1 U s (x) ELASTICITY ELASTICITY
+ 1 β U (x i+1 -x i ) + K B T m β n i (t), (3) 
where i = 1, ..., N -1 if we consider N identical units described by the potential energy U . This approach has been recently adopted to study the effect of the pulling velocity on the unfolding pathway of heterogeneous chains [START_REF] Plata | Understanding the dependence on the pulling speed of the unfolding pathway of proteins[END_REF][START_REF] Plata | Modelling the unfolding pathway of biomolecules: theoretical approach and experimental prospect in Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications[END_REF], and it is used here to investigate the effect of the pulling velocity on the unfolding forces. These equations must be solved with the boundary conditions x 0 (t) = 0 and x N (t) = v 0 t + N , where is the length of one folded unit (before the application of the traction). For t = 0, we have x N (0) = N , which means that all the units are folded at the beginning of the process. In addition, the latter condition corresponds to a device without intrinsic elasticity, able to perfectly prescribe the trajectory of the last element of the chain. When v 0 is very small, the system can be studied with the equilibrium statistical mechanics. In particular, this case is thoroughly discussed in the Section 3 by means of the method of the spin variables. On the other hand, when v 0 assumes arbitrary values, the problem can be approached by the direct integration of Eq.(3). To do this, we have to specify the energy profile U (x), which represents the bistable character of the system units. As a particularly simple example, we will analyse a real bistable system described by the following potential energy (see Fig. 1c)

U (x) =    1 2 k F (x -) 2 if x ≤ x α , ∆B -1 2 k 0 (x -χ 0 ) 2 if x α < x ≤ x β , ∆E + 1 2 k U (x -χ ) 2 if x > x β . (4) 
The parameter k F represents the elastic constant of the folded state, k 0 the (reverse) elastic constant of the concave barrier between the wells, and k U the elastic constant of the unfolded state. Here, k F > 0, k 0 > 0, k U > 0, 1 < χ 0 < χ, ∆B represents the energy barrier between the wells, and ∆E measures the energy jump between the two states. While is the position of the first well, the parameters χ 0 and χ are geometrical factors fixing the position of the barrier and of the second well, respectively. The points x α and x β represent the boundaries separating the three different regions (the first well, the spinodal region, and the second well).

If the elastic constants of the two wells assume the same value (see Fig. 1c with k U = k F ), the conditions of continuity and derivability of U at points x α and x β give the relations

χ 0 = √ ∆B -∆E + χ √ ∆B √ ∆B -∆E + √ ∆B , (5) 
1 k 0 = 2 (χ -1) 2 2 √ ∆B -∆E + √ ∆B 2 - 1 k F , (6) 
x α = k F + k 0 χ 0 k F + k 0 , (7) 
x β = k F χ + k 0 χ 0 k F + k 0 . (8) 
Therefore, once fixed ∆E, ∆B, k F , χ and , we can easily find x α , x β , k 0 and χ 0 .

In order to further investigate the behaviour of the bistable chain, we will also analyse the case with a different elastic constant in the two wells (see Fig. 1c with k U = k F ). The conditions of continuity and derivability of U at points x α and x β give now

(∆B -∆E) (χ 0 -1) 2 -∆B(χ -χ 0 ) 2 = 2∆B (∆B -∆E) (k U -k F ) k U k F 2 , (9) 
which is a second degree equation for χ 0 , and

k 0 = 2∆Bk F k F 2 (χ 0 -1) 2 -2∆B , (10) 
x α = k F + k 0 χ 0 k F + k 0 , (11) 
x β = k U χ + k 0 χ 0 k U + k 0 . (12) 
Therefore, once fixed ∆E, ∆B, k F , k U , χ and , we can easily find x α , x β , k 0 and χ 0 . The behaviour of the whole system (with either k U = k F or k U = k F ) can be studied through the numerical solution of the Langevin equation (see details in the Appendix A). The results of this analysis will be described in Sections 4 and 5.

The model so far introduced is represented by a chain of N bistable units with the last unit directly connected to the device (without the intrinsic elasticity) able to apply a traction defined by the uniform motion x N (t) = v 0 t + N (see Fig. 1a). Actually, a force spectroscopy device is typically characterized by its intrinsic elasticity, which is rather important for the understanding of the system behaviour [START_REF] Florio | Unveiling the influence of device stiffness in single macromolecule unfolding[END_REF][START_REF] Bellino | The influence of device handles in single-molecule experiments[END_REF]. Therefore, we also introduce a second model where the last unit of the chain is connected to a device with a given finite elasticity (see Fig. 1b). It means that Eq.( 3) must be substituted by the following system of equations

m dx i dt = - 1 β U (x i -x i-1 ) + 1 β U (x i+1 -x i ) + K B T m β n i (t), (13) 
for i = 1, ..., N -1 and

m dx N dt = - 1 β U (x N -x N -1 ) (14) 
+ 1 β k d (x N +1 -x N -d ) + K B T m β n N (t),
for the device performing the force-spectroscopy measurement.

Here, k d represents the intrinsic elasticity of the device, d its intrinsic length, and the traction is described by x N +1 (t) = v 0 t + N + d .

Spin variables approach at thermodynamic equilibrium

Before showing the results of the integration of the Langevin equations stated in previous Section 2, we introduce here the spin variables approach, which is a mathematical method useful to obtain the force extension relations for very low traction speeds v 0 (ideally v 0 → 0) [START_REF] Giordano | Spin variable approach for the statistical mechanics of folding and unfolding chains Soft[END_REF][START_REF] Benedito | Thermodynamics of small systems with conformational transitions: the case of two-state freely jointed chains with extensible units[END_REF][START_REF] Benedito | Isotensional and isometric force-extension response of chains with bistable units and Ising interactions[END_REF][START_REF] Benedito | Full statistics of conjugated thermodynamic ensembles in chains of bistable units[END_REF][START_REF] Benedito | Unfolding pathway and its identifiability in heterogeneous chains of bistable units[END_REF][START_REF] Caruel | Muscle as a Metamaterial Operating Near a Critical Point[END_REF][START_REF] Caruel | Statistical mechanics of the Huxley-Simmons model[END_REF][START_REF] Caruel | Bi-stability resistant to fluctuations[END_REF][START_REF] Caruel | Physics of muscle contraction Rep[END_REF]. It means that in this Section we consider rate-independent processes. We describe the application of this technique to both the cases of force spectroscopy devices with and without intrinsic elasticity.

In the first case with a device without intrinsic elasticity, we consider a one-dimensional chain with N units described by the energy potential given in Eq.( 4), and with prescribed position x N of the last element of the chain (Helmholtz condition). In order to obtain the result for the Helmholtz ensemble, the proposed approach starts with the analysis of the Gibbs ensemble, characterized by the application of an external force f to the last element of the chain [START_REF] Giordano | Spin variable approach for the statistical mechanics of folding and unfolding chains Soft[END_REF]. Then, the total potential energy for the Gibbs ensemble is given by

U G = N i=1 U (x i -x i-1 ) -f x N ,
where the last term describes the application of the force f to x N . Moreover, the spin variable approach considers the following approximation to the potential energy of the bistable units: since the bistable shape of U (x) with two potential wells is too complex to calculate the partition function in closed form, we consider two independent parabolic wells and we add a discrete spin variable (similarly to a bit) to control the switching processes between them (see Fig. 1c). It means that the potential energy U can be approximated with U s , defined as

U s (x, s) = 1 2 k F (x -) 2 (1 -s) + 1 2 k U (x -χ ) 2 + ∆E s, (15) 
where the second variable s is the spin variable assuming the values 0 (folded or native state) or 1 (unfolded state). Since for v 0 = 0 the system is considered at thermodynamic equilibrium, the energy barrier ∆B can be neglected. Indeed, it is known that it influences only the dynamical behaviour of the system. This is coherent with the classical reactionrate theory of Kramers [START_REF] Kramers | Brownian motion in a field of force and the diffusion model of chemical reactions[END_REF][START_REF] Weiner | Statistical Mechanics of Elasticity[END_REF]. Both the spin variables and the continuous coordinates belong to the phase space of the system and therefore we can write the Gibbs partition function as

Z G (f ) = 1 s1=0 ... 1 s N =0 ... e - U G K B T dx 1 ...dx N , (16) 
where

U G = N i=1 U s (x i -x i-1 , s i )-f
x N , being the the form of U s given in Eq. [START_REF] Strick T R | Stretching of macromolecules and proteins Rep[END_REF]. The explicit calculation of Z G can be performed in two steps. First, we can apply the change of variables

x i -x i-1 = ξ i ∀i = 1, ..., N , from which we get x N = N i=1 ξ i (with x 0 = 0). Second, we use the classical integral +∞ -∞ e -αx 2 e βx = π α e β 2 4α (α > 0), (17) 
and we eventually obtain the result in the form

Z G (f ) = (2πK B T ) N 2 1 √ k F e f 2 2k F K B T + f K B T + 1 √ k U e f 2 2k U K B T + χ f K B T -∆E K B T N . ( 18 
)
Once determined the Gibbs partition function, we can use the Fourier transform to obtain the Helmholtz partition function [START_REF] Giordano | Spin variable approach for the statistical mechanics of folding and unfolding chains Soft[END_REF]. Indeed, the following relation holds

Z H (x) = +∞ -∞ Z G (-iωK B T ) exp(iωx)dω. ( 19 
)
To determine Z H , we can develop the power of the sum in Eq.( 18) by means of the binomial expansion

Z H (x) = (2πK B T ) N 2 N c=0 N c φ c 1 k N -c F 1 k c U (20) × +∞ -∞ exp - ω 2 K B T 2k F -iω (N -c) × exp - ω 2 K B T 2k U -iωχ c exp (iωx) dω, with φ = exp -∆E K B T
. By simplifying this expression and using the well-known integral

+∞ -∞ e -αx 2 e iβx = π α e -β 2 4α (α > 0), (21) 
we obtain the final result for the Helmholtz partition function of the chain with bistable units as

Z H (x) = (2πK B T ) N 2 N c=0 N c φ c 1 k N -c 2 F 1 k c 2 U (22) 
× 2π

K B T (N -c) k F + c k U × exp   - ( c -N -cχ + x) 2 2K B T N -c k F + c k U   .
We have now the possibility to determine the force-extension relation of the chain through the thermodynamic relation [START_REF] Manca | Elasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensembles[END_REF][START_REF] Giordano | Spin variable approach for the statistical mechanics of folding and unfolding chains Soft[END_REF][START_REF] Weiner | Statistical Mechanics of Elasticity[END_REF]]

f = -K B T ∂ log Z H (x) ∂x , (23) 
and, in the next Section, we can compare this result with the numerical solution of the Langevin system, see Eq.( 3), for low values of the traction velocity v 0 (not far from the thermodynamic equilibrium). We can consider the second case, which takes into account a more realistic device with its intrinsic stiffness k d and equilibrium length d . In this case, the total potential energy within the Gibbs ensemble is given by U

(d) G = N i=1 U s (x i -x i-1 , s i )+ 1 2 k d (x N +1 - x N -d ) 2 -f x N +1 ,
being the the form of U s defined in Eq.( 15), as before. The second term of this expression describes the elastic energy stored in the device, represented by a linear spring with parameters k d and d . Moreover, the third term represents the force f applied by the device. It follows that the new partition function

Z (d) G (f ) can be written as Z (d) G (f ) = 1 s1=0 ... 1 s N =0 ... e - U (d) G K B T dx 1 ...dx N +1 .( 24 
)
As before, we can calculate

Z (d)
G by firstly applying the change of variable

x i -x i-1 = ξ i ∀i = 1, ..., N + 1, from which we get x N +1 = N +1
i=1 ξ i (with x 0 = 0), and then by using the integral in Eq.( 17). This procedure eventually delivers

Z (d) G = Z G +∞ -∞ e 1 K B T [ 1 2 k d (ξ N +1 -d ) 2 -f ξ N +1] dξ N +1 = (2πK B T ) N +1 2 1 √ k d e f 2 2k d K B T + f d K B T (25) × 1 √ k F e f 2 2k F K B T + f K B T + φ √ k U e f 2 2k U K B T + χ f K B T N ,
where, as before, φ = exp -∆E

K B T
is the Boltzmann factor calculated with the energy jump between the folded and unfolded states. Now, we can calculate the partition function Z 

Z (d) H (x) = +∞ -∞ Z (d) G (-iωK B T ) exp(iωx)dω, (26) 
which remains valid also for the case with a device with intrinsic elasticity [START_REF] Florio | Unveiling the influence of device stiffness in single macromolecule unfolding[END_REF][START_REF] Bellino | The influence of device handles in single-molecule experiments[END_REF][START_REF] Giordano | Spin variable approach for the statistical mechanics of folding and unfolding chains Soft[END_REF]. Again, by means of the binomial expansion and by the integral in Eq.( 21), we get the final result

Z (d) H (x) = (2πK B T ) N +1 2 N c=0 N c φ c 1 k N -c 2 F 1 k c 2 U 1 k 1 2 d ( 27 
) × 2π K B T N -c k F + c k U + 1 k d × exp   - ( c -N -cχ -d + x) 2 2K B T N -c k F + c k U + 1 k d   .
Therefore, the force-extension relation can be directly obtained through the classical expression [START_REF] Manca | Elasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensembles[END_REF][START_REF] Giordano | Spin variable approach for the statistical mechanics of folding and unfolding chains Soft[END_REF][START_REF] Weiner | Statistical Mechanics of Elasticity[END_REF]]

f = -K B T ∂ log Z (d) H (x) ∂x , (28) 
which will be used to compare this result with the solution of the Langevin system given in Eqs.( 13) and ( 14), for low values of the traction velocity v 0 . It is interesting to observe that the Gibbs partition functions (see Eqs.( 18) and ( 25)) are always written as a power with exponent N . It means that the units are statistically independent when a force is applied for stretching the macromolecule [START_REF] Bonilla | Theory of forceextension curves for modular proteins and DNA hairpins[END_REF][START_REF] Giordano | Spin variable approach for the statistical mechanics of folding and unfolding chains Soft[END_REF][START_REF] Efendiev | Thermalization of a driven bi-stable FPU chain Continuum[END_REF]. On the other hand, the Helmholtz partition functions (see Eqs.( 22) and ( 27)) can not be written as a power with exponent N , proving that prescribing the total extension induces an implicit interaction among the bistable units [START_REF] Bonilla | Theory of forceextension curves for modular proteins and DNA hairpins[END_REF][START_REF] Giordano | Spin variable approach for the statistical mechanics of folding and unfolding chains Soft[END_REF][START_REF] Efendiev | Thermalization of a driven bi-stable FPU chain Continuum[END_REF]. This interaction is imposed by the fixed total length of the chain, and is different from a real explicit interaction introduced for example by an Ising scheme [START_REF] Benedito | Isotensional and isometric force-extension response of chains with bistable units and Ising interactions[END_REF]. Besides, it is worth mentioning that the Gibbs and the Helmholtz ensembles become equivalent under the hypothesis of thermodynamic limit, i.e. for a very large number N of units (ideally for N → ∞) [START_REF] Manca | Elasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensembles[END_REF][START_REF] Winkler | Equivalence of statistical ensembles in stretching single flexible polymers[END_REF][START_REF] Manca | On the equivalence of thermodynamics ensembles for flexible polymer chains[END_REF].

The knowledge of the system response for low values of v 0 is attractive from the theoretical point of view since allows the direct analysis of the bistable chains with simple closed form expressions. Besides, it is useful to check the numerical code developed for solving the Langevin equations and to appreciate the deviations observed for increasing values of the traction velocity.

Analytical and numerical results

Here, we discuss the results obtained through the analytical and numerical approaches introduced in previous Sections. In particular, we will analyse four different cases dealing with a bistable chain (typically representing a protein) having the following properties: i) the same elastic constants k F and k U in the folded and unfolded states, and a device without intrinsic elasticity; ii) different elastic constants k F and k U , and a device without intrinsic elasticity; iii) the same elastic constants k F and k U , and a realistic device with k d and d ; iv) different elastic constants k F and k U , and a realistic device with k d and d . The comparison of these four different cases is important to deduce some general features of the force-extension relation, useful to better interpret and decipher the singlemolecule experimental results. In particular, this analysis will be able to shed light on the role of the force spectroscopy device in the measured force-extension curves. We underline that in this Section the numerical calculations have been performed with reasonable parameters with respect to real macromolecules but we decided to not refer to specific biological systems in order to show some general trends. However, we will show in Section 5 a direct comparison with experiments conducted on filamin and titin proteins. 

Device without intrinsic elasticity

In Fig. 2, we can find the results for the first case dealing with a chain with equal elastic constants for the two wells and unfolded through a device without intrinsic elasticity. We considered a macromolecule with N = 4 domains. In Fig. 2a, we show the energy profile of the bistable units, where we can observe the energy barrier ∆B = 18K B T and the energy jump ∆E = 10K B T . Then, in Fig. 2b, we show the force-extension curves for different pulling velocities v 0 . The dashed black curve corresponds to the theoretical result obtained with v 0 = 0, and given in Eqs. [START_REF] Manca | Scaling Shift in Multicracked Fiber Bundles[END_REF] and [START_REF] Florin | Adhesion forces between individual ligand-receptor pairs[END_REF]. The other coloured curves represent the response of the chain with an increasing pulling velocity. Each forceextension curve is obtained by averaging the solution of the Langevin equation (see Eq.( 3) or ( 41)) over M = 2000 Monte Carlo realizations of the process. The deviation between each coloured curve and the dashed black curve measures how the process is far from the thermodynamic equilibrium. We remark that, while the case with v 0 = 0 is accessible with closed form mathematical expressions based on the canonical distribution of the statistical mechanics, the out-of-equilibrium behaviour can be only numerically explored by means of the Langevin formalism. The important point is that the force peaks, representing the sequential unfolding of the chain units (or protein domains), are more pronounced for larger values of the pulling velocity. Therefore, following the experimental protocol, it is interesting to analyse the behaviour of these force peaks in terms of the applied pulling velocity. This result can be found in Fig. 2c, where the intensity of the four peaks (symbols) are plotted versus v 0 . The error bars of these results are of the same order of magnitude of the fluctuations observed in the curves of Fig. 2b. Then, they are not represented in Fig. 2c since are smaller than the symbols used to represent the force peaks. This remains true for all results of Sections 4 and 5. The first important result is that the four force peaks are linearly increasing with the pulling velocity for a chain with k F = k U , unfolded through a device without intrinsic elasticity. This is confirmed by the linear least squares approximations (dashed straight lines), shown in Fig. 2c. We remark that this behaviour does not correspond to the typical experimental observation, where the force peaks show a logarithmic trend with the pulling velocity. This trend, sometimes called Evans and Ritchie law, is based on the classical Bell theory [START_REF] Bell | Models for the specific adhesion of cells to cells[END_REF], and it is valid with the extension speed varying over several orders of magnitude [START_REF] Evans | Dynamic strength of molecular adhesion bonds[END_REF][START_REF] Rief | Reversible unfolding of individual titin immunoglobulin domains by[END_REF][START_REF] Izrailev | Molecular dynamics study of unbinding of the avidin-biotin complex[END_REF]. However, we remark that such a logarithmic trend can sometimes be inexact, especially for quite large pulling velocities [START_REF] Rico | High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations[END_REF][START_REF] Eghiaian | High-speed atomic force microscopy: imaging and force spectroscopy[END_REF][START_REF] Takahashi | αhelix unwinding as force buffer in spectrins[END_REF][START_REF] Valotteau | High-speed force spectroscopy: microsecond force measurements using ultrashort cantilevers[END_REF][START_REF] Rico | Heterogeneous and rate-dependent streptavidin-biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations[END_REF]. In order to understand the specific features characterizing the response observed in single-molecule force spectroscopy experiments, we therefore explore the cases with k F = k U and/or with a real device. In Fig. 3, we can find the results for a chain with k F = k U , unfolded by means of a device without intrinsic elasticity. We considered k U = k F /2 and we assumed all the other parameters exactly as in the case shown in Fig. 2. The results shown in Fig. 3 are quite similar to the ones presented in Fig. 2 and, in particular, the linear trend between force peaks and pulling velocity is confirmed also in this case with k F = k U . It means that the different elastic constants of the two energy wells describing the bistable units are not at the origin of the dynamic behaviour experimentally observed (with the force peaks proportional to the logarithm of the pulling velocity). Consequently, we consider in the following Section the cases with a real device characterized by an intrinsic elasticity and an intrinsic equilibrium length.

A final comment concerns the shape of the forceextension curves represented in Figs. 2 and3. In both cases, we observe that some lower peaks of the curves correspond to a negative force. This is a specific behaviour induced by the fact that we are studying one-dimensional systems. In fact, for one-dimensional systems, the idea of a protein chain as a random coil with a complex distribution of domains is degenerated to a simple alignment of units on one axis with a preferred total length given by j + (N -j)χ (with j = 0, ..., N ). Since the total length is exactly imposed by the device within the Helmholtz ensemble, it is not difficult to imagine configurations with either a pushing force (negative) or a pulling one (positive), applied to the device. Of course, this apparently paradoxical behaviour disappears for two-or three-dimensional geometries, where the exploration of the phase space is more pertinent to polymer models [START_REF] Giordano | Helmholtz and Gibbs ensembles, thermodynamic limit and bistability in polymer lattice models Continuum[END_REF]. Indeed, in these real multi-dimensional cases, the pulling (negative) forces induce the geometrical rearrangement of the chain and are not directly observed in the total force measured on the device. It is important to underline that also the theoretical results obtained with the spin variables for v 0 → 0 exhibit the same behavior confirming that it is related to the onedimensional geometry of our system. In spite of this limitation of our approach, we underline that the model is able to correctly evaluate the force versus pulling velocity relation since at the transition points the macromolecule is quite aligned along the traction direction.

Device with intrinsic elasticity

In Fig. 4, we show the results for a chain with equal elastic constants for the two wells and unfolded through a realistic device with intrinsic elasticity. Typically, the elastic constant of the devices is much smaller than the elastic constant characterizing the protein domains. For the sake of definiteness, in our case, we assume that k d = k F /8 = k U /8. The comparison between k F = k U and k d can be observed in Fig. 4a, where the potential energy of the units and of the device are represented. In Fig. 4b, the force extension response is shown with different values of the pulling velocity. We remark that in this figure the curves are represented by plotting the force f N directly applied to the macromolecule versus the traction x N +1 prescribed by the device. The dashed black curve in Fig. 4b represents the force-extension relation at thermodynamic equilibrium (v 0 → 0), obtained in Eqs.( 27) and ( 28) by means of the spin variables approach. The peaks of force shown in Fig. 4b represent the sequential unfolding of the units and are quantified in Figs. 4c and4d. Here, these peaks are represented in terms of the pulling speed in both linear and logarithmic scales, respectively. From Fig. 4c, characterized by the linear scale of pulling velocity, we deduce that the linearity between peaks and velocity is not confirmed in the presence of a device with intrinsic elasticity. Indeed, by observing Fig. 4d, we conclude that we have in this case a linear dependence between force peaks and the logarithm of the pulling velocity, as observed in most of experiments. We also observe that this linear relation is not verified for large values of the pulling velocity. Coherently, deviations from the linearity between force peaks and the logarithm of the pulling velocity have been experimentally observed in highspeed single-molecule measurements [START_REF] Rico | High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations[END_REF][START_REF] Eghiaian | High-speed atomic force microscopy: imaging and force spectroscopy[END_REF][START_REF] Takahashi | αhelix unwinding as force buffer in spectrins[END_REF][START_REF] Valotteau | High-speed force spectroscopy: microsecond force measurements using ultrashort cantilevers[END_REF][START_REF] Rico | Heterogeneous and rate-dependent streptavidin-biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations[END_REF]. The dashed straight lines in Fig. 4d represent the linear least squares approximations of the peaks data (for v 0 < 2.5µm/s) and confirm the linear relation between the force peaks and log 10 v 0 , at least for small values of v 0 . This result underlines the crucial role of the realistic device, with its specific stiffness, in determining the force-extension response and the force peaks observed during the molecule unfolding. This scenario is also confirmed for the case with k F = k U , as reported in Fig. 5. Finally, the model developed on the base of the Langevin equation is able to thoroughly take into consideration the bistable character of the units of a given macromolecule as well as the elasticity of the device used to generate the unfolding process. This point is further substantiated by a direct comparison with two different experiments, as discussed in the following Section.

Theory meets experiments

In this Section, we draw a comparison between the results obtained through the numerical solution of the Langevin equations and two experiments concerning the force spectroscopy analysis of filamin and titin. The investigated filamin protein is composed of a single unit, which represents the fourth domain of Dictyostelium discoideum filamin (ddFLN4) [START_REF] Schlierf | Single-molecule unfolding force distributions reveal a funnel-shaped energy landscape[END_REF][START_REF] Schlierf | Temperature softening of a protein in single-molecule experiments[END_REF]. On the other hand, the studied titin molecule is composed by 8 repetitions of the 27th domain from the band of the human cardiac titin (I27) [START_REF] Carrion-Vazquez | Mechanical and chemical unfolding of a single protein: a comparison[END_REF][START_REF] Hummer | Kinetics from nonequilibrium single-molecule pulling experiments[END_REF].

The stretching of filamin

Filamin belongs to the family of the actin-crosslinking proteins, involved in the constant reorganization of the cytoskeleton, consisting in the moving and the multiplication of cells [START_REF] Popowicz | Molecular Structure of the Rod Domain of Dictyostelium Filamin[END_REF]. These proteins attach to the actin and stabilise the structure of the latter, and they are therefore called actin-binding-protein (ABP). As a reminder, actin plays with myosin a very important role in the contracting of the muscle. We focus our attention on the filamin found in Dictyostelium discoideum (ddFLN), a species of amoeba living in soil, commonly referred to as slime mold whose many of genes are homologous to those of humans and share similar organizations. The ddFLN structure is also known as gelation factor or ABP-120. Experiments were made on several domains of ddFLN, especially on ddFLN4, the fourth domain of ddFLN, entirely composed of β-sheets [START_REF] Schlierf | Temperature softening of a protein in single-molecule experiments[END_REF]. When investigated through force spectroscopy, domain 4 unfolds at a lower force than all the other domains in the Dictyostelium discoideum filamin [START_REF] Schwaiger | The folding pathway of a fast-folding immunoglobulin domain revealed by single-molecule mechanical experiments[END_REF]. Therefore, it has been selected to study the unfolding forces in terms of the pulling speed [START_REF] Schlierf | Single-molecule unfolding force distributions reveal a funnel-shaped energy landscape[END_REF].

Our approach is a strong simplification of the reality.

To begin, our model is one-dimensional whereas the real structure exhibits a complex threedimensional geometry.

Moreover, since we are interested in understanding the relation between the force peak and the pulling velocity, the important features are concentrated in the transition region of the dynamics. It means that, for our application, the relevant parts of the potential energy are the first energy well and the following energy barrier. In fact, the peak force is determined by the barrier crossing. Since, for the sake of simplicity, we represent the potential energy with the three parabola expression given in Eq.( 4), we are able to correctly represent the first well and the barrier and we are forced to neglect the exact geometry of the second well. This simplification should not affect the force-velocity relation and can be found in Fig. 6, where we compare the realistic and the simplified potential energy. We remark that several theoretical approximations discussed in the Introduction consider only k F and ∆B (and k d ) for estimating the force-velocity relation. It is therefore important to remember that our model is quite accurate from the point of view of this forcevelocity relation, but it does not take into account the correct geometry as previously discussed. The parameters used to model the first energy well and the barrier correspond to the values of the recent literature, obtained by means AFM experiments (under isometric condition) [START_REF] Schlierf | Single-molecule unfolding force distributions reveal a funnel-shaped energy landscape[END_REF][START_REF] Schlierf | Temperature softening of a protein in single-molecule experiments[END_REF]. Importantly, the realistic geometry of the filamin domain has been completely detected by using magnetic tweezers force spectroscopy (under isotensional condition) [START_REF] Chen | Differential mechanical stability of filamin A rod segments[END_REF][START_REF] Chen | Mechanical perturbation of filamin A immunoglobulin repeats 20-21 reveals potential non-equilibrium mechanochemical partner binding function[END_REF]. It has been clearly proved that the step size (difference between the energy minima corresponding to the folded and unfolded states) is around 12-18nm and the total contour length of the unfolded domain is around 25-30nm, as schematically shown in Fig. 6.

In Fig. 7a, one can find the force-spectroscopy AFM configuration applied to the ddFLN4 domain. The structure represented in Fig. 7a has been generated with the nuclear magnetic resonance (NMR) spectroscopy data reported in Ref. [START_REF] Fucini | The repeating segments of the F-actin crosslinking gelation factor (ABP-120) have an immunoglobulinlike fold[END_REF]. The comparison between the numerical Langevin approach and the experimental data obtained by force spectroscopy can be found in the other panels of Fig. 7. In Fig. 7c, we can observe the potential energies of domain (simplified as discussed above) and device with intrinsic elasticity, and we can observe that the device is much softer that the protein under investigation. From Fig. 7b, we deduce the shape of the force extension curves for case with a single unit. We remark that in these curves the force intensity is correct but the geometry of the domain (its step size) has not been respected as discussed above. Moreover, we can observe that the force spectroscopy experiment is conducted under conditions quite far from thermodynamic equilibrium. Indeed, the coloured curves corresponding to the different pulling speeds are rather far from the dashed black curve representing the thermodynamic equilibrium. Nevertheless, we can see in Figs. 7d ande that the force peaks are linearly depending on the logarithm of the applied pulling speed. We underline the good agreement between our numerical results based on the Langevin equation and the experimental ones, confirmed by the linear least squares approximation shown in Fig. 7e. The important point emerging from the agreement between numerical and experimental dynamical results is the following. When we perform an experiment at very low pulling speed, ideally at thermodynamic equilibrium, the force-extension curve measured depends only on the energy jump ∆E and not on the energy barrier ∆B between stable and metastable states (see, for instance, the results of Section 3). However, when a finite pulling speed is applied, the response depends also on ∆B, which governs the transition rates between the folded and unfolded configurations. Then, performing experiments in the out-of-equilibrium regime allows the indirect measurement of the energy barrier ∆B, which can be obtained by comparing the experimental results with numerical ones. In our specific case, the agreement has been obtained with ∆B = 18.2K B T (at room temperature), confirming the value reported in the literature [START_REF] Schlierf | Single-molecule unfolding force distributions reveal a funnel-shaped energy landscape[END_REF][START_REF] Schlierf | Temperature softening of a protein in single-molecule experiments[END_REF]. It is interesting to point out that the dynamic force-spectroscopy method may reveal important features of the energy landscape of a protein, without the necessity to induce the chemical or thermal unfolding of the molecule.

The stretching of titin

Titin, also known as connectin, is the largest protein of the human body, whose role is to assembly and stabilise the sarcomere, the unit of contraction of the muscle, composed of three systems of filaments: actin, myosin and titin. Data of force spectroscopy show that titin is able to store and to provide energy, mainly by folding and unfolding its multiple immunoglobulin-like domains [START_REF] Eckels | The Work of Titin Protein Folding as a Major Driver in Muscle Contraction[END_REF]. We especially focus our attention on domain immunoglobulin-like 27 (I27) of the I band of the human cardiac titin, also known as domain I91. Each domain has 89 amino-acids and is composed of β-sheets.

As before, our analysis is strongly simplified with respect to the reality. Firstly, the model is onedimensional as previously discussed. In addition, since we are interested in the force-velocity relationship, we use a simplified geometry, as depicted in Fig. 6 for the filamin. As a matter of fact, also the energy profile of the titin domain is composed of a very narrow first well, followed by quite barrier and a long smooth second well (see Fig. 7B of Ref. [START_REF] Carrion-Vazquez | Mechanical and chemical unfolding of a single protein: a comparison[END_REF] for details). Given that we search for the force peaks function of the pulling velocity, we use Eq.( 4), which allows us to correctly represent the first well and the barrier, but we cannot represent the correct geometry of the second well. This point, previously discussed, should not affect the transition forces. While the physical parameters of first well and barrier have been deduced from AFM experiments (under isometric condition) [START_REF] Carrion-Vazquez | Mechanical and chemical unfolding of a single protein: a comparison[END_REF][START_REF] Hummer | Kinetics from nonequilibrium single-molecule pulling experiments[END_REF], the complete geometrical description of the titin domain has been obtained with magnetic tweezers spectroscopy (under isotensional condition) [START_REF] Chen | Dynamics of Equilibrium Folding and Unfolding Transitions of Titin Immunoglobulin Domain under Constant Forces[END_REF][START_REF] Yuan | Elasticity of the Transition State Leading to an Unexpected Mechanical Stabilization of Titin Immunoglobulin Domains Angew[END_REF]. In particular, a step size of about 10-20nm and a total contour length of about 30nm have been measured.

x 0 = 0 x x N +1 = ℓ d + N ℓ + v 0 t x N ... N = 8 x 1 x N -1
Force spectroscopy experiments on mechanical unfolding of 8 tethered I27 domains were realized with a pulling speed varying over three orders of magnitude (from 10 -2 to 10 1 µm/s) [START_REF] Carrion-Vazquez | Mechanical and chemical unfolding of a single protein: a comparison[END_REF][START_REF] Hummer | Kinetics from nonequilibrium single-molecule pulling experiments[END_REF]. The NMR spectroscopy allowed to determine the stable I27 structure, which is represented in Fig. 8a [START_REF] Improta | Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity[END_REF]. In Fig. 8b, one can find the force extension curves numerically obtained for different values of the pulling velocity and with the potential energy of protein units and device represented in Fig. 8c. We remember that here the geometry of the second well has not been respected, being the real step size of about 10-20nm. Each curve in Fig. 8b has been obtained as the average value of M 2000 independent Langevin trajectories. As before, the black dashed curve in Fig. 8b corresponds to the thermodynamic equilibrium. We remark that some parts of the force-extensions curves are negative: this behavior comes from the one-dimensional geometry of the system, as discussed at the end of Section 4.1. Moreover, we can also underline that the shape of the force peaks in the saw-tooth pattern is not as sharp as observed in the experimental AFM results. This is mainly due to the fact that in our plot we show the mean value of several trajectories whereas typical experimental curves correspond to a single realization of the process. Moreover, in our simplified approach, we have not implemented the classical worm-like chain model, which is able to correctly represent the stretching of most macromolecules and shows a sharper forceextension curve. Indeed, in our one-dimensional chain, we only described the bistable character of the units without introducing a specific persistence length. The observed force peaks are related to the sequential unfolding of the eight titin domains. Then, in Fig. 8d and e, the mean value of these eight force peaks are represented versus the pulling velocity in linear and logarithmic scales, respectively. First of all, we observe that the good agreement between numerical and experimental data has been obtained with ∆B = 37.5K B T , which is the value accepted in the literature [START_REF] Carrion-Vazquez | Mechanical and chemical unfolding of a single protein: a comparison[END_REF][START_REF] Hummer | Kinetics from nonequilibrium single-molecule pulling experiments[END_REF]. Moreover, it is interesting to observe that the relation between the mean unfolding force and the logarithm of v 0 is not linear and we can measure a deviation between the linear fitting (calculated for v 0 < 1µm/s) and the numerical and experimental data for the largest pulling velocities adopted. This behaviour is coherent with previous investigations [START_REF] Rico | High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations[END_REF][START_REF] Hummer | Kinetics from nonequilibrium single-molecule pulling experiments[END_REF].

Bistable snap spring approach

In this Section, we describe a complementary model to study the out-of-equilibrium dynamics of a bistable system, based on the combination of the Langevin equation with the spin variable approach. Such a model is inspired by the work of Huxley and Simmons investigating the mechanical myosin powerstroke in skeletal muscle [START_REF] Huxley | Proposed mechanism of force generation in striated muscle[END_REF][START_REF] Caruel | Statistical mechanics of the Huxley-Simmons model[END_REF], and by its dynamic extension proposed for studying the kinetics of SNARE proteins in neurotransmission [START_REF] Manca | SNARE machinery is optimized for ultra-fast fusion[END_REF]. It considers a further simplified description of the bistable system, by providing direct access to the spin variable, which represents the configurational state of the system.

For the sake of simplicity, we present the model for a single bistable unit, unfolded by means of a device with intrinsic elasticity, and we show the results for the case of the filamin molecule, discussed in Section 5.1. The molecule is described as a mechanical snap spring that can switch between the two folded and unfolded configurations, corresponding to the energetic states U F (x) and U U (x), respectively. We assume a quadratic dependence of the energy on the displacement and therefore we can write the energy of a single unit as in Eq.( 15), where the spin variable s takes the two values 0 and 1 for the folded or unfolded state, respectively. Consequently, the potential energy takes the following form

U s (x, s) = U F (x) = 1 2 k F (x -) 2 , s = 0, U U (x) = ∆E + 1 2 k U (x -χ ) 2 , s = 1. ( 29 
)
The two quadratic functions for the folded and unfolded states of Eq.( 29) are shown in Fig. 1 (dashed blue lines). For comparison, the original bistable energy is also shown (continuous red curve). Hence, one crucial difference between the potential energy defined in Eq.( 29) and the previous one defined in Eq.( 4), is that the former is described by two distinct quadratic functions, while the latter is described by a single continuous bistable function. From Eq.( 29), we straightforwardly get the force exerted by the molecule as

f s (x, s) = - ∂U s (x, s) ∂x = [k F (s -1) -k U s] [x -(1 -s) -χ s] . (30)
According to Eqs.( 29) and [START_REF] Prados | Sawtooth patterns in biomolecules force-extension curves: an equilibriumstatistical-mechanics theory[END_REF], the overdamped Langevin equation has now a different dependence on the force with respect to Eq.( 40) (see Appendix A), and takes the form

x(t + ∆t) = x(t) + f [x(t), s(t)] ∆t mβ + 2K B T ∆t mβ P, (31) 
where, in this case, x ≡ x N , f ≡ f N , and total force depends not only on x(t) but also on the conformational state of the molecule, described by the spin variable s(t). The total force is computed as follows

f [x(t), s(t)] = f s [x(t), s(t)] + k d v 0 t + -x(t) , (32) 
where the second term represents the force generated by the device and v 0 is the pulling speed (we remark that in this case, x N +1 ≡ v 0 t + + d ). As before, the quantity P is a random number drawn from the standard normal distribution at any time step. The dynamics of the spin s(t) describes the switching between the folded and unfolded states at transition rates k ± . Following Refs. [START_REF] Caruel | Statistical mechanics of the Huxley-Simmons model[END_REF][START_REF] Risken | The Fokker-Planck equation[END_REF], we make the assumption that the transition from the high to the low energy state occurs at a constant rate κ, which establishes the characteristic time-scale of the conformational change. This hypothesis replaces the full description of the bistability given by an arbitrary potential energy (see Eq.( 4)), with the advantage of having a small set of parameters representing the system. Moreover, this assumption and the detailed balance [START_REF] Risken | The Fokker-Planck equation[END_REF] lead to the following transition rates

x < x * ⇒ k -(x) = κ, k + (x) = κe -1 K B T [U U (x)-U F (x)] , (33) 
x

> x * ⇒ k + (x) = κ, k -(x) = κe -1 K B T [U F (x)-U U (x)] , (34) 
being x * the crossover point of the two parabolas, defined by

U F (x * ) = U U (x * ).
It is important to remark that the detailed balance expression

k + (x)/k -(x) = e -1 K B T [U U (x)-U F (x)]
must be mandatorily fulfilled ∀x in classic Langevin equations (see, e.g., Eq.( 3)) as they are overdamped and with the force derived from a potential energy. Now, in the present snap spring approach the equations are still overdamped but the forces cannot in general derived from a potential (see Eq.( 32)). Indeed, the presence of the spin variable s is able to break the typical structure of the overdamped Langevin equation with a force described by a potential. Therefore, we are not obliged to consider the detailed balance in this case, but we have decided to apply it simply to facilitate the choice of the kinetic terms k + (x) and k -(x). It is worth noticing that the detailed balance can be effectively broken in living systems at molecular or mesoscopic scale [START_REF] Battle | Broken detailed balance at mesoscopic scales in active biological systems[END_REF][START_REF] Gnesotto | Broken detailed balance and non-equilibrium dynamics in living systems: a review Rep[END_REF]. Finally, it is important to underline that the detailed balance is imposed here for the sake of simplicity, and not because it was generally true in our out-of-equilibrium process.

The conformational state of the molecule, characterized by the variable s, evolves according to the stochastic equation

s(t + ∆t) = s(t) + {1, -1, 0}, (35) 
with the outcomes {1, -1, 0}, characterized by the probabilities

P +1 (x, s) = (1 -s) k + (x)∆t, (36) 
P -1 (x, s) = s k -(x)∆t, (37) 
P 0 (x, s) = 1 -P +1 (x, s) -P -1 (x, s). (38) 
At each time step, these probabilities are computed, and the next event is chosen through an acceptancerejection condition using a random number uniformly distributed in (0,1). We underline that the transition rates k ± are functions of the variable x, whose dynamics is, in turn, controlled by s. To sum up, at any time step, the position x is updated together with s, by means of the following steps: (i) compute P +1 , P -1 , and P 0 through Eqs.( 36), [START_REF] Benedito | Thermodynamics of small systems with conformational transitions: the case of two-state freely jointed chains with extensible units[END_REF], and ( 38); (ii) update the conformational state of the molecule s(t + ∆t); (iii) compute the force f [x(t), s(t)] with Eq.(32); finally, (iv) update the position x(t + ∆t) for the next iteration through Eq. [START_REF] Bonilla | Theory of forceextension curves for modular proteins and DNA hairpins[END_REF]. In order to have the convergence of the procedure, the time step ∆t must fulfil these two conditions, induced by two characteristic times of the system: (i) since the diffusion coefficient is given by D = K B T mβ and the diffusion process is governed by the law x 2 = Dt, we must have ∆t mβa 2 /(K B T ), where a can be considered as the largest length within the unit, i.e. the step size a = (χ -1) ; (ii) in addition, we also consider that ∆t < 1/k. These conditions should ensure a reasonable trajectory sampling.

We investigate the time evolution of the unfolding of a single bistable unit starting from an initial state, in which the molecule is fully folded. So, we take as initial conditions y(0) = 0 and x(0) = . A typical example of the stochastic trajectory, obtained by solving numerically Eqs.( 31) and (32) at v 0 = 1µm/s, is shown Fig. 9. The mechanical parameters correspond to the filamin, apart from ∆B, which is substituted by the new dynamical parameter κ = 2 × 10 8 Hz. Moreover, we used a time step ∆t = 5×10 -10 s. The value of the energy barrier can be defined now as ∆B = U F (x * ) = U U (x * ) = 22.3K B T , which is obviously slightly larger than ∆B = 18.2K B T adopted for the filamin molecule. The evolution of the system can be decomposed into two stages. During the first stage, the system remains in its initial configuration, and only rare transitions are observed. Then, the bistable unit starts the switching from the folded to the unfolded state (see Fig. 9a). The transitions are accompanied by a change of the molecule elongation x N (t) (see Fig. 9b). We see that before the transition at x * , the bistable unit undergoes several transitions between the two states. Finally, during the second stage, the system remains constantly in the unfolded state. The instantaneous force measured by the device f N [x(t), s(t)], is represented in Fig. 9c.

In Fig. 10, three numerical force-extension curves are shown, for v 0 = 0.1, 1, and 10µm/s respectively. At low velocity (v 0 = 0.1µm/s), the rupture force (around 55pN, red curve) arises from the applied pulling combined with the stochastic fluctuations. We underline that in the limit of extremely low pulling velocities (v 0 → 0), the average unfolding force becomes independent of the pulling speed, and it can be fully predicted by the equilibrium formalism discussed in Section 3. On the other hand, at high velocities, the rupture force increases, reaching the values of about 60 and 70 pN (black and green curves). In this case, the stochastic fluctuations along the unfolding pathway become more and more irrelevant and the unfolding process becomes quite deterministic. This is due to the fact the system is pulled fast, and it has no time to explore its energy landscape.

In Fig. 11, we reported the dynamic force spectrum for the unfolding of the filamin over a large range of 13. Histograms of the unfolding or rupture force peaks for the pulling velocities v 0 = 10 -2 , 10, 10 4 µm/s (the number of Monte Carlo realizations correspond to M =500, 8000 and 24500, respectively). We remark that the distributions of the forces are not gaussian and not symmetric, which explains the use of the first and third quartiles and their deviations from the median to define the error bars in Fig. 11.

pulling velocities v 0 (including standard AFM and HS-AFM). As before, we adopted the time step ∆t = 5 × 10 -10 s. For each value of pulling velocity we used a number of Monte Carlo simulations given by M = 500×[log 10 (v 0 /(1nm))]

2 , which is increasing with v 0 . We can observe the good agreement between the snap spring model and the numerical and experimental results discussed in Section 5.1 (see Fig. 7) for filamin.

In Fig. 12, we studied the convergence of the numerical results with a varying time step ∆t. We can clearly observe that the value ∆t = 5 × 10 -10 s, used in Fig. 11 and in previous simulations, is sufficient to have a good convergence.

The up and bottom error bars of each point in Fig. 11 represent the deviations of the first and the third quartiles from the median. The asymmetries of these deviations underline the non-gaussian character of the distributions of the unfolding force. This point is illustrated in Fig. 13, where the asymmetric histograms of the unfolding force are reported for the three pulling velocities v 0 = 10 -2 , 10, 10 4 µm/s. For instance, this result is useful to directly draw a comparison with experimental results as reported in Ref. [START_REF] Schlierf | Single-molecule unfolding force distributions reveal a funnel-shaped energy landscape[END_REF]. To conclude, we underline that in this analysis we considered the largest range of pulling speeds, including both AFM and HS-AFM.

Discussion

We presented an approach based on the overdamped Langevin formalism able to predict the force extension response of biological macromolecules unfolded through a force spectroscopy device at a given pulling speed. In particular, we proposed two models, which are able to work in the out-of-equilibrium regime of the statistical mechanics. Both models are useful to analyse the experimental data in order to estimate the main important biological and biochemical features of the macromolecule under investigation.

The first model considers an arbitrary continuous bistable potential energy for describing the units of the macromolecule. This coarse-grained description has the advantage to require less computational resources than those required by the molecular dynamics approach. As a matter of fact, each unit is defined by an effective bistable energy, without taking into account the complete atomistic description of the molecular architecture.

On the other hand, the continuous description of the bistable potential energy is more complete than the simplified representation based on a limited set of parameters, which is often adopted in several analytical models. In this regard, the Langevin approach can be seen as a good compromise between methods based on molecular dynamics simulations and others based on analytical approximations. Its implementation allows for considering pulling speeds ranging from the standard AFM to the HS-AFM. We show here a good agreement between the results obtained with this approach and the experimental data concerning the unfolding of filamin and titin.

The second (snap spring) model has been elaborated by combining the Langevin formalism with the spin variables approach. It is therefore a further simplification of the first Langevin method. Indeed, the complete description of a bistable unit is now substituted by two quadratic wells and a spin variable (assuming the values 0 and 1), which is able to identify the explored state during the system evolution. The switching between the states is regulated by the two folding and unfolding transition rates, which are coupled with the continuous variables of the system (position, force and so on). As an example, we described an application to the analysis of the filamin experimental data in a very large range of pulling speeds.

Importantly, this approach gives direct access to the spin variable during the dynamics of the system. It means that we can follow the time evolution of the configurational state of the system. In particular, this point is crucial for possible extensions of the model, considering interactions among the units [START_REF] Benedito | Isotensional and isometric force-extension response of chains with bistable units and Ising interactions[END_REF] or heterogeneity of the chain [START_REF] Benedito | Unfolding pathway and its identifiability in heterogeneous chains of bistable units[END_REF]. Indeed, further investigations will concern the out-ofequilibrium regime of heterogeneous systems. Recent works have provided evidence that the pulling speed applied by the device to a heterogeneous protein plays an important role in defining the unfolding pathway [START_REF] Plata | Understanding the dependence on the pulling speed of the unfolding pathway of proteins[END_REF][START_REF] Li | Dependence of protein mechanical unfolding pathways on pulling speeds[END_REF][START_REF] Guardiani | Exploring the unfolding pathway of maltose binding proteins: an integrated computational approach[END_REF][100]. Therefore, it is important to fully analyse the interplay between the sequence of heterogeneous units in the chain and the applied pulling speed on the observed unfolding pathway. The snap spring method seems to be particularly appropriate to approach this problem.

+ U [x i+1 (t) -x i (t)] ∆t mβ + 2K B T ∆t mβ P i .

We can now observe that the time step ∆t controls the convergence of the numerical scheme and the solution must be stable for decreasing values of ∆t. If we define η = ∆t mβ , we obtain the final version of the finite difference scheme of the Langevin equations (i = 1, ..., N -1)

x i (t + ∆t) -x i (t) -U [x i (t) -x i-1 (t)] η + U [x i+1 (t) -x i (t)] η + 2K B T √ ηP i . (41) 
We draw the random numbers P i [101], and we generate M realizations of the trajectory to finally determine their mean value [102].
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 1 Figure 1. Scheme of the single-molecule force spectroscopy pulling experiments. Panel a): chain of bistable units stretched by a device without intrinsic elasticity and with x N (t) = v 0 t + N . Panel b): chain of bistable units stretched by a device with intrinsic stiffness k d , equilibrium length d , and x N +1 (t) = v 0 t + N + d . Panel c): bistable potential energy U (x) of a chain unit and its approximation Us(x) based on the spin variable s (s = 0 for the folded state and s = 1 for the unfolded state).
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 23 Figure2. Results for a chain with equal elastic constants for the two wells and unfolded through a device without intrinsic elasticity. Bistable potential energy of the chain units (a), average force exerted on the N -th unit for different pulling velocities v 0 ≥ 0 (average curves determined over M =2000 trajectories) (b), and force peaks versus the applied pulling velocity (symbols: data; dashed lines: linear least squares approximations) (c). In panels (b) and (c), we adopted different pulling velocities from 0.95 to 10 µm/s. The dotted black curve in panel (b) represents the force-extension response at thermodynamic equilibrium (see Eqs.(22) and (23)). The results have been obtained with ∆B = 18K B T , ∆E = 10K B T , T = 300K, N =4, = 0.42nm, χ = 2, k F = k U = 5.63N/m, and η variable ranging from η = 2.5 × 10 -3 m/N with ∆t = 1.47 × 10 -8 s for v = 0.95 µm/s, to η = 2.36 × 10 -4 m/N with ∆t = 1.4 × 10 -9 s for v = 10 µm/s.
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 4 Figure 4. Results for a chain with equal elastic constants for the two wells and unfolded through a device with intrinsic elasticity. Potential energy of units and device (a), average force exerted on the N -th unit of the chain versus the position x N +1 of the device (average curves determined over M =2000 trajectories) (b), force peaks versus the applied pulling velocity in linear scale (c), and force peaks versus the applied pulling velocity in semi-log scale (symbols: data; dashed lines: linear least squares approximations) (d). In panels (b), (c) and (d), we adopted different pulling velocities from 0.081 to 10 µm/s. The dotted black curve in panel (b) represents the force-extension response at thermodynamic equilibrium (see Eqs.(27) and (28)). The results have been obtained with ∆B = 18K B T , ∆E = 10K B T , T = 300K, N =4, = d = 0.42nm, χ = 2, k F = k U = 5.63N/m, k d = 0.704N/m, and η variable ranging from η = 3.2 × 10 -2 m/N with ∆t = 1.9 × 10 -7 s for v = 0.081 µm/s, to η = 2.6 × 10 -4 m/N with ∆t = 1.54 × 10 -9 s for v = 10 µm/s.
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 5 Figure 5. Results for a chain with different elastic constants for the two wells and unfolded through a device with intrinsic elasticity. Potential energy of units and device (a), average force exerted on the N -th unit of the chain versus the position x N +1 of the device (average curves determined over M =2000 trajectories) (b), force peaks versus the applied pulling velocity in linear scale (c), and force peaks versus the applied pulling velocity in semi-log scale (symbols: data; dashed lines: linear least squares approximations) (d). In panels (b), (c) and (d), we adopted different pulling velocities from 0.081 to 10 µm/s. The dotted black curve in panel (b) represents the force-extension response at thermodynamic equilibrium (see Eqs.(27) and (28)). The results have been obtained with ∆B = 18K B T , ∆E = 10K B T , T = 300K, N =4, = d = 0.42nm, χ = 2, k F = 5.63N/m, k U = 2.81N/m, k d = 0.704N/m, and η variable ranging from η = 4.1 × 10 -2 m/N with ∆t = 2.42 × 10 -7 s for v = 0.081 µm/s, to η = 3.3 × 10 -4 m/N with ∆t = 1.96 × 10 -9 s for v = 10 µm/s.
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 6 Figure 6. Realistic and simplified potential energy for the filamin domain. The simplified potential has been obtained with ∆B = 18.2K B T , ∆E = 4.5K B T , = 4.1nm, χ = 1.58, k F = 0.295N/m, k U = 0.059N/m.
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 27 Figure 7. Comparison between numerical results and experimental data for the filamin protein. Panel a): scheme of the force spectroscopy experiment conducted on the filamin unit (N = 1). Image from the RCSB PDB (rcsb.org) of PDB ID 1KSR generated by the NGL viewer with NMR data from Ref.[START_REF] Fucini | The repeating segments of the F-actin crosslinking gelation factor (ABP-120) have an immunoglobulinlike fold[END_REF]. Panel b): average force exerted on the filamin unit versus the prescribed device position (average curves determined over M =2000 trajectories). Panel c): assumed bistable potential energy of the filamin and potential energy of the AFM device. Panel d) and e): force peak versus the applied pulling velocity in linear scale, and in semi-log scale, respectively. In panels b), d) and e), we adopted different pulling velocities from 0.35 to 10 µm/s, coherently with experimental data[START_REF] Schlierf | Single-molecule unfolding force distributions reveal a funnel-shaped energy landscape[END_REF]. The dashed black curve in panel b) represents the force-extension response at thermodynamic equilibrium (see Eqs.(27) and (28)). The curves have been obtained with ∆B = 18.2K B T , ∆E = 4.5K B T , T = 300K, N =1, = 4.1nm, χ = 1.58, k F = 0.295N/m, k U = 0.059N/m, k d = 0.00985N/m, and η variable ranging from η = 2.6m/N with ∆t = 2.6 × 10 -7 s for v = 0.35 µm/s, to η = 0.09m/N with ∆t = 9.05 × 10 -9 s for v = 10 µm/s.

FirstFigure 8 .

 8 Figure 8. Comparison between numerical results and experimental data for the titin protein. Panel a): scheme of the force spectroscopy experiment conducted on the titin protein (N = 8). Image from the RCSB PDB (rcsb.org) of PDB ID 1TIT generated by the NGL viewer with NMR data from Ref. [94]. Panel b): average force exerted on the titin molecule versus the prescribed device position (average curves determined over M =2000 trajectories). Panel c): assumed bistable potential energy of the titin protein and potential energy of the AFM device. Panel d) and e): mean of the N = 8 force peaks versus the applied pulling velocity in linear scale, and in semi-log scale, respectively. In panels b), d) and e), we adopted different pulling velocities from 0.1 to 10 µm/s, coherently with experimental data [51]. The dashed black curve in panel (b) represents the force-extension response at thermodynamic equilibrium (see Eqs.(27) and (28)). The curves have been obtained with ∆B = 37.5K B T , ∆E = 8.5K B T , T = 300K, N =8, = 0.5nm, χ = 5, k F = 9.94N/m, k U = 3.32N/m and k d = 0.166N/m, and η variable ranging from η = 8.45 × 10 -2 m/N with ∆t = 4.2 × 10 -7 s for v = 0.1 µm/s, to η = 8.45 × 10 -4 m/N with ∆t = 4.2 × 10 -9 s for v = 10 µm/s.

Figure 9 .

 9 Figure 9. One realization of the stochastic evolution of the coupled system bistable unit-device at v 0 = 1µm/s. Panel a): time behaviour of the spin variable s(t). Panel b): elongation of the molecule x N (t) and pulling ramp x N +1 (t). Panel c): instantaneous force f N [x(t), s(t)] measured by the device. The adopted parameters are the same than those declared in Fig.7. Moreover, we used κ = 2 × 10 8 Hz and ∆t = 5 × 10 -10 s.

10 .

 10 Three force-extension responses for the filamin molecule obtained with the snap-spring model (red, black and green curves). Three different pulling velocities (v 0 = 0.1, 1, 10µm/s) have been used. These results are compared with three averaged force-extension responses (M = 2000) obtained through the Langevin equation with the continuous bistable potential given in Eq.4 (orange, purple and blue curves).

Figure 11 .

 11 Figure 11. Dynamic force spectrum of the filamin unfolding process over a large range of the pulling velocities v 0 . The snap spring results (red squares) are compared with the continuous Langevin approach (blue stars) and with the experimental data (orange circles), reported in Fig.7. The up and bottom error bars for each point represent the deviation of the first and the third quartiles from the median.

Figure 12 .

 12 Figure 12. Effect of the time step ∆t on the convergence of the results. We calculated the force spectrum for different values of the time step ∆t = 1 × 10 -10 , 5 × 10 -10 , 5 × 10 -9 , 2.5 × 10 -8 , 5 × 10 -8 , 2.5 × 10 -7 , 3.75 × 10 -7 , 5 × 10 -7 s. We observe that the value ∆t = 5 × 10 -10 s used in Fig.11 is sufficient to have a good convergence. The three largest values of ∆t are not represented in the zoomed-up inset.
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Appendix A: Numerical solution of the Langevin equation

The numerical solution of Eq.( 3), with U defined in Eq.( 4), can be implemented by means of the following procedure. First of all, we integrate Eq.(3) over an arbitrary interval (t, t + ∆t). This operation delivers

where ∆w i = t+∆t t n i (t)dt are independent increments of the Wiener process [START_REF] Risken | The Fokker-Planck equation[END_REF][START_REF] Coffey | The Langevin equation[END_REF]. It follows that the quantities ∆w i are random Gaussian variables and fulfil the properties E{∆w i } = 0 and E{∆w i ∆w j } = 2∆tδ ij . We can therefore introduce the random variables P i = 1 √ 2∆t ∆w i , which are independent and normal Gaussian, thus described by the probability density f (P i ) = 1 √ 2π e -P 2 i /2 . The motion equations can be therefore written as