Zhi Lu 
  
Jin-Kao Hao 
email: jin-kao.hao@univ-angers.fr
  
Qinghua Wu 
  
A hybrid evolutionary algorithm for finding low conductance of large graphs

Keywords: Conductance minimization, Cheeger number, Hybrid search, Metaheuristics, Large graph optimization

Given an undirected graph G = (V, E) with vertex set V and edge set E, the minimum conductance graph partitioning problem is to partition V into two subsets s = (A, Ā) such that its quotient cut is minimized. This problem arises in a number of significant real-world applications; however, it is known to be NP-hard and thus computationally challenging. We present in this work a hybrid evolutionary algorithm for finding low conductance of large graphs. To ensure a high search efficiency and efficacy, the algorithm relies on the general memetic search framework and integrates specialized search components (e.g., fast local optimization with a progressive neighborhood and quality-and-diversity based pool management). Computational experiments on a set of 60 large-scale real-world benchmark instances in the literature with up to 23 million vertices lead to the following main findings. First, the algorithm competes very favorably with the state-of-the-art methods and is able to find efficiently solutions of low conductance for the tested instances. Second, the dedicated search components are essential to ensure the high performance of the algorithm. Third, the algorithm can further ameliorate the solutions obtained by the well-known max-flow quotient-cut improvement algorithm. Finally, we illustrate an application of using the algorithm to detect meaningful community structures in complex networks.

Introduction

Graph partitioning is a general and convenient tool that can be used to model a variety of practical problems. Let G = (V, E) be an undirected and connected graph with vertex set V and edge set E ⊆ V × V , graph partitioning generally involves finding a partition (or a cut) (A, Ā) of V (i.e., A ∪ Ā = V and A ∩ Ā = ∅) in accordance with an optimization objective. A typical example is the well-known graph 2-way partitioning problem that aims to minimize the cut edges (i.e., the edges with endpoints in different partition subsets) of the partition. In this work, we are interested in the following conductance (also called quotient cut) criterion:

Φ(s) = |cut(s)| min{vol(A), vol( Ā)} (1) 
where s = (A, Ā) is a cut of G, cut(s) is the set of cut edges of partition s (called cut-set), and vol(.) is the volume of subset A or Ā given by the sum of degrees of the vertices of the subset. For the given graph G, we show a partition s = (A, Ā) where A = {c, d, f, g} and Ā = {a, b, e} which has a conductance Φ(s) of 0.71 [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF].

For a given graph G, its conductance is the lowest conductance over all possible partitions of the graph. The minimum conductance graph partitioning problem (MC-GPP) is then to determine the conductance of a general graph.

In mathematics and statistical physics, the conductance of a graph is also called the Cheeger constant (Cheeger number or isoperimetric number) [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian[END_REF]. Intuitively, finding the conductance of a graph is equivalent to minimize the relative number of edges going out of the partition subset A with respect to its size in terms of volume (or the size of Ā if Ā has a smaller size).

Inspired by [START_REF] Hochbaum | Polynomial time algorithms for ratio regions and a variant of normalized cut[END_REF], we introduce the following mathematical model to formulate MC-GPP.

Let s = (A, Ā) be a partition of G, we define, for each vertex i ∈ V , a binary variable x i such that

x i =      1 , if i ∈ A 0 , if i ∈ Ā (2) 
We define, for each edge {i, j} ∈ E, two additional binary variables: z ij = 1 if exactly one of its endpoints i or j is in A; y ij = 1 if both i and j are in A,

z ij =      1, if i ∈ A, j ∈ Ā, or i ∈ Ā, j ∈ A 0, if i, j ∈ A, or i, j ∈ Ā ( 3 
)
y ij =      1, if i, j ∈ A 0, otherwise (4) 
Let C denote the number of the edges crossing the cut (i.e., C = |cut(s)|), let I denote the number of edges whose endpoints are in A,

C = {i,j}∈E z ij (5) 
I = {i,j}∈E y ij (6) 
Then, MC-GPP can be state as the following minimization problem:

Minimize f (s) = C min{C + 2 * I, 2 * |E| -(C + 2 * I)} (7) 
Subject to x ix j ≤ z ij and x jx i ≤ z ji , ∀{i, j} ∈ E (8)

y ij ≤ x i and y ij ≤ x j , ∀{i, j} ∈ E (9) 1 ≤ {i,j}∈E y ij ≤ |E| -1 (10) 
x i , x j ∈ {0, 1}, ∀i, j ∈ V (11) z ij , y ij ∈ {0, 1}, ∀{i, j} ∈ E [START_REF] Fleming | How not to lie with statistics: the correct way to summarize benchmark results[END_REF] where s = (A, Ā) is a cut. Eq. [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF] states the minimization objective which is equivalent to Eq. [START_REF] Andersen | An algorithm for improving graph partitions[END_REF]. Constraint [START_REF] Chalupa | Hybrid bridge-based memetic algorithms for finding bottlenecks in complex networks[END_REF] ensures that the endpoints of each edge crossing the cut are located in different subsets of the cut, while Constraint [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian[END_REF] imposes that the endpoints of an edge {i, j} which does not cross the cut belong to the same subset. Constraint [START_REF] Cheng | A Divide-and-Merge Methodology for Clustering[END_REF] ensures that subset A contains at least one edge with its endpoints in A, and at least one edge crossing the cut (thus no subset is empty). Constraints [START_REF] Dolan | enchmarking optimization software with performance profiles[END_REF] and [START_REF] Fleming | How not to lie with statistics: the correct way to summarize benchmark results[END_REF] indicate that the corresponding variables take binary values.

MC-GPP has various significant real-world applications. For instance, in [START_REF] Yang | Defining and evaluating network communities based on ground-truth[END_REF], conductance was used to identify ground-truth communities in large real-world networks where nodes organize into densely linked communities with edges appearing with high concentration among the members of the community. In [START_REF] Chalupa | Hybrid bridge-based memetic algorithms for finding bottlenecks in complex networks[END_REF], a graph partitioning approach with minimum conductance was used to find bottlenecks in complex networks where the existence of low conductance minima indicates bottlenecks. Other relevant applications of MC-GPP include clustering [START_REF] Cheng | A Divide-and-Merge Methodology for Clustering[END_REF][START_REF] Schaeffer | Graph clustering[END_REF][START_REF] Spielman | A local clustering algorithm for massive graphs and its application to nearly linear time graph partitioning[END_REF][START_REF] Zhu | A local algorithm for finding well-connected clusters[END_REF], community detection in complex networks [START_REF] Fortunato | Community detection in graphs[END_REF][START_REF] Leskovec | Statistical properties of community structure in large social and information networks[END_REF][START_REF] Van Laarhoven | Local network community detection with continuous optimization of conductance and weighted kernel k-means[END_REF], analysis of protein-protein interaction networks in biology [START_REF] Voevodski | Finding local communities in protein networks[END_REF], and image segmentation in computer vision [START_REF] Shi | Normalized cuts and image segmentation[END_REF].

Meanwhile, MC-GPP is a computationally challenging problem from the perspective of solution methods because it is known to be NP-hard in terms of complexity [START_REF] Šíma | On the NP-completeness of some graph cluster measures[END_REF]. Our literature review (see Section 2) indicates that unlike other graph partition problems, few practical methods are available for solving MC-GPP. Indeed, most existing methods rely on the approximation framework. These methods are either specific to a particular application (e.g., clustering, community identification) or become unpractical for large and massive graphs due to their high computational complexity. One observes that solution methods based on modern metaheuristics remain scarce, even though they have shown to be powerful tools for solving difficult optimization problems. Indeed, heuristic algorithms were largely neglected and research on such methods is still in its infancy. This work thus aims to enrich the toolkit of practical solution methods for MC-GPP. For this purpose, we introduce a novel hybrid evolutionary algorithm able to find high-quality solutions of low conductance for large graphs. Specifically, the proposed algorithm integrates a set of complementary components to jointly ensure its search effectiveness and computational efficiency. We summarize the main contributions of this work as follows.

• First, the hybrid evolutionary algorithm presented in this work takes advantage of population-based global search and local optimization. Specifically, while it adopts a standard crossover operator to generate offspring solutions, the proposed algorithm integrates an innovative progressive local search procedure to cope with the difficulty raised by large graphs (with at least 6×10 4 vertices). To ensure a healthy population of both high diversity and quality, the algorithm uses a mixed technique for population initialization and a proven distance-and-quality based pool updating strategy for population management.

• Second, we perform extensive computational assessments on 60 large-scale real-world benchmark instances (including 50 graphs from the 10th DI-MACS Implementation Challenge and 10 graphs from the Network Data Repository online, with up to 23 million vertices). We demonstrate the high competitiveness of the proposed algorithm compared to four state-of-the-art algorithms. As an additional assessment, we show an application of using the algorithm to detect community structures in complex networks. • Third, this work advances the state-of-the-art in terms of effective solving of the general minimum conductance graph partitioning problem. Given that the studied problem has a number of applications, the proposed algorithm can be usefully applied to these practical problems (we will make the code of our algorithm publicly available). Finally, the ideas of some underlying algorithmic components are of general interest and could be advantageously adapted to design effective algorithms for other large graph optimization problems.

The reminder of the paper is organized as follows. In Section 3, we describe the proposed algorithm and its ingredients. In Section 4, we present computational studies and comparisons between the proposed algorithm and state-of-theart algorithms. An analysis of the key algorithmic components is provided in Section 5. In the last Section, we draw concluding remarks and indicate perspectives for future research. Existing algorithms for MC-GPP are based on approximation, exact and heuristic approaches. In [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian[END_REF], the first (and weak) approximation algorithm for MC-GPP was presented. Improved approximation algorithms were studied later in [START_REF] Arora | O( √ logn) approximation to sparsest cut in õ(n 2 ) time[END_REF][START_REF] Arora | Expander flows, geometric embeddings and graph partitioning[END_REF][START_REF] Leighton | Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms[END_REF]. More recently, motivated by large-scale graph clustering in social and information networks, several effective algorithms with performance guarantee were proposed in [START_REF] Leskovec | Community structure in large networks: Natural cluster sizes and the absence of large welldefined clusters[END_REF][START_REF] Spielman | A local clustering algorithm for massive graphs and its application to nearly linear time graph partitioning[END_REF][START_REF] Zhu | A local algorithm for finding well-connected clusters[END_REF]. In [START_REF] Hochbaum | Polynomial time algorithms for ratio regions and a variant of normalized cut[END_REF][START_REF] Hochbaum | A polynomial time algorithm for rayleigh ratio on discrete variables: Replacing spectral techniques for expander ratio, normalized cut, and cheeger constant[END_REF], time-efficient exact algorithms were proposed for a variant of the conductance problem and other ratio problems in the context of image segmentation.

Related work

In addition to these approximation and exact approaches, heuristic methods were also studied in order to find high-quality solutions within an acceptable amount of time. One representative method is the Max-flow Quotient-cut Improvement algorithm (MQI) proposed in [START_REF] Lang | A flow-based method for improving the expansion or conductance of graph cuts[END_REF]. This method refines an initial cut (typically given by the Metis graph partitioning heuristic [START_REF] Karypis | MeTiS 5.1.0: Unstructured graphs partitioning and sparse matrix ordering system[END_REF]) by solving the well-known max-flow problem. This approach was extended in [START_REF] Andersen | An algorithm for improving graph partitions[END_REF] by solving a sequence of polynomially many minimum cut problems to find a larger-thanexpected intersection with lower conductance. Recently, several metaheuristic algorithms using local search and memetic search were studied in [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF][START_REF] Chalupa | Hybrid bridge-based memetic algorithms for finding bottlenecks in complex networks[END_REF]. Very recently, a stagnation-aware breakout tabu search algorithm (SaBTS) was introduced in [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF], which achieved state-of-the-art results on a large test suite composed of small and medium size graphs (with < 500, 000 vertices). According to the intensive experimental studies reported in [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF], the max-flow based MQI algorithm [START_REF] Lang | A flow-based method for improving the expansion or conductance of graph cuts[END_REF] and the SaBTS algorithm [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF] significantly dominate the algorithms presented in [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF][START_REF] Chalupa | Hybrid bridge-based memetic algorithms for finding bottlenecks in complex networks[END_REF]. Table 1 summarizes the main characteristics of these solution methods.

One notices that the best performing algorithms such as MQI and SaBTS are computationally extensive and generally their performance decreases with the size of the problem instances to be solved. This is particularly true for MQI when it is applied to massive graphs with more than 500,000 vertices. In this work, we aim to advance the state-of-the-art of solving MC-GPP by proposing an effective hybrid evolutionary algorithm. Compared to the existing methods, the proposed algorithm distinguishes itself by some original features such as a fast local optimization using a progressive neighborhood and a diversity guarantee strategy based on distance and quality. As we show in Section 4, the proposed algorithm competes very favorably with the state-of-the-art MC-GPP algorithms on the tested large benchmark instances.

3 Memetic algorithm for MC-GPP

General Outline

Hybrid evolutionary algorithms are known to be a powerful and proven tool for numerous NP-hard problems (e.g., graph partitioning [START_REF] Benlic | A multilevel memetic approach for improving graph k-partitions[END_REF][START_REF] Galinier | An efficient memetic algorithm for the graph partitioning problem[END_REF][START_REF] Wu | Memetic search for the max-bisection problem[END_REF], quadratic assignment [START_REF] Benlic | Memetic search for the quadratic assignment problem[END_REF], graph coloring [START_REF] Moalic | Variations on memetic algorithms for graph coloring problems[END_REF][START_REF] Porumbel | An Evolutionary Approach with Diversity Guarantee and Well-Informed Grouping Recombination for Graph Coloring[END_REF], and unconstrained binary quadratic programming [START_REF] Lü | A hybrid metaheuristic approach to solving the UBQP problem[END_REF]) as well as many practical problems (e.g., service placement in fog architectures [START_REF] Guerrero | Evaluation and efficiency comparison of evolutionary algorithms for service placement optimization in fog architectures[END_REF], roadside unit deployment [START_REF] Moura | An evolutionary algorithm for roadside unit deployment with betweenness centrality preprocessing[END_REF] and task scheduling and data assignment on clouds [START_REF] Teylo | A hybrid evolutionary algorithm for task scheduling and data assignment of dataintensive scientific workflows on clouds[END_REF]). In this work, we present a hybrid evolutionary algorithm for solving MC-GPP, which relies particularly on the memetic computing framework [START_REF]Handbook of memetic algorithms[END_REF]. The proposed algorithm (denoted by MAMC, see Algorithm 1) is composed of four main components: quality-anddiversity based population initialization, recombination operator, progressive constrained neighborhood tabu search and distance-and-quality based pool updating procedure.

From an initial population P op of p solutions (Algorithm 1, line 1), the best solution s * among the population is first recorded (line 2). The algorithm then enters into the 'repeat' loop to improve the population (lines 3-18). At each loop, MAMC selects two parent solutions at random and applies the doublepoint crossover to generate two offspring s 1 and s 2 (lines 4-5). Subsequently, the offspring solutions are improved by the progressive constrained neighborhood tabu search procedure (lines 7 and 13). The improved offspring solutions are used to update the population according to the quality-and-distance based procedure (lines 11 and 17). During the search process, the best solution s * is updated each time a new best solution is found (lines 8-10, lines [START_REF] Galinier | An efficient memetic algorithm for the graph partitioning problem[END_REF][START_REF] Girvan | Community structure in social and biological networks[END_REF][START_REF] Guerrero | Evaluation and efficiency comparison of evolutionary algorithms for service placement optimization in fog architectures[END_REF]. This process terminates when a given stopping condition is met, which is typically a maximum allowed cut-off time limit.

Algorithm 1 Main framework of the memetic algorithm for the minimum conductance graph partitioning problem (MAMC).

Require: Graph G = (V, E), depth of tabu search d, size of population p. Ensure: The best partition s * found during the search.

1: P op = {s 1 , s 2 , . . . , s p } ← P opulation Initialization() / * Section 3.2 * / 2: s * ← arg min{Φ(s i ) : i = 1, 2, . . . , p} 3: repeat 4:

Randomly select two parent solutions s i and s j from P op 5:

(s 1 , s 

Quality-and-diversity based population initialization

The proposed MAMC algorithm is characterized by its capacity of maintaining a healthy population with solutions of high diversity and good quality. For the initial population, we adopt the following three-step mixed strategy illustrated by Algorithm 2. First, a seeding partition is generated either randomly or by applying the MQI algorithm [START_REF] Lang | A flow-based method for improving the expansion or conductance of graph cuts[END_REF] with equal probability (lines 2-7). Second, the seeding partition is improved by the progressive constrained neighborhood tabu search of Section 3.4 (line 8). Third, the improved partition is added into the population if it is not already present in the population (lines [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian[END_REF][START_REF] Cheng | A Divide-and-Merge Methodology for Clustering[END_REF][START_REF] Dolan | enchmarking optimization software with performance profiles[END_REF]. This process is repeated until the population is filled with p different solutions. Given that each solution of the population comes from a seeding solution which is either randomly generated or provided by MQI and then improved by the local optimization procedure, the population is expected to be diverse and of high quality. In Section 5.2, we present an experimental study to show the merit of this mixed initialization strategy compared to two random initialization techniques.

Algorithm 2 The quality-and-diversity based population initialization

Require: Graph G = (V, E), depth of tabu search d, size of population p. Ensure: The initial population P op = {s 1 , s 2 , . . . , s p }.

1: P op ← ∅ 2: for i = 1, . . . , p do 3: if rand(0, 1) < 0.5 then 4:

Construct a random partition s 0 = (A, Ā) with A = {v}, Ā = V -{v} 5: else 6: 

s 0 ← M QI() / *

Recombination operator and parent selection

The crossover operator is used to generate new solutions from parent solutions. For MC-GPP, we experimented three standard crossovers and one problemspecific crossover. For our discussion, we note that a partition s = (A, Ā) can be conveniently coded by a binary string of length n (n is the number of the vertices in the given graph). Indeed, we can use a binary variable to represent a vertex and set it to 1 if the vertex belongs to A and set it to 0 if the vertex belongs to Ā. As a result, conventional crossovers that typically operate on binary strings are directly applicable. Below, we describe the crossovers we tested for solving MC-GPP.

• Single-point crossover: A crossover point on both parents is chosen randomly and then the two bit strings of the parents to the right of the crossover point are swapped to generate two offspring solutions. • Double-point crossover: Two different crossover points on both parents are chosen randomly and the two bit strings between the two crossover points are swapped to generate two offspring solutions (see Fig. 2 for an example). • Uniform crossover: Each bit of the offspring is randomly chosen from either parent with equal probability. • Cut-edge-preserving crossover: In this problem-specific crossover, the cutedges shared by both parents are preserved in the offspring. The vertices that are not endpoints of these shared cut-edges are assigned randomly the value of 1 or 0.

According to our experiments, the double-point crossover performs globally the best compared to the other crossovers. We adopt thus the double-point As to parent selection, we adopt the simple random selection instead of other mechanisms such as roulette-wheel selection and tournament selection. This is justified by the fact that thanks to the distance-and-quality pool updating procedure of Section 3.5 and the powerful local optimization procedure of Section 3.4, we make sure that the population is composed of solutions which are pair-wisely distanced and of high quality. As such, any pair of selected solutions are guaranteed to be well separated and have a high fitness.

Progressive constrained neighborhood tabu search

It is well known that hybrid evolutionary algorithms need an effective local optimization procedure to ensure search intensification [START_REF] Hao | Memetic Algorithms in Discrete Optimization[END_REF]. In [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF], it is shown that both the max-flow based MQI algorithm and the stagnation-aware breakout tabu search algorithm (SaBTS) perform well on the tested graphs with up to 500,000 vertices. This is particularly true, when they are used to refine an initial solution of good quality provided by the Metis graph partitioning tool [START_REF] Karypis | MeTiS 5.1.0: Unstructured graphs partitioning and sparse matrix ordering system[END_REF]. As a result, both MQI and SaBTS could be used as our local optimization procedure in principle. On the other hand, these algorithms become time-consuming when we handle large and massive graphs, making them less interesting and unsuitable for the purpose of this work where the studied graphs have up to 23 million vertices. To be able to cope with such large graphs, we created the progressive constrained neighborhood tabu search algorithm (PCNTS) that is presented below.

Basically, our PCNTS procedure uses the 'Relocate' operator to explore "critical" vertices [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF]. Specifically, let s = (A, Ā) be the incumbent solution and v a vertex, then Relocate(v) transforms s to a new (neighbor) solution s (denoted by s = s ⊕ Relocate(v)) by displacing vertex v from its current set A or Ā to the complement set. For the purpose of conductance minimization, it is unnecessary to consider a vertex for relocation if the vertex is not the endpoint of a cut edge [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF]. As a result, we identify the set CV (s) of candidate vertices for relocation as CV (s) = {v ∈ V : v is the endpoint of a cut edge of s}. Note that even if the set CV (s) is much smaller than the set of vertices V , examining all critical vertices at each iteration of the algorithm (this is what SaBTS of [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF] does) can still become very expensive for large and massive graphs.

Algorithm 3 Progressive constrained neighborhood tabu search (PCNTS).

Require: This is especially true when the given graph is dense, because in this case, any partition will have a high number of cut edges, thus implying many critical vertices. Moreover, as discussed in [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF][START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF], unlike the conventional graph k-way partitioning problem where examining all 'Relocate' neighbor solutions can be performed in O(1), no technique is known to ensure such an efficiency for performing 'Relocate' for MC-GPP. This implies that the cost of examining neighbor solutions is proportionally correlated to the number of critical vertices and becomes prohibitive for large graphs.

Graph G = (V, E), current
To cope with this difficulty, we devise the following progressive and elastic neighborhood exploration strategy which dynamically increases or decreases the number of examined critical vertices according to a well-defined condition (see Algorithm 3). Specifically, we start with one critical vertex (indicated by ev = 1, ev is a counter indicating the number of the critical vertices to be examined). If relocating this vertex at the current iteration does not lead to a solution better than the recorded local best solution (s b ), we increase ev by one, implying that during the next iteration, one more critical vertex will be examined. As a result, as long as no improved local best solution is found, a still larger neighborhood exploration is enabled by increasing ev (i.e., the number of candidate critical vertices) during the next iteration. During the search, ev is reset to one as soon as the recorded local best solution (s b ) is updated or ev reaches its upper limit |CV (s)|. The progressive constrained neighborhood tabu search procedure thus explores an elastic neighborhood N AC (s) whose size is dynamically adjusted by the counter ev according to the search state. [START_REF] Fortunato | Community detection in graphs[END_REF] where CV (s, ev) ⊂ CV (s) is the set of critical vertices to be examined. Thus, by examining the neighborhood N AC (s) induced by CV (s, ev) instead of the whole neighborhood induced by CV (s), the PCNTS procedure increases its computational efficiency considerably.

N AC (s) = {s = s ⊕ Relocate(v) : v ∈ CV (s, ev), 1 ≤ ev ≤ |CV (s)|}
For a given neighbor solution s in the neighborhood N AC (s), it is necessary to quantify the conductance variation (called move gain) δ(v) = Φ(s ) -Φ(s) with Φ(s) already known. This can be performed in O(1) time by simply calculating |cut(s )|, vol(A ), vol( Ā ) as follows [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF][START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF].

|cut(s )| = |cut(s)| + deg A (v) -deg Ā(v) (14) vol(A ) = vol(A) -deg(v) (15) 
vol( Ā ) = vol( Ā) + deg(v) (16) 
where s = {A , Ā } with A = A \ {v}, Ā = Ā ∪ {v} is the neighbor solution after relocating v from A to Ā of the solution s = (A, Ā).

To explore the progressive constrained neighborhood N AC (s), the PCNTS procedure first identifies the set CV (s, ev) with one critical vertex (Algorithm For the tabu tenure, we adopt the dynamic technique introduced in [START_REF] Galinier | An efficient memetic algorithm for the graph partitioning problem[END_REF] which has proven to be quite robust and effective for graph partitioning problems [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF][START_REF] Wu | Memetic search for the max-bisection problem[END_REF]. This technique varies tt with a periodic step function F defined over the current iteration number iter. For each period, it takes p = 15 successive values (also called intervals). The values are separated by the interval margins which are defined by x 1 = 1, and x i+1 = x i + 100. tt equals F (iter), which is given by (y i ) i=1,2,...,15 = α×(10, 20, 10, 40, 10, 20, 10, 80, 10, 20, 10, 40, 10, 20, 10) (α is a parameter). Therefore, tt equals 10 × α between iterations 1 and 100, 20 × α between iterations 101 and 200, etc. Our experiments confirmed that this technique makes the algorithm quite robust across the tested instances and avoids the difficulties of manually tuning the tabu tenure.

Distance-and-quality based pool updating procedure

Population diversity is critical to avoid a premature convergence of an evolutionary algorithm. To maintain a healthy population of our algorithm, we employ a diversification preserving strategy [START_REF] Lü | A hybrid metaheuristic approach to solving the UBQP problem[END_REF] to update the population with each new offspring solution. This strategy considers not only the quality of each offspring solution, but also its distance to the existing solutions of the population.

Following [START_REF] Porumbel | An Evolutionary Approach with Diversity Guarantee and Well-Informed Grouping Recombination for Graph Coloring[END_REF], we use the well-known set-theoretic partition distance [START_REF] Gusfield | Partition-distance: A problem and class of perfect graphs arising in clustering[END_REF] to measure the distance d ab between two solutions s a and s b . The partition distance is the minimum number of one-move steps necessary to transform one solution to another solution. For the given population P op, we calculate D i,P op = min{d ij |s j ∈ P op, j = i, i, j = 1, . . . , |P op|}.

Then, we determine the 'worst' solution in the population, according to the following goodness score function which considers both quality and distance:

g(s i , P op) = γ Ã(Φ(s i )) + (1 -γ) Ã(D i,pop ) ( 17 
)
where γ is a parameter set to 0.6 according to [START_REF] Lü | A hybrid metaheuristic approach to solving the UBQP problem[END_REF] where y min and y max are respectively the minimum and maximum of y in the population P op. "+1" is used to avoid the possibility of a 0 denominator. Based on the above goodness score function, the population P op is updated with the given offspring solution s 0 according to the following procedure (Algorithm 4). The new offspring s 0 is first inserted into P op = {s 1 , s 2 , . . . , s p } to create a temporary population P op = {s 0 , s 1 , . . . , s p } (line 1). Then for each solution of P op , its distance to P op and goodness score are calculated (lines 2-5). After that the worst solution s w in P op is identified according to the score function (17) (line 6). Finally, if s w is different from the offspring s 0 , s 0 replaces the worst solution s w in the population (line 7-8). Otherwise, s 0 replaces the second worst solution s sw is replaced by s 0 with a probability of 0.5 (lines 10-13).

Computational studies

In this section, we first assess the proposed MAMC algorithm for solving MC-GPP based on two sets of 60 benchmark graphs from various applications, and then apply MAMC to detect communities of 3 real-world complex networks.

Benchmark instances

The two sets of benchmarks include 60 large and massive graphs which are from two sources and have 60,005 to 23,947,347 vertices.

The 10th DIMACS Implementation Challenge Benchmark.This dataset contains 50 graphs which are dedicated to two related problems of graph partitioning and graph clustering. These graphs belong to 6 families: Clustering instances, Delaunay graphs, Redistricting, Walshaw's graph partitioning archive, Co-author and citation networks, and Sparse matrices. They are available at: https://www.cc.gatech.edu/dimacs10/downloads.shtml.

The Network Data Repository online. This dataset contains 10 massive real-world network graphs [START_REF] Rossi | The network data repository with interactive graph analytics and visualization[END_REF]. This dataset can be found at: http: //networkrepository.com/index.php.

Additionally, we also test our approach for community detection on 3 popular real-world complex networks (Zachary's Karate Club, College Football Network and Bottlenose Dolphin Social Network) available at: http://www-personal. umich.edu/ ~mejn/netdata/.

Experimental setting

The proposed MAMC algorithm was coded in C++1 and compiled using GNU g++ 6.3.0 compiler with the "-O3" flag. The experiments were conducted on a computer running Ubuntu Linux 16.04, using 6 cores of AMD Opteron 4184 CPU @ 2.80GHz and 32GByte RAM.

To evaluate our results, we adopt as our references the following four state-ofthe-art algorithms in the literature.

• Metis [START_REF] Karypis | MeTiS 5.1.0: Unstructured graphs partitioning and sparse matrix ordering system[END_REF]: This is a general and popular graph partitioning package which has been used to generate partitions in several studies on MC-GPP [START_REF] Andersen | An algorithm for improving graph partitions[END_REF][START_REF] Lang | A flow-based method for improving the expansion or conductance of graph cuts[END_REF][START_REF] Leskovec | Community structure in large networks: Natural cluster sizes and the absence of large welldefined clusters[END_REF]. As shown in [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF], even if Metis does not directly optimize the conductance criterion (it minimizes the number of cut edges), it can produce partitions of relatively low conductance within a very short computation time. In our study, Metis is used to serves as a baseline reference, as well as to create initial partitions of the MQI and SaBTS methods (see below). For this work, we used the latest release Metis 5.1.0 available at: http://glaros. dtc.umn.edu/gkhome/metis/metis/overview. • MQI [START_REF] Lang | A flow-based method for improving the expansion or conductance of graph cuts[END_REF]: This is a max-flow quotient-cut improvement algorithm which refines a given initial partition. In previous studies and this work, MQI starts with a partition provided by the fast Metis tool. To our knowledge, MQI is one of the best algorithms for MC-GPP. We used the latest implementation of MQI available at: https://github.com/kfoynt/ LocalGraphClustering. • SaBTS [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF]: This is the most recent metaheuristic algorithm for MC-GPP, which combines a dedicated tabu search procedure and a self-adaptive perturbation procedure. The intensive experiments reported in [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF] show that SaBTS is able to consistently improve a partition provided by Metis and can also reduce the conductance of partitions given by MQI (see below). The code of SaBTS is available at: http://www.info.univ-angers.fr/ ~hao/ mcgpp.html. • MQI+SaBTS [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF]: This hybrid approach uses SaBTS to refine a partition produced by MQI. Thanks to the combination of these two powerful approaches (MQI and SaBTS), MQI+SaBTS performs the best compared to other existing approaches.

The proposed MAMC algorithm requires 3 parameters: population size p, tabu tenure management factor α and depth of tabu search d. Following previous studies [START_REF] Galinier | An efficient memetic algorithm for the graph partitioning problem[END_REF][START_REF] Wu | Memetic search for the max-bisection problem[END_REF], we adopted a small population size and set p = 20. For α and d, they were fixed according to the analysis reported in Section 5.1. For our experiments, we consistently used the parameter setting shown in Table 2 to run our MAMC algorithm to solve all instances. This parameter setting can also be considered to be the default setting of MAMC.

For a fair comparison, we run, on the same computer, our MAMC algorithm and the above reference algorithms with their respective default parameter setting under the same time limit of 60 minutes per run and per instance.

Computational results and comparison on the benchmark instances

In this section, we report the results of the proposed MAMC algorithm as well as the four reference algorithms (Metis [START_REF] Karypis | MeTiS 5.1.0: Unstructured graphs partitioning and sparse matrix ordering system[END_REF], MQI [START_REF] Lang | A flow-based method for improving the expansion or conductance of graph cuts[END_REF], SaBTS [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF] and MQI+SaBTS [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF]) on the 60 benchmark instances. It is worth noting that MQI, SaBTS and MQI+SaBTS all start from an initial partition provided by Metis. Tables 3 and4 provide the detailed results of the compared algorithms, while Table 5 shows a summary.

In Tables 3 and4 Moreover, in terms of the other performance indicators, we observe that to reach the same Φ best value, MAMC has always a higher success rate and a shorter computation time. In many cases, MAMC is even able to find a better solution with a higher hit and a shorter time.

To complete these results, we additionally provide a performance assessment of the algorithms in a visual way by using a generic benchmarking tool called performance profiles [START_REF] Dolan | enchmarking optimization software with performance profiles[END_REF] (the reader is referred to [START_REF] Dolan | enchmarking optimization software with performance profiles[END_REF] for details). Performance profiles enable a rigorous comparison of different algorithms over a large set of benchmark instances with regard to a specific performance metric (in our case, Φ best and Φ avg respectively). Basically, to compare a set of algorithms S over a set of problems P, we define the performance ratio by r s,p = Φs,p min{Φs,p:s∈S} . If an algorithm s does not solve a problem p, then we simply set r s,p = +∞. Thus, the performance function of an algorithm s is given by P s (τ ) = |{p∈P | rs,p≤τ }| |P| . The value P s (τ ) computes the fraction of problems algorithm s can solve with at most τ many times the cost of the best algorithm. P s (1) corresponds to the number of problems that algorithm s solved faster than, or as fast as the other algorithms in S. The value P s (r f ), for a large enough r f , corresponds to the maximum number of problems that algorithm s has solved. The quantities P s (1) and P s (r f ) are called efficiency and robustness of s respectively. Fig. 3 shows the performance profiles of our MAMC algorithm as well as the reference algorithms which have been drawn with the software perprof-py [START_REF] Siqueira | Perprof-py: A python package for performance profile of mathematical optimization software[END_REF]. From the figure, we observe that MAMC has a very good performance, surpassing the four reference algorithms in terms of conductance value. Indeed, MAMC has the highest value of P s (1) among the compared algorithms, meaning that MAMC can quickly find the lowest conductance for the tested instances. Besides, MAMC also attains a good robustness by quickly solving all the instances (corresponding to the fact that MAMC arrives at P s (r f ) first). This experiment thus demonstrates the competitiveness of the proposed MAMC algorithm for solving MC-GPP compared to the 4 state-of-the-art reference methods. Fig. 3. Performance profiles of the proposed MAMC algorithm and the four reference algorithms Metis [START_REF] Karypis | MeTiS 5.1.0: Unstructured graphs partitioning and sparse matrix ordering system[END_REF], MQI [START_REF] Lang | A flow-based method for improving the expansion or conductance of graph cuts[END_REF], SaBTS [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF] and MQI+SaBTS [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF] on the set of 60 benchmark instances. The left part corresponds to the best conductance Φ best values, and the right part is for the average conductance Φ avg values.

Table 5 Summary of comparative results between the proposed MAMC algorithm and each of the four reference algorithms Metis [START_REF] Karypis | MeTiS 5.1.0: Unstructured graphs partitioning and sparse matrix ordering system[END_REF], MQI [START_REF] Lang | A flow-based method for improving the expansion or conductance of graph cuts[END_REF], SaBTS [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF] and MQI+SaBTS [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF]. 

Application to complex network analysis

As indicated in the literature (e.g., [START_REF] Benson | Higher-order organization of complex networks[END_REF][START_REF] Chalupa | Hybrid bridge-based memetic algorithms for finding bottlenecks in complex networks[END_REF][START_REF] Li | Inhomogeneous hypergraph clustering with applications[END_REF][START_REF] Lu | Community detection in complex networks via clique conductance[END_REF]), conductance minimization is an useful tool for complex network analysis. As an additional benchmark assessment, we illustrate in this section the interest of the MAMC algorithm for the problem of community identification in complex networks. For this purpose, we consider 3 popular social networks: two with known (ground truth) community structures (Zachary's Karate Club and College Football Network) and one with unknown community structure (Bottlenose Dolphin Social Network).

Zachary's Karate Club [START_REF] Zachary | An information flow model for conflict and fission in small groups[END_REF]. This social network (Fig. 4) is from the well- known karate club studied by Zachary, which represents the 34 members (nodes) and the 78 pairwise friendship relations (edges) between members observed over a period of three years. Due to a conflict between the administrator (node 34) and the instructor (node 1), the club members are divided into two groups (communities), each with half of the members. Fig. 4 shows the members (nodes) of the two groups in red and blue respectively. Running our MAMC algorithm on this network led to the partition indicated by the dash line with a conductance value of Φ(s) = 0.12820512. As one can observe, the identified communities almost perfectly reflect the two groups observed by Zachary, with only 2 nodes (9 and 10) "incorrectly" assigned to the opposing group. This is reasonable and can be explained by the observations from Zachary. In fact, individual 9 is a weak political supporter of the club administrator before the fission, and individual 10 supports neither the administrator nor the instructor. As a result, none of individual 9 or 10 is solidly a member of either group. Finally, the partition identified by MAMC has the minimal conductance value (Φ(s) = 0.12820512), while Zachary's partition has a larger conductance of Φ(s) = 0.14666666.

College Football Network [START_REF] Girvan | Community structure in social and biological networks[END_REF]. This social network (Fig. 5) is more complex and represents the schedule of American football games between Division IA colleges during the regular-season in Fall 2000. The network is composed of 115 nodes representing the teams and 613 links representing regular-season games between the two connected teams. The known communities are defined by the conferences with their composing teams and marked with different colors. In principle, teams from one conference are more likely to play games with each other than with teams from other conferences. There also exist some independent teams that do not belong to any conference, and these teams are marked with a dark blue color. The communities identified by the MAMC algorithm are represented by clusterings in Fig. 5. In general, MAMC correctly clusters teams of each conference. The independent teams are clustered with conferences with which they played games most frequently, because the independent teams seldom play games between themselves. The clusters detected by MAMC deviate slightly from the conference partition in several ways. First, the Sun Belt conference, marked in red, is split into two parts, which are grouped with Western Athletic and Independents conference due to the fact that there was only one game involving teams from these two parts. Second, one team from Conference USA (colored in pink) is clustered with teams from the Western Athletic conference. This team played no games with other teams from the Conference USA, but played games with every team from the Western Athletic conference. Third, two teams from the Western Athletic conference are isolated from other teams from this conference. The team at the upper position had no intra-conference game, and the team at the lower position had only 2 intra-conference games, but both teams had interconference games with every member of the cluster they are assigned to. In summary, our MAMC algorithm perfectly identified the community structures established in the regular-season-game association, and in addition, detected the lack of intra-conference association that the known community structure fails to represent.

Bottlenose Dolphin Social Network [START_REF] Lusseau | The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations[END_REF]. This social network (Fig. 6) is composed of 62 bottlenose dolphins living off Doubtful Sound, New Zealand. The 159 social associations between dolphin pairs are established based on direct observations conducted during a period of seven years by Lusseau et al. [START_REF] Lusseau | The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations[END_REF]. In this network, nodes represent dolphins and links represent social associations. The 3 groups of 40 dolphins observed by Lusseau et al. tend to spend more time together than with others, and are colored in green, red and blue respectively, while the dolphins with yellow color are not involved in the clustering analysis. The dash line denotes the community division found by our MAMC algorithm. We can see that the achieved division matches well the observed groups, separating the red and blue groups into two communities. The green group is split evenly between the two detected communities, because this group is a weak group and is not well represented by the social network since most of its members share no social associations [START_REF] Lusseau | The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations[END_REF].

Analysis

In this section, we first analyze the key parameters of the proposed algorithm, and the impacts of the progressive constrained neighborhood, the pool initialization procedure, and the pool updating procedure. 

Study of the parameters for tabu search

The progressive constrained neighborhood tabu search (PCNTS) of MAMC requires two parameters (tabu tenure management factor α and depth of tabu search d). To study the effect of these parameters and determine a proper value, we performed the following experiment. For each parameter, we varied its values within a reasonable range, while maintaining the other parameter to their default values as shown in Table 2. Specifically, α varied its values in {5, 10, . . . , 45, 50}, while d takes its values in {1000, 2000, . . . , 9000, 10000}. The experiment in this section was carried out on six hard instances with different characteristics (smallworld, delaunay n18, oh2010, wave, sc-pkustk13, web-arabic-2005 ). We ran our algorithm with each value of these parameters 20 times to solve each instance with a cutoff time of 60 minutes. Fig. 7 shows the average values of Φ best and Φ avg over these six instances, where the X-axis indicates the parameter values and the Y-axis shows the best and average conductance values.

From Fig. 7, we observe that the performance of MAMC is significantly influenced by the setting of each parameter. For α, the best performance is attained when α = 10, and a too small or too large α value leads to a poor performance of MAMC. This can be explained by the fact that a small (or large) α value makes the prohibited time too short (or too long). For d, the value of 6000 is the best choice, and a too large or too small d value deteriorates MAMC performance. Thus, we set α = 10 and D = 6000 in our experiment. 

Quality-and-diversity based initialization v.s. random initialization

The MAMC algorithm uses a mixed population initialization strategy that takes into account both quality and diversity (see Section 3.2). We study the effect of this strategy by comparing it with two random initializations. The first one is a pure random initialization (denoted by InitialRandom1), while the second one uses the progressive constrained neighborhood tabu search of Section 3.4 to improve each random seeding solution (denoted by InitialRan-dom2). We tested these two variants within our MAMC algorithm based on 15 instances arbitrarily chosen from the benchmark set and compared the results with the quality-and-diversity based initialization (denoted by InitialMixed). The plots of their best and average conductance gaps are shown in Fig. 8, where the X-axis indicates the instances (named by numbers from 1 to 15) and the Y-axis shows the best (or average) conductance gap in percentage. The best (or average) conductance gap is calculated as (Φ InitialRandomK -Φ M AM C )/Φ InitialRandomK ×100% (K = 1, 2) where Φ InitialRandomK and Φ M AM C are the best (or average) conductance values of the variant (InitialRandomK) and MAMC respectively. From Fig. 8, we observe that MAMC with the quality-and-diversity initialization outperforms the two random initializations. Moreover, the pure random initialization led to the worst results. This experiment confirms the usefulness of our designed mixed initialization procedure. 

Effectiveness of the progressive constrained neighborhood

As described in Section 3.4, the MAMC algorithm employs a progressive constrained neighborhood in its PCNTS procedure. To assess the usefulness of this progressive constrained neighborhood, we created a MAMC variant (denoted by CNTS) where the tabu search procedure of Algorithm 3 examines at each iteration the whole constrained neighborhood induced by the whole set of critical vertices CV (s) (i.e., by setting ev = |CV (s)| in Algorithm 3). To compare MAMC and this variant, we ran both algorithm on four selected instances (smallworld, oh2010, wave, sc-pkustk13 ) and show their running profiles (convergence graphs) in Fig. 9.

We observe that thanks to the progressive constrained neighborhood, the MAMC algorithm has a better convergence throughout the search from the beginning to the end of the given time budget. This holds for all four instances. This experiment confirms the relevance of the adopted progressive constrained neighborhood within the tabu search based local optimization procedure.

Effectiveness of the distance-and-quality based pool updating procedure

MAMC uses a distance-and-quality based pool updating procedure (see Section 3.5) to maintain a healthy population. We present an experiment to assess the effectiveness of this pool updating strategy (denoted by PoolNew) by making a comparison with the traditional quality based pool updating strategy (denoted by PoolOld) which replaces the worst solution in the population with the offspring solution.

We tested both strategies within our MAMC algorithm based on 15 instances randomly taken from the benchmark set. Fig. 10 provides the plots of their best and average conductance gap. The X-axis indicates the name of instances (named by numbers from 1 to 15). The Y-axis shows the best (or average) conductance gap in percentage, calculated as (Φ P oolOld -Φ M AM C )/Φ P oolOld ×100% where Φ P oolOld is the best (or average) conductance value of the algorithm variant (PoolOld) and Φ M AM C is the best (or average) conductance value of MAMC.

From Fig. 10, we observe that the MAMC algorithm performs generally better with the distance-and-quality based pool updating procedure than with the traditional quality pool updating procedure. This outcome confirms that the distance-and-quality strategy plays a positive role and contributes to the performance of the MAMC algorithm.

Conclusion and prospective

The minimum conductance partitioning problem has a number of significant applications in various domains. In this work, we introduced an effective hybrid evolutionary algorithm for finding low conductance for large graphs. Based on the population memetic search framework, the proposed algorithm integrates some important features. First, to ensure an effective and efficient intensification of its local optimization component on large and massive graphs, the algorithm adopts an original progressive neighborhood whose size is dynamically adjusted according to the search state. Second, to maintain a healthy population of high diversity and good quality, the algorithm uses a proven distance-and-quality pool updating strategy for its population management. Finally, to further diversify the search, a conventional crossover is applied to generate offspring solutions.

We showed that the proposed algorithm competes very favorably with the current best-performing algorithms when it is assessed on 60 large-scale realworld benchmark instances (including 50 graphs from the 10th DIMACS Implementation Challenge and 10 graphs from the Network Data Repository online, with up to 23 million vertices). The computational results led to the main conclusions that 1) our algorithm dominates the reference algorithms for the tested instances, and 2) it is able to further improve the solutions obtained by the popular max-flow quotient-cut improvement algorithm. As an application example, we showed the proposed algorithm can be used to detect meaningful community structures in complex networks. Finally, we investigated the essential components of the algorithm, leading to the findings that 1) the progressive neighborhood used by the local optimization procedure plays an important role of ensuring a fast convergence of the algorithm, and 2) the quality-and-diversity pool initialization and distance-and-quality pool management help the algorithm to maintain a healthy population, which contributes to its performance.

For future work, several potential research lines can be followed. First, the idea of the progressive neighborhood strategy is of general interest, it would be interesting to test the idea in other settings, in particular related to large graph optimization. Second, it would also be worth studying the combination of max-flow methods like MQI and multilevel optimization. Third, few studies exist on exact approaches for MC-GPP. Research in this area is clearly needed.
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 1 29] shows a graph G with vertex set V = {a, b, . . . , g} and a partition s = (A, Ā) with A = {c, d, f, g} and Ā = {a, b, e}. Since vol(A) = 15, vol( Ā) = 7 and |cut(s)| = 5, this partition has a conductance Φ(s) = 5/7 = 0.71.
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 1 Fig.1. For the given graph G, we show a partition s = (A, Ā) where A = {c, d, f, g} and Ā = {a, b, e} which has a conductance Φ(s) of 0.71[START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF].
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 12 Fig. 2. The double-point crossover crossover in our MAMC algorithm.
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 4 Fig. 4. Karate Club friendship network and the communities detected by the MAMC algorithm.
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 5 Fig. 5. College Football Network. The colors indicate different conferences, and clusterings show the communities identified by the MAMC algorithm.

Fig. 6 .

 6 Fig.6. Bottlenose Dolphin Social Network. The nodes are colored based on the groups observed in the study by Lusseau et al.[START_REF] Lusseau | The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations[END_REF]. The clusterings represent communities detected by the MAMC algorithm.
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 7 Fig. 7. Average values of Φ best and Φ avg on six hard instances obtained by executing MAMC with different values of parameters α and d. The left part concerns the parameter α with values α ∈ {5, 10, . . . , 45, 50}, and the right part concerns the parameter d with values d ∈ {1000, 2000, . . . , 9000, 10000}.
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 8 Fig. 8. Comparison of the quality-and-diversity based population initialization (Ini-tialMixed) with two random initialization variants (InitialRandom1 and InitialRan-dom2).

Fig. 9 .

 9 Fig.9. Comparison of MAMC with the progressive constrained neighborhood (denoted by PCNTS) and its variant with the whole neighborhood (denoted by CNTS) according to their running profiles (convergence graphs).

Fig. 10 .

 10 Fig. 10. Comparison of the distance-and-quality based pool updating procedure (PoolNew) and its variant only based on solution quality (PoolOld).

Table 1

 1 Summary of the key features and technical contributions of the most related studies and the proposed approach.

	Reference	Aim	Approach	Main features	Test	Limitations
			Approximation methods		
	Cheeger [9] (1969)	Provide a lower bound for the smallest eigenvalue of the Laplacian	Mathematical method	Establish a lower bound geometric invariant in terms of a certain global	No	
	Leighton & Rao [23] (1999)	Establish max-flow min-cut theorems for several classes of multicommodity flow problems	Max-flow min-cut algorithm	Implement a O(logn)-for MC-GPP approximation algorithm	No	
	Arora et al. [2,3] (2004, 2009)	Propose a O( approximation algorithm logn)-for MC-GPP	Semidefinite programming	Implement a O(logn)-Leighton and Rao (1999) approximation of	No	Specific or
	Leskovec et al. [25] (2009)	Define and identify by conductance measure clusters or communities	Flow-based, hierarchical methods spectral and	Suggest a detailed and counterintuitive picture of large social and community structures in	Yes	particular cases; high computational complexity
				information networks		
	Spielman et al. [40] (2013)	Determine a good cluster measured by conductance	Nearly linear time local clustering algorithm	Handle massive graphs; nearly optimal balance Find an approximate sparsest cut with	Yes	
	Zhu et al [47] (2013)	Find well-connected the conductance clusters in terms of	Random-walk algorithms based local	Improve significantly the it is well-connected inside conductance of cluster where	Yes	
			Exact methods		

  solution s, depth of tabu search d. Ensure: The best solution found s b . 1: s b ← s / * record the best solution found during the current TS run * / 2: H ← ∅ 3: β ← 0 / * counter of consecutive non-improving iterations w.r.t. s b * / 4: ev ← 1 / * ev is the number of evaluating vertices in N C (s) * / 5: Create the set CV (s, ev) of critical vertices 6: while β < d do

	7:	Select a best eligible vertex v in CV (s, ev)
	8: 9:	s ← s ⊕ Relocate(v) Update the set of critical vertices CV (s, ev)
	10:	Update tabu list H[v] with tabu tenure tt
	11:	if Φ(s) < Φ(s b ) then
	12: 13: 14:	s b ← s β ← 0, ev ← 1 else
	15: 16:	β ← β + 1, ev ← ev + 1 end if
	17: 18:	if ev > |CV (s)| then ev = 1
	19:	end if
	20: end while
	21: return s b

  H[v] is set to iter + tt where iter represents the current number of iterations. Then during the next iterations, if iter < H[v], v is forbidden by the tabu list; otherwise, v is not prohibited by the tabu list.

	It is possible that the above search procedure revisits a previously encountered
	solution, thus leading to search cycling. To prevent this, we use a memory H
	(called tabu list) to record each displaced vertex and forbid the vertex to be
	relocated again during a specific number tt of iterations (called tabu tenure).

3, line 5)

. This can be achieved in O(1) time. Then at each iteration, PCNTS selects one best vertex v in terms of move gain achieved in O(|CV (s, ev)|) time among the eligible critical vertices (ties are broken randomly) and relocates v to obtain a neighbor solution. A vertex qualifies as eligible if it is not forbidden by the tabu list (see below). Note that if a vertex leading to a solution better than the recorded best solution s b is always selected, even if it is forbidden by the tabu list (this is called the aspiration criterion in tabu search). Thus, each time a vertex v ∈ CV is relocated to generate a neighbor solution, the PCNTS procedure adds v in H (an integer vector in our case) and will ignore this vertex for next tt(v) iterations. In practice, when v is relocated,

  Algorithm 4 Distance-and-quality based updating procedureRequire: Graph G = (V, E), offspring solution s 0 , size of population p, population P op = {s 1 , s 2 , . . . , s p }. Ensure: The updated population P op = {s 1 , s 2 , . . . , s p }.1: P op ← P op ∪ {s 0 } /* Create a temporary population P op */ 2: for i = 0, . . . , p do 3:Calculate the distance D i,P op between s i and P op 4:Calculate the goodness score g(s i , P op ) of s i according to Eq. (17) 5: end for 6: s w ← arg max{g(s i , P op ) : i = 0, 1, . . . , p} /* s w is the worst solution s w in P op */ 7: if s w = s 0 then 8:P op ← P op \ {s w } ∪ {s 0 } /* Replace s w with s 0 in P op */

	9: else	
	10:	if rand(0, 1) < 0.5 then	
	11:	s /
	13:	end if	
	14: end if	
	15: return P op	
				and Φ(s i ) is the objective
	function value (conductance) of solution s i and Ã(•) is the normalized function:
		Ã(y) =	y -y min y max -y min + 1	(18)

sw ← arg max{g(s i , P op ) : i = 0, 1, . . . , p, s i = s w } /* Identify the second worst solution s sw in P op */ 12:

P op ← P op \ {s sw } ∪ {s 0 } /*Replace s sw with s 0 in P op *

Table 2

 2 Settings of parameters.

	Parameter	Section	Description	Value
	p	3.2	population size	20
	α	3.4	tabu tenure management factor	10
	d	3.4	depth of tabu search	6000

  , columns 1-2 indicate the name (Graph) and the number of vertices (|V |) for each instance. The remaining columns show the results of Metis, MQI, SaBTS, MQI+SaBTS and MAMC according to the following performance indicators: the best conductance (Φ best ) found among 20 runs, the average conductance (Φ avg ), the success rate (hit) over 20 runs to reach Φ best , the average CPU time in seconds (t(s)) of 20 runs to attain the best results, and the standard deviation (σ) of Φ best . It is worth noting that computation times are provided only for indicative purposes, since it is not meaningful to compare two computation times if the corresponding algorithms lead to solutions of different quality.In Table5, column 1 indicates the pairs of compared algorithms. Column 2 gives the total number of instances (#Instance). Column 3 shows the quality indicators in terms of the best and average conductance (Φ best and Φ avg ). Columns 4-6 count the number of instances on which MAMC achieves a better, equal or worse result compared to each reference algorithm (#Wins, #Ties and #Losses). Column 7 reports the p-value from the non-parametric Wilcoxon signed-rank test with a confidence level of 99%. the Wilcoxon signed-rank further confirm the dominance of MAMC over the reference algorithm in terms of Φ best and Φ avg .

The results of

 

show that MAMC performs remarkably well on all 60 benchmark instances. Compared to Metis and MQI and in terms of the main performance indicators Φ best (Φ avg ), MAMC finds 54 (60) better and 6 (0) equal results with respect to Metis, and 27 (60) better and 33 (0) equal results with respect to MQI. MAMC also competes very favorably with SaBTS and MQI+SaBTS in terms of Φ best (Φ avg ) with 53 (58) wins, 7 (1) ties and 0 (1) losses compared to SaBTS, and 27 (58) wins, 32 (2) ties and 1 (0) losses compared to MQI+SaBTS. The small p-values (p-value 0.01) from

Table 3

 3 Detailed computational results of MAMC with two state-of-the-art algorithms Metis[START_REF] Karypis | MeTiS 5.1.0: Unstructured graphs partitioning and sparse matrix ordering system[END_REF], MQI[START_REF] Lang | A flow-based method for improving the expansion or conductance of graph cuts[END_REF] on 50 large graphs from the 10th DIMACS Challenge and 10 large graphs from the Network Data Repository online. The best of the Φ

	MAMC	Φ best Φavg hit t(s) σ	0.28717318 0.28804940 1/20 2886 6.17e-04	0.09948259 0.10321531 1/20 2739 1.27e-03	0.00000156 0.00000156 20/20 1 0	0.00004930 0.00004930 20/20 11 0	0.00001000 0.00001128 9/20 272 1.21e-06	0.00000584 0.00000606 11/20 493 2.80e-07	0.00226376 0.00229371 1/20 1292 2.44e-05	0.00156857 0.00161819 1/20 2000 2.22e-05	0.00113332 0.00114381 1/20 762 8.03e-06	0.00078693 0.00080017 1/20 729 9.73e-06	0.00055891 0.00056128 9/20 27 3.50e-06	0.00039293 0.00039397 8/20 45 1.35e-06	0.00031352 0.00031504 13/20 286 2.61e-06	0.00022443 0.00022552 8/20 526 1.30e-06	0.00016180 0.00016208 11/20 1256 3.20e-07	0.00053442 0.00053453 19/20 564 4.80e-07	0.00017789 0.00017789 20/20 4 0	0.00059147 0.00060046 1/20 1239 4.62e-06	0.00051470 0.00051875 10/20 980 4.54e-06	0.00033671 0.00033671 20/20 4 0	0.00043839 0.00045183 1/20 94 1.90e-05	0.00050732 0.00051154 2/20 1295 4.01e-06	0.00048247 0.00048581 3/20 1374 4.78e-06	0.00053491 0.00053926 1/20 828 3.59e-06	0.00045199 0.00045199 20/20 2 0	0.00046030 0.00046677 2/20 501 9.09e-06	0.00050629 0.00050810 17/20 3 6.23e-06	0.00029079 0.00029215 1/20 1218 2.44e-06	0.00035935 0.00036353 1/20 1083 2.93e-06	0.00009247 0.00009247 20/20 1 0
	MQI [22]	Φ best Φavg hit t(s) σ	0.31132997 0.33039853 1/20 4 7.91e-03	0.11322141 0.11604861 1/20 9 1.72e-03	0.00000156 0.00000649 12/20 24 6.76e-06	0.00004930 0.00064963 5/20 224 8.75e-04	0.00001000 0.00001399 1/20 3620 1.52e-06	0.00000584 0.00000743 1/20 3625 8.70e-07	0.00233083 0.00239444 1/20 37 4.40e-05	0.00161703 0.00166800 1/20 109 1.91e-05	0.00113731 0.00117238 1/20 251 1.89e-05	0.00078966 0.00081794 1/20 1807 1.16e-05	0.00055891 0.00057390 1/20 3601 9.59e-06	0.00039293 0.00041813 1/20 3603 3.01e-05	0.00031352 0.00032532 1/20 3605 6.42e-06	0.00022443 0.00023220 1/20 3611 4.08e-06	0.00016180 0.00016509 1/20 3621 2.32e-06	0.00053701 0.00061163 1/20 116 4.98e-05	0.00017789 0.00028106 3/20 150 7.38e-05	0.00060103 0.00062588 1/20 192 1.88e-05	0.00051471 0.00054122 1/20 226 1.58e-05	0.00033671 0.00039117 7/20 257 4.45e-05	0.00044358 0.00051400 1/20 164 4.14e-05	0.00051345 0.00054504 1/20 221 2.70e-05	0.00049104 0.00053608 1/20 225 4.73e-05	0.00053576 0.00055713 1/20 251 1.35e-05	0.00045199 0.00047775 7/20 233 3.19e-05	0.00046031 0.00050643 1/20 236 2.15e-05	0.00050629 0.00054958 4/20 287 3.43e-05	0.00029130 0.00030411 1/20 267 8.45e-06	0.00036488 0.00039249 1/20 224 2.28e-05	0.00009247 0.00022270 12/20 217 1.77e-04
	Metis [21]	Φ best Φavg hit t(s) σ	0.31136208 0.33179699 1/20 0 8.45e-03	0.11353648 0.11625592 1/20 0 1.72e-03	0.00014499 0.00045316 1/20 0 2.30e-04	0.00180465 0.00297210 1/20 4 8.45e-04	0.00001000 0.00001399 1/20 38 1.52e-06	0.00000584 0.00000743 1/20 46 8.70e-07	0.00245485 0.00255656 1/20 0 5.08e-05	0.00176260 0.00180880 1/20 0 3.15e-05	0.00122712 0.00128721 1/20 0 2.50e-05	0.00087932 0.00090623 1/20 1 1.86e-05	0.00062086 0.00064508 1/20 1 1.26e-05	0.00043742 0.00045557 1/20 3 8.39e-06	0.00031352 0.00032532 1/20 8 6.42e-06	0.00022443 0.00023220 1/20 16 4.08e-06	0.00016180 0.00016509 1/20 31 2.32e-06	0.00067974 0.00073333 1/20 0 3.29e-05	0.00037015 0.00042879 1/20 0 5.70e-05	0.00067628 0.00072474 1/20 0 2.45e-05	0.00058509 0.00063764 1/20 0 2.36e-05	0.00043558 0.00048995 1/20 0 3.43e-05	0.00057028 0.00063012 1/20 0 3.36e-05	0.00059056 0.00065367 1/20 0 3.57e-05	0.00053361 0.00063087 1/20 0 7.26e-05	0.00061880 0.00066681 1/20 0 2.28e-05	0.00054622 0.00060620 1/20 0 2.93e-05	0.00054795 0.00060312 1/20 0 3.21e-05	0.00060428 0.00066761 1/20 0 3.86e-05	0.00033192 0.00036179 1/20 0 2.15e-05	0.00041835 0.00047506 1/20 0 4.09e-05	0.00050360 0.00055231 1/20 0 2.58e-05
	Instance	Graph |V |	preferential 100000 Attachment	smallworld 100000	cnr-2000 325557	eu-2005 862664	road central 14081816	road usa 23947347	delaunay n16 65536	delaunay n17 131072	delaunay n18 262144	delaunay n19 524288	delaunay n20 1048576	delaunay n21 2097152	delaunay n22 4194304	delaunay n23 8388608	delaunay n24 16777216	co2010 201062	la2010 204447	ia2010 216007	ks2010 238600	tn2010 240116	az2010 241666	al2010 252266	wi2010 253096	mn2010 259777	in2010 267071	ok2010 269118	va2010 285762	nc2010 288987	ga2010 291086	mi2010 329885

best values for each instance is highlighted in boldface, while the best of the Φ avg values for each instance is indicated in italic.

Table 3 :

 3 Continued

	MAMC	Φ best Φavg hit t(s) σ	0.00044010 0.00044334 13/20 481 1.25e-05	0.00045030 0.00047809 1/20 312 9.88e-06	0.00026616 0.00026616 20/20 2 0	0.00024997 0.00025260 2/20 515 1.74e-06	0.00024221 0.00024274 2/20 176 4.60e-07	0.00069385 0.00069385 20/20 1 0	0.00654906 0.00662078 1/20 1953 6.69e-05	0.00185332 0.00185332 20/20 10 0	0.00062040 0.00062040 20/20 3 0	0.00843147 0.00846699 1/20 2032 8.13e-05	0.00302488 0.00303411 14/20 542 2.59e-05	0.00323209 0.00323816 2/20 2145 5.02e-06	0.00078223 0.00078223 20/20 47 0	0.00605305 0.00607374 1/20 2690 9.00e-06	0.00819101 0.00823630 1/20 2867 2.25e-05	0.00228466 0.00229867 1/20 1865 5.47e-06	0.00298571 0.00298579 17/20 476 2.00e-07	0.00411522 0.00411522 20/20 10 0	0.00025296 0.00025339 10/20 223 4.90e-07	0.00036328 0.00036393 8/20 335 1.01e-06	0.00226757 0.00226757 20/20 5 0	0.00008221 0.00008230 15/20 4 1.60e-07	0.00325489 0.00325489 20/20 14 0	0.00905805 0.00906634 15/20 1729 2.86e-05	0.01234567 0.01234567 20/20 0 0	0.00540540 0.00540540 20/20 38 0	0.00892857 0.00892857 20/20 2 0	0.00444444 0.00444444 20/20 1 0	0.26530612 0.26530612 20/20 4 0	0.00000306 0.00000306 20/20 1 0
	MQI [22]	Φ best Φavg hit t(s) σ	0.00044010 0.00051012 1/20 310 4.15e-05	0.00047052 0.00050917 1/20 358 2.27e-05	0.00026616 0.00028228 10/20 398 2.52e-05	0.00025204 0.00026746 1/20 436 9.26e-06	0.00024258 0.00025289 1/20 2386 9.50e-06	0.00069385 0.00073514 16/20 45 9.66e-05	0.00668630 0.00690103 1/20 26 1.37e-04	0.00185332 0.00185425 19/20 36 4.05e-06	0.00062040 0.00062041 8/20 15 1.00e-08	0.00878706 0.00903448 1/20 37 2.30e-04	0.00307533 0.00314188 1/20 50 1.80e-05	0.00325673 0.00327184 1/20 80 1.50e-05	0.00078223 0.00090825 3/20 65 1.50e-04	0.00611994 0.00622039 1/20 99 6.47e-05	0.00830287 0.00845742 1/20 81 1.20e-04	0.00230381 0.00232866 1/20 201 1.90e-05	0.00298571 0.00301454 3/20 412 6.31e-05	0.00411522 0.00494913 2/20 29 5.22e-04	0.00025296 0.00025687 1/20 3601 6.42e-06	0.00036328 0.00038076 1/20 3595 1.51e-05	0.00226757 0.00244841 15/20 221 3.14e-04	0.00008221 0.00008789 2/20 3593 7.57e-06	0.00325489 0.00335273 2/20 89 5.86e-05	0.00921128 0.00952533 1/20 192 2.56e-04	0.01234567 0.01247394 16/20 15 2.57e-04	0.00540540 0.01522024 1/20 19 6.26e-03	0.00892857 0.01134011 12/20 58 3.25e-03	0.00444444 0.00565198 13/20 43 1.66e-03	0.26530612 0.26564625 15/20 40 5.89e-04	0.00000306 0.00000323 10/20 28 5.40e-07
	Metis [21]	Φ best Φavg hit t(s) σ	0.00055795 0.00062254 1/20 0 4.58e-05	0.00055951 0.00060063 1/20 0 2.17e-05	0.00034314 0.00039015 1/20 0 3.87e-05	0.00029503 0.00031679 1/20 0 1.61e-05	0.00028327 0.00032283 1/20 1 1.99e-05	0.00088178 0.00103187 1/20 0 8.52e-05	0.00709383 0.00734335 1/20 0 1.52e-04	0.00199422 0.00207331 1/20 0 4.28e-05	0.00062040 0.00062041 8/20 0 1.00e-08	0.00908187 0.00955851 1/20 0 2.35e-04	0.00323856 0.00331810 1/20 0 4.08e-05	0.00332544 0.00336420 1/20 0 3.70e-05	0.00086985 0.00120139 1/20 0 1.72e-04	0.00620481 0.00636608 1/20 0 7.57e-05	0.00853325 0.00865172 1/20 0 1.06e-04	0.00233434 0.00239063 1/20 0 3.65e-05	0.00314960 0.00321218 1/20 1 4.28e-05	0.05056661 0.05194195 1/20 0 9.04e-04	0.00027475 0.00028069 1/20 1 3.99e-06	0.00040859 0.00044443 1/20 1 1.61e-05	0.04069920 0.04310426 1/20 4 1.54e-03	0.00011467 0.00012353 1/20 1 6.39e-06	0.00338961 0.00356608 1/20 0 8.29e-05	0.00930995 0.00973785 1/20 0 2.79e-04	0.06688173 0.06912221 1/20 0 1.05e-03	0.08818687 0.09068638 1/20 1 1.29e-03	0.07416606 0.07657564 1/20 2 1.52e-03	0.07132059 0.11153507 1/20 3 3.28e-02	0.34789798 0.34987880 1/20 3 1.15e-03	0.00000556 0.00003389 1/20 0 9.10e-05
	Instance	Graph |V |	mo2010 343565	oh2010 365344	pa2010 421545	il2010 451554	tx2010 914231	t60k 60005	wing 62032	brack2 62631	finan512 74752	fe tooth 78136	fe rotor 99617	598a 110971	fe ocean 143437	144 144649	wave 156317	m14b 214765	auto 448695	coAuthorsDBLP 299067	thermal2 1227087	G3 circuit 1585478	ca-coauthors-540486 dblp	inf-roadNet-PA 1087562	sc-nasasrb 54870	sc-pkustk13 94893	soc-gowalla 196591	soc-twitter-404719 follows	soc-youtube 495957	soc-flickr 513969	soc-FourSquare 639014	web-arabic-163598 2005

Table 4

 4 Detailed computational results of MAMC with two reference algorithms SaBTS and MQI+SaBTS[START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF] on 50 large graphs from the 10th DIMACS Challenge and 10 large graphs from the Network Data Repository online. The best of the Φ best values for each instance is highlighted in boldface, while the best of the Φ avg values for each instance is indicated in italic.

	MAMC	Φ best Φavg hit t(s) σ	0.28717318 0.28804940 1/20 2886 6.17e-04	0.09948259 0.10321531 1/20 2739 1.27e-03	0.00000156 0.00000156 20/20 1 0	0.00004930 0.00004930 20/20 11 0	0.00001000 0.00001128 9/20 272 1.21e-06	0.00000584 0.00000606 11/20 493 2.80e-07	0.00226376 0.00229371 1/20 1292 2.44e-05	0.00156857 0.00161819 1/20 2000 2.22e-05	0.00113332 0.00114381 1/20 762 8.03e-06	0.00078693 0.00080017 1/20 729 9.73e-06	0.00055891 0.00056128 9/20 27 3.50e-06	0.00039293 0.00039397 8/20 45 1.35e-06	0.00031352 0.00031504 13/20 286 2.61e-06	0.00022443 0.00022552 8/20 526 1.30e-06	0.00016180 0.00016208 11/20 1256 3.20e-07	0.00053442 0.00053453 19/20 564 4.80e-07	0.00017789 0.00017789 20/20 4 0	0.00059147 0.00060046 1/20 1239 4.62e-06	0.00051470 0.00051875 10/20 980 4.54e-06	0.00033671 0.00033671 20/20 4 0	0.00043839 0.00045183 1/20 94 1.90e-05	0.00050732 0.00051154 2/20 1295 4.01e-06	0.00048247 0.00048581 3/20 1374 4.78e-06	0.00053491 0.00053926 1/20 828 3.59e-06	0.00045199 0.00045199 20/20 2 0	0.00046030 0.00046677 2/20 501 9.09e-06	0.00050629 0.00050810 17/20 3 6.23e-06	0.00029079 0.00029215 1/20 1218 2.44e-06	0.00035935 0.00036353 1/20 1083 2.93e-06	0.00009247 0.00009247 20/20 1 0
	MQI+SaBTS [29]	Φ best Φavg hit t(s) σ	0.29457883 0.29584725 1/20 2264 1.04e-03	0.10105860 0.10387462 1/20 3181 1.99e-03	0.00000156 0.00000649 12/20 0 7.00e-06	0.00004930 0.00064963 5/20 1219 8.75e-04	0.00001000 0.00001399 1/20 3240 1.52e-06	0.00000584 0.00000743 1/20 3420 8.70e-07	0.00232641 0.00239002 1/20 0 4.30e-05	0.00161683 0.00166666 1/20 0 1.90e-05	0.00113724 0.00117144 1/20 0 1.80e-05	0.00078757 0.00081717 1/20 47 1.17e-05	0.00055890 0.00057389 1/20 997 9.59e-06	0.00039293 0.00041812 1/20 1854 3.01e-05	0.00031352 0.00032530 1/20 2272 6.42e-06	0.00022443 0.00023219 1/20 2906 4.08e-06	0.00016180 0.00016509 1/20 3420 2.32e-06	0.00053700 0.00061060 1/20 0 5.00e-05	0.00017789 0.00028104 3/20 35 7.40e-05	0.00060102 0.00062450 1/20 0 1.90e-05	0.00051470 0.00054080 1/20 0 1.60e-05	0.00033671 0.00038654 8/20 0 4.10e-05	0.00044358 0.00051398 1/20 130 4.10e-05	0.00050982 0.00054469 1/20 69 2.70e-05	0.00049099 0.00053505 1/20 106 4.70e-05	0.00053535 0.00055552 1/20 161 1.30e-05	0.00045199 0.00047766 7/20 51 3.20e-05	0.00046031 0.00050597 1/20 192 2.10e-05	0.00050629 0.00054526 6/20 129 3.60e-05	0.00029129 0.00030381 1/20 79 9.00e-06	0.00036488 0.00039204 1/20 445 2.30e-05	0.00009247 0.00020506 13/20 72 1.71e-04
	SaBTS [29]	Φ best Φavg hit t(s) σ	0.29468142 0.29575422 1/20 1790 7.22e-04	0.10048440 0.10143134 1/20 3191 6.79e-04	0.00014499 0.00045286 1/20 179 2.30e-04	0.00180465 0.00296178 1/20 118 8.54e-04	0.00001000 0.00001399 1/20 0 2.00e-06	0.00000584 0.00000743 1/20 0 1.00e-06	0.00244182 0.00254590 1/20 0 5.30e-05	0.00174222 0.00180321 1/20 0 3.30e-05	0.00122711 0.00128230 1/20 48 2.40e-05	0.00087931 0.00090477 1/20 249 1.80e-05	0.00062085 0.00064504 1/20 65 1.30e-05	0.00043742 0.00045553 1/20 44 8.00e-06	0.00031352 0.00032529 1/20 225 6.00e-06	0.00022443 0.00023219 1/20 335 4.00e-06	0.00016180 0.00016509 1/20 0 2.00e-06	0.00067382 0.00072937 1/20 0 3.40e-05	0.00036595 0.00042063 1/20 28 4.80e-05	0.00067607 0.00071503 1/20 0 2.50e-05	0.00057938 0.00063012 1/20 0 2.40e-05	0.00043051 0.00048415 1/20 0 3.00e-05	0.00057022 0.00062654 1/20 1 3.40e-05	0.00057567 0.00065110 1/20 0 3.70e-05	0.00053185 0.00062475 1/20 0 7.30e-05	0.00061709 0.00066058 1/20 0 2.30e-05	0.00054614 0.00060081 1/20 1 2.70e-05	0.00054185 0.00059924 1/20 1 3.30e-05	0.00060130 0.00066431 1/20 1 3.70e-05	0.00033045 0.00035826 1/20 1 2.10e-05	0.00041692 0.00047249 1/20 74 4.10e-05	0.00050347 0.00054874 1/20 1 2.50e-05
	Instance	Graph |V |	preferential 100000 Attachment	smallworld 100000	cnr-2000 325557	eu-2005 862664	road central 14081816	road usa 23947347	delaunay n16 65536	delaunay n17 131072	delaunay n18 262144	delaunay n19 524288	delaunay n20 1048576	delaunay n21 2097152	delaunay n22 4194304	delaunay n23 8388608	delaunay n24 16777216	co2010 201062	la2010 204447	ia2010 216007	ks2010 238600	tn2010 240116	az2010 241666	al2010 252266	wi2010 253096	mn2010 259777	in2010 267071	ok2010 269118	va2010 285762	nc2010 288987	ga2010 291086	mi2010 329885

Table 4 :

 4 Continued 10 0.2 10 0.4 10 0.6 10 0.8 10 1 10 1.2 10 1.4 10 1.6 10 1.8 0

	MAMC	Φ best Φavg hit t(s) σ	0.00044010 0.00044334 13/20 481 1.25e-05	0.00045030 0.00047809 1/20 312 9.88e-06	0.00026616 0.00026616 20/20 2 0	0.00024997 0.00025260 2/20 515 1.74e-06	0.00024221 0.00024274 2/20 176 4.60e-07	0.00069385 0.00069385 20/20 1 0	0.00654906 0.00662078 1/20 1953 6.69e-05	0.00185332 0.00185332 20/20 10 0	0.00062040 0.00062040 20/20 3 0	0.00843147 0.00846699 1/20 2032 8.13e-05	0.00302488 0.00303411 14/20 542 2.59e-05	0.00323209 0.00323816 2/20 2145 5.02e-06	0.00078223 0.00078223 20/20 47 0	0.00605305 0.00607374 1/20 2690 9.00e-06	0.00819101 0.00823630 1/20 2867 2.25e-05	0.00228466 0.00229867 1/20 1865 5.47e-06	0.00298571 0.00298579 17/20 476 2.00e-07	0.00411522 0.00411522 20/20 10 0	0.00025296 0.00025339 10/20 223 4.90e-07	0.00036328 0.00036393 8/20 335 1.01e-06	0.00226757 0.00226757 20/20 5 0	0.00008221 0.00008230 15/20 4 1.60e-07	0.00325489 0.00325489 20/20 14 0	0.00905805 0.00906634 15/20 1729 2.86e-05	0.01234567 0.01234567 20/20 0 0	0.00540540 0.00540540 20/20 38 0	0.00892857 0.00892857 20/20 2 0	0.00444444 0.00444444 20/20 1 0	0.26530612 0.26530612 20/20 4 0	0.00000306 0.00000306 20/20 1 0
	MQI+SaBTS [29]	Φ best Φavg hit t(s) σ	0.00044010 0.00050980 1/20 82 4.20e-05	0.00047052 0.00050873 1/20 116 2.20e-05	0.00026616 0.00027731 11/20 0 2.30e-05	0.00025204 0.00026736 1/20 5 9.00e-06	0.00024258 0.00025289 1/20 2692 9.51e-06	0.00069385 0.00073344 17/20 6 9.40e-05	0.00668219 0.00689348 1/20 0 1.36e-04	0.00185332 0.00185332 20/20 7 0	0.00062040 0.00062040 20/20 0 0	0.00857068 0.00893257 1/20 735 2.09e-04	0.00303132 0.00313967 1/20 0 2.70e-05	0.00325666 0.00326880 1/20 151 9.00e-06	0.00078223 0.00083713 7/20 1255 7.90e-05	0.00610660 0.00620893 1/20 206 6.00e-05	0.00828692 0.00838030 1/20 764 7.80e-05	0.00229901 0.00232534 1/20 416 1.90e-05	0.00298571 0.00301256 4/20 120 6.00e-05	0.00411522 0.00494913 2/20 16 5.22e-04	0.00025296 0.00025687 1/20 864 6.42e-06	0.00036328 0.00038075 1/20 741 1.51e-05	0.00226757 0.00244841 15/20 108 3.14e-04	0.00008221 0.00008789 2/20 418 7.57e-06	0.00325489 0.00334089 2/20 2728 5.05e-05	0.00916933 0.00946360 1/20 1637 2.43e-04	0.01234567 0.01247394 16/20 3286 2.57e-04	0.00540540 0.01515060 1/20 1260 6.21e-03	0.00892857 0.01134011 12/20 550 3.25e-03	0.00444444 0.00565198 13/20 658 1.66e-03	0.26530612 0.26564625 15/20 743 5.89e-04	0.00000406 0.00000408 16/20 3189 6.00e-08
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The code of our MAMC algorithm will be available at: http://www.info. univ-angers.fr/ ~hao/mamc.html
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