
HAL Id: hal-02947939
https://hal.science/hal-02947939v1

Submitted on 2 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distance-guided local search
Daniel Cosmin Porumbel, Jin-Kao Hao

To cite this version:
Daniel Cosmin Porumbel, Jin-Kao Hao. Distance-guided local search. Journal of Heuristics, 2020, 26
(5), pp.711-741. �10.1007/s10732-020-09446-w�. �hal-02947939�

https://hal.science/hal-02947939v1
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Distance-Guided Local Search

Daniel Porumbel · Jin-Kao Hao

the date of receipt and acceptance should be inserted later

Abstract We present several techniques that use distances between candidate
solutions to achieve intensification in Local Search (LS) algorithms. An impor-
tant drawback of classical LS is that after visiting a very high-quality solution
the search process can “forget about it” and continue towards very different
areas. We propose a method that works on top of a given LS to equip it with
a form of memory so as to record the highest-quality visited areas (spheres).
More exactly, this new method uses distances between candidate solutions
to perform a coarse–grained recording of the LS trajectory, i.e., it records a
number of discovered spheres. The (centers of the) spheres are kept sorted in
a priority queue in which new centers are continually inserted as in insertion-
sort algorithms. After thoroughly investigating a sphere, the proposed method
resumes the search from the first best sphere center in the priority queue. The
resulting LS trajectory is no longer a continuous path, but a tree-like struc-
ture, with closed branches (already investigated spheres) and open branches
(as-yet-unexplored spheres). We also explore several other techniques relying
on distances, e.g., in Section 2.3, we show how to use distance information to
prevent the search from looping indefinitely on large (quasi-)plateaus. Experi-
ments on three problems based on different encodings (partitions, vectors and
permutations) confirm the intensification potential of the proposed ideas.
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1 Introduction

Local Search (LS) is one of the most popular methods for solving large and
hard optimization problems in many fields of science. A drawback of many
classical LS algorithms is that they lack a “global vision” over the search
trajectory and evolution. Typically, even if an LS algorithm visits a very high-
quality solution s at a given moment, it might often not intensify the search
in the proximity of s, thus easily missing better solutions close to s.

This paper proposes Distance-Guided Local Search (DGLS), an algorith-
mic framework that operates on top of a given LS; the goal is to improve
the underlying LS by introducing different intensification techniques that rely
on a distance measure defined over the space of candidate solutions. The dis-
tance between two solutions s1 and s2 is measured as the minimum number
of neighborhood transitions (moves) required to reach s2 from s1. Using such
a metric, we conveniently define the notion of sphere(c, r): the set of solutions
situated within a certain radius r from the sphere center c. In DGLS, each LS
run launched from a center c is stopped as soon as the distance d(s, c) between
the current solution s and c reaches a maximum radius value.

The proposed method guides the underlying LS to intensively examine a
part of the search space, i.e., it selects certain spheres that are thoroughly
investigated by launching a number of runsPerSphere LS runs from their
centers. Each of the runsPerSphere LS runs launched from a center leads
to the discovery of a new sphere center. All sphere centers are recorded in
a priority queue that is sorted according to the objective values of the cen-
ters and also according to the distances between them. After launching these
runsPerSphere LS runs from a center, DGLS can resume from a very distant
center, i.e., from the first center in the priority queue.

1.1 Context and Related Literature

Generally speaking, distances have already been used in the meta-heuristic
literature, but in rather disparate research threads, with limited common ob-
jectives. We discuss below several such research subjects, most of them from
the literature of evolutionary or memetic algorithms. To the best of our knowl-
edge, there are very few systematic studies of the potential use of distances to
improve LS.

The Tabu Search (TS) algorithm from [5] uses distances to make each step
of the TS move to “solutions with increasing distance from the center solu-
tion”. The main idea is to prevent the search from coming back to a center
solution, and to force the search to move away from it until a “prespecified
search depth” is reached. When this depth is reached, the current iteration
is finished; the search is then resumed to start a new iteration by selecting
another center solution from the best solutions considered during the last it-
eration. Compared to our proposal, the TS from [5] is also more complex: it
“resembles a genetic algorithm because a population of K members is main-
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tained during the iteration”. Finally, the distances in this TS are not mainly
used for intensification reasons, but rather for diversification, by forcing “the
search away from previous solutions”.

In Spacing Memetic Algorithms (SMA) [16] one can find a formal evo-
lutionary model devoted to a systematic control of the spacing (distances)
between individuals in genetic algorithms. This framework uses distances to
choose which individuals to insert into the population, which individuals to
remove from the population, and when to perform mutations. However, the
main purpose of SMA is diversification rather than intensification.

In Geometric Genetic Algorithms [12], the main evolutionary operators
(mutation and crossover) are interpreted in the light of topological and ge-
ometric terms. We notice, for instance, that the definition of the notion of
“closed ball” [12, §2.3] corresponds to a sphere in our study. However, this line
of research is focused on evolutionary or genetic algorithms rather than local
search.

More distantly related, standard genetic algorithms can (try to) locate the
multiple global optima of a continuous multi-modal function. In this context,
each optimum can be sought by a sub-population (niche) and one can pro-
mote crossover only inside subpopulations [11,2] (“intra-niche” crossover), so
as to “crowd” new individuals on the same niches. One popular method in
this (continuous optimization) area is crowding [3,2]; it attempts to induce
“niches by forcing new individuals to replace individuals that are similar ge-
nomically” [17]. For this purpose, the eliminated individual is selected from
among the closest individuals to the offspring solution in terms of distance.

Distances are also used for solution ranking in multi-objective optimiza-
tion [4]. However, such diversity measures are typically calculated in the ob-
jective function space and they rely on fitness differences—not meaningful in
our single-objective context.

The notion of distance is also considered in the population-based scatter
search and path-relinking methods [7]. To generate new solutions from the
existing ones, both solution quality and distances among solutions are taken
into account to ensure the diversity of newly generated solutions.

The “limited discrepancy search” approach is often used in connection with
exact methods to find the best solution within a certain “discrepancy” from
a reference solution. The notion of “discrepancy” can be seen as a particular
type of distance. The principle is also applied to design “limited-discrepancy”
heuristics which take as input a rounded solution resulting from some relaxed
formulations or column generation models. This is motivated by the fact that
a high-quality starting solution could be obtained by rounding the fractional
optimal solution generated by exact methods [9]. The idea is relevant for our
study, because we will often launch DGLS from solutions not very far from an
optimal solution.

We can conclude that the potential of distances to improve intensification
in LS is not fully exploited; the existing studies that address this subject are
rather scattered amongst the wider optimization literature. The most related
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study is our TS-INT algorithm [14] designed for the graph k-coloring problem.
In fact, the current study is based on and generalizes ideas from [14, §5].

1.2 Paper Organization

The remaining of the paper is organized as follows. Section 2 describes the
proposed approach and the associated pseudo-code, considering the distance
function as an external routine. Section 3 presents a distance function for each
of the three problems considered in this paper. Section 4 is devoted to numeri-
cal results, followed by conclusions in the last section. In appendix, we provide
more details on the underlying LS used for the k-coloring, the k-cluster, and
the capacitated arc-routing problem. A second appendix provides 2D visual-
izations for three DGLS trajectories observed on the k-coloring problem. A
final appendix is devoted to parameter tuning.

2 Distance-Guided Local Search

We now present the general Distance-Guided Local Search (DGLS) framework
and its pseudo-code. We assume we are given a distance measure and an LS
algorithm, which represent together the foundation upon which DGLS is built.

2.1 Main Principles: a Local Search with a Tree-like Trajectory

As hinted above, the proposed DGLS uses a distance measure d to compare
candidate solutions, such that d(s1, s2) is the minimum number of neighbor-
hood transitions (moves) required to reach s2 from s1. The notion of sphere
is based on the given distance and it is defined in a straightforward manner.

Definition 1 Given a distance measure d in the search space, a candidate
solution (center) c and an integer (radius) r, the sphere (c, r) is the set of all
candidate solutions s such that d(c, s) ≤ r.

If a sphere with numerous high-quality solutions is visited at a given mo-
ment, a classical LS could spend very limited time inside it and rapidly con-
tinue towards other areas of the search space. If the sphere is not examined
intensively at the given moment, the opportunity of finding better solutions
inside the sphere can pass by. To overcome such issues, DGLS will ensure
an intensive examination of each sphere associated to high-quality solutions.
This is achieved by performing several LS runs (parameter runsPerSphere)
launched from the center of such a sphere. Each run is stopped as soon as it
goes beyond the sphere boundary. This leads to a tree-like search trajectory:
each investigated sphere center has runsPerSphere (child) branches.

The best solution visited during each LS run launched from a sphere center
becomes a future center itself and it is inserted into a priority queue. This
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best solution is simply the solution of minimum objective value, breaking ties
according to the distance from the current center (the furthest solution is
better).

The spheres in the priority queue can be sorted according to different (qual-
ity or diversity) criteria. The most frequently-used criterion is the objective
value of the center, but one can also take into account the sum of the distances
from the center to all other recorded spheres in the priority queue.

2.2 The General Pseudo–code of Distance–Guided Local Search

By putting together all the general principles from Section 2.1 above, we obtain
the pseudo-code of the Distance-Guided Local Search in Algorithm 1; the goal
is to minimize the objective value. The innermost repeat-until loop launches
an LS run from the sphere center c. The outer loop at Lines 5–21 performs a
sphere examination by launching runsPerSphere LS runs.

Algorithm 1 Distance-Guided Local Search (DGLS)
1: c←initial-candidate-solution()

2: Qspheres ← {c} . the first sphere in the queue Qspheres

3: repeat
4: c← dequeue(Qspheres)
5: loop runsPerSphere times . This loop performs a sphere examination
6: s ← c
7: bst← c, distBst← 0 . best solution of current run with d(bst, c) = 0
8: repeat
9: s← LS-Step(s) . increase an iteration counter here

10: distToCenter← 0
11: if need-calc-dist() . It might not be necessary to calculate the
12: distToCenter = d(c, s) . distance at each iteration, see point 6 below
13: end if
14: if (obj(s) < obj(bst)) or
15: (obj(s) = obj(bst) and distToCenter > distBst)
16: bst← s
17: distBst← distToCenter

18: end if
19: until distToCenter > maxRadius or inner-stop-condition()

20: insert(bst,Qspheres) . insert it in the queue at the appropriate position
21: end loop
22: until general-stop-condition() . return best objective value ever reached

This pseudo-code relies on several external routines that we discuss below.
The ideas presented next are actually general guidelines for implementing a
DGLS; our goal is not to specify a would-be perfect DGLS variant, but to
propose a set of distance-guided tools that could be mixed together in different
ways to improve the intensification of a given LS. The implementation of the
external routines below can depend substantially on the considered problem.
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1. initial-candidate-solution() is a routine that provides the search pro-
cess with an initial candidate solution that is either obtained by external
means or generated at random.

2. dequeue(Qspheres) returns the center of the first sphere and removes it
from the priority queue.

3. LS-step(s) calls the underlying LS operator to move from the current
solution s to a neighboring solution snext, returning snext. By sequentially
calling s ←LS-step(s) multiple times, one actually executes the under-
lying LS. This LS should incorporate techniques to avoid getting blocked
on a unique local optimum, e.g., one should not use a simple deterministic
Steepest Descent (or First Improvement) that is very prone to looping by
visiting and revisiting the same local minimum again and again.

4. insert(bst,Qspheres) is a routine that establishes bst as a sphere center and
inserts it at the appropriate position in Qspheres. We recall that Qspheres is
a priority queue that can be sorted according to different characteristics of
the spheres. For instance, one can sort Qspheres lexicographically using two
(minimization) criteria: (i) the objective value of the center; and (ii) the
sum of distances to all other existing sphere centers. This approach seems
well suited for graph coloring and arc-routing. For the k-cluster problem,
we preferred to replace the above criterion (ii) with a First In First Out
order.

5. general-stop-condition() and inner-stop-condition() indi-
cate when a number of iterations (or a time limit) is reached,
e.g., one could use the iteration counter incremented at Line
9. We ask that inner-stop-condition() be stronger than
general-stop-condition(), in the sense that it has to return true

whenever general-stop-condition() returns true. One could make
inner-stop-condition() return true after reaching a maximum number
of iterations inside the current sphere, to avoid stagnation – see also
Section 2.3 below.

6. d(s, c) returns the distance from s to c. We mentioned at Line 12 that
it is not be necessary to compute this distance at every single iteration.
Indeed, after computing a distance d(c, s) at some iteration, the distance
calculation can be skipped for the next maxRadius − d(c, s) iterations,
because, in the worst case, each iteration increases the distance to the
center by one. As such, after maxRadius−d(c, s) iterations, the distance to
the center can become at most d(c, s)+(maxRadius−d(c, s)) = maxRadius,
enough to be sure that the condition (distToCenter > maxRadius) at
Line 19 is false, i.e., the innermost repeat-until loop can not be broken.
During these maxRadius−d(c, s) iterations, need-calc-dist() can return
false.1 Finally, the condition (distToCenter > distBst) at Line 15 is not
needed at each iteration, but only when the best objective value obj(bst) is
rediscovered; one can also imagine DGLS implementations that completely

1 For instance, in practical cases for graph coloring, one can have maxRadius = 100 and if
d(c, s) = 20 at some iteration, then the distance calculation can be skipped 80 iterations!
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skip testing this condition at Line 15, so that bst simply becomes the last
visited best solution.

The evolution of the general DGLS trajectory is controlled by the way
spheres are sorted in the priority queue Qspheres. The sorting criteria deter-
mine how DGLS selects each new sphere to resume the search, which has an
important impact on the search trajectory.

As long as the distance can be computed within a similar running time as
an iteration of the underlying LS, the total distance calculation overhead can
be kept within reasonable limits. While LS algorithms often use incremental
(streamlined) objective function evaluations, this could also be done for the
distance function. For example, we do perform such a streamlined distance
calculation for the k-cluster (k-clique) problem, as described in Appendix A.2.

2.3 Using the Distance Mechanisms to Avoid Stagnation

It is well-acknowledged that an undesirable behavior of any heuristic algorithm
is to be stuck looping on plateaus around a local optimum. Distance based-
mechanisms could be very useful for detecting and tackling such issues; We
propose the following mechanisms to be used alongside Algorithm 1:

1. Fix a maximum number of iterations per sphere, to ensure that DGLS
can not stagnate looping indefinitely on a plateau inside a sphere. It is
enough to make the function inner-stop-condition() stop the sphere
examination after a number of iterations.

2. If the best solution bst visited by the current run launched from center c
is too close to c (e.g., if d(bst, c) < 1

2maxRadius), do not establish bst as a
sphere center and do not insert it in the priority queue (i.e., skip Line 20).
Choose instead the best visited solution situated at more than a threshold
(e.g., 3

4maxRadius) from the center c. Notice that by forbidding new sphere
centers at less than 1

2maxRadius from c, we actually exclude a relatively

small volume, e.g., a mini-sphere of
(
1
2

)k
the volume of a standard sphere

for the k-cluster problem (see Section 4.2).
3. If after a number of iterations maxIterCheck (e.g., use maxIterCheck ∈

[2n, 3n], where n is the number of variables), the best solution bst visited
by an LS run satisfies obj(bst) = obj(c) and d(bst, c) < 1

2maxRadius, then
the current LS run might be stagnating by looping on a plateau around
the center c. The algorithm should apply repulsion mechanisms to make
this run leave the sphere. For example, on the k-cluster problem, we chose
to increase the Tabu List length for: (i) the vertices selected by the current
solution s but not selected by c, and (ii) the vertices not selected by s
but selected by c. As such, the vertices that contribute to the Hamming
distance d(s, c) are fixed for a longer time. This naturally repulses the
search from the center.
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3 Problem Examples and Associated Distances

In this section, we introduce three distance measures for the following three
well-known combinatorial optimization problems: graph k-coloring, k-cluster
(or k-clique) and the capacitated arc-routing problem. These can be considered
as representatives of three large classes of problems that require partition,
binary and permutation representations.

3.1 A General Neighborhood Distance

We first provide the most general definitions of the distance function.

Definition 2 Given a set of candidate solutions (search space) S, an objective
function and a neighborhood function N : S → 2S , the landscape L = (S, EN )
is an attributed graph such that: (1) the vertex set S is the set of candidate
solutions, (2) there is an edge between two vertices (solutions) if and only if
they are neighbors according to N , (3) each vertex (solution) is labeled with
the objective value of the solution.

Definition 3 The Neighborhood Distance d(s1, s2) is the shortest path be-
tween s1 and s2 in the landscape (S, EN ).

The distance d(s1, s2) is an indicator of the minimum number of local
search steps needed to reach solution s2 from s1. This correlation is important,
because without it an LS process could reach very distant solutions in a few
steps, reducing the relevance of the distance value.

3.2 Distance Measures: Partitions, Arrays and Permutations

3.2.1 Graph k-Coloring

Given an input graph G = (V,E) and a number of colors k, this problem asks
to color V with k colors so as to minimize the number of conflicting edges
(edges with both end vertices of the same color). The candidate solutions of
this problem can be seen as partitions of the vertex set into k subsets. The
distance is given by the transfer partition distance [8]. We recall [15] that the
distance between partitions (colorings) Ca and Cb is |V | − s(Ca, Cb), where s
is a measure of similarity defined as follows:

s(Ca, Cb) = max
σ∈Π

∑
1≤i≤k

Mi,σ(i),

where Π is the set of all bijections from {1, 2, . . . , k} to {1, 2, . . . , k} and M is
a matrix such that Mij indicates the cardinal of the intersection between the

ith color class of Ca and the jth color class of Cb, i.e., Mij = |Cia ∩ Cjb |.
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In most cases, the computation of this distance requires an asymptotic
running time of O(k2 + |V |). In few other cases discussed in [15], the distance
calculation can require O(k3 + |V |) time. However, both asymptotic running
times are relatively large comparing to the complexity of a neighborhood eval-
uation. On the other hand, the distance does not need to be computed every
single iteration, as we discussed at point 6 of Section 2.2.

3.2.2 k-cluster and k-clique

Given an input graph, this problem requires finding the densest induced sub-
graph with k vertices, i.e., the induced subgraph with the maximum number
of edges. The candidate solutions are represented as 0/1 arrays with exactly k
ones corresponding to the selected vertices. The distance between two arrays
can thus be given by the Hamming distance. In fact, it is the halved Hamming
distance that constitutes a neighborhood distance in the sense of Definition 3
(with regard to the bit swap neighborhood). However, we generally prefer to
express our ideas in terms of the standard Hamming distance – all calculations
could have been equally done using the halved Hamming distance. It is worth
noticing a particular aspect of this distance measure: when k is less than n/2,
there might exist numerous pairs of solutions at distance 2 · k, i.e., pairs of
solutions corresponding to disjoint selections.

3.2.3 Capacitated Arc-Routing (CARP)

Given an input graph G(V,E) with a set of required edges (clients) ER ⊆ E,
this problem asks to find the least–cost set of routes that service (visit) all edges
ER [6]. It is the edge–focused counterpart of the celebrated vehicle routing
problem. Using the approach from [13], this problem is cast in the space of
permutations, and so, it can be considered as a permutation problem [1]. More
exactly, this approach uses a decoder that transforms any permutation (of the
client set ER) into a set of routes.

The metric used to evaluate the distance between two permutations is
the Kendal tau rank distance [10]. In general terms, this counts the number
of pairwise disagreements between the two permutations. The Kendall tau
distance is also called the bubble–sort distance since it is equivalent to the
number of swaps that the bubble sort algorithm would perform to place one
permutation in the same order as the other. Technically, the distance between
permutations τ1 and τ2 is:

d(τ1, τ2) = |{(i, j) : i < j, (τ1(i) < τ1(j) ∧ τ2(i) > τ2(j))

∨(τ1(i) > τ1(j) ∧ τ2(i) < τ2(j))}| (3.1)

We observe that this satisfies the properties of a neighborhood distance
from Definition 3 if one uses a neighborhood defined by adjacent transpositions
(e.g., the adjacent interchange neighborhood). The calculation of this distance

can be realized by comparing n·(n−1)
2 pairs, i.e., it requires an asymptotic

running time of O(n2).
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4 Numerical Experiments

Here, we report computational results on the three considered problems. We
demonstrate that the numerical results of a given LS can be improved if this
LS is embedded into the DGLS framework. This improvement is mainly due to
the increased capacity of intensification induced by the distance mechanisms.

4.1 Graph k-Coloring Experiments

The underlying LS for graph k-coloring is the Tabu Search (TS) from [14, §2.2].
Essentially, this TS moves from solution to solution by changing the color of
a vertex v in conflict (sharing its color with a neighbor). After replacing the
current color of v by a new color, v can not receive again the lost color for

the next random(10) + 0.6 · obj(s) +
⌊
itersplat
1000

⌋
iterations, where random(10)

returns a random integer in [0..10], obj(s) is the current objective value (i.e.,
the number of conflicting edges), and itersplat is the number of last iterations
with no objective value variation.

The last term aims at keeping certain moves Tabu for a longer time when
the TS is blocked looping on a plateau with no objective function variation.
Each series of consecutive 1000 moves on such plateau lead to incrementing all
subsequent Tabu list lengths. In the worst case, most moves that keep the TS
on the plateau become Tabu for a long time, forcing the TS to choose other
moves and stop looping. The algorithm also uses streamlining calculations to
rapidly find the best neighbor, as described in Appendix A.1.

4.1.1 General results on graph coloring

The number of iterations for both LS and DGLS is set at maxIter = 300000
⌈
k

100

⌉
(the last term allows more iterations for larger instances). The radius value is
set at maxRadius = 0.2·n and the number of runs per sphere is runsPerSphere =
3. These are two important parameters of DGLS which merit particular atten-
tion. Appendix C presents a test that evaluates the success rate of DGLS for
different values of maxRadius and runsPerSphere. Generally speaking, this
test indicates that there is an interval of safe values for each parameter: any
maxRadius value between 0.1 · n and 0.6 · n and any runsPerSphere value
between 3 and 5 may lead to relatively good DGLS results. We did not use
any of the stagnation avoidance techniques from Section 2.3.

Since DGLS is designed for improving the intensification potential of a
given LS, it makes sense to first compare DGLS and LS by launching them
from a coloring which is relatively close to an optimal solution (a legal k-
coloring). We consider the following protocol. For each graph, we take the
best legal coloring reported in our previous paper [14],2 we modify a number

2 Colorings available on line at cedric.cnam.fr/~porumbed/graphs/tsdivint/
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Algo- Start Succes Final objective values Iterations to success
Graph, k rithm dist. rate avg ( std ) min max avg ( std ) min max

le450 25c, 25 DGLS 150 5/10 1.1 ( 1.1 ) 0 2 69901 (97969) 774 262654
le450 25c, 25 LS 150 2/10 2 ( 1.5 ) 0 5 68060 (66132) 1928 134192
le450 25d, 25 DGLS 190 5/10 2 ( 2.3 ) 0 6 40906 (46484) 3468 122994
le450 25d, 25 LS 190 1/10 2.9 ( 1.8 ) 0 5 70035 ( 0 ) 70035 70035

flat300 28, 28 DGLS 200 5/10 12.3 (15.3) 0 36 72331 (84670) 2577 211600
flat300 28, 28 LS 200 0/10 35.9 ( 2 ) 31 38 – ( – ) – –
dsjc250.5, 28 DGLS 140 4/10 0.7 ( 0.6 ) 0 2 148541 (74090) 80443 273258
dsjc250.5, 28 LS 140 0/10 1.5 ( 0.5 ) 1 2 – ( – ) – –
dsjc500.1, 12 DGLS 300 6/10 1.1 ( 1.9 ) 0 6 31430 (38929) 1794 112656
dsjc500.1, 12 LS 300 0/10 3.3 ( 1.3 ) 1 5 – ( – ) – –
dsjc500.5, 48 DGLS 230 5/10 0.8 ( 0.9 ) 0 2 66981 (55317) 20765 173355
dsjc500.5, 48 LS 230 3/10 3.8 ( 3.8 ) 0 11 4900 ( 3779 ) 1985 10237
dsjc500.9, 126 DGLS 150 10/10 0 ( 0 ) 0 0 20398 (36871) 933 125062
dsjc500.9, 126 LS 150 4/10 0.7 ( 0.6 ) 0 2 61623 (87229) 1022 210958

dsjc1000.1, 21 DGLS 800 4/10 1.3 ( 1.4 ) 0 4 153604 (42788) 80134 185540
dsjc1000.1, 21 LS 800 1/10 2.4 ( 1.1 ) 0 4 257524 ( 0 ) 257524 257524
dsjc1000.5, 85 DGLS 450 4/10 8.1 ( 7.8 ) 0 25 116658 (43243) 53091 160702
dsjc1000.5, 85 LS 450 0/10 15.3 ( 7.2 ) 3 25 – ( – ) – –
dsjc1000.9, 223 DGLS 250 10/10 0 ( 0 ) 0 0 13631 (35213) 511 119226
dsjc1000.9, 223 LS 250 4/10 0.9 ( 0.8 ) 0 2 5904 ( 8547 ) 642 20701

Table 1: Comparison of DGLS and standard LS launched from a coloring obtained by
randomly modifying a number of colors (“Start dist.” in Column 3) of a legal coloring.
DGLS has significantly higher success rates.

of colors (at least |V |3 ) and we launch DGLS and standard LS from the resulting
modified coloring.

Table 1 presents this comparison of DGLS and LS, reporting the instance
in Column 1 (the graph and the number of colors), the algorithm version in
Column 2 (one row on DGLS, one row on LS), the above number of modified
colors of a legal coloring (Column 3), the number of successful executions (find-
ing a legal coloring) out of 10 (Column 4), followed by statistical results on the
final objective values reported at the end of the 10 executions (Columns “Final
objective values”) and statistical results on the number of iterations needed
by the successful executions (last 4 columns). The statistical results include:
the average value (columns “avg”), the standard deviation (columns “std”),
the minimum value (columns “min”) and the maximum (columns “max”).

Table 1 shows that DGLS is able to find the path towards an optimal solu-
tion twice or three times more often than the standard LS. Notice that DGLS
does not find the optimum only in the beginning of the search (by directly
re-constructing the original optimal solution). It might need sometimes more
than 150000 iterations to reach an optimal solution, after having examined
tens or hundreds of spheres. We will see in Section 4.1.2 below that a sphere
examination can often take less than 1000 iterations.

We now consider a different experimental protocol, using the same param-
eters as above. We execute 5 times 300000 iterations of the underlying LS
and we take the best solution ever visited. Then, we launch from this solu-
tion 10 times DGLS and 10 times the underlying LS. Table 2 compares the
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k-coloring instance LS DGLS
Graph, k bst avg worst bst avg worst

le450 25c.col, 24 21 22.7 24 20 21 22
le450 25d.col, 24 20 21.5 23 20 21.1 22

flat300 28 0.col, 30 29 31 32 24 26.4 28
dsjc250.5.col, 27 6 6.5 7 6 6.1 7
dsjc500.1.col, 11 27 27.1 28 27 27 27
dsjc500.5.col, 47 19 23.2 26 19 22 24
dsjc500.9.col, 125 4 4.1 5 4 4 4

dsjc1000.1.col, 19 34 34.6 35 34 34.1 35
dsjc1000.5.col, 82 82 91.3 98 82 86.7 93
dsjc1000.9.col, 221 9 10.7 13 7 9.3 11

Table 2: Graph k-coloring result on overly-difficult instances; both LS and DGLS were
launched from the best solution visited by 5 LS runs of 300000 iterations.

results obtained by DGLS and LS following this protocol on a set of overly
difficult instances (the number of colors one unit lower than the best known
upper bound). For both algorithms, Table 2 reports the minimum (bst), aver-
age (avg) and maximum (worst) number of conflicting edges (edges with both
end vertices of the same colors) obtained over 10 executions. Notice DGLS
achieves improved results on all instances, with regards to all three criteria.

4.1.2 Insights into the sphere examinations

Natural questions regarding DGLS include:

– What does the global trajectory of DGLS looks like?
– How many candidate solutions are usually visited during a sphere exami-

nation?
– How many iterations can take a run launched from a center, or equivalently

how long is the innermost repeat-until loop of Algorithm 1 in Section
2.2 ?

– What is the average distance from the center c to the best solution found
by a run launched from c? Do different runs launched from c lead to finding
similar best solutions?

To provide an intuitive answer such questions, we propose using a Mul-
tidimensional Scaling (MDS) procedure that creates a 2D visualization (pro-
jection) of the visited sphere centers and of the distances between them. This
MDS procedure3 takes as input a matrix of distances (between colorings) and
generates a set of Euclidean points such that the distances between these
points represent an approximation of the initial distances. The quality of this
approximation can be evaluated using a loss function (the Kruskall stress). In
our cases, the value of this loss function is usually between 0.2 and 0.3.

3 We used the tool MDSJ “Java Library for Multidimensional Scaling (Version 0.2)” from
University of Konstanz, available on-line at http://algo.uni-konstanz.de/software/mdsj/
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Regarding the quality of the MDS pro-
jections, we can discuss an example on
Figure 1. The table on the right pro-
vides the real distances between the
points START, 1, 2, 3, 4 and 5. One
could check the Euclidean distances in
the figure are approximately not far
from the real distances in the table.

START 1 2 3 4 5
START 0 50 50 50 96 97

1 50 0 33 36 69 71
2 50 33 0 22 50 50
3 50 36 22 0 60 62
4 96 69 50 60 0 26
5 97 71 50 62 26 0
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Fig. 1: MDS plot of the running profile of a short successful DGLS execution on dsjc250.5

with maxRadius = 50. Each point represents a sphere center; each arrow i
iters−→ j indicates

that the sphere center j was discovered in iters iterations by a run launched from i. The
starting point labelled START was generated by randomly modifying 100 colors of a legal
coloring. OPT is the optimal solution found by DGLS.
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Fig. 2: MDS plot of the running profile of a longer DGLS execution on dsjc250.5 with
maxRadius = 50, using the same starting point as in Figure 1. After a long intensified search
close to sphere center 12, DGLS eventually finds its way towards an optimal solution.

Figures 1-2 plot the MDS representations of two DGLS executions on the
smallest random graph dsjc250.5 with k = 28 colors. Each arrow represents a
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run launched from a sphere center (start point). The end point of the arrow is
the best solution visited by the run (that also becomes a future sphere center).
The labels in blue indicate the order of the discovery of the centers and the
figures above each arrow indicate the run length in iterations.

We can safely conclude from Figures 1-2 that the number of iterations of
a run can vary from 50 = maxRadius to values of hundreds or thousands.
In the beginning, the starting solution has many conflicts that can be solved
directly, making the search rapidly leave the proximity of the starting solution.
Naturally, DGLS finds sphere centers of increasingly improved quality over the
time, and so, the search process spends more iterations on plateaus close to
such centers; thus, later runs require more iterations. The distance between
the sphere center and the best coloring reported by a run can evolve from very
large values in the beginning (close to maxRadius) to values close to zero (this
can be seen in Figure 2, starting with center 12).

We also notice that, in the beginning, the three runs launched from a
center follow quite similar paths, i.e., observe the three arrows originating from
the point START in both figures. The underlying Tabu Search is basically
executing three times a similar Steepest Descent, as the center START has
many conflicts that can be easily solved. However, towards (the middle and)
the end of the DGLS execution, we observe the opposite behaviour: we notice
a star-like shape of three arrows originating at each point, i.e., the three runs
launched from the same center can seriously diverge in all directions.

As expected from theory, Figures 1-2 suggest that DGLS does follow a
tree-like trajectory. The execution in Figure 2 is more challenging: there are
quite numerous arrows pointing towards the top of the figure, representing runs
could lead DGLS away from the optimal solution (see centers 6, 11, and those
above 12). These branches were fortunately cut by DGLS; its intensification
mechanism managed to keep the main search process on a region not far from
the optimal solution.

The above conclusions are generally confirmed by other MDS representa-
tions for DGLS executions on different graphs. We refer the reader to Appendix
B for more MDS figures of other DGLS trajectories.

4.1.3 Comparing to random restarts and other sphere ranking criteria

Let us explore other DGLS variants, to gain more insight into the impact of
the individual components that constitute DGLS. We will also compare these
DGLS flavors with two standard LS methods that do use restart mechanisms
as well. Specifically, we consider the following four algorithms:

1 A DGLS version in which the second criterion for ranking spheres (see
point 4 of the list below Algorithm 1 in Section 2.2) is replaced by a First
In First Out (FIFO) policy. The sphere centers in the priority queue are
still sorted by their objective values, but this DGLS variant breaks ties
using the FIFO (arrival) order.
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Algorithm Start Succes Final objective values Restarts
Graph, k dist. rate avg ( std ) min max avg

le450 25c, 25

DGLS-standard

150 5/10 1.1 ( 1.1 ) 0 2 9.8
flat300 28, 28 200 5/10 12.3 (15.3) 0 36 203.8
dsjc250.5, 28 140 4/10 0.7 ( 0.6 ) 0 2 49.3
le450 25c, 25

DGLS with FIFO sphere
ranking (second criterion)

150 5/10 1.3 ( 1.6 ) 0 5 6.4
flat300 28, 28 200 4/10 18.6 (15.3) 0 35 162
dsjc250.5, 28 140 4/10 1 ( 1 ) 0 3 51.9
le450 25c, 25 DGLS that computes

distances only every 200
iterations

140 6/10 0.9 ( 1.1 ) 0 3 6
flat300 28, 28 200 1/10 30.1 (10.4) 0 37 122.8
dsjc250.5, 28 140 4/10 0.8 ( 0.7 ) 0 2 36.1

le450 25c, 25 Standard LS with a restart
applied every 30000

iterations

150 3/10 1.3 ( 1.5 ) 0 5 7.7
flat300 28, 28 200 1/10 28.3 ( 9.6 ) 0 35 9
dsjc250.5, 28 140 2/10 1 ( 0.6 ) 0 2 8.3
le450 25c, 25 Standard LS with a restart

applied every 100000
iterations

150 3/10 1.7 ( 1.3 ) 0 4 2.1
flat300 28, 28 200 0/10 33 ( 2 ) 30 36 3
dsjc250.5, 28 140 1/10 1.3 ( 0.6 ) 0 2 2.7

Table 3: Comparison of 3 DGLS variants with 2 LS variants with restarts

2 A DGLS version that calculates the distance value only every 200 iter-
ations. Recall that Algorithm 1 uses a function need-calc-dist() that
is generally used to skip computing distances when exact distance val-
ues are not needed. For instance, if the current solution is at distance
0.2 ·maxRadius from the center, the next 0.8 ·maxRadius iterations can not
lead to distances larger than maxRadius. But if the distance calculation
is skipped for 200 iterations, an LS run can leave the sphere during these
iterations. In such cases, the sphere examination is not really confined to a
sphere of radius maxRadius as usually. However, this is not always so bad
and it might not necessarily happen very often in practice.

3 A standard LS algorithm that applies a restart from the best-known solu-
tion every 30000 iterations.

4 A standard LS algorithm that applies a restart from the best-known solu-
tion every 100000 iterations.

Table 3 presents a comparison of the DGLS and LS variants presented
above, using three rows for each variant. The columns of this table are exactly
the same as those of Table 1, except for the fact that we replaced the last
columns with the number of restarts. For DGLS, this number of restarts in
the last column actually signifies the number of centers from which DGLS
launched LS runs. By dividing the number of iterations by this number of
restarts, one can form an opinion of the average number of iterations executed
by an individual run inside a sphere.

Table 3 shows that the success rate of an LS method with restarts is only
about half of the success rate of a DGLS variant, even if an LS with restarts
can perform better than a pure LS without restarts (compare with the LS data
from Table 1).

Comparing the three DGLS variants among them lead to more mixed con-
clusions. For example, the results of the DGLS version with a FIFO sphere
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ranking criterion are very similar to those of the standard DGLS, which hints
the second criterion for ranking spheres is not essential. The DGLS version
that computes distances every 200 iterations generates slightly worse results.
On the other hand, this DGLS variant computes less distances.

Recall that DGLS was deliberately designed to support a variety of (ways
of combining the presented) intensification techniques, rather than a would-be
“unique DGLS way”. For instance, preliminary experiments suggest that it
could be useful to make DGLS even more aggressive as follows: allow DGLS
to switch to a new center s immediately after finding a solution s of better
quality than the current center c. One would need to modify Algorithm 1 to
make it break the loop starting at Line 5 whenever it finds a solution s better
than the current center c. As such, DGLS could (temporarily) abandon the
goal of performing all runsPerSphere runs from c. However, after finishing
exploring the sphere of s, DGLS could later come back to c (if c is at the
beginning of the queue).

4.2 The k-clique and the k-cluster Problem

The goal of the k-cluster problem with unitary edge weights is to maximize the
number of edges in an induced subgraph of size k. In fact, we will present results
with regards to the minimization version of this problem, i.e., minimize the
number of non-edges (missing edges) in an induced subgraph of size k. We will
actually only test the k-clique version of the problem, i.e., we always choose
values of k for which we know there exists at least one complete k-cluster
(perfect clique) with k vertices.

We prefer to evaluate DGLS using a relatively basic canonical Tabu Search
(TS) algorithm as the underlying LS. This TS encodes candidate solutions as
0/1 arrays with exactly k ones representing k selected vertices. At each iter-
ation, it chooses the best vertex swap: remove a selected vertex vin from the
current solution and replace it with some non-selected vertex vout. The best
swap is the one that leads to the highest objective value improvement, break-
ing ties randomly in case of equality. The implemented TS uses incremental
streamlined calculations to rapidly evaluate the objective value variation of
each swap, see Appendix A.2.

After de-selecting vin, this vertex becomes Tabu for 10 +random(5) moves.
Despite this Tabu mechanism, our TS is more prone to stagnation than the LS
for graph coloring from Section 4.1. It could sometimes loop for a long time
on a plateau or on a quasi-plateau, i.e., on a set of connected solutions with
the same or very close4 objective values. Our TS uses the following technique
to prevent such looping. After the first 1000 iterations, the TS counts the
number itersplat of last consecutive iterations spent on a quasi-plateau. It
then increases the above Tabu list length by itersplat for all moves that keep

4 We chose to consider two objective values obj1 and obj2 to be very close if and only
|obj1 − obj2| ≤ ∆, where ∆ is the difference between the best and the third best objective
value ever discovered by the current run.
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the search on the current quasi-plateau, similarly to what we did using the

term
⌊
itersplat
1000

⌋
in the Tabu list length for the graph coloring TS. The more

iterations are spent on a quasi-plateau, the longer the Tabu status of many
vertices typically selected by solutions of the quasi-plateau. This eventually
imposes the selection of other non-Tabu vertices, leading the search to new
areas.

To avoid slowing down DGLS with distance calculations, we also perform
an incremental calculation of the distance from the current solution to the
sphere center. This is relatively straightforward, because it is not difficult to
update the distance (to the center) value after swapping vertices vin and vout—
see exact calculation details in Appendix A.2.

The C++ source code of both LS and DGLS for the k-cluster problem are
publicly available on-line at cedric.cnam.fr/~porumbed/dgls/. We can

say it is a “human-size” code of about 1200 lines; the fact that the underlying
LS is canonical TS with few fancy features may simplify reading the code.

4.2.1 General results on k-clique instances

We will compare DGLS with LS using a total number of iterations of maxIter =
1.000.000. The spheres are sorted according to the objective value of the cen-
ter, breaking ties according to the FIFO order. We set the number of runs per
sphere at runsPerSphere = 3 as in the graph coloring case. The radius value
has been set to maxRadius = 1.5 · k, because we observed that maxRadius = k
does not seem enough, i.e., our TS can often reach a distance of k in only
1
2k iterations by simply changing 1

2k vertices. More generally, Appendix C
presents a test that evaluates the success rate of DGLS for different values of
runsPerSphere and maxRadius. Generally speaking, this test indicates that
[0.75·k,1.75·k] is an interval of safe values for maxRadius and [2,5] is an interval
of safe values for runsPerSphere.

We apply all three techniques for avoiding stagnation from Section 2.3
and they are instantiated as follows. In technique 1, the maximum number
of iterations per sphere is set at 10 · n. Technique 2 is instantiated with no
modification. To implement technique 3, we associate to each run a repulsion
force f that can increase along the iterations depending on the distance from
the visited solutions to the center. More exactly, for each visited solution s
such that obj(s) = obj(c) and d(s, c) < 1

2maxRadius, we increase f by a ∆s,c

value inversely proportional5 to d(s, c). This repulsion force f acts as follows:
we increase the Tabu list length by f for all vertices v that contribute to the
Hamming distance d(s, c), i.e., such that (i) s[v] = 1 and c[v] = 0 or (ii)
s[v] = 0 and c[v] = 1. This progressively repulses the run from the center,
because a high repulsion force encourages fixing vertices that contribute to

5 We uses ∆s,c = 1
d(s,c)+3

. For example, if the search revisits 30 times the center c, then

we obtain a total repulsion force of 30 · 1
3

= 10. As such, the currently selected vertices that
do not belong to the center stay Tabu 10 iterations more. This encourages DGLS to deselect
vertices that do belong to the center, thus repulsing the search away from it.
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the distance to c . If f is non-zero at the end of a run launched from c,
we then insert in the priority queue the best solution bstFar that satisfies
d(bstFar, c) ≥ 9

10maxRadius.

For many k-clique instances, the TS implemented in this section reports
the same result over all executions. One can also observe this phenomenon
for the faster TS from [18], where Table 1 announces a success rate of 100%
for all but three graphs. Our TS has less fancy features and allows a larger
variation of the final best objective values. However, we did need to restrict
the study to several graphs on which our TS does report significantly different

final results. We also introduce two new instances keller4+1 and keller4+2

obtained by modifying the keller4 instance. The original keller4 instance is
not very difficult, because it contains numerous perfect cliques of size 11. We
took one of these cliques of size 11 and removed some of the edges linking it
to the rest of the graph, so as to isolate (hide) it; finally, we added an artificial
vertex that is only linked to the chosen clique of size 11. The maximum clique
in the resulting instance is thus 12, but it is more difficult to find it.6

Since DGLS is primarily designed to achieve intensification, it makes sense
to evaluate it by launching DGLS from a solution moderately close to an
optimal clique, as in Section 4.1.1. For this purpose, we took a perfect clique
for each graph, we replaced a number of vertices with vertices outside the clique
and we launched both DGLS and LS from the resulting perturbed solution.

Table 4 (previous page) presents this comparison of DGLS and LS, report-
ing the instance in Column 1 (the graph, n and k), the algorithm version in
Column 2 (one row on DGLS, one on the underlying LS), the above number
of vertices from a perfect clique replaced with other vertices (Column 3), the

6 These two instances are publicly available on-line, along with the LS/DGLS source code
in C++ at http://cedric.cnam.fr/~porumbed/dgls/.

Algo- Disloca- Succes Final objective values Iterations to success
Graph, n, k rithm ted vtx rate avg (std) min max avg ( std ) min max

C1000.9, 1000, 68 DGLS 40 10/10 0 ( 0 ) 0 0 5061 ( 13185 ) 157 44605
C1000.9, 1000, 68 LS 40 9/10 0.1 (0.3) 0 1 294406 (191687) 166278 800226
C500.9, 500, 57 DGLS 40 10/10 0 ( 0 ) 0 0 7394 ( 11984 ) 379 36801
C500.9, 500, 57 LS 40 10/10 0 ( 0 ) 0 0 131209 (120215) 346 437266

MANN a27, 378, 126 DGLS 21 10/10 0 ( 0 ) 0 0 26756 ( 37578 ) 14 133534
MANN a27, 378, 126 LS 21 5/10 0.7 (0.8) 0 2 280488 (299632) 14 800954

c-fat500-2, 500, 26 DGLS 14 10/10 0 ( 0 ) 0 0 29084 ( 20134 ) 15 62210
c-fat500-2, 500, 26 LS 14 4/10 7.2 (5.9) 0 12 200016 (244950) 15 600018
c-fat500-5, 500, 64 DGLS 34 10/10 0 ( 0 ) 0 0 18864 ( 2651 ) 16359 23982
c-fat500-5, 500, 64 LS 34 0/10 31 ( 0 ) 31 31 – ( – ) – –

keller4+1, 172, 12 DGLS 5 8/10 0.2 (0.4) 0 1 231362 (167365) 6 415401

keller4+1, 172, 12 LS 5 1/10 0.9 (0.3) 0 1 6 ( 0 ) 6 6

keller4+2, 172, 12 DGLS 6 5/10 0.5 (0.5) 0 1 29525 ( 58946 ) 30 147417

keller4+2, 172, 12 LS 6 2/10 0.8 (0.4) 0 1 101532 ( 27384 ) 74148 128917

Table 4: Comparison of DGLS and standard LS launched from a solution obtained by
dislocating a number (“Dislocated vtx” in Column 3) of vertices from a perfect clique.
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number of successful executions (finding a perfect clique) out of 10 (Column
4), followed by statistical results on the final objective values reported by the
10 executions (Columns “Final objective values”) and statistical results on
the number of iterations needed by the successful executions (last 4 columns).
The statistical results include: the average value (columns “avg”), the stan-
dard deviation (columns “std”), the minimum value (columns “min”) and the
maximum value (columns “max”).

Table 4 shows that DGLS can indeed achieve stronger intensification. Ex-
cept for the first two graphs, if finds the path towards an optimal solution twice
or three times more often than the standard LS. Even for the first two graphs,
it needs far less iterations than the underlying LS to reach the optimum.

4.2.2 Insights into the sphere examinations

All questions regarding the graph coloring DGLS from Section 4.1.2 are equally
relevant for the k-clique problem. We thus use the same Multidimensional
Scaling procedure from Section 4.1.2 to provide an intuitive visualization of
the DGLS trajectory, so as to (try to) offer an answer to such questions.

Figures 3 and 4 confirm that DGLS follows a tree-like trajectory as ex-
pected from theory. In Figure 3, one notices many arrows (runs) that point
towards the optimal solution, without directly reaching it. However, it is clear
that DGLS can find an optimal solution virtually with probability 100%, by
taking as starting center any of the end points of these arrows. On the other
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Fig. 3: MDS representation of the running profile of a short successful DGLS execution
on c-fat500-2 with maxRadius = 40. The points represent sphere centers and the associate
labels indicate the order of the discovery of these centers; each arrow points to the best
solution (future center) reported by a run launched from a center. The starting point START
was generated by dislocating 14 selected vertices from a perfect clique, i.e., START is at
distance 28 from an optimal solution. However, the optimal solution OPT discovered by
DGLS is at distance 40 from START. The three solutions discovered from START are at
distance 28, i.e., DGLS “repaired” the 14 dislocated vertices at each run from START.
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hand, a standard LS could also follow a path towards a point like 4 and thus
miss the region at the right of the figure with optimal solutions.

Figure 4 shows a more challenging DGLS execution. One can notice that
many arrows do not point at all towards the optimal solution, and so, certain
runs could easily lead DGLS away from interesting areas. These branches were
fortunately cut by DGLS and its strong intensification mechanism managed to
lead the main search process to a region that does contain an optimal solution.
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Fig. 4: Running profile of a more challenging successful DGLS execution on MANN a27 with
maxRadius = 189. Each point represents a sphere center. The path from the starting point
START to the optimum solution OPT is depicted in red; OPT is at distance 114 from
START. DGLS started out by visiting a quite far point 2, at distance 148 from START. It
then came back closer to START at point 5, before eventually finding a way towards OPT.

4.2.3 Comparing to other random restarts or sphere ranking criteria

As in Section 4.1.3 on graph coloring, we now investigate other DGLS and LS
variants. This will also be very useful for evaluating the contribution of the
different techniques incorporated into DGLS and LS. More exactly, we will
compare the standard DGLS with the following four algorithms:

1. DGLS with particularly small spheres, using maxRadius = 0.25 · k instead
of maxRadius = 1.5 · k.

2. DGLS with a maximum number of iterations per sphere of 1000 ·n instead
of 10 · n.

3. DGLS with none of the stagnation avoidance techniques from Section 2.3.
4. LS with 10 restarts during the maxIter = 1.000.000 iterations.

Table 5 compares these algorithms. The second block or rows (rows 6-8)
suggest that using a very small radius maxRadius = 0.25 · k leads to weaker
DGLS flavor. Such DGLS can end up generating (a web of) thousand of small
spheres (see the last column) associated to small-length runs that do not have
enough intensification strength. The third block of rows (rows 9-11) shows
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Algorithm Start Succes Final objective values Average
Graph, n, k dist. rate avg (std) min max restarts
C500.9, 500, 57

DGLS-standard

40 10/10 0 ( 0 ) 0 0 7
MANN a27, 378, 126 21 10/10 0 ( 0 ) 0 0 10.3

c-fat500-2, 500, 26 14 10/10 0 ( 0 ) 0 0 3.9
C500.9, 500, 57 DGLS with a small

maxRadius = 0.25k
instead of 1.5k

40 4/10 1.3 (1.2) 0 3 24265.2
MANN a27, 378, 126 21 9/10 0.1 (0.3) 0 1 4068.5

c-fat500-2, 500, 26 14 5/10 6 ( 6 ) 0 12 595.7
C500.9, 500, 57 DGLS with max

1000·n (100x more)
iterations per sphere

40 10/10 0 ( 0 ) 0 0 23.5
MANN a27, 378, 126 21 10/10 0 ( 0 ) 0 0 12.6

c-fat500-2, 500, 26 14 2/10 9.6 (4.8) 0 12 1.8
C500.9, 500, 57

DGLS with no
stagnation avoidance

40 7/10 0.6 (0.9) 0 2 871.5
MANN a27, 378, 126 21 10/10 0 ( 0 ) 0 0 254.2

c-fat500-2, 500, 26 14 3/10 8.4 (5.5) 0 12 4

C500.9, 500, 57 Standard LS with a
restart every 100000
iterations (max 10)

40 10/10 0 ( 0 ) 0 0 2.2
MANN a27, 378, 126 21 6/10 0.6 (0.8) 0 2 7.7

c-fat500-2, 500, 26 14 5/10 3.6 (5.5) 0 12 6.3

Table 5: Comparison of different DGLS and LS variants

that imposing a maximum number of iterations per sphere is not always nec-
essary. Using a very large value for this parameter, DGLS could still solve two
instances with a 100% success rate, but fail 8 times on c-fat500-2.

The impact of the stagnation avoidance techniques from Section 2.3 can
be evaluated using the fourth block of rows (rows 12-14) of Table 5. We notice
that by removing these techniques, the success rate is reduced for two graphs.
Even if the success rate for MANN 27 remains the same, the number of runs
launched from sphere centers is much larger, which suggests that this DGLS
variant needed more effort to find the optimum. The reason for the failures of
this DGLS variant on c-fat500-2 comes from the fact that the search process
is actually blocked looping on a plateau around a local optimum (inside a
sphere). Indeed, notice that this DGLS launched in average only 4 runs (see
last column) from sphere centers during all 1.000.000 iterations.

Finally, the last three rows concern an LS variant that executes 10 random
restarts during the maxIter = 1.000.000 iterations. This LS variant does not
reach results that can change our main conclusions. For example, it fails almost
half of the time on MANN a27, while this instance is solved with a 100% success
rate even by the simplest DGLS variants.

4.3 The Capacitated Arc Routing Problem (CARP)

In this section, the underlying LS is a simplified version of the Iterated Lo-
cal Search (ILS) from [13]. We recall that this LS works with permutations
of the set ER of edges requiring service; any permutation is decoded into ex-
plicit routes by applying a decoder based on dynamic programming. The main
simplifications compared to [13] come from the fact that we use no Column
Generation and no local search on explicit (decoded) routes. Additionally, our



22 Daniel Porumbel, Jin-Kao Hao

CARP instance LS DGLS
Graph, best bst avg worst bst avg worst

egl-S1-A, 5018 5154 5249.5 5336 5050 5180.8 5276
egl-S1-B, 6388 6454 6584 6658 6473 6599.7 6658
egl-S1-C, 8518 8725 8778.6 8852 8616 8710 8917
egl-S2-A, 9884 11057 11166.8 11379 10993 11148.9 11379
egl-S2-B, 13100 16251 16677.1 16861 16140 16602.9 16895
egl-S2-C, 16425 18998 19582.1 19868 19309 19568.9 19807
egl-S3-A, 10220 11236 11334.1 11391 11236 11289.9 11342
egl-S3-B, 13682 16251 16677.1 16861 15468 16007.1 16251
egl-S3-C, 17188 19392 19581.3 19650 19306 19460 19627

Table 6: Results of LS and DGLS on CARP considering a time limit of 300 seconds. For
each row, we execute 10 times LS and DGLS.

neighborhood only consists of adjacent swaps on permutations. More details
on the algorithm are provided in Appendix A.3 or directly in [13].

Since the evaluation of each permutation requires a decoder that is rela-
tively computationally intensive,7 there is no important slowdown induced by
a straightforward distance calculation. Recalling the distance definition (3.1)

from Section 3.2.3, we notice this distance calculation requires n(n−1)
2 compar-

isons. Finally, the sphere radius is set at maxRadius = 5 · n and the number
of runs per sphere is runsPerSphere = 3 as for k-coloring and k-cluster.

Table 6 compares LS and DGLS on several CARP instances on which
the difference between the results of LS and DGLS are relatively large. For
both methods, we allow 300 seconds per execution. Columns 3 and 6 show
that DGLS obtains a better minimum objective value with only one excep-
tion (egl-S1-B). Columns 4 and 7 show that DGLS obtains a lower average
objective value in all instances but one (egl-S1-B).

Finally, all results from this section were obtained on an Intel Xeon CPU
(E5-2630) clocked at 2.4GHz. The k-cluster and k-coloring algorithms were
implemented in C++ and compiled by gnu g++ with −03 optimization option.
The CARP algorithm was implemented in Java, version 1.7. Notice there exists
a benchmark for comparing coloring algorithms on different instances,8 useful
for providing a hardware-independent measure of CPU speed. This benchmark
leads the following user times on our machine: 5.05s for r500.5.b, 1.33 for
r400.5.b, 0.28 for r300.5.b, and 0.05 for r200.5.b.

7 For the k-coloring and k-clique problems, the evaluation of each neighbor requires O(1)
time, i.e., strong streamlining routines are used. In CARP, the evaluation of each neighbor
is linear in the number |ER| edges (clients), in the number of vehicles and in the size of the
longest route.

8 See http://mat.gsia.cmu.edu/COLOR03/ or more exactly the benchmark in the tar

archive available for download at mat.gsia.cmu.edu/COLOR03/BENCHMARK/benchmark.tar.
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5 Conclusions and Prospects

Distance measures have been used relatively rarely in local search algorithms
and usually for diversification reasons rather than for intensification. In this
work, we have demonstrated that distances can be used to increase the inten-
sification potential of a given LS. The proposed distance–guided local search
framework operates on top of an underlying local search to equip it with a
number of intensification mechanisms discussed throughout the paper. An im-
portant change is that the trajectory of the resulting DGLS algorithm is no
longer a continuous path of visited solutions, but a tree-like structure com-
posed of examined spheres and non-examined spheres. Experiments on three
representative problems (k-coloring, k-clique and Capacitated Arc-Routing)
show that DGLS can improve the underlying LS.

The proposed DGLS is not an exact recipe which must be closely followed
in any attempt to improve an existing LS, but rather a synthesis of converging
ideas on the use of distances in LS. Not all presented distance ideas might
work very well on any new problem; as such, one could use only some of these
ideas, i.e., the ones that prove to be the most effective for the considered
problem. For instance, it might not always be necessary to record the spheres
in a priority queue. Without resorting to Algorithm 1, one could only use the
stagnation avoidance techniques from Section 2.3 which can enable the given
LS to detect when it is stuck looping on a plateau around a center, so as to to
change its trajectory accordingly.

Finally, the distance calculation overhead could always be kept within rea-
sonable limits, using a different idea for each of the three considered problems.
For graph coloring, the distance has to be computed only once in tens of itera-
tions, using arguments from point 6 of Section 2.2. For the clique problem, the
distance to the center can be incrementally calculated in constant time at each
iteration, see Appendix A.2. For the CARP, the objective function evaluation
requires running a permutation decoder based on dynamic programming and
this is a more important computational bottleneck than the distance calcula-
tion.
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A The underlying local searches and their streamlined calculations

A.1 Graph k-Coloring

The underlying LS for graph k-coloring is the Tabu Search (TS) from [14]. A solution s
is represented as an array of length n such that sv is the color of vertex v. A neighboring
solution can be obtained by simply changing the color sv of any conflicting vertex v to
some s′v . By focusing on conflicting vertices, this neighborhood helps the search process to
concentrate on influential moves and to avoid irrelevant ones, because changing the color of
a non-conflicting vertex would not directly improve the objective function.

After executing a move and assigning a new color to a vertex v, v can not receive again
the lost color for the next T` iterations. The value of T` is set at random(10) + 0.6 · obj(s) +⌊
itersplat

1000

⌋
, where itersplat is the number of last moves with no objective function variation.
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The last term is only introduced to change T` when the algorithm is blocked looping on a
plateau and the objective value does not change for 1000 moves. Each series of consecutive
1000 moves with no objective function variation triggers the increment of all subsequent
tabu list lengths, which encourages TS to choose more and more moves that have not been
executed in the past, until the objective changes again and TS leaves the plateau. This
additional term prevents the search process from getting blocked looping on a plateau while
not affecting its behavior outside plateaus.

To rapidly choose the best neighbor of s, this TS uses a n× k table Γ such that Γv,s′v
indicates the number of conflicts of v if v received color s′v . As such, Γv,s′v

−Γv,sv represents
the objective function variation associated to the move that changes the color of v from sv
into s′v . After performing a move, Γ can be updated in O(n) time (because only columns sv
and s′v might require updating).

A.2 k-cluster: incremental calculations of objective value and distance

The main ideas of the k-clique Tabu Search (TS) algorithm were presented in the first
paragraphs of Section 4.2. We here describe how it uses incremental calculations to rapidly
find the best swap of vertices at each iteration. For this, the TS uses a table that associates to
each non-selected vertex vout the number of edges that it can bring to the current solution.
For a selected vertex vin, this table records the number of edges linked to vin in the current
solution. To find the best swap, it is enough to consider each selected vertex vin and each
non-selected one vout and to calculate (in constant time using the above table!) the objective
function variation of swapping vin with vout. After executing the move, the table values of
vin and vout are quite easily updated, by scanning their neighbors modified by the last
move. For a more complex and faster calculation streamlining scheme, we refer the reader
to [18]. However, using a slower (and more pedagogical) algorithm poses no problem for the
empirical evaluations needed in this paper.

The calculation of the distance from the current solution s to the current center c is also
incremental. If s′ is obtained from s by swapping a and b, then

d(s′, c) = d(s, c)−
(

[sa 6= ca] + [sb 6= cb]
)

︸ ︷︷ ︸
old contribution to the

Hamming distance

+
(

[sb 6= ca] + [sa 6= cb]
)

︸ ︷︷ ︸
new contribution to

the Hamming distance

,

where [S] is the Iverson bracket, i.e., [S] is 1 when the statement S is true and 0 otherwise.
If the move consists of deselecting a selected vertex a = vin and of selecting a non-selected
vertex b = vout, the above formula becomes

d(s′, c) = d(s, c)−
(

[1 6= ca] + [0 6= cb]
)

+
(

[0 6= ca] + [1 6= cb]
)
.

One can check all possible cases of ca and cb to see this leads to the following simpler
formula:

d(s′, c) = d(s, c) + 2 · ca − 2 · cb.

A.3 Capacitated Arc-Routing (CARP)

The underlying LS for CARP is based on a simplification of the Iterated Local Search (ILS)
from [13]. The original ILS considers a search space of permutations that are decoded into
explicit routes using a decoder (see below). The main simplifications are the following. First,
all Column Generation (CG) components of the algorithm from [13] are removed, allowing
one to more easily compare LS with DGLS, using less external components. Secondly, the
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neighborhood is restricted to only use adjacent transpositions (swaps), i.e., a neighbor per-
mutation is constructed by swapping consecutive elements of the current permutation. This
allows one to achieve a correlation between a distance d(sa, sb) and the number of LS moves
needed to reach sa from sb. We do not use any post-decoder as in [13].

The perturbation operator of this ILS consists of inserting in the current solution a
route (sequence) discovered earlier during the search [13, §2.1]. More exactly, to perturb the
current permutation s, we extract a route r from a pool, we inject r at the beginning of s and
we remove from s any duplicate element of r. The pool is continually updated throughout
the search, by adding routes discovered by the ILS at different moments of the search.

Finally, the decoder consists of a dynamic programming routine of linear complexity in
terms of the number of clients |ER|, i.e., the complexity is O(|ER|). More precisely, given
input permutation s = (s1, s2, . . . sm), the decoder determines a set of routes of minimum
total cost that service all required edges in the order s1, s2, . . . sm. Since the decoder is
relatively computationally intensive, the distance calculations do not introduce an important
slowdown in the search.
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B MDS plots of other DGLS trajectories for graph k-coloring
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C The success rate of DGLS for different values of runsPerSphere

and maxRadius

Here, we analyze the effectiveness of DGLS over several values of runsPerSphere and
maxRadius on the graph coloring and the k-clique problem (in Table 7 and resp. Table 8).
The caption of Tables 7-8 is self explanatory.

Start maxRadius

Graph, k dist. 0.05·n 0.1·n 0.2·n 0.3·n 0.4·n 0.5·n 0.6·n 0.7·n 0.8·n 0.9·n 1·n
le450 25c, 25 150 4/10 4/10 5/10 5/10 8/10 5/10 4/10 0/10 0/10 0/10 0/10
le450 25d, 25 190 3/10 3/10 5/10 2/10 1/10 4/10 2/10 3/10 3/10 2/10 2/10

flat300 28, 28 200 3/10 4/10 5/10 3/10 1/10 2/10 4/10 6/10 3/10 0/10 0/10
dsjc250.5, 28 140 3/10 4/10 4/10 5/10 4/10 4/10 6/10 4/10 4/10 2/10 2/10
dsjc500.1, 12 300 7/10 4/10 6/10 2/10 3/10 2/10 7/10 6/10 4/10 2/10 2/10
dsjc500.5, 48 230 1/10 7/10 5/10 5/10 3/10 4/10 6/10 3/10 2/10 0/10 0/10
dsjc500.9, 126 150 9/10 10/10 10/10 8/10 9/10 10/10 8/10 6/10 6/10 6/10 6/10

dsjc1000.1, 21 800 2/10 2/10 4/10 0/10 2/10 3/10 5/10 3/10 4/10 2/10 4/10
dsjc1000.5, 85 450 2/10 2/10 4/10 1/10 0/10 1/10 2/10 0/10 1/10 0/10 0/10
dsjc1000.9, 223 250 10/10 10/10 10/10 10/10 9/10 8/10 8/10 8/10 8/10 8/10 8/10

Start runsPerSphere

Graph, k dist 1 2 3 4 5 6 7
le450 25c, 25 150 3/10 0/10 5/10 6/10 2/10 1/10 6/10
le450 25d, 25 190 1/10 0/10 5/10 3/10 2/10 2/10 4/10

flat300 28, 28 200 1/10 3/10 5/10 3/10 4/10 3/10 4/10
dsjc250.5, 28 140 5/10 5/10 4/10 3/10 5/10 2/10 4/10
dsjc500.1, 12 300 4/10 6/10 6/10 2/10 2/10 2/10 5/10
dsjc500.5, 48 230 2/10 4/10 5/10 6/10 4/10 5/10 2/10
dsjc500.9, 126 150 9/10 8/10 10/10 9/10 9/10 9/10 9/10

dsjc1000.1, 21 800 0/10 4/10 4/10 2/10 1/10 0/10 3/10
dsjc1000.5, 85 450 0/10 0/10 4/10 2/10 1/10 1/10 0/10
dsjc1000.9, 223 250 8/10 7/10 10/10 8/10 7/10 7/10 10/10

Table 7: The success rate of DGLS for different value of maxRadius (above table) or
runsPerSphere (below table) on graph coloring. See also Table 1 (p. 11) for the main results
with maxRadius = 0.2 · n and runsPerSphere = 3 that correspond to the bold column in
both tables above. The first three columns indicate the instance and they are the same as
in Table 1. Recall DGLS is launched from a solution situated at a given distance (Column
“Start dist.”) from an optimal solution.
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Dislocated maxRadius

Instance, n, k vertices 0.25·k 0.5·k 0.75·k 1·k 1.25·k 1.5·k 1.75·k 2·k
C1000.9, 1000, 68 40 6/10 9/10 8/10 10/10 10/10 10/10 10/10 10/10
C500.9, 500, 57 40 7/10 9/10 7/10 7/10 10/10 10/10 10/10 6/10

MANN a27, 378, 126 21 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
c-fat500-2, 500, 26 14 0/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
c-fat500-5, 500, 64 34 0/10 0/10 10/10 10/10 10/10 10/10 10/10 10/10

keller4+1, 172, 12 5 1/10 0/10 10/10 9/10 9/10 8/10 7/10 0/10

keller4+2, 172, 12 6 2/10 4/10 2/10 1/10 10/10 5/10 10/10 7/10

Dislocated runsPerSphere

Instance, n, k vertices 1 2 3 4 5 6 7
C1000.9, 1000, 68 40 10/10 8/10 10/10 8/10 10/10 10/10 10/10
C500.9, 500, 57 40 10/10 9/10 10/10 10/10 7/10 0/10 0/10

MANN a27, 378, 126 21 2/10 10/10 10/10 10/10 10/10 10/10 10/10
c-fat500-2, 500, 26 14 10/10 10/10 10/10 10/10 10/10 10/10 10/10
c-fat500-5, 500, 64 34 10/10 10/10 10/10 10/10 10/10 10/10 10/10

keller4+1, 172, 12 5 5/10 7/10 8/10 9/10 10/10 10/10 10/10

keller4+2, 172, 12 6 6/10 2/10 5/10 3/10 2/10 2/10 2/10

Table 8: The success rate of DGLS for different value of maxRadius (above table) or
runsPerSphere (below table) on the k-clique problem. See also Table 4 (p. 18) for the main
results with maxRadius = 1.5 ·k and runsPerSphere = 3 that correspond to the bold column
in both tables above. Recall DGLS is launched from a solution obtained by dislocating a
number (Column “Dislocated vertices?’) of vertices from a perfect clique.


