Xiangjing Lai
email: laixiangjing@gmail.com

Jin-Kao Hao
email: jin-kao.hao@univ-angers.fr

Zhang-Hua Fu
email: fuzhanghua@cuhk.edu.cn

Dong Yue

Diversity-preserving quantum particle swarm optimization for the multidimensional knapsack problem

Keywords: Binary optimization, Multidimensional knapsack problem, populationbased metaheuristics, Quantum particle swarm optimization, Diversity-preserving population updating strategy

Quantum particle swarm optimization is a population-based metaheuristic that becomes popular in recent years in the field of binary optimization. In this paper, we investigate a novel quantum particle swarm optimization algorithm, which integrates a distanced-based diversity-preserving strategy for population management and a local optimization method based on variable neighborhood descent for solution improvement. We evaluate the proposed method on the classic NP-hard 0-1 multidimensional knapsack problem. We present extensive computational results on the 270 benchmark instances commonly used in the literature to show the competitiveness of the proposed algorithm compared to several population based algorithms. The ideas of using the diversity-preserving strategy and the probabilistic application of a local optimization procedure are of general interest and can be used to reinforce other quantum particle swarm algorithms.

Introduction 1

Given a knapsack with a m-dimensional capacity vector c and a set V of n 2 items, let p j > 0 (j = 1, 2, . . . , n) be the profit of item j, and let a be a m × n 3 matrix composed of positive values where the jth column a * j represents the 4 m-dimensional weights of item j. The classic 0-1 multidimensional knapsack 5 problem (MKP) involves packing a subset of items of V to the knapsack so that 6 the sum of the profits of the items in the knapsack is maximized while the sum of weights in each dimension i (i = 1, 2, . . . , m) does not exceed the capacity c i .

Formally, the MKP can be stated as follows:

Maximize f (s) = n ∑ j=1 p j x j (1) s.t. n ∑ j=1 a ij x j ≤ c i , ∀i ∈ {1, 2, . . . , m} (2)
x j ∈ {0, 1}, ∀j ∈ {1, 2, . . . , n}

where x j (j = 1, 2, . . . , n) are binary decision variables such that x j = 1 if item j is packed in the knapsack, x j = 0 otherwise. The objective in Eq. (1) aims to maximize the total profit of the selected items, while the constraints in Eq. (2) ensure that the selected items satisfy the m capacity constraints of the knapsack.

The MKP has numerous applications, including cutting stock [START_REF] Gilmore | The theory and computation of knapsack functions[END_REF], loading [START_REF] Shih | A branch & bound method for the multiconstraint zero-one knapsack problem[END_REF], resource allocation [START_REF] Gavish | Allocation of databases and processors in a distributed data processing[END_REF] and so on. However, the problem is known to be NP-hard [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF] and thus computationally challenging. As one of the most studied combinatorial optimization problems, a large number of solution approaches have been proposed for the MKP. A comprehensive review of representative studies up to 2004 can be found in [START_REF] Fréville | The multidimensional 0-1 knapsack problem: An overview[END_REF] and more recent studies are discussed in [START_REF] Lai | A two-phase tabuevolutionary algorithm for the 0-1 multidimensional knapsack problem[END_REF]. Notice that the MKP has some interesting variants such as the multiple multidimensional knapsack problem [START_REF] Mancini | The multiple multidimensional knapsack with family-split penalties[END_REF], the multiple-choice multidimensional knapsack problem [START_REF] Chen | A "reduce and solve" approach for the multiplechoice multidimensional knapsack problem[END_REF], the robust multiple-choice multidimensional knapsack problem [START_REF] Caserta | The robust multiple-choice multidimensional knapsack problem[END_REF], and the multidemand multidimensional knapsack problem [START_REF] Lai | Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem[END_REF]. Below, we discuss some recent and most representative studies on the MKP.

Existing algorithms for the MKP can be classified into exact and heuristic algorithms. Representative exact algorithms are mainly based on the branch & bound method [START_REF] Shih | A branch & bound method for the multiconstraint zero-one knapsack problem[END_REF][START_REF] Vimont | Reduced costs propagation in an efficient implicit enumeration for the 0-1 multidimensional knapsack problem[END_REF] and hybrid approaches combining branch & bound and other strategies [START_REF] Boussier | A multi-level search strategy for the 0-1 multidimensional knapsack problem[END_REF][START_REF] Mansini | CORAL: an exact algorithm for the multidimensional knapsack problem[END_REF]. The best performing exact algorithms like those presented in [START_REF] Boussier | A multi-level search strategy for the 0-1 multidimensional knapsack problem[END_REF][START_REF] Mansini | CORAL: an exact algorithm for the multidimensional knapsack problem[END_REF][START_REF] Vimont | Reduced costs propagation in an efficient implicit enumeration for the 0-1 multidimensional knapsack problem[END_REF] are quite successful to yield optimal solutions in an acceptable computation time for benchmark instances of limited sizes (e.g., n = 250 or 500 and m ∈ {5, 10}).

However, for larger instances with n ≥ 250 and m ≥ 30, heuristic algorithms become more suitable methods to find sub-optimal (or non provable optimal) solutions.

Heuristic algorithms for the MKP belong to two large categories, namely trajectory-based local search algorithms and population-based evolutionary algorithms. Representative trajectory-based algorithms include tabu search (Glover and Kochenberger, 1966;[START_REF] Hanafi | An efficient tabu search approach for the 0-1 multidimensional knapsack problem[END_REF][START_REF] Khemakhem | A filter-and-fan metaheuristic for the 0-1 multidimensional knapsack problem[END_REF][START_REF] Vasquez | A hybrid approach for the 0-1 multidimensional knapsack problem[END_REF][START_REF] Vasquez | Improved results on the 0-1 multidimensional knapsack problem[END_REF], simulated annealing [START_REF] Drexl | A simulated annealing approach to the multiconstraint zeroone knapsack problem[END_REF], and kernel search [START_REF] Angelelli | Kernel search: A general heuristic for the multidimensional knapsack problem[END_REF], while representative population-based algorithms include binary particle swarm optimization [START_REF] Chih | Self-adaptive check and repair operator-based particle swarm optimization for the multidimensional knapsack problem[END_REF][START_REF] Haddar | A hybrid quantum particle swarm optimization for the multidimensional knapsack problem[END_REF][START_REF] Ktari | Essential particle swarm optimization queen with tabu search for MKP resolution[END_REF][START_REF] Lin | A binary particle swarm optimization based on the surrogate information with proportional acceleration coefficients for the 0-1 multidimensional knapsack problem[END_REF], genetic and memetic algorithms [START_REF] Chu | A genetic algorithm for the multidimensional knapsack problem[END_REF][START_REF] Drake | A case study of controlling crossover in a selection hyper-heuristic framework with MKP[END_REF][START_REF] Lai | A two-phase tabuevolutionary algorithm for the 0-1 multidimensional knapsack problem[END_REF][START_REF] Puchinger | The multidimensional knapsack problem: structure and algorithms[END_REF], steady-state evolutionary algorithm [START_REF] Raidl | Empirical analysis of locality, heritability and heuristic bias in evolutionary algorithms: A case study for the multidimensional knapsack problem[END_REF], ant colony optimization [START_REF] Al-Shihabi | A hybrid of nested partition, binary ant system, and linear programming for the multidimensional knapsack problem[END_REF][START_REF] Ke | An ant colony optimization approach for the multidimensional knapsack problem[END_REF][START_REF] Kong | A new ant colony optimization algorithm for the multidimensional knapsack problem[END_REF], and hybrid estimation of distribution algorithm [START_REF] Wang | An effective hybrid EDA-based algorithm for solving multidimensional knapsack problem[END_REF], among other.

Our goal in this work is twofold. First, according to our literature review, most existing MKP algorithms in the literature fail to achieve simultaneously a high performance in terms of both solution quality and computation speed. For example, tabu search based algorithms like those in [START_REF] Khemakhem | A filter-and-fan metaheuristic for the 0-1 multidimensional knapsack problem[END_REF][START_REF] Lai | A two-phase tabuevolutionary algorithm for the 0-1 multidimensional knapsack problem[END_REF][START_REF] Vasquez | A hybrid approach for the 0-1 multidimensional knapsack problem[END_REF] are among the best MKP methods to obtain high quality solutions especially for instances with a large number of constraints. However, these methods are generally quite time consuming. On the other hand, bio-inspired evolutionary algorithms like [START_REF] Chih | Three pseudo-utility ratio-inspired particle swarm optimization with local search for multidimensional knapsack problem[END_REF][START_REF] Chu | A genetic algorithm for the multidimensional knapsack problem[END_REF] are often more time effective, but yield less competitive solutions than tabu search based algorithms. Second, in several interesting studies [START_REF] Haddar | A hybrid quantum particle swarm optimization for the multidimensional knapsack problem[END_REF][START_REF] Yang | A quantum particle swarm optimization[END_REF], quantum particle swarm optimization (QPSO) has shown promising performances on the MKP. In this work, in addition to developing an effective algorithm for the MKP, we aim also to further enhance the general QPSO approach by introducing a diversity-preserving strategy.

We summarize our work as follows. First, we propose a diversity-preserving quantum particle swarm optimization (DQPSO *) approach, which enhances the conventional QPSO method. The diversity-preserving strategy is used to control the population diversity of a QPSO algorithm and helps to avoid premature convergence of the algorithm. The proposed algorithm integrates an effective local optimization procedure which is applied in a probabilistic way to reinforce its exploitation capacity. We show extensive computational results and comparisons with representative (mainly population-based) algorithms based on well-known benchmark instances. It is worth noting that the ideas of diversity-preserving strategy and local optimization are of general interest. As a result, they could be advantageously adopted in other QPSO algorithms to control the balance of exploitation and exploration of the search process, such that they can help to effectively solve other binary optimization problems such as the MKP variants mentioned above.

The remainder of the paper is organized as follows. In Section 2, we provide a brief introduction on the quantum particle swarm optimization. In Section 3, we present the proposed DQPSO * algorithm. In Section 4, we evaluate the proposed algorithm by providing experimental results and making a comparison with several state-of-the-art MKP algorithms. In Section 5, we analyze two essential components of the algorithm to show their influences on the performance of the algorithm, followed by concluding comments and discussions on future research.

A Review of Quantum Particle Swarm Optimization

In this section, we provide a brief introduction of particle swarm optimization (PSO) for continuous problems and quantum particle swarm optimization which is an adaptation of PSO to binary optimization problems.

Basic Particle Swarm Optimization

Particle swarm optimization was originally developed for optimization of continuous nonlinear functions [START_REF] Kennedy | Particle swarm optimization[END_REF]. For a given problem in a n-dimensional continuous space where n represents the number of variables, PSO searches for the global optimum through mimicking the behavior of a swarm or population of particles (e.g., birds), where each particle i represents a candidate solution characterized by a n-dimensional position vector

⃗ X t i = (x t i1 , x t i2 , . . . , x t in) and a velocity vector ⃗ V t i = (v t i1 , v t i2 , . . . , v t in)
where t is the t-th iteration of the algorithm.

To reach the global optimal solution, the particles in the swarm move iteratively in the search space, and the position vector ⃗ X t i and velocity vector ⃗ V t i of particle i at t-th iteration are updated by the following formulas [START_REF] Liu | Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization[END_REF][START_REF] Kennedy | Particle swarm optimization[END_REF][START_REF] Shi | A modified particle swarm optimizer[END_REF][START_REF] Zhan | Orthogonal learning particle swarm optimization[END_REF].

v t+1 ij = ωv t ij + c 1 r 1 (pBest t ij -x t ij) + c 2 r 2 (nBest t j -x t ij) (4) x t+1 ij = x t ij + v t+1 ij (5)
where j ∈ {1, 2, . . . , n}, ω ∈ [0, 1] is the inertia factor, c 1 and c 2 are two positive constants, r 1 and r 2 are two random numbers in [0, 1], pBest t i is the personal historical best position vector for particle i, and nBest t is the neighborhood's historical best position for particle i. It is worth noting that the neighborhood relation between particles is defined by some topological structure, such as a ring topology where only the particles i -1 and i + 1 are the neighbors of particle i and a clique topology where the particles are pair-wisely connected.

According to the topological structure between particles, a PSO algorithm can be roughly divided into two categories (Zhan et al., 2011), i.e., global version PSO (GPSO) and local version PSO (LPSO). In GPSO, the clique topology is adopted, i.e., any two particles in the swarm are neighbors, and thus the neighborhood's historical best position nBest t is also the historical best position gBest t of the entire swarm. For LPSO, the neighborhood's historical best position nBest t of particles depends on the used topological structure.

Quantum Particle Swarm Optimization

Due to the fact that the basic PSO method is not applicable to binary optimization problems, a number of PSO variants have been proposed in the past 20 years to deal with binary optimization [START_REF] Beheshti | Memetic binary particle swarm optimization for discrete optimization problems[END_REF][START_REF] Chen | A novel set-based particle swarm optimization method for discrete optimization problems[END_REF][START_REF] Lin | Solving maximum set k-covering problem by an adaptive binary particle swarm optimization method[END_REF][START_REF] Kennedy | A discrete binary version of the particle swarm algorithm[END_REF][START_REF] Yang | A quantum particle swarm optimization[END_REF] among which quantum particle swarm optimization (QPSO) is a representative example [START_REF] Yang | A quantum particle swarm optimization[END_REF].

In a QPSO algorithm, a swarm Q = {Q(1), Q(2), . . . , Q(np)} of np quantum particles is maintained and evolves, where each quantum particle

Q(i) is a n-dimensional real-valued vector (q i 1 , q i 2 , . . . , q i n) with q i j ∈ [0, 1]. For each component q i j (1 ≤ j ≤ n) of quantum particle Q(i)
, its value represents the probability that the associated binary decision variable x j takes the value of 0.

As described in Algorithm 1, a QPSO algorithm typically performs a number of evolution iterations until a maximum number of iterations is reached.

Starting with a randomly initialized Q t in which the notation t denotes the current number of iterations, the algorithm first transforms each quantum particle

Q(i) = (q i 1 , q i 2 , . . . , q i n) of Q t into a n-dimensional binary vector (called discrete particle) D(i) = (d i 1 , d i 2 , . . . , d i n
) by applying a random observation:

d i j = { 1, if q i j < rand(0, 1); (6) 0, otherwise; (7)
where rand(0, 1) denotes a random real number in [0, 1]. Then, at each iteration t, the evolution of the quantum particle swarm is described by the following evolution formulas:

Q * t+1 (i) = α × D * t (i) + (1 -α) × (⃗ e -D * t (i)) (8)
Q lb t+1 (i) = α × D lb t (i) + (1 -α) × (⃗ e -D lb t (i)) (9) Q t+1 (i) = c 1 × Q t (i) + c 2 × Q lb t+1 (i) + (1 -c 1 -c 2) × Q * t+1 (i) (10)
where α, c 1 and c 2 are three parameters satisfying α ∈

[0, 1], c 1 ∈ [0, 1], c 2 ∈
[0, 1], and 0 < c 1 + c 2 < 1. In addition, ⃗ e = (1, 1, . . . , 1) is a n-dimensional vector in which each entry takes 1, D lb t (i) and

D * t (i) (1 ≤ i ≤ np) denote
respectively the personal and neighborhood's historical best positions for the discrete particle D(i) at iteration t, and

Q lb t+1 (i) and Q * t+1 (i) (1 ≤ i ≤ np)
represent respectively the personal and neighborhood's historical best positions for the quantum particle Q(i) at iteration t + 1. After a new quantum particle

Q t+1 (i) is generated by Eqs. (8)-(10), Q t+1 (i) is used to replace Q t (i
) and is at the same time transformed into a discrete particle d, which is then used to update D * t+1 (i) and D lb t+1 (i) accordingly.

Diversity-Preserving Quantum Particle Swarm Optimization for the MKP

The DQPSO * algorithm for the MKP proposed in this work shares ideas from the studies [START_REF] Haddar | A hybrid quantum particle swarm optimization for the multidimensional knapsack problem[END_REF][START_REF] Yang | A quantum particle swarm optimization[END_REF] and distinguishes itself with two new features. First, DQPSO * introduces a diversity-preserving mechanism to guarantee a healthy diversity of the particle swarm, thus avoiding a premature convergence of the algorithm. Second, DQPSO * applies in a probabilistic way a powerful local optimization procedure to enhance the intensification search ability of the algorithm. The proposed algorithm and its components are described in the following subsections.

Algorithm 1: General procedure of the QPSO algorithm for a binary optimization problem with a form of maximization

for i ← 0 to np do D * t (i) ← argmax{f (d ′) : d ′ ∈ D lb t } /* D * t (i) denotes the best discrete particle in D lb t */ Q * t+1 (i) ← α × D * t (i) + (1 -α) × (⃗ e -D * t (i))) Q lb t+1 (i) ← α × D lb t (i) + (1 -α) × (⃗ e -D lb t (i))) Q t+1 (i) ← c 1 × Q t (i) + c 2 × Q lb t+1 (i) + (1 -c 1 -c 2) × Q * t+1 (i) d ← T ransf orm(Q t+1 (i)) /* d is a discrete solution */ if f (d) > f (D lb t (i)) then D lb t (i) ← d /* D lb t (i) ← LocalSearch(d)
is used for some variants of QPSO like QPSO * in [START_REF] Haddar | A hybrid quantum particle swarm optimization for the multidimensional knapsack problem[END_REF] */

end if f (d) > f (d *) then d * ← d /* d * ← LocalSearch(d)
is used for some variants of QPSO like QPSO * in [START_REF] Haddar | A hybrid quantum particle swarm optimization for the multidimensional knapsack problem[END_REF] */ end end t ← t + 1 end

Solution Representation and Search Space

Given a MKP instance with n items, a candidate solution can be represented by a n-dimensional 0-1 vector s = (x 1 , x 2 , . . . , x n) where x i = 1 if item i is selected, x i = 0 otherwise. As a result, the search space Ω explored by the DQPSO * algorithm is composed of all possible n-dimensional 0-1 vectors (also called discrete solutions or discrete particles in this paper), including the feasible and infeasible solutions, i.e.,

Ω = {(x 1 , x 2 , . . . , x n) : x i ∈ {0, 1}, 1 ≤ i ≤ n} (11)
In addition, DQPSO * uses a n-dimensional real-valued vector q = (q 1 , q 2 , . . . , q n) (called quantum solution or quantum particle), where

q i (1 ≤ i ≤ n) is a real
number in [0, 1] and represents the probability that the binary variable x i takes 0. This vector indicates approximately a discrete solution in the search space.

Main Framework of the Algorithm

Algorithm 2: Pseudo-code of generating the initial quantum particle swarm 1 Function InitialQuantumSwarm Input: Size of particle swarm np, number of items n Output:

A quantum particle swarm Q = {Q(i) : 1 ≤ i ≤ np} 2 for i ← 1 to np do 3 for j ← 1 to n do 4 Q(i) j ← rand(0, 1) 5 end 6 Q(i) ← (Q(i) 1 , Q(i) 2 , . . . , Q(i) n) 7 end
Algorithm 3: Pseudo-code of transforming a quantum solution into a discrete solution 1 Function Transform Input: A quantum particle q = (q 1 , q 2 , . . . , q n), where

q j ∈ [0, 1] (1 ≤ j ≤ n) Output: A discrete particle d = (d 1 , d 2 , . . . , d n), where d j ∈ {0, 1} (1 ≤ j ≤ n) 2 for j ← 1 to n do 3 if rand(0, 1) > q j then 4 d j ← 1 5 end 6 else 7 d j ← 0 8 end 9 end
The proposed DQPSO * algorithm consists of six components, including the initialization of the quantum particle swarm, the repair operator to ensure the feasibility of generated solutions, the updating strategy of the personal historical best positions (D lb t) of the discrete particles, the rule of transforming a quantum particle to a discrete particle, the local optimization method to improve the solutions generated by the repair operator, and the evolution formulas of the quantum particle swarm. The DQPSO * method is described in Algorithm 4, where

Q t = {Q t (i) : 1 ≤ i ≤ np}
(i) ∈ Q t is a n-dimensional real-valued vector (q i 1 , q i 2 , . . . , q i n), and
each discrete particle D lb t (i) ∈ D lb t is a n-dimensional 0-1 vector (d i 1 , d i 2 , . . . , d i n)
representing a candidate solution in the search space.

The DQPSO * algorithm starts with an initial Q t (t = 0) which is randomly generated by the initialization method presented in Algorithm 2. Then, each quantum particle in Q t is transformed into a discrete particle by the transforming procedure given in Algorithm 3 and the infeasibility of the resulting discrete particle is subsequently repaired by the repair operator of Section 3.3 (lines 4-7).

At the same time, D lb t is accordingly initialized and the best discrete particle found in this process is recorded as d * (lines 6 and 8).

After

Q t ← InitialQuantumSwarm(np) /* Algorithm 2 */ 4 for i ← 1 to np do 5 d ← T ransf orm(Q t (i)) /* Algorithm 3 */ 6 D lb t (i) ← RepairOperator(d) /* Section 3.3 */ 7 end 8 d * ← argmax{f (d) : d ∈ D lb t } /* Evolution of particle swarm */ 9 while t < IterM ax do for i ← 0 to np do Randomly select a subset S = {d 1 , d 2 , . . . , d K } of size K from D lb
t , and the corresponding quantum particles are regarded as the neighbors of particle Q t (i)

D * t (i) ← argmax{f (d ′) : d ′ ∈ S} /* D * t (i) is recorded as the neighborhood's historical best position for particle D t (i) */ Q * t+1 (i) ← α × D * t (i) + (1 -α) × (⃗ e -D * t (i))) Q lb t+1 (i) ← α × D lb t (i) + (1 -α) × (⃗ e -D lb t (i))) Q t+1 (i) ← c 1 × Q t (i) + c 2 × Q lb t+1 (i) + (1 -c 1 -c 2) × Q * t+1 (i) d ← T ransf orm(Q t+1 (i)) /* d is a discrete solution */ d ← RepairOperator(d) if rand(0, 1) < p then d ← V N D(d) /* Algorithm 7 */ end SwarmU pdating(d, D lb t) /* Section 3.5 */ if f (d) > f (d *) then d * ← d end end t ← t + 1 end

Repair Operator

Like previous studies [START_REF] Chih | Three pseudo-utility ratio-inspired particle swarm optimization with local search for multidimensional knapsack problem[END_REF][START_REF] Chu | A genetic algorithm for the multidimensional knapsack problem[END_REF][START_REF] Haddar | A hybrid quantum particle swarm optimization for the multidimensional knapsack problem[END_REF][START_REF] Lai | A two-phase tabuevolutionary algorithm for the 0-1 multidimensional knapsack problem[END_REF], the DQPSO * algorithm uses a popular repair operator (denoted by RepairOperator()) to restore the feasibility of an infeasible solution. In addition to converting an infeasible solution into a feasible one, the repair operator serves also as a local optimization method.

To implement efficiently the repair operator, we apply a preprocessing procedure to first process the given MKP instance, so that the items are renumbered in an ascending order according to their scaled pseudo-utility ratios σ j [START_REF] Puchinger | The multidimensional knapsack problem: structure and algorithms[END_REF] defined as:

σ j = p j ∑ m i=1 aij ci , ∀j ∈ {1, 2, . . . , n} (12)
After that, the vectors (p 1 , p 2 , . . . , p n) and a ij (i = 1, 2, . . . , m, j = 1, 2, . . . , n)

are adjusted accordingly.

Based on the resulting order of items, the repair operator is performed in two phases. Given an input infeasible solution, the first phase drops the least profitable items one by one according to the scaled pseudo-utility ratios until the solution becomes feasible. Then the second phase adds one by one the most profitable missing items according to their scaled pseudo-utility ratios, while keeping each intermediate solution feasible. Given its greedy nature, the repair operator is very fast with a time complexity bounded by O(n × m).

Local Optimization by Variable Neighborhood Descent

Algorithm 5: Neighborhood search with N 1

1 Function LSN1 Input: A discrete solution d = (d 1 , d 2 , . . . , d n) Output: The improved solution d 2 F lag ← true 3 while F lag do 4 F lag ← false 5 for j ← n to 1 do 6 if (d j = 0) ∧ (d ⊕ Add(j) ∈ N 1 (d)) then 7 d ← d ⊕ Add(j) 8 F lag ← true 9 end 10 end 11 end
To reinforce further its intensification ability, the DQPSO * algorithm employs, in a probabilistic way, a dedicated variable neighborhood descent (VND) procedure for local optimization. This VND procedure follows the standard VND framework [START_REF] Mladenović | Variable neighborhood search[END_REF] and relies on two basic neighborhoods, i.e., the restricted 'Add' neighborhood N 1 and the restricted 'Swap'

Algorithm 6: Neighborhood search with N 2 1 Function LSN2 Input: A discrete solution d = (d 1 , d 2 , . . . , d n) Output: The improved solution d 2 F lag ← false 3 for i ← 1 to n do 4 for j ← i + 1 to n do 5 if (d i ̸ = d j) ∧ (d ⊕ Swap(i, j) ∈ N 2 (d)) then 6 d ← d ⊕ Swap(i, j) 7 F lag ← true 8 return {d, F lag} 9 end 10 end 11 end 12 return {d, F lag} Algorithm 7: The variable neighborhood descent (VND) method 1 Function VND Input: A discrete solution d = (d 1 , d 2 , . . . , d n) Output: The improved solution d 2 F lag ← true 3 while F lag do 4 d ← LSN 1(d) /* Algorithm 5 */ 5 (F lag,d) ← LSN 2(d) /* Algorithm 6 */ 6 end neighborhood N 2 . Given a discrete solution s = (x 1 , x 2 , . . . , x n), the N 1 neigh-
borhood is composed of all possible feasible solutions that can be obtained by changing the value of one variable x i (1 ≤ i ≤ n) from 0 to 1, and the N 2 neighborhood is composed of all possible feasible solutions that can be obtained by swapping the values of two variables x v and x u taking distinct values. Formally, the N 1 and N 2 neighborhoods can be described as follows:

N 1 (s) = {s ⊕ Add(l) : n ∑ j=1 a ij x j + a il ≤ c i , x l = 0, 1 ≤ l ≤ n, 1 ≤ i ≤ m} (13) N 2 (s) = {s ⊕ Swap(v, u) : x v ̸ = x u = 0; n ∑ j=1 a ij x j + a iu -a iv ≤ c i , i ≤ m} (14)
where s ⊕ Op (Op ∈ {Add, Swap}) designates the neighbor solution obtained by applying the 'Add' or 'Swap' operator to transform the incumbent solution s.

The size of N 1 (s) is bounded by |I 0 | (≤ n), where I 0 denotes the set of variables taking the value of 0 in s, i.e., I 0 = {x i : x i = 0 in s}. Thus, the computational complexity of examining the whole N 1 (s) is bounded by

O(|I 0 | × m)
, where m is the number of capacity constraints. The size of N 2 (s)

is bounded by |I 1 | × |I 0 |
, where I 1 is the set of variables taking the value of 1 in s, i.e., I 1 = {x i :

x i = 1 in s}. The computational complexity of examining the whole N 2 (s) is bounded by O(|I 1 | × |I 0 | × m).
Based on these two neighborhoods, the VND procedure improves the input solution as follows. First, it starts with N 1 and makes a complete exploitation of the neighborhood by means of the first improvement descent strategy. Then, it switches to N 2 to search for an improving solution when a local optimal solution with respect to N 1 is reached. Moreover, VND switches immediately to N 1 once an improving solution is found with N 2 . Finally, the search process stops when N 2 does not contain any improving solution and the best solution found is returned as the result of the VND procedure.

Algorithms 5 and 6 show how the neighborhoods N 1 and N 2 are examined, while Algorithm 7 summarizes the main framework of the VND procedure.

Population Updating Strategy for the Historical Discrete Best Positions of Particle Swarm

Algorithm 8: Pseudo-code of population updating method for D lb 1 Function SwarmUpdating Input: A set of personal historical best positions (D lb) for the discrete particles, a discrete solution (d), and parameter θ Output:

Updated D lb 2 d w ← argmin{f (d ′) : d ′ ∈ D lb)} /* d w denotes the worst solution in D lb */ 3 d c ← argmin{||d -d ′ || H : d ′ ∈ D lb } /* ||d -d ′ || H denotes the Hamming distance between d and d ′ */ 4 dist ← ||d -d c || H 5 if (f (d) > f (d c)) ∧ (dist ≤ θ) then 6 D lb ← D lb ∪ {d} \ {d c } /* replace d c by d */ 7 end 8 else if f (d) > f (d w)) ∧ (dist > θ) then 9 D lb ← D lb ∪ {d} \ {d w } /*

Discussions

As we show above, the proposed DQPSO * algorithm integrates especially two original strategies that distinguish itself from the existing binary PSO algorithms for the MKP in the literature such as [START_REF] Chih | Three pseudo-utility ratio-inspired particle swarm optimization with local search for multidimensional knapsack problem[END_REF][START_REF] Haddar | A hybrid quantum particle swarm optimization for the multidimensional knapsack problem[END_REF].

First, DQPSO * employs the diversity-preserving updating strategy (see Section 3.5) to enhance the diversity of discrete particle swarm D lb , where the distances among discrete particles are directly controlled by a parameter θ. To the best of our knowledge, such a strategy was never used in previous binary PSO algorithms. The analysis in Section 5.1 shows that this updating strategy helps to preserve population diversity and improves significantly the search ability of the algorithm. Second, the proposed algorithm integrates for the first time a VND method as the local optimization procedure, which is applied in a probabilistic way each time an offspring solution is generated during the search process. Once again, this technique was not available in existing binary PSO algorithms. As the computational experiments in Section 5.2 show, the probability-controlled VND method ensures the key intensification role and contributes to the performance of the algorithm. Finally, it is worth mentioning that these two strategies are of general interest and can be applied within binary PSO algorithms designed for other binary optimization problems.

Computational Experiments

To assess the performance of the DQPSO * algorithm, we carried out extensive experiments by testing the algorithm on benchmark instances commonly used in the literature and making a comparison with a number of state-of-the-art MKP algorithms.

Benchmark Instances

To carry out our computational experiments, we use 270 popular benchmark instances, which are described in [START_REF] Chu | A genetic algorithm for the multidimensional knapsack problem[END_REF]) and available at OR-Library 1 . These instances can be divided into three sets and their characteristics can be summarized as follows.

1 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html

• Set I: This set consists of 90 small instances with n = 100 which can be divided into three subsets, where each subset contains 30 instances with m = 5, 10 or 30, respectively. The coefficients

a ij (1 ≤ i ≤ m, 1 ≤ j ≤ n) are integers randomly generated in [0, 1000] and c i is set to β × ∑ n j=1 a ij (1 ≤ i ≤ m)
where β is a parameter called the tightness ratio and is set to 0.25, 0.5, and 0.75. Optimal solutions for these instances are provided in [START_REF] Mansini | CORAL: an exact algorithm for the multidimensional knapsack problem[END_REF].

• Set II: This set contains 90 medium-sized instances with n = 250 and m ∈ {5, 10, 30}, and the coefficients

a ij (1 ≤ i ≤ m, 1 ≤ j ≤ n) and
c i were generated in the same way as for the instances of Set I. Optimal solutions for the instances with m = 5 and 10 are provided in [START_REF] Boussier | A multi-level search strategy for the 0-1 multidimensional knapsack problem[END_REF][START_REF] Mansini | CORAL: an exact algorithm for the multidimensional knapsack problem[END_REF][START_REF] Vimont | Reduced costs propagation in an efficient implicit enumeration for the 0-1 multidimensional knapsack problem[END_REF].

• Set III: This set contains 90 large instances with n = 500 and m ∈ {5, 10, 30}, and the coefficients a ij (1 ≤ i ≤ m, 1 ≤ j ≤ n) and c i were generated in the same way as for the instances of Sets I and II. Optimal solutions for the instances with m = 5 and 10 are provided in [START_REF] Boussier | A multi-level search strategy for the 0-1 multidimensional knapsack problem[END_REF][START_REF] Mansini | CORAL: an exact algorithm for the multidimensional knapsack problem[END_REF][START_REF] Vimont | Reduced costs propagation in an efficient implicit enumeration for the 0-1 multidimensional knapsack problem[END_REF].

One notices that the optimal solutions for 217 out of 270 instances reported in [START_REF] Boussier | A multi-level search strategy for the 0-1 multidimensional knapsack problem[END_REF][START_REF] Mansini | CORAL: an exact algorithm for the multidimensional knapsack problem[END_REF][START_REF] Vimont | Reduced costs propagation in an efficient implicit enumeration for the 0-1 multidimensional knapsack problem[END_REF] have been obtained with large computation times up to 150 hours for some instances with n = 500 and m = 10. The DQPSO * algorithm employs eight parameters whose descriptions and settings are given in Table 1, where the values of np and IterM ax were set according to the values of n and m of instances to guarantee that the computational effort of our algorithm is the same as that of a recent binary PSO algorithm (3R-BPSO) [START_REF] Chih | Three pseudo-utility ratio-inspired particle swarm optimization with local search for multidimensional knapsack problem[END_REF] was independently run 100 times to solve each instance. To run the algorithm, we use consistently the parameter setting of Table 1. We mention that using an extended number of iterations (i.e., larger IterM ax values) does not significantly change the final results.

Parameter Settings and Experimental Protocol

To assess the performance of DQPSO * , we use six representative MKP algorithms in the literature as our reference algorithms, including a genetic algorithm (GA) [START_REF] Chu | A genetic algorithm for the multidimensional knapsack problem[END_REF]) (as a baseline reference), a hybrid quantum particle swarm optimization algorithm (QPSO *) [START_REF] Haddar | A hybrid quantum particle swarm optimization for the multidimensional knapsack problem[END_REF], a binary PSO algorithm (3R-BPSO) that employs three repair operators to repair infeasible solutions [START_REF] Chih | Three pseudo-utility ratio-inspired particle swarm optimization with local search for multidimensional knapsack problem[END_REF], a filter-and-fan heuristic (F&F) [START_REF] Khemakhem | A filter-and-fan metaheuristic for the 0-1 multidimensional knapsack problem[END_REF], a two-phase tabu search (TP+TS) [START_REF] Vasquez | A hybrid approach for the 0-1 multidimensional knapsack problem[END_REF], and a very recent two-phase tabu-evolutionary algorithm (TPTEA) published in 2018 [START_REF] Lai | A two-phase tabuevolutionary algorithm for the 0-1 multidimensional knapsack problem[END_REF]. The results of the reference algorithms are compiled from the corresponding papers. If the results of an algorithm for a set of benchmark instances are not available, the algorithm will be ignored in the comparative study (e.g., this is the case of 3R-BPSO for some instances of set I and the instances of set II). Moreover, given that the compared algorithms are written in different programming languages and run on various computing platforms under different stopping conditions, it is impossible to perform a fair comparison of computation times. As a result, we mainly focus on solution quality

for our computational study (this is also a common practice in the literature).

Only for indicative purposes, we provide the timing information for DQPSO * and TPTEA (whose codes are available and were run on the same computing platform).

Computational Results and Comparison

Our first experiment aims to assess the proposed DQPSO * algorithm on the small instances of Set I with n = 100, and the experimental results are summarized in Tables 234, along with the results of five references algorithms whose results are available. In Table 2, columns 1 and 2 give the names and the known optimum results (Opt.) of the instances with m = 5, columns 3-8 provide the best objective values (f best) obtained for the reference algorithms as well as our DQPSO * algorithm, columns 9-12 indicate the average objective values (f avg) obtained for three reference algorithms as well as our DQPSO * algorithm, and the last two columns report the average computational time (t avg) in seconds needed to reach the final objective value for TPTEA and DQPSO * . In addition, the row "Avg." shows the average result for each column, and the rows "#better", "#equal", and "#worse" show the number of instances for which the associated reference algorithm obtained a better, equal, or worse result in terms of f best , f avg , and t avg in comparison with the proposed DQPSO * algorithm.

To verify the statistical difference between the proposed DQPSO * algorithm and the reference algorithms in terms of f best and f avg , the p-values from the Wilcoxon signed-rank tests are provided in the last row of the tables, where a p-value less than 0.05 means that there exists a significant difference between the compared results. Tables 3 and4 present the results on the instances with m = 10 and m = 30 with the same information as in Table 2.

Table 2 shows that for all the 30 small instances with n = 100 and a small number (m = 5) of constraints, our DQPSO * algorithm performs very well and is able to obtain the known optimum solution with a success rate of 100% within a short computing time (t avg = 0.5). Moreover, compared to the reference algorithms, DQPSO * achieves a similar or better performance in terms of f best , f avg , and t avg . In terms of f best , DQPSO * obtains the same result compared to GA, F&F, QPSO * and TPTEA, and reports a better results for 2 instances compared to 3R-BPSO. In terms of f avg , DQPSO * obtains the same result compared to QPSO * and TPTEA, and reports a better result for 25 out of 30 instances compared to 3R-BPSO.

Table 3 shows that for the instances with n = 100 and a medium-sized number (m = 10) of constraints our algorithm also performs well. For all the 30 instances, our algorithm obtains the known optimum result reported in the literature, and the corresponding success rate of our algorithm is 100% for 26 out of 30 instances. Compared to the first 4 reference algorithms, i.e., GA, F&F, 3R-BPSO, QPSO * , the DQPSO * algorithm is very competitive and obtains a better result in terms of f best for one instance and an equal result for the 29 remaining instances. Compared to the TPTEA algorithm, in terms of f best , the DQPSO * algorithm obtains the same result for all the 30 instances. In terms of f avg , the DQPSO * algorithm outperforms significantly 3R-BPSO by obtaining better results on all the 30 instances, reaches comparable results relative to QPSO * , and obtains slightly worse results than the latest TPTEA algorithm.

Table 4 shows that for the instances with n = 100 and a large number (m = 30) of constraints, the DQPSO * algorithm has a similar performance compared to GA, F&F, and QPSO * , but performs slightly worse than the tabubased TPTEA algorithm. Specifically, in terms of f best , DQPSO * obtains a better result on 3 instances than the GA algorithm, and a better and worse result on 2 instances compared to the F&F, and QPSO * algorithms, respectively.

In terms of f avg , the DQPSO * algorithm obtains comparable results compared to QPSO * . Compared to TPTEA, DQPSO * performs worse in terms of both f best and f avg . TPTEA attains the known optimum solution with a success rate of 100% for all the instances while this is the case of DQPSO * only for 16 instances.

On the other hand, Tables 234show that for these small instances the differences between DQPSO * and the reference algorithms in terms of f best are

436

The second experiment aims to assess and compare the DQPSO * algorithm 437 on the medium-sized instances with n = 250, and the experimental results are 438 summarized in Tables 5 to 7, where the BKR denotes the best known results

439

reported in the literature and other symbols are same as in the previous tables.

440

The results on the instances with a small number (m = 5) of constraints 441 are provided in Table 5. One observes that for these instances, the proposed

463

We observe from terms of computational efficiency.

Similarly, In summary, the above computational results and comparisons indicate that the proposed DQPSO * algorithm performs very well for the instances with m ≤ 10 knapsack constraints in terms of both solution quality and computation efficiency in comparison with the compared algorithms from the literature.

However, for the instances with a large number (m = 30) of constraints, the performance of DQPSO * decreases and fails to compete with the best performing algorithms. Moreover, DQPSO * has a fast convergence, but its results on a number of instances (especially the largest and the most constrained instances) are unstable across multiple runs, indicating that its robustness could be further improved.

Analysis and Discussions

We now turn our attention to several essential components of the proposed algorithm to analyze their impacts on the performance of the algorithm, i.e., the diversity-preserving population updating mechanism, the variable neighborhood descent method, and the setting of parameter α. summarized in Fig. 1, where Y-axis indicates the value of dist avg and X-axis indicates the number of iterations. The experimental results of this experiment are summarized in Table 12 and Fig. 2, where we show the results with p values in {0.0, 0.01, 0.02, 0.03, 0.04, 0.10}.

The first column and the first row of the Table 12 shows that p = 0 that is equivalent to disabling the VND procedure leads to much worse results than the other values (p > 0) in terms of both f best and f avg , which means that the VND method plays a crucial role for the performance of the algorithm. Moreover, one observes that in terms of Avg. the results with p = 0.01 are the best ones among the compared results, indicating that running the local search method more often with a probability p > 0.01

does not improve the final results in terms of f best and f avg . Meanwhile, Fig. One observes from Fig. 3 that a small α value leads generally to a better result than a large α value. For the instance 10.500.11, the result of the algorithm deteriorates as the value of α increases, and the setting of α = 0.0 leads to the best result among all the tested α values. For the instance 10.500.21, the algorithm exhibits a similar behavior in general, and the setting of α = 0.001 leads to the best result among all the tested α values. Thus, based on the outcomes of this experiment, the default value of α was set to 0.0 for the DQPSO * algorithm.

Conclusions and Future Work

We have presented a diversity-preserving quantum particle swarm optimization algorithm for solving the classic 0-1 multidimensional knapsack problem. In comparison with the popular QPSO algorithm, the proposed algorithm contains two new original features, namely a diversity-preserving population updating strategy to maintain a healthy diversity of particle swarm and a variable neighborhood descent procedure applied in a probabilistic way to reinforce search intensification.

The experimental results on 270 instances commonly used in the literature showed that the proposed algorithm is particularly efficient in terms of both the solution quality and the computational efficiency on the instances with a small or medium-sized number (m ≤ 10) of constraints in comparison with several state-of-the-art MKP algorithms in the literature. As such, the algorithm can be advantageously applied to effectively find high-quality solutions for MKP instances with a limited number of constraints. However, the performance of the proposed algorithm decreases considerably on the tested instances with a large number (m = 30) of constraints, even if the algorithm remains very fast in terms of computation time. We also presented additional experiments to get insights on the interest of the diversity-preserving updating strategy, the local search procedure, as well as key parameters.

There are several potential directions for future research. First, the performance of the algorithm may vary across multiple runs on instances with many constraints. It is thus useful to investigate additional strategies to improve the robustness of the algorithm. Second, to enhance the effectiveness of the repair operator, different pseudo-utility ratios can be used in a combined way. Third, the ideas of the diversity-preserving updating strategy and the probabilistic application of local optimization are general and independent of the problem studied in this work. Consequently, it would be interesting to check their effectiveness and efficiency within other QPSO algorithms for MKP variants such as those mentioned in the introduction as well as other binary optimization problems (e.g., the set covering problem [START_REF] Gao | An efficient local search heuristic with row weighting for the unicost set covering problem[END_REF] and the maximum diversity problem [START_REF] Wu | A hybrid metaheuristic method for the maximum diversity problem[END_REF]).

 replace d w by d */ 10 end Like any population algorithm, it is crucial for the DQPSO * algorithm to maintain a healthy swarm in terms of diversity. For this purpose, DQPSO * uses a diversity-preserving strategy to update the set of personal historical best positions of the discrete particles D lb . Given a discrete solution d generated by the repair operator or the VND procedure and D lb , the diversity-preserving updating strategy is performed as follows. First, the Hamming distance (dist) between d and its closest solution d c in D lb is calculated. Then, D lb is updated according to one of the following two situations, which is inspired by the work in (Lai and Hao, 2015) where a diversity-preserving pool updating strategy is employed as a key component of an evolutionary path relinking algorithm designed for the fixed spectrum frequency assignment problem. 1) If f (d) > f (d c) and dist ≤ θ, then d c in D lb is replaced by d, where θ is a parameter used to control the diversity of D lb and f (d) denotes the objective value of solution d. 2) If f (d) > f (d w) and dist > θ, then the worst solution in D lb (denoted by d w) is replaced by d. In other cases, the offspring solution d is discarded, while keeping D lb unchanged. The pseudo-code of the this population updating strategy is provided in Algorithm 8.

 : np = 5n and IterM ax = 200m for the instances with n = 100 and m ∈ {5, 10, 30}, np = 4n and IterM ax = 500m for the instances with n = 250 and m ∈ {5, 10, 30}, and np = 2n and IterM ax = 500m for the instances with n = 500 and m ∈ {5, 10}. For the instances with n = 500 and m = 30 which are shown to be very hard to solve for most existing heuristic algorithms, np and IterM ax were respectively set to 2n and 10 4 . For the parameters p and α, their values were set according to the experiments shown in Section 5.2 and Section 5.3, respectively. For the other parameters, the default values were empirically set according to a preliminary experiment.The DQPSO * algorithm was implemented in C++ language and compiled by the g++ compiler with the -O3 flag 2 . All the experiments were carried out on a computer with an Intel E5-2670 processor (2.5 GHz and 2G RAM), running the Linux operating system. Due to its stochastic nature, DQPSO *

459

 The third experiment aims to assess the DQPSO * algorithm on the largest 460 instances with n = 500, and the experimental results are respectively summa-461 rized in Tables 8-10 according to the value of m (m = 5, 10, 30), along with the 462 results of the reference algorithms.

 Comparative results of DQPSO * with 6 reference algorithms from the literature on the large instances with n Table 10: Comparative results of DQPSO * with 5 reference algorithms from the literature on the large instances with n

Figure 1 :

 1 Figure1: Evolution of the average distance between solutions in the discrete particle swarm D lb as a function of the number of iterations for the diversity-preserving population updating strategy (DQPSO *) and the popular population updating strategy in the literature (DQPSO -).

 the set of 30 instances with n = 500 and m = 10, where for each p value in the set {0.0, 0.01, 0.02, . . . , 0.09, 0.10}, the DQPSO * algorithm was independently performed 100 times according to the experimental protocol in Section 4.2. It is worth noting that a larger value of p implies a higher computation effort and a stronger local optimization ability for the proposed algorithm, and vice versa. Specially, the setting of p = 0.0 means that the VND method is disabled in the algorithm.

2Figure 3 :

 3 Figure 3: Sensitivity analysis of parameter α on two representative instances, where the X-axis represents the values of parameter α and the Y-axis represents the objective values.

 the initialization of Q t and D lb t , DQPSO * performs IterM ax itera-Instance I, size of particle swarm (np), maximum number of iterations (IterM ax), parameters K, p, α, c 1 , and c 2 . Output: The best discrete solution d * found /* Q t = {Q t (i) : 1 ≤ i ≤ np} denotes the quantum particle swarm at the iteration t, D lb t = {D lb t (i) : 1 ≤ i ≤ np} denotes the set of personal historical best positions for discrete particles */ 2 t ← 0 /* t denotes the current number of iterations */ /* Initialization of quantum particle swarm */ 3

	tions (lines 9-27) to search for a best discrete solution of the MKP instance.
	Specifically, at each iteration t, the particles Q t (i) (1 ≤ i ≤ np) are processed
	by applying the following steps: (1) K (which is a parameter) discrete solutions
	S = {d 1 , d 2 , . . . , d K } are randomly selected from D lb t , the corresponding quan-
	tum particles are tentatively recorded as the neighbors of the particle Q t (i),
	and the best individual in S is tentatively recorded as the neighborhood's best
	position D * t (i) for the corresponding discrete particle of Q t (i) (lines 12-13). One observes that the evolution of the particle swarm in DQPSO * is based on
	a random and dynamic neighborhood topology. (2) A new quantum particle
	Q t+1 (i) is generated by the evolution formulas in Eqs. (8)-(10), where Q lb t+1 (i) and Q

* t+1 (i) represent in some sense the personal and neighborhood's historical best positions for the quantum particle Q t+1 (i) (lines 13-15). (

3

) The newly generated quantum solution Q t+1 (i) is transformed into a discrete solution d and its infeasibility is subsequently repaired by the repair operator (lines 16-17). (4) The local optimization method (denoted by VND) is applied with a probability of p to further improve the solution (line 18-20). (5) The resulting solution is then used to update D lb t by means of a diversity-preserving updating strategy (line 21). DQPSO * stops once a maximum allowed number of iterations is reached and the best discrete solution found (d *) is returned as the result of the algorithm. Algorithm 4: Main frame of the DQPSO * algorithm for the MKP 1 Function DQPSO* Input:

Table 1 :

 1 Settings of parameters

	Parameters Section Description	Values
	np	3.2	Number of particles	{2n,4n,5n}
	IterM ax	3.2	Maximum number of iterations	{200m,500m,10 4 }
	K	3.2	Number of neighbors of particles	10
	α	3.2	parameter used in Eq.(8)	0.0
	c1	3.2	parameter used in Eq.(10)	0.2
	c2	3.2	parameter used in Eq.(10)	0.4
	p	3.2	probability of applying the VND	0.01
	θ	3.5	parameter for the population updating	2

Table 2 :

 2 Comparative results of DQPSO * with 5 reference algorithms from the literature on the small instances with

	m = 5.
	n = 100 and

Table 3 :

 3 Comparative results of DQPSO * with 5 reference algorithms from the literature on the small instances with

	m = 10.
	n = 100 and

Table 4 :

 4 Comparative results of DQPSO * with 4 reference algorithms from the literature on the small instances with n = 100 and m = 30.

	Instance	Opt.	GA	F&F	f best QPSO *	TPTEA	DQPSO *	QPSO *	favg TPTEA	DQPSO *	tavg (s) TPTEA DQPSO *
	30.100.0	21946	21946	21946	21946	21946	21946	21946.00	21946.00	21946.00	7.5	1.1
	30.100.1	21716	21716	21716	21716	21716	21716	21716.00	21716.00	21716.00	17.7	0.9
	30.100.2	20754	20754	20754	20754	20754	20754	20754.00	20754.00	20754.00	10.4	1.1
	30.100.3	21464	21464	21464	21464	21464	21464	21448.00	21464.00	21464.00	12.9	5.7
	30.100.4	21844	21814	21844	21844	21844	21844	21828.50	21844.00	21833.09	15.6	26.6
	30.100.5	22176	22176	22176	22176	22176	22176	22176.00	22176.00	22176.00	0.7	0.9
	30.100.6	21799	21799	21799	21772	21799	21799	21772.00	21799.00	21793.60	19.5	12.8
	30.100.7	21397	21397	21397	21397	21397	21397	21361.50	21397.00	21396.04	15.8	14.5
	30.100.8	22525	22493	22493	22525	22525	22493	22503.50	22525.00	22493.00	15.0	10.6
	30.100.9	20983	20983	20983	20983	20983	20983	20983.00	20983.00	20983.00	0.8	2.5
	30.100.10	40767	40767	40767	40767	40767	40767	40728.50	40767.00	40764.18	22.5	27.3
	30.100.11	41308	41304	41304	41308	41308	41308	41306.00	41308.00	41305.88	19.2	14.9
	30.100.12	41630	41560	41630	41630	41630	41612	41606.00	41630.00	41585.22	28.5	29.8
	30.100.13	41041	41041	41041	41041	41041	41041	41041.00	41041.00	41041.00	22.1	8.1
	30.100.14	40889	40872	40889	40872	40889	40872	40872.00	40889.00	40872.00	21.6	0.9
	30.100.15	41058	41058	41058	41058	41058	41058	41058.00	41058.00	41058.00	0.9	2.7
	30.100.16	41062	41062	41062	41062	41062	41062	41062.00	41062.00	41062.00	11.3	14.9
	30.100.17	42719	42719	42719	42719	42719	42719	42719.00	42719.00	42718.73	19.4	0.6
	30.100.18	42230	42230	42230	42230	42230	42230	42230.00	42230.00	42230.00	1.2	2.1
	30.100.19	41700	41700	41700	41700	41700	41700	41700.00	41700.00	41700.00	14.3	3.9
	30.100.20	57494	57494	57494	57494	57494	57494	57494.00	57494.00	57494.00	0.6	0.2
	30.100.21	60027	60027	60027	60027	60027	60027	60027.00	60027.00	60021.94	1.4	29.8
	30.100.22	58052	58025	58052	58052	58052	58052	58052.00	58052.00	58027.85	18.2	28.4
	30.100.23	60776	60776	60776	60776	60776	60776	60776.00	60776.00	60775.78	4.5	6.3
	30.100.24	58884	58884	58884	58884	58884	58884	58884.00	58884.00	58865.52	4.9	2.4
	30.100.25	60011	60011	60011	60011	60011	60011	60011.00	60011.00	60005.30	2.3	2.0
	30.100.26	58132	58132	58104	58132	58132	58132	58118.00	58132.00	58132.00	0.7	1.7
	30.100.27	59064	59064	59064	59064	59064	59064	59064.00	59064.00	59064.00	0.7	1.2
	30.100.28	58975	58975	58975	58975	58975	58975	58975.00	58975.00	58975.00	19.6	11.3
	30.100.29	60603	60603	60603	60593	60603	60603	60593.00	60603.00	60603.00	2.3	3.2
	Avg.	40767.53	40761.53	40765.40	40765.73	40767.53 40765.30	40760.17	40767.53 40761.87	11.1	8.9
	#better		0	2	2	3		9	14		14	
	#equal		27	26	26	27		14	16		0	
	#worse		3	2	2	0		7	0		16	
	p-value		6.79E-2	1.0	5.15E-1	1.09E-1		7.56E-1	9.81E-4			

marginal, which is confirmed by the large p-values (≥ 0.05). However, in terms 434 of f avg , the DQPSO * algorithm outperforms significantly the 3R-BPSO algo-435 rithm.

Table 5 :

 5 Comparative results of DQPSO * with 4 reference algorithms from the literature on the medium-sized instances with n = 250 and m = 5.

	453	
	454	Tables 6 and 7 report respectively the results for the instances with m = 10
	455	and m = 30. These two tables show that for the medium-sized instances with a
	456	large number of constraints, DQPSO * outperforms significantly GA, F&F, and

442

DQPSO * algorithm outperforms GA, F&F, QPSO * in terms of f best , and ob-443 tains comparable results with the TPTEA algorithm. Specifically, DQPSO * 444 yields respectively a better result for 11, 7, and 5 instances compared to GA, 445 F&F, QPSO * , and matches the result of the TPTEA algorithm for 29 out of 446 30 instances, while yielding a worse result for one instance. As for the f avg , 447 DQPSO * performs better than QPSO * by reporting a better result on 15 in-448 stances and the same result on 12 instances, but performs marginally worse 449 than TPTEA (the average value of f avg over all the 30 instances is 107087.05 450 for DQPSO * against 107088.59 for TPTEA). Moreover, TPTEA and DQPSO * 451 obtain the optimum solution with a success rate of 100% for 27 and 18 out of 452 30 instances, respectively, while DQPSO * is more computationally efficient.

Table 6 :

 6 Comparative results of DQPSO * with 4 reference algorithms from the literature on the medium-sized instances with n = 250 and m = 10.

	Instance	Opt.	GA	F&F	f best QPSO *	TPTEA	DQPSO *	QPSO *	favg TPTEA	DQPSO *	tavg (s) TPTEA DQPSO *
	10.250.0	59187	59187	59164	59182	59187	59187	59173.00	59187.00	59187.00	194.8	20.0
	10.250.1	58781	58662	58693	58781	58781	58705	58733.00	58743.13	58686.12	715.2	51.7
	10.250.2	58097	58094	58094	58097	58097	58097	58095.50	58097.00	58086.86	189.9	39.4
	10.250.3	61000	61000	60972	61000	61000	61000	60986.00	60998.57	60989.07	839.2	61.4
	10.250.4	58092	58092	58092	58092	58092	58092	58092.00	58090.57	58088.38	821.7	67.4
	10.250.5	58824	58803	58824	58824	58824	58824	58824.00	58822.60	58803.42	462.1	24.4
	10.250.6	58704	58607	58632	58606	58704	58704	58596.50	58704.00	58692.39	385.2	59.1
	10.250.7	58936	58917	58917	58902	58936	58930	58889.50	58932.10	58921.47	732.7	54.7
	10.250.8	59387	59384	59381	59372	59387	59387	59357.50	59387.00	59383.41	102.3	74.0
	10.250.9	59208	59193	59208	59208	59208	59208	59208.00	59208.00	59208.00	327.1	23.3
	10.250.10	110913	110863	110889	110857	110913	110913	110843.00 110913.00 110913.00	370.7	22.3
	10.250.11	108717	108659	108702	108687	108717	108717	108687.00 108717.00 108702.55	529.3	9.6
	10.250.12	108932	108932	108922	108891	108932	108932	108889.00 108932.00 108930.63	77.4	40.3
	10.250.13	110086	110037	110059	110086	110086	110086	110060.50 110086.00 110061.33	1070.9 81.6
	10.250.14	108485	108423	108485	108485	108485	108485	108459.50 108485.00 108485.00	129.1	32.4
	10.250.15	110845	110841	110841	110845	110845	110845	110843.00 110843.67 110840.22	1064.0 46.3
	10.250.16	106077	106075	106075	106047	106077	106077	106036.00 106075.73 106076.41	239.2	56.3
	10.250.17	106686	106686	106685	106686	106686	106686	106681.50 106686.00 106686.00	563.2	24.8
	10.250.18	109829	109825	109822	109788	109829	109825	109755.00 109827.40 109823.00	845.3	46.8
	10.250.19	106723	106723	106723	106723	106723	106723	106723.00 106723.00 106723.00	80.5	34.1
	10.250.20	151809	151790	151790	151779	151809	151809	151769.00 151809.00 151806.92	177.4	49.4
	10.250.21	148772	148772	148772	148772	148772	148772	148772.00 148772.00 148772.00	24.6	3.1
	10.250.22	151909	151900	151909	151909	151909	151909	151909.00 151909.00 151909.00	85.6	41.6
	10.250.23	151324	151275	151281	151281	151324	151324	151281.00 151324.00 151276.39	629.1	48.4
	10.250.24	151966	151948	151966	151966	151966	151966	151938.00 151961.80 151953.94	413.8	33.3
	10.250.25	152109	152109	152109	152109	152109	152109	152109.00 152109.00 152109.00	51.2	6.9
	10.250.26	153131	153131	153131	153131	153131	153131	153131.00 153131.00 153131.00	36.3	9.0
	10.250.27	153578	153520	153533	153529	153578	153578	153529.00 153578.00 153560.40	95.8	70.2
	10.250.28	149160	149155	149160	149160	149160	149160	149145.00 149160.00 149156.53	59.1	92.4
	10.250.29	149704	149704	149688	149646	149704	149704	149637.00 149704.00 149704.00	56.2	10.3
	Avg.	106365.70	106343.57 106350.63 106348.03 106365.70 106362.83	106338.42 106363.89 106355.55	379.0	41.1
	#better		0	0	1	3		6	18		0	
	#equal		11	11	16	27		6	11		0	
	#worse		19	19	13	0		18	1		30	
	p-value		1.31E-4	1.32E-4	1.31E-2	1.09E-1		4.68E-3	1.55E-4			

Table 7 :

 7 Comparative results of DQPSO * with 4 reference algorithms from the literature on the medium-sized instances with n = 250 and m = 30.QPSO * in terms of f best , which is confirmed by the small p-values (≤ 0.05), 457 but performs worse than the tabu-based TPTEA algorithm. In terms of f avg ,

	Instance	BKR	GA	F&F	f best QPSO *	TPTEA	DQPSO *	QPSO *	favg TPTEA	DQPSO *	tavg (s) TPTEA DQPSO *
	30.250.0	56842	56693	56796	56796	56824	56796	56745.50	56824.00	56745.30	130.5	191.2
	30.250.1	58520	58318	58333	58302	58520	58351	58302.00	58520.00	58319.88	216.3	81.4
	30.250.2	56614	56553	56553	56614	56614	56614	56570.50	56614.00	56556.16	216.4	274.2
	30.250.3	56930	56863	56930	56930	56930	56930	56892.00	56930.00	56929.35	90.7	81.0
	30.250.4	56629	56629	56629	56629	56629	56629	56629.00	56629.00	56629.00	74.2	28.4
	30.250.5	57205	57119	57149	57146	57205	57189	57115.50	57205.00	57147.28	374.4	178.8
	30.250.6	56348	56292	56263	56303	56357	56303	56246.50	56333.40	56223.06	1155.3 432.6
	30.250.7	56457	56403	56457	56392	56457	56457	56374.50	56457.00	56456.91	103.3	171.2
	30.250.8	57474	57442	57373	57447	57474	57474	57407.50	57458.90	57419.36	971.1	279.7
	30.250.9	56447	56447	56447	56447	56447	56447	56447.00	56447.00	56447.00	99.5	12.6
	30.250.10	107770	107689	107735	107703	107770	107732	107696.00 107763.10 107719.89	1034.2 299.5
	30.250.11	108392	108338	108338	108338	108392	108379	108336.50 108387.23 108377.71	437.6	81.6
	30.250.12	106442	106385	106415	106442	106442	106442	106413.50 106439.60 106427.69	587.2	136.1
	30.250.13	106876	106796	106832	106851	106876	106876	106828.00 106876.00 106821.63	204.5	213.5
	30.250.14	107414	107396	107414	107382	107414	107396	107382.00 107414.00 107396.00	230.4	196.0
	30.250.15	107271	107246	107271	107271	107271	107271	107236.50 107271.00 107244.81	293.9	210.4
	30.250.16	106372	106308	106277	106248	106372	106365	106242.00 106371.77 106319.30	682.5	259.9
	30.250.17	104032	103993	104003	103988	104032	104014	103988.00 104019.00 104000.59	497.2	285.7
	30.250.18	106856	106835	106835	106856	106856	106835	106845.50 106852.50 106807.00	322.2	164.2
	30.250.19	105780	105751	105742	105751	105780	105751	105740.00 105779.17 105751.00	440.6	138.7
	30.250.20	150163	150083	150138	150096	150163	150138	150052.00 150163.00 150111.33	456.9	335.6
	30.250.21	149958	149907	149958	149958	149958	149907	149932.50 149958.00 149907.00	100.7	52.3
	30.250.22	153007	152993	153007	153007	153007	153007	153007.00 153007.00 152993.42	130.9	86.3
	30.250.23	153234	153169	153182	153234	153234	153234	153200.00 153234.00 153188.81	83.8	279.3
	30.250.24	150287	150287	150287	150287	150287	150287	150287.00 150287.00 150287.00	51.2	7.8
	30.250.25	148574	148544	148549	148544	148574	148574	148528.50 148574.00 148560.74	77.0	139.9
	30.250.26	147477	147471	147455	147471	147477	147477	147463.00 147477.00 147477.00	78.5	25.3
	30.250.27	152912	152841	152841	152835	152912	152912	152835.00 152912.00 152894.37	70.6	213.2
	30.250.28	149570	149568	149570	149570	149570	149570	149541.00 149570.00 149569.86	61.3	377.3
	30.250.29	149668	149572	149587	149668	149668	149601	149620.00 149668.00 149601.00	741.8	34.0
	Avg.	104717.37	104664.37 104678.87 104683.53 104717.07 104698.60	104663.47 104714.72 104677.65	333.8	175.6
	#better		0	3	4	14		9	26		8	
	#equal		7	11	13	16		3	4		0	
	#worse		23	16	13	0		18	0		22	
	p-value		2.70E-5	2.71E-3	3.13E-2	9.79E-4		2.55E-2	8.30E-6			

458

DQPSO * performs better than QPSO * , but worse than TPTEA.

Table 8 :

 8 Table 8 that for the large instances with a small number and TPTEA). Moreover, DQPSO * and TPTEA have a very similar 478 performance in terms of both f best and f avg with an advantage for DQPSO * in 479 Comparative results of DQPSO * with 6 several reference algorithms from the literature on the large instances with

	464	
	465	(m = 5) of constraints, DQPSO * performs very well compared to six refer-
	466	ence algorithms. In terms of f best , DQPSO * obtains a better result respectively
	467	for 23, 10, 15, 13 and 15 out of 30 instances compared to five reference algo-
	468	rithms (GA, F&F, 3R-BPSO, TP+TS and QPSO *), while matching their best
	469	results for 7, 19, 15, 16, 12 instances, respectively. Such an outcome indicates
	470	that DQPSO * outperforms significantly these five reference algorithms, which
	471	is confirmed by the small p-values (≤ 0.05). In addition, compared to the latest
	472	TPTEA algorithm, DQPSO * obtains a better, equal, and worse result for 1, 25,
	473	and 4 instances in terms of f best , which means that DQPSO * performs slightly
	474	worse than TPTEA. Nevertheless, the large p-value (≥ 0.05) means that there
	475	does not exist a significant difference between DQPSO * and TPTEA in terms
	476	of f best . On the other hand, DQPSO * obtains a better result for 30, 30, and
		18 instances in terms of f avg compared to 3 reference algorithms (3R-BPSO,

477

QPSO *

 Table9also shows that DQPSO * performs very well on the instances with a medium-sized number (m = 10) of constraints in comparison with six reference algorithms. For f best , DQPSO * yields respectively a better result for 29, 27, 25, 22, 19 instances compared to GA, F&F, 3R-BPSO, TP+TS and QPSO * . Moreover, compared to the TPTEA algorithm, DQPSO * obtains a better, equal, and worse result for 10, 6, and 14 instances, respectively. For the average value Avg. of f best , the result of the DQPSO * algorithm is 212841.60 that is slightly superior to 212840.7 of the TPTEA algorithm. In terms of f avg , DQPSO * is superior to three reference algorithms (3R-BPSO, QPSO * , and TPTEA) with a Avg. value of 212810.58 which is better than those of the reference algorithms. On the other hand, from the Wilcoxon tests, we observe that the differences between the DQPSO * algorithm and the first five reference algorithms are statistically significant both in terms of f best and f best , while there does not exist a significant difference between DQPSO * and TPTEA.

Table 10

 10 reports the computational results for the instances with a large number (m = 30) of constraints, which are known to be the hardest instances among the tested instances. We observe from the table that for these instances, the DQPSO * algorithm has a comparable performance compared with the popular MKP algorithms. In terms of f best , DQPSO

* outperforms GA and QPSO * by obtaining a better result for 25 and 19 out of 30 instances, respectively. DQPSO * yields comparable results with respect to two tabu-based algorithms (F&F and TP+TS), which is confirmed by the large p-values. However, when comparing with the latest TPTEA algorithm, DQPSO * performs significantly worse in terms of f best . Moreover, the average results of DQPSO * are much worse for most instances than QPSO * and TPTEA, even if it attains its solutions within a short computation time compared to TPTEA.

Table 11

 11 shows that DQPSO * dominates DQPSO -in terms of f best , f avg , and std. First, in terms of f best , both algorithms obtained the best result

Table 12 :

 12 Computational results of DQPSO *

	m = 10.
	n = 500 and
	p values on the large instances with
	with different

 table give the name of instances and the settings of p, and the best objective value (f best) over 100 runs and the average objective value (f avg) for the tested p values are reported in columns 2-13. The last row "Avg." of the table gives the average value for each column, and the best result among the compared p values are indicated in bold in terms of f best and f avg . The average computation time (t avg) needed to reach the final objective value is plotted in Fig. 2 as a function of p.

The source code of the DQPSO * algorithm will be made available at http://www.info. univ-angers.fr/pub/hao/DQPSO.html

Acknowledgments

We are grateful to the reviewers for their valuable comments and suggestions which helped us to improve the paper. This work was partially supported by the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20170904), the National Natural Science Foundation of China (Grant No. 61703213), six talent peaks project in Jiangsu Province (Grant No. RJFW-011), and NUPTSF (Grant Nos. NY217154 and RK043YZZ18004).

542

The average results over 10 runs with a maximum number 500 of iterations are 543 respectively for 4 and 29 instances. Second, in terms of f avg , DQPSO * obtained a better result for all the 30 instances. Third, the standard deviation std of the objective values from the DQPSO * algorithm is smaller than that of the DQPSO -algorithm, which implies DQPSO * is more robust than DQPSO -.

On the other hand, the computation time to reach the final objective value is much shorter for DQPSO -than for DQPSO * , which implies a premature convergence of DQPSO -compared to DQPSO * .

In addition, one observes from Fig. 1 that the average distance dist avg between the solutions in the population D lb , which measures the diversity of population D lb , decreases quickly at the beginning of search for both of the DQPSO -and DQPSO * algorithms, and then the dist avg value of the DQPSO * algorithm outperforms gradually that of the DQPSO -algorithm as the search progresses, which means the diversity-preserving updating strategy of DQPSO * is able to provide a better diversity for the population than the popular population updating strategy that is used in most existing binary PSO algorithms.

The above two experiments show thus that the diversity-preserving strategy helps DQPSO * to avoid a premature convergence and plays a crucial role for enhancing the performance of the algorithm. The VND procedure in Section 3.4 is another essential ingredient of the proposed algorithm and it is applied with a probability of p after each repair operator to reinforce search intensification. To investigate the effect of this local search method on the performance of the algorithm, we carried out another

Effect of the Variable Neighborhood Descent Method