Daniel Porumbel
email: daniel.porumbel@cnam.fr

Jin-Kao Hao
email: jin-kao.hao@univ-angers.fr

J-K Hao

Distance-Guided Local Search

Keywords: meta-heuristic methodologies, local search, distance between solutions, intensification

We present several techniques that use distances between candidate solutions to achieve intensification in Local Search (LS) algorithms. An important drawback of classical LS is that after visiting a very high-quality solution the search process can "forget about it" and continue towards very different areas. We propose a method that works on top of a given LS to equip it with a form of memory so as to record the highest-quality visited areas (spheres). More exactly, this new method uses distances between candidate solutions to perform a coarse-grained recording of the LS trajectory, i.e., it records a number of discovered spheres. The (centers of the) spheres are kept sorted in a priority queue in which new centers are continually inserted as in insertionsort algorithms. After thoroughly investigating a sphere, the proposed method resumes the search from the first best sphere center in the priority queue. The resulting LS trajectory is no longer a continuous path, but a tree-like structure, with closed branches (already investigated spheres) and open branches (as-yet-unexplored spheres). We also explore several other techniques relying on distances, e.g., in Section 2.3, we show how to use distance information to prevent the search from looping indefinitely on large (quasi-)plateaus. Experiments on three problems based on different encodings (partitions, vectors and permutations) confirm the intensification potential of the proposed ideas.

Introduction

Local Search (LS) is one of the most popular methods for solving large and hard optimization problems in many fields of science. A drawback of many classical LS algorithms is that they lack a "global vision" over the search trajectory and evolution. Typically, even if an LS algorithm visits a very highquality solution s at a given moment, it might often not intensify the search in the proximity of s, thus easily missing better solutions close to s.

This paper proposes Distance-Guided Local Search (DGLS), an algorithmic framework that operates on top of a given LS; the goal is to improve the underlying LS by introducing different intensification techniques that rely on a distance measure defined over the space of candidate solutions. The distance between two solutions s 1 and s 2 is measured as the minimum number of neighborhood transitions (moves) required to reach s 2 from s 1 . Using such a metric, we conveniently define the notion of sphere(c, r): the set of solutions situated within a certain radius r from the sphere center c. In DGLS, each LS run launched from a center c is stopped as soon as the distance d(s, c) between the current solution s and c reaches a maximum radius value.

The proposed method guides the underlying LS to intensively examine a part of the search space, i.e., it selects certain spheres that are thoroughly investigated by launching a number of runsPerSphere LS runs from their centers. Each of the runsPerSphere LS runs launched from a center leads to the discovery of a new sphere center. All sphere centers are recorded in a priority queue that is sorted according to the objective values of the centers and also according to the distances between them. After launching these runsPerSphere LS runs from a center, DGLS can resume from a very distant center, i.e., from the first center in the priority queue.

Context and Related Literature

Generally speaking, distances have already been used in the meta-heuristic literature, but in rather disparate research threads, with limited common objectives. We discuss below several such research subjects, most of them from the literature of evolutionary or memetic algorithms. To the best of our knowledge, there are very few systematic studies of the potential use of distances to improve LS.

The Tabu Search (TS) algorithm from [START_REF] Drezner | A new heuristic for the quadratic assignment problem[END_REF] uses distances to make each step of the TS move to "solutions with increasing distance from the center solution". The main idea is to prevent the search from coming back to a center solution, and to force the search to move away from it until a "prespecified search depth" is reached. When this depth is reached, the current iteration is finished; the search is then resumed to start a new iteration by selecting another center solution from the best solutions considered during the last iteration. Compared to our proposal, the TS from [START_REF] Drezner | A new heuristic for the quadratic assignment problem[END_REF] is also more complex: it "resembles a genetic algorithm because a population of K members is main-tained during the iteration". Finally, the distances in this TS are not mainly used for intensification reasons, but rather for diversification, by forcing "the search away from previous solutions".

In Spacing Memetic Algorithms (SMA) [START_REF] Daniel Cosmin Porumbel | Spacing memetic algorithms[END_REF] one can find a formal evolutionary model devoted to a systematic control of the spacing (distances) between individuals in genetic algorithms. This framework uses distances to choose which individuals to insert into the population, which individuals to remove from the population, and when to perform mutations. However, the main purpose of SMA is diversification rather than intensification.

In Geometric Genetic Algorithms [START_REF] Moraglio | Topological interpretation of crossover[END_REF], the main evolutionary operators (mutation and crossover) are interpreted in the light of topological and geometric terms. We notice, for instance, that the definition of the notion of "closed ball" [12, §2.3] corresponds to a sphere in our study. However, this line of research is focused on evolutionary or genetic algorithms rather than local search.

More distantly related, standard genetic algorithms can (try to) locate the multiple global optima of a continuous multi-modal function. In this context, each optimum can be sought by a sub-population (niche) and one can promote crossover only inside subpopulations [START_REF] Miller | Genetic algorithms with dynamic niche sharing for multimodalfunction optimization[END_REF][START_REF] Cedeño | Analysis of speciation and niching in the multi-niche crowding GA[END_REF] ("intra-niche" crossover), so as to "crowd" new individuals on the same niches. One popular method in this (continuous optimization) area is crowding [START_REF] De | An analysis of the behavior of a class of genetic adaptive systems[END_REF][START_REF] Cedeño | Analysis of speciation and niching in the multi-niche crowding GA[END_REF]; it attempts to induce "niches by forcing new individuals to replace individuals that are similar genomically" [START_REF] Smith | Searching for diverse, cooperative populations with genetic algorithms[END_REF]. For this purpose, the eliminated individual is selected from among the closest individuals to the offspring solution in terms of distance.

Distances are also used for solution ranking in multi-objective optimization [START_REF] Deb | A fast and elitist multiobjective genetic algorithm NSGA-II[END_REF]. However, such diversity measures are typically calculated in the objective function space and they rely on fitness differences-not meaningful in our single-objective context.

The notion of distance is also considered in the population-based scatter search and path-relinking methods [START_REF] Glover | Fundamentals of scatter search and path relinking[END_REF]. To generate new solutions from the existing ones, both solution quality and distances among solutions are taken into account to ensure the diversity of newly generated solutions.

The "limited discrepancy search" approach is often used in connection with exact methods to find the best solution within a certain "discrepancy" from a reference solution. The notion of "discrepancy" can be seen as a particular type of distance. The principle is also applied to design "limited-discrepancy" heuristics which take as input a rounded solution resulting from some relaxed formulations or column generation models. This is motivated by the fact that a high-quality starting solution could be obtained by rounding the fractional optimal solution generated by exact methods [START_REF] Joncour | Column generation based primal heuristics[END_REF]. The idea is relevant for our study, because we will often launch DGLS from solutions not very far from an optimal solution.

We can conclude that the potential of distances to improve intensification in LS is not fully exploited; the existing studies that address this subject are rather scattered amongst the wider optimization literature. The most related study is our TS-INT algorithm [START_REF] Daniel Cosmin Porumbel | A search space "cartography" for guiding graph coloring heuristics[END_REF] designed for the graph k-coloring problem. In fact, the current study is based on and generalizes ideas from [14, §5].

Paper Organization

The remaining of the paper is organized as follows. Section 2 describes the proposed approach and the associated pseudo-code, considering the distance function as an external routine. Section 3 presents a distance function for each of the three problems considered in this paper. Section 4 is devoted to numerical results, followed by conclusions in the last section. In appendix, we provide more details on the underlying LS used for the k-coloring, the k-cluster, and the capacitated arc-routing problem. A second appendix provides 2D visualizations for three DGLS trajectories observed on the k-coloring problem. A final appendix is devoted to parameter tuning.

Distance-Guided Local Search

We now present the general Distance-Guided Local Search (DGLS) framework and its pseudo-code. We assume we are given a distance measure and an LS algorithm, which represent together the foundation upon which DGLS is built.

Main Principles: a Local Search with a Tree-like Trajectory

As hinted above, the proposed DGLS uses a distance measure d to compare candidate solutions, such that d(s 1 , s 2) is the minimum number of neighborhood transitions (moves) required to reach s 2 from s 1 . The notion of sphere is based on the given distance and it is defined in a straightforward manner.

Definition 1 Given a distance measure d in the search space, a candidate solution (center) c and an integer (radius) r, the sphere (c, r) is the set of all candidate solutions s such that d(c, s) ≤ r.

If a sphere with numerous high-quality solutions is visited at a given moment, a classical LS could spend very limited time inside it and rapidly continue towards other areas of the search space. If the sphere is not examined intensively at the given moment, the opportunity of finding better solutions inside the sphere can pass by. To overcome such issues, DGLS will ensure an intensive examination of each sphere associated to high-quality solutions. This is achieved by performing several LS runs (parameter runsPerSphere) launched from the center of such a sphere. Each run is stopped as soon as it goes beyond the sphere boundary. This leads to a tree-like search trajectory: each investigated sphere center has runsPerSphere (child) branches.

The best solution visited during each LS run launched from a sphere center becomes a future center itself and it is inserted into a priority queue. This best solution is simply the solution of minimum objective value, breaking ties according to the distance from the current center (the furthest solution is better).

The spheres in the priority queue can be sorted according to different (quality or diversity) criteria. The most frequently-used criterion is the objective value of the center, but one can also take into account the sum of the distances from the center to all other recorded spheres in the priority queue.

The General Pseudo-code of Distance-Guided Local Search

By putting together all the general principles from Section 2.1 above, we obtain the pseudo-code of the Distance-Guided Local Search in Algorithm 1; the goal is to minimize the objective value. The innermost repeat-until loop launches an LS run from the sphere center c. The outer loop at Lines 5-21 performs a sphere examination by launching runsPerSphere LS runs. This pseudo-code relies on several external routines that we discuss below. The ideas presented next are actually general guidelines for implementing a DGLS; our goal is not to specify a would-be perfect DGLS variant, but to propose a set of distance-guided tools that could be mixed together in different ways to improve the intensification of a given LS. The implementation of the external routines below can depend substantially on the considered problem.) is a routine that establishes bst as a sphere center and inserts it at the appropriate position in Q spheres . We recall that Q spheres is a priority queue that can be sorted according to different characteristics of the spheres. For instance, one can sort Q spheres lexicographically using two (minimization) criteria: (i) the objective value of the center; and (ii) the sum of distances to all other existing sphere centers. This approach seems well suited for graph coloring and arc-routing. For the k-cluster problem, we preferred to replace the above criterion (ii) with a First In First Out order. 5. general-stop-condition() and inner-stop-condition() indicate when a number of iterations (or a time limit) is reached, e.g., one could use the iteration counter incremented at Line 9. We ask that inner-stop-condition() be stronger than general-stop-condition(), in the sense that it has to return true whenever general-stop-condition() returns true. One could make inner-stop-condition() return true after reaching a maximum number of iterations inside the current sphere, to avoid stagnation -see also Section 2.3 below. 6. d(s, c) returns the distance from s to c. We mentioned at Line 12 that it is not be necessary to compute this distance at every single iteration. Indeed, after computing a distance d(c, s) at some iteration, the distance calculation can be skipped for the next maxRadiusd(c, s) iterations, because, in the worst case, each iteration increases the distance to the center by one. As such, after maxRadiusd(c, s) iterations, the distance to the center can become at most d(c, s)+(maxRadius-d(c, s)) = maxRadius, enough to be sure that the condition (distToCenter > maxRadius) at Line 19 is false, i.e., the innermost repeat-until loop can not be broken. During these maxRadiusd(c, s) iterations, need-calc-dist() can return false. 1 Finally, the condition (distToCenter > distBst) at Line 15 is not needed at each iteration, but only when the best objective value obj(bst) is rediscovered; one can also imagine DGLS implementations that completely skip testing this condition at Line 15, so that bst simply becomes the last visited best solution.

The evolution of the general DGLS trajectory is controlled by the way spheres are sorted in the priority queue Q spheres . The sorting criteria determine how DGLS selects each new sphere to resume the search, which has an important impact on the search trajectory.

As long as the distance can be computed within a similar running time as an iteration of the underlying LS, the total distance calculation overhead can be kept within reasonable limits. While LS algorithms often use incremental (streamlined) objective function evaluations, this could also be done for the distance function. For example, we do perform such a streamlined distance calculation for the k-cluster (k-clique) problem, as described in Appendix A.2.

Using the Distance Mechanisms to Avoid Stagnation

It is well-acknowledged that an undesirable behavior of any heuristic algorithm is to be stuck looping on plateaus around a local optimum. Distance basedmechanisms could be very useful for detecting and tackling such issues; We propose the following mechanisms to be used alongside Algorithm 1:

1. Fix a maximum number of iterations per sphere, to ensure that DGLS can not stagnate looping indefinitely on a plateau inside a sphere. It is enough to make the function inner-stop-condition() stop the sphere examination after a number of iterations. 2. If the best solution bst visited by the current run launched from center c is too close to c (e.g., if d(bst, c) < 1 2 maxRadius), do not establish bst as a sphere center and do not insert it in the priority queue (i.e., skip Line 20). Choose instead the best visited solution situated at more than a threshold (e.g., 3 4 maxRadius) from the center c. Notice that by forbidding new sphere centers at less than 1 2 maxRadius from c, we actually exclude a relatively small volume, e.g., a mini-sphere of 1 2 k the volume of a standard sphere for the k-cluster problem (see Section 4.2). 3. If after a number of iterations maxIterCheck (e.g., use maxIterCheck ∈ [2n, 3n], where n is the number of variables), the best solution bst visited by an LS run satisfies obj(bst) = obj(c) and d(bst, c) < 1 2 maxRadius, then the current LS run might be stagnating by looping on a plateau around the center c. The algorithm should apply repulsion mechanisms to make this run leave the sphere. For example, on the k-cluster problem, we chose to increase the Tabu List length for: (i) the vertices selected by the current solution s but not selected by c, and (ii) the vertices not selected by s but selected by c. As such, the vertices that contribute to the Hamming distance d(s, c) are fixed for a longer time. This naturally repulses the search from the center.

Problem Examples and Associated Distances

In this section, we introduce three distance measures for the following three well-known combinatorial optimization problems: graph k-coloring, k-cluster (or k-clique) and the capacitated arc-routing problem. These can be considered as representatives of three large classes of problems that require partition, binary and permutation representations.

A General Neighborhood Distance

We first provide the most general definitions of the distance function.

Definition 2 Given a set of candidate solutions (search space) S, an objective function and a neighborhood function N : S → 2 S , the landscape L = (S, E N) is an attributed graph such that: (1) the vertex set S is the set of candidate solutions, [START_REF] Cedeño | Analysis of speciation and niching in the multi-niche crowding GA[END_REF] there is an edge between two vertices (solutions) if and only if they are neighbors according to N , (3) each vertex (solution) is labeled with the objective value of the solution.

Definition 3

The Neighborhood Distance d(s 1 , s 2) is the shortest path between s 1 and s 2 in the landscape (S, E N).

The distance d(s 1 , s 2) is an indicator of the minimum number of local search steps needed to reach solution s 2 from s 1 . This correlation is important, because without it an LS process could reach very distant solutions in a few steps, reducing the relevance of the distance value.

Distance Measures: Partitions, Arrays and Permutations

Graph k-Coloring

Given an input graph G = (V, E) and a number of colors k, this problem asks to color V with k colors so as to minimize the number of conflicting edges (edges with both end vertices of the same color). The candidate solutions of this problem can be seen as partitions of the vertex set into k subsets. The distance is given by the transfer partition distance [START_REF] Gusfield | Partition-distance: A problem and class of perfect graphs arising in clustering[END_REF]. We recall [START_REF] Daniel Cosmin Porumbel | An efficient algorithm for computing the distance between close partitions[END_REF] that the distance between partitions (colorings) C a and C b is |V |s(C a , C b), where s is a measure of similarity defined as follows:

s(C a , C b) = max σ∈Π 1≤i≤k M i,σ(i) ,
where Π is the set of all bijections from {1, 2, . . . , k} to {1, 2, . . . , k} and M is a matrix such that M ij indicates the cardinal of the intersection between the i th color class of C a and the j th color class of C b , i.e.,

M ij = |C i a ∩ C j b |.
In most cases, the computation of this distance requires an asymptotic running time of O(k 2 + |V |). In few other cases discussed in [START_REF] Daniel Cosmin Porumbel | An efficient algorithm for computing the distance between close partitions[END_REF], the distance calculation can require O(k 3 + |V |) time. However, both asymptotic running times are relatively large comparing to the complexity of a neighborhood evaluation. On the other hand, the distance does not need to be computed every single iteration, as we discussed at point 6 of Section 2.2.

k-cluster and k-clique

Given an input graph, this problem requires finding the densest induced subgraph with k vertices, i.e., the induced subgraph with the maximum number of edges. The candidate solutions are represented as 0/1 arrays with exactly k ones corresponding to the selected vertices. The distance between two arrays can thus be given by the Hamming distance. In fact, it is the halved Hamming distance that constitutes a neighborhood distance in the sense of Definition 3 (with regard to the bit swap neighborhood). However, we generally prefer to express our ideas in terms of the standard Hamming distance -all calculations could have been equally done using the halved Hamming distance. It is worth noticing a particular aspect of this distance measure: when k is less than n/2, there might exist numerous pairs of solutions at distance 2 • k, i.e., pairs of solutions corresponding to disjoint selections.

Capacitated Arc-Routing (CARP)

Given an input graph G(V, E) with a set of required edges (clients) E R ⊆ E, this problem asks to find the least-cost set of routes that service (visit) all edges E R [START_REF] Dror | Arc routing: theory, solutions and applications[END_REF]. It is the edge-focused counterpart of the celebrated vehicle routing problem. Using the approach from [START_REF] Porumbel | Iterated local search and column generation to solve arc-routing as a permutation set-covering problem[END_REF], this problem is cast in the space of permutations, and so, it can be considered as a permutation problem [START_REF] Campos | Context-independent scatter and tabu search for permutation problems[END_REF]. More exactly, this approach uses a decoder that transforms any permutation (of the client set E R) into a set of routes.

The metric used to evaluate the distance between two permutations is the Kendal tau rank distance [START_REF] Kendall | A new measure of rank correlation[END_REF]. In general terms, this counts the number of pairwise disagreements between the two permutations. The Kendall tau distance is also called the bubble-sort distance since it is equivalent to the number of swaps that the bubble sort algorithm would perform to place one permutation in the same order as the other. Technically, the distance between permutations τ 1 and τ 2 is:

d(τ 1 , τ 2) = |{(i, j) : i < j, (τ 1 (i) < τ 1 (j) ∧ τ 2 (i) > τ 2 (j)) ∨(τ 1 (i) > τ 1 (j) ∧ τ 2 (i) < τ 2 (j))}| (3.1)
We observe that this satisfies the properties of a neighborhood distance from Definition 3 if one uses a neighborhood defined by adjacent transpositions (e.g., the adjacent interchange neighborhood). The calculation of this distance can be realized by comparing n•(n-1) 2 pairs, i.e., it requires an asymptotic running time of O(n 2).

Numerical Experiments

Here, we report computational results on the three considered problems. We demonstrate that the numerical results of a given LS can be improved if this LS is embedded into the DGLS framework. This improvement is mainly due to the increased capacity of intensification induced by the distance mechanisms.

Graph k-Coloring Experiments

The underlying LS for graph k-coloring is the Tabu Search (TS) from [14, §2.2]. Essentially, this TS moves from solution to solution by changing the color of a vertex v in conflict (sharing its color with a neighbor). After replacing the current color of v by a new color, v can not receive again the lost color for the next random [START_REF] Kendall | A new measure of rank correlation[END_REF]

+ 0.6 • obj(s) + itersplat 1000
iterations, where random [START_REF] Kendall | A new measure of rank correlation[END_REF] returns a random integer in [0..10], obj(s) is the current objective value (i.e., the number of conflicting edges), and iters plat is the number of last iterations with no objective value variation. The last term aims at keeping certain moves Tabu for a longer time when the TS is blocked looping on a plateau with no objective function variation. Each series of consecutive 1000 moves on such plateau lead to incrementing all subsequent Tabu list lengths. In the worst case, most moves that keep the TS on the plateau become Tabu for a long time, forcing the TS to choose other moves and stop looping. The algorithm also uses streamlining calculations to rapidly find the best neighbor, as described in Appendix A.1.

General results on graph coloring

The number of iterations for both LS and DGLS is set at maxIter = 300000 k 100 (the last term allows more iterations for larger instances). The radius value is set at maxRadius = 0.2•n and the number of runs per sphere is runsPerSphere = 3. These are two important parameters of DGLS which merit particular attention. Appendix C presents a test that evaluates the success rate of DGLS for different values of maxRadius and runsPerSphere. Generally speaking, this test indicates that there is an interval of safe values for each parameter: any maxRadius value between 0.1 • n and 0.6 • n and any runsPerSphere value between 3 and 5 may lead to relatively good DGLS results. We did not use any of the stagnation avoidance techniques from Section 2.3.

Since DGLS is designed for improving the intensification potential of a given LS, it makes sense to first compare DGLS and LS by launching them from a coloring which is relatively close to an optimal solution (a legal kcoloring). We consider the following protocol. For each graph, we take the best legal coloring reported in our previous paper [of colors (at least |V | 3) and we launch DGLS and standard LS from the resulting modified coloring.

Table 1 presents this comparison of DGLS and LS, reporting the instance in Column 1 (the graph and the number of colors), the algorithm version in Column 2 (one row on DGLS, one row on LS), the above number of modified colors of a legal coloring (Column 3), the number of successful executions (finding a legal coloring) out of 10 (Column 4), followed by statistical results on the final objective values reported at the end of the 10 executions (Columns "Final objective values") and statistical results on the number of iterations needed by the successful executions (last 4 columns). The statistical results include: the average value (columns "avg"), the standard deviation (columns "std"), the minimum value (columns "min") and the maximum (columns "max").

Table 1 shows that DGLS is able to find the path towards an optimal solution twice or three times more often than the standard LS. Notice that DGLS does not find the optimum only in the beginning of the search (by directly re-constructing the original optimal solution). It might need sometimes more than 150000 iterations to reach an optimal solution, after having examined tens or hundreds of spheres. We will see in Section 4.1.2 below that a sphere examination can often take less than 1000 iterations.

We now consider a different experimental protocol, using the same parameters as above. We execute 5 times 300000 iterations of the underlying LS and we take the best solution ever visited. Then, we launch from this solution 10 times DGLS and 10 times the underlying LS. results obtained by DGLS and LS following this protocol on a set of overly difficult instances (the number of colors one unit lower than the best known upper bound). For both algorithms, Table 2 reports the minimum (bst), average (avg) and maximum (worst) number of conflicting edges (edges with both end vertices of the same colors) obtained over 10 executions. Notice DGLS achieves improved results on all instances, with regards to all three criteria.

Insights into the sphere examinations

Natural questions regarding DGLS include:

-What does the global trajectory of DGLS looks like? -How many candidate solutions are usually visited during a sphere examination? -How many iterations can take a run launched from a center, or equivalently how long is the innermost repeat-until loop of Algorithm 1 in Section 2.2 ? -What is the average distance from the center c to the best solution found by a run launched from c? Do different runs launched from c lead to finding similar best solutions?

To provide an intuitive answer such questions, we propose using a Multidimensional Scaling (MDS) procedure that creates a 2D visualization (projection) of the visited sphere centers and of the distances between them. This MDS procedure3 takes as input a matrix of distances (between colorings) and generates a set of Euclidean points such that the distances between these points represent an approximation of the initial distances. The quality of this approximation can be evaluated using a loss function (the Kruskall stress). In our cases, the value of this loss function is usually between 0.2 and 0.3.

Regarding the quality of the MDS projections, we can discuss an example on Figure 1. The table on the right provides the real distances between the points START, 1, 2, 3, 4 and 5. One could check the Euclidean distances in the figure are approximately not far from the real distances in the table. We can safely conclude from Figures 12that the number of iterations of a run can vary from 50 = maxRadius to values of hundreds or thousands. In the beginning, the starting solution has many conflicts that can be solved directly, making the search rapidly leave the proximity of the starting solution. Naturally, DGLS finds sphere centers of increasingly improved quality over the time, and so, the search process spends more iterations on plateaus close to such centers; thus, later runs require more iterations. The distance between the sphere center and the best coloring reported by a run can evolve from very large values in the beginning (close to maxRadius) to values close to zero (this can be seen in Figure 2, starting with center 12).

We also notice that, in the beginning, the three runs launched from a center follow quite similar paths, i.e., observe the three arrows originating from the point START in both figures. The underlying Tabu Search is basically executing three times a similar Steepest Descent, as the center START has many conflicts that can be easily solved. However, towards (the middle and) the end of the DGLS execution, we observe the opposite behaviour: we notice a star-like shape of three arrows originating at each point, i.e., the three runs launched from the same center can seriously diverge in all directions.

As expected from theory, Figures 12suggest that DGLS does follow a tree-like trajectory. The execution in Figure 2 is more challenging: there are quite numerous arrows pointing towards the top of the figure, representing runs could lead DGLS away from the optimal solution (see centers 6, 11, and those above 12). These branches were fortunately cut by DGLS; its intensification mechanism managed to keep the main search process on a region not far from the optimal solution.

The above conclusions are generally confirmed by other MDS representations for DGLS executions on different graphs. We refer the reader to Appendix B for more MDS figures of other DGLS trajectories.

Comparing to random restarts and other sphere ranking criteria

Let us explore other DGLS variants, to gain more insight into the impact of the individual components that constitute DGLS. We will also compare these DGLS flavors with two standard LS methods that do use restart mechanisms as well. Specifically, we consider the following four algorithms: In such cases, the sphere examination is not really confined to a sphere of radius maxRadius as usually. However, this is not always so bad and it might not necessarily happen very often in practice. 3 A standard LS algorithm that applies a restart from the best-known solution every 30000 iterations. 4 A standard LS algorithm that applies a restart from the best-known solution every 100000 iterations.

Table 3 presents a comparison of the DGLS and LS variants presented above, using three rows for each variant. The columns of this table are exactly the same as those of Table 1, except for the fact that we replaced the last columns with the number of restarts. For DGLS, this number of restarts in the last column actually signifies the number of centers from which DGLS launched LS runs. By dividing the number of iterations by this number of restarts, one can form an opinion of the average number of iterations executed by an individual run inside a sphere.

Table 3 shows that the success rate of an LS method with restarts is only about half of the success rate of a DGLS variant, even if an LS with restarts can perform better than a pure LS without restarts (compare with the LS data from Table 1).

Comparing the three DGLS variants among them lead to more mixed conclusions. For example, the results of the DGLS version with a FIFO sphere ranking criterion are very similar to those of the standard DGLS, which hints the second criterion for ranking spheres is not essential. The DGLS version that computes distances every 200 iterations generates slightly worse results. On the other hand, this DGLS variant computes less distances.

Recall that DGLS was deliberately designed to support a variety of (ways of combining the presented) intensification techniques, rather than a would-be "unique DGLS way". For instance, preliminary experiments suggest that it could be useful to make DGLS even more aggressive as follows: allow DGLS to switch to a new center s immediately after finding a solution s of better quality than the current center c. One would need to modify Algorithm 1 to make it break the loop starting at Line 5 whenever it finds a solution s better than the current center c. As such, DGLS could (temporarily) abandon the goal of performing all runsPerSphere runs from c. However, after finishing exploring the sphere of s, DGLS could later come back to c (if c is at the beginning of the queue).

The k-clique and the k-cluster Problem

The goal of the k-cluster problem with unitary edge weights is to maximize the number of edges in an induced subgraph of size k. In fact, we will present results with regards to the minimization version of this problem, i.e., minimize the number of non-edges (missing edges) in an induced subgraph of size k. We will actually only test the k-clique version of the problem, i.e., we always choose values of k for which we know there exists at least one complete k-cluster (perfect clique) with k vertices.

We prefer to evaluate DGLS using a relatively basic canonical Tabu Search (TS) algorithm as the underlying LS. This TS encodes candidate solutions as 0/1 arrays with exactly k ones representing k selected vertices. At each iteration, it chooses the best vertex swap: remove a selected vertex v in from the current solution and replace it with some non-selected vertex v out . The best swap is the one that leads to the highest objective value improvement, breaking ties randomly in case of equality. The implemented TS uses incremental streamlined calculations to rapidly evaluate the objective value variation of each swap, see Appendix A.2.

After de-selecting v in , this vertex becomes Tabu for 10 + random(5) moves. Despite this Tabu mechanism, our TS is more prone to stagnation than the LS for graph coloring from Section 4.1. It could sometimes loop for a long time on a plateau or on a quasi-plateau, i.e., on a set of connected solutions with the same or very close 4 objective values. Our TS uses the following technique to prevent such looping. After the first 1000 iterations, the TS counts the number iters plat of last consecutive iterations spent on a quasi-plateau. It then increases the above Tabu list length by iters plat for all moves that keep the search on the current quasi-plateau, similarly to what we did using the term itersplat 1000

in the Tabu list length for the graph coloring TS. The more iterations are spent on a quasi-plateau, the longer the Tabu status of many vertices typically selected by solutions of the quasi-plateau. This eventually imposes the selection of other non-Tabu vertices, leading the search to new areas.

To avoid slowing down DGLS with distance calculations, we also perform an incremental calculation of the distance from the current solution to the sphere center. This is relatively straightforward, because it is not difficult to update the distance (to the center) value after swapping vertices v in and v outsee exact calculation details in Appendix A.2.

The C++ source code of both LS and DGLS for the k-cluster problem are publicly available on-line at cedric.cnam.fr/ ~porumbed/dgls/. We can say it is a "human-size" code of about 1200 lines; the fact that the underlying LS is canonical TS with few fancy features may simplify reading the code.

General results on k-clique instances

We will compare DGLS with LS using a total number of iterations of maxIter = 1.000.000. The spheres are sorted according to the objective value of the center, breaking ties according to the FIFO order. We set the number of runs per sphere at runsPerSphere = 3 as in the graph coloring case. The radius value has been set to maxRadius = 1.5 • k, because we observed that maxRadius = k does not seem enough, i.e., our TS can often reach a distance of k in only We apply all three techniques for avoiding stagnation from Section 2.3 and they are instantiated as follows. In technique 1, the maximum number of iterations per sphere is set at 10 • n. Technique 2 is instantiated with no modification. To implement technique 3, we associate to each run a repulsion force f that can increase along the iterations depending on the distance from the visited solutions to the center. More exactly, for each visited solution s such that obj(s) = obj(c) and d(s, c) < 1 2 maxRadius, we increase f by a ∆ s,c value inversely proportional 5 to d(s, c). This repulsion force f acts as follows: we increase the Tabu list length by f for all vertices v that contribute to the Hamming distance d(s, c), i.e., such that (i) s[v] = 1 and c[v] = 0 or (ii) s[v] = 0 and c[v] = 1. This progressively repulses the run from the center, because a high repulsion force encourages fixing vertices that contribute to 5 We uses ∆s,c = 1 d(s,c)+3 . For example, if the search revisits 30 times the center c, then we obtain a total repulsion force of 30 • 1 3 = 10. As such, the currently selected vertices that do not belong to the center stay Tabu 10 iterations more. This encourages DGLS to deselect vertices that do belong to the center, thus repulsing the search away from it.

the distance to c . If f is non-zero at the end of a run launched from c, we then insert in the priority queue the best solution bstFar that satisfies d(bstFar, c) ≥ 9 10 maxRadius. For many k-clique instances, the TS implemented in this section reports the same result over all executions. One can also observe this phenomenon for the faster TS from [START_REF] Wu | An adaptive multistart tabu search approach to solve the maximum clique problem[END_REF], where Table 1 announces a success rate of 100% for all but three graphs. Our TS has less fancy features and allows a larger variation of the final best objective values. However, we did need to restrict the study to several graphs on which our TS does report significantly different final results. We also introduce two new instances keller4 +1 and keller4 +2 obtained by modifying the keller4 instance. The original keller4 instance is not very difficult, because it contains numerous perfect cliques of size 11. We took one of these cliques of size 11 and removed some of the edges linking it to the rest of the graph, so as to isolate (hide) it; finally, we added an artificial vertex that is only linked to the chosen clique of size 11. The maximum clique in the resulting instance is thus 12, but it is more difficult to find it. 6 Since DGLS is primarily designed to achieve intensification, it makes sense to evaluate it by launching DGLS from a solution moderately close to an optimal clique, as in Section 4.1.1. For this purpose, we took a perfect clique for each graph, we replaced a number of vertices with vertices outside the clique and we launched both DGLS and LS from the resulting perturbed solution.

Table 4 (previous page) presents this comparison of DGLS and LS, reporting the instance in Column 1 (the graph, n and k), the algorithm version in Column 2 (one row on DGLS, one on the underlying LS), the above number of vertices from a perfect clique replaced with other vertices (Column 3), the 6 These two instances are publicly available on-line, along with the LS/DGLS source code in C++ at http://cedric.cnam.fr/ ~porumbed/dgls/. number of successful executions (finding a perfect clique) out of 10 (Column 4), followed by statistical results on the final objective values reported by the 10 executions (Columns "Final objective values") and statistical results on the number of iterations needed by the successful executions (last 4 columns).

The statistical results include: the average value (columns "avg"), the standard deviation (columns "std"), the minimum value (columns "min") and the maximum value (columns "max"). Table 4 shows that DGLS can indeed achieve stronger intensification. Except for the first two graphs, if finds the path towards an optimal solution twice or three times more often than the standard LS. Even for the first two graphs, it needs far less iterations than the underlying LS to reach the optimum.

Insights into the sphere examinations

All questions regarding the graph coloring DGLS from Section 4.1.2 are equally relevant for the k-clique problem. We thus use the same Multidimensional Scaling procedure from Section 4.1.2 to provide an intuitive visualization of the DGLS trajectory, so as to (try to) offer an answer to such questions.

Figures 3 and4 confirm that DGLS follows a tree-like trajectory as expected from theory. In Figure 3, one notices many arrows (runs) that point towards the optimal solution, without directly reaching it. However, it is clear that DGLS can find an optimal solution virtually with probability 100%, by taking as starting center any of the end points of these arrows. On the other Fig. 3: MDS representation of the running profile of a short successful DGLS execution on c-fat500-2 with maxRadius = 40. The points represent sphere centers and the associate labels indicate the order of the discovery of these centers; each arrow points to the best solution (future center) reported by a run launched from a center. The starting point START was generated by dislocating 14 selected vertices from a perfect clique, i.e., START is at distance 28 from an optimal solution. However, the optimal solution OPT discovered by DGLS is at distance 40 from START. The three solutions discovered from START are at distance 28, i.e., DGLS "repaired" the 14 dislocated vertices at each run from START.

hand, a standard LS could also follow a path towards a point like 4 and thus miss the region at the right of the figure with optimal solutions. Figure 4 shows a more challenging DGLS execution. One can notice that many arrows do not point at all towards the optimal solution, and so, certain runs could easily lead DGLS away from interesting areas. These branches were fortunately cut by DGLS and its strong intensification mechanism managed to lead the main search process to a region that does contain an optimal solution.

Comparing to other random restarts or sphere ranking criteria

As in Section 4.1.3 on graph coloring, we now investigate other DGLS and LS variants. This will also be very useful for evaluating the contribution of the different techniques incorporated into DGLS and LS. More exactly, we will compare the standard DGLS with the following four algorithms:

1. DGLS with particularly small spheres, using maxRadius = 0.25 • k instead of maxRadius = 1.5 • k. 2. DGLS with a maximum number of iterations per sphere of 1000 • n instead of 10 • n. 3. DGLS with none of the stagnation avoidance techniques from Section 2.3. 4. LS with 10 restarts during the maxIter = 1.000.000 iterations. that imposing a maximum number of iterations per sphere is not always necessary. Using a very large value for this parameter, DGLS could still solve two instances with a 100% success rate, but fail 8 times on c-fat500-2.

The impact of the stagnation avoidance techniques from Section 2.3 can be evaluated using the fourth block of rows (rows 12-14) of Table 5. We notice that by removing these techniques, the success rate is reduced for two graphs. Even if the success rate for MANN 27 remains the same, the number of runs launched from sphere centers is much larger, which suggests that this DGLS variant needed more effort to find the optimum. The reason for the failures of this DGLS variant on c-fat500-2 comes from the fact that the search process is actually blocked looping on a plateau around a local optimum (inside a sphere). Indeed, notice that this DGLS launched in average only 4 runs (see last column) from sphere centers during all 1.000.000 iterations.

Finally, the last three rows concern an LS variant that executes 10 random restarts during the maxIter = 1.000.000 iterations. This LS variant does not reach results that can change our main conclusions. For example, it fails almost half of the time on MANN a27, while this instance is solved with a 100% success rate even by the simplest DGLS variants.

The Capacitated Arc Routing Problem (CARP)

In this section, the underlying LS is a simplified version of the Iterated Local Search (ILS) from [START_REF] Porumbel | Iterated local search and column generation to solve arc-routing as a permutation set-covering problem[END_REF]. We recall that this LS works with permutations of the set E R of edges requiring service; any permutation is decoded into explicit routes by applying a decoder based on dynamic programming. The main simplifications compared to [START_REF] Porumbel | Iterated local search and column generation to solve arc-routing as a permutation set-covering problem[END_REF] neighborhood only consists of adjacent swaps on permutations. More details on the algorithm are provided in Appendix A.3 or directly in [START_REF] Porumbel | Iterated local search and column generation to solve arc-routing as a permutation set-covering problem[END_REF].

Since the evaluation of each permutation requires a decoder that is relatively computationally intensive,7 there is no important slowdown induced by a straightforward distance calculation. Recalling the distance definition (3.1) from Section 3.2.3, we notice this distance calculation requires n(n-1) 2 comparisons. Finally, the sphere radius is set at maxRadius = 5 • n and the number of runs per sphere is runsPerSphere = 3 as for k-coloring and k-cluster.

Table 6 compares LS and DGLS on several CARP instances on which the difference between the results of LS and DGLS are relatively large. For both methods, we allow 300 seconds per execution. Columns 3 and 6 show that DGLS obtains a better minimum objective value with only one exception (egl-S1-B). Columns 4 and 7 show that DGLS obtains a lower average objective value in all instances but one (egl-S1-B).

Finally, all results from this section were obtained on an Intel Xeon CPU (E5-2630) clocked at 2.4GHz. The k-cluster and k-coloring algorithms were implemented in C++ and compiled by gnu g++ with -03 optimization option. The CARP algorithm was implemented in Java, version 1.7. Notice there exists a benchmark for comparing coloring algorithms on different instances,8 useful for providing a hardware-independent measure of CPU speed. This benchmark leads the following user times on our machine: 5.05s for r500.5.b, 1.33 for r400.5.b, 0.28 for r300.5.b, and 0.05 for r200.5.b.

Conclusions and Prospects

Distance measures have been used relatively rarely in local search algorithms and usually for diversification reasons rather than for intensification. In this work, we have demonstrated that distances can be used to increase the intensification potential of a given LS. The proposed distance-guided local search framework operates on top of an underlying local search to equip it with a number of intensification mechanisms discussed throughout the paper. An important change is that the trajectory of the resulting DGLS algorithm is no longer a continuous path of visited solutions, but a tree-like structure composed of examined spheres and non-examined spheres. Experiments on three representative problems (k-coloring, k-clique and Capacitated Arc-Routing) show that DGLS can improve the underlying LS.

The proposed DGLS is not an exact recipe which must be closely followed in any attempt to improve an existing LS, but rather a synthesis of converging ideas on the use of distances in LS. Not all presented distance ideas might work very well on any new problem; as such, one could use only some of these ideas, i.e., the ones that prove to be the most effective for the considered problem. For instance, it might not always be necessary to record the spheres in a priority queue. Without resorting to Algorithm 1, one could only use the stagnation avoidance techniques from Section 2.3 which can enable the given LS to detect when it is stuck looping on a plateau around a center, so as to to change its trajectory accordingly.

Finally, the distance calculation overhead could always be kept within reasonable limits, using a different idea for each of the three considered problems. For graph coloring, the distance has to be computed only once in tens of iterations, using arguments from point 6 of Section 2.2. For the clique problem, the distance to the center can be incrementally calculated in constant time at each iteration, see Appendix A.2. For the CARP, the objective function evaluation requires running a permutation decoder based on dynamic programming and this is a more important computational bottleneck than the distance calculation.

A The underlying local searches and their streamlined calculations

A.1 Graph k-Coloring

The underlying LS for graph k-coloring is the Tabu Search (TS) from [START_REF] Daniel Cosmin Porumbel | A search space "cartography" for guiding graph coloring heuristics[END_REF]. A solution s is represented as an array of length n such that sv is the color of vertex v. A neighboring solution can be obtained by simply changing the color sv of any conflicting vertex v to some s v . By focusing on conflicting vertices, this neighborhood helps the search process to concentrate on influential moves and to avoid irrelevant ones, because changing the color of a non-conflicting vertex would not directly improve the objective function.

After executing a move and assigning a new color to a vertex v, v can not receive again the lost color for the next T iterations. The value of T is set at random(10) + 0.6 • obj(s) + itersplat 1000

, where itersplat is the number of last moves with no objective function variation.

The last term is only introduced to change T when the algorithm is blocked looping on a plateau and the objective value does not change for 1000 moves. Each series of consecutive 1000 moves with no objective function variation triggers the increment of all subsequent tabu list lengths, which encourages TS to choose more and more moves that have not been executed in the past, until the objective changes again and TS leaves the plateau. This additional term prevents the search process from getting blocked looping on a plateau while not affecting its behavior outside plateaus.

To rapidly choose the best neighbor of s, this TS uses a n × k table Γ such that Γ v,s v indicates the number of conflicts of v if v received color s v . As such, Γ v,s v -Γv,s v represents the objective function variation associated to the move that changes the color of v from sv into s v . After performing a move, Γ can be updated in O(n) time (because only columns sv and s v might require updating).

A.2 k-cluster: incremental calculations of objective value and distance

The main ideas of the k-clique Tabu Search (TS) algorithm were presented in the first paragraphs of Section 4.2. We here describe how it uses incremental calculations to rapidly find the best swap of vertices at each iteration. For this, the TS uses a table that associates to each non-selected vertex v out the number of edges that it can bring to the current solution. For a selected vertex v in , this table records the number of edges linked to v in in the current solution. To find the best swap, it is enough to consider each selected vertex v in and each non-selected one v out and to calculate (in constant time using the above table!) the objective function variation of swapping v in with v out . After executing the move, the table values of v in and v out are quite easily updated, by scanning their neighbors modified by the last move. For a more complex and faster calculation streamlining scheme, we refer the reader to [START_REF] Wu | An adaptive multistart tabu search approach to solve the maximum clique problem[END_REF]. However, using a slower (and more pedagogical) algorithm poses no problem for the empirical evaluations needed in this paper.

The calculation of the distance from the current solution s to the current center c is also incremental. If s is obtained from s by swapping a and b, then

A.3 Capacitated Arc-Routing (CARP)

The underlying LS for CARP is based on a simplification of the Iterated Local Search (ILS) from [START_REF] Porumbel | Iterated local search and column generation to solve arc-routing as a permutation set-covering problem[END_REF]. The original ILS considers a search space of permutations that are decoded into explicit routes using a decoder (see below). The main simplifications are the following. First, all Column Generation (CG) components of the algorithm from [START_REF] Porumbel | Iterated local search and column generation to solve arc-routing as a permutation set-covering problem[END_REF] are removed, allowing one to more easily compare LS with DGLS, using less external components. Secondly, the neighborhood is restricted to only use adjacent transpositions (swaps), i.e., a neighbor permutation is constructed by swapping consecutive elements of the current permutation. This allows one to achieve a correlation between a distance d(sa, s b) and the number of LS moves needed to reach sa from s b . We do not use any post-decoder as in [START_REF] Porumbel | Iterated local search and column generation to solve arc-routing as a permutation set-covering problem[END_REF].

The perturbation operator of this ILS consists of inserting in the current solution a route (sequence) discovered earlier during the search [13, §2.1]. More exactly, to perturb the current permutation s, we extract a route r from a pool, we inject r at the beginning of s and we remove from s any duplicate element of r. The pool is continually updated throughout the search, by adding routes discovered by the ILS at different moments of the search.

Finally, the decoder consists of a dynamic programming routine of linear complexity in terms of the number of clients |E R |, i.e., the complexity is O(|E R |). More precisely, given input permutation s = (s 1 , s 2 , . . . sm), the decoder determines a set of routes of minimum total cost that service all required edges in the order s 1 , s 2 , . . . sm. Since the decoder is relatively computationally intensive, the distance calculations do not introduce an important slowdown in the search.

Fig. 1 :Fig. 2 :

 12 Fig. 1: MDS plot of the running profile of a short successful DGLS execution on dsjc250.5with maxRadius = 50. Each point represents a sphere center; each arrow i iters -→ j indicates that the sphere center j was discovered in iters iterations by a run launched from i. The starting point labelled START was generated by randomly modifying 100 colors of a legal coloring. OPT is the optimal solution found by DGLS.

Figures 1 -

 1 Figures 1-2 plot the MDS representations of two DGLS executions on the smallest random graph dsjc250.5 with k = 28 colors. Each arrow represents a

1 2 k

 2 iterations by simply changing 1 2 k vertices. More generally, Appendix C presents a test that evaluates the success rate of DGLS for different values of runsPerSphere and maxRadius. Generally speaking, this test indicates that [0.75•k,1.75•k] is an interval of safe values for maxRadius and[START_REF] Cedeño | Analysis of speciation and niching in the multi-niche crowding GA[END_REF][START_REF] Drezner | A new heuristic for the quadratic assignment problem[END_REF] is an interval of safe values for runsPerSphere.

Fig. 4 :

 4 Fig. 4: Running profile of a more challenging successful DGLS execution on MANN a27 with maxRadius = 189. Each point represents a sphere center. The path from the starting point START to the optimum solution OPT is depicted in red; OPT is at distance 114 from START. DGLS started out by visiting a quite far point 2, at distance 148 from START. It then came back closer to START at point 5, before eventually finding a way towards OPT.

 d(s , c) = d(s, c) -[sa = ca] + [s b = c b] old contribution to the Hamming distance + [s b = ca] + [sa = c b] new contribution to the Hamming distance , where [S] is the Iverson bracket, i.e., [S] is 1 when the statement S is true and 0 otherwise. If the move consists of deselecting a selected vertex a = v in and of selecting a non-selected vertex b = v out , the above formula becomes d(s , c) = d(s, c) -[1 = ca] + [0 = c b] + [0 = ca] + [1 = c b] . One can check all possible cases of ca and c b to see this leads to the following simpler formula: d(s , c) = d(s, c) + 2 • ca -2 • c b .

B

 MDS plots of other DGLS trajectories for graph k-coloring -140 -120 -100 -80 -60 -40 -140-120-100-80 -60 -40 -20 0 20 40 60 80 100 120 140 160 -

 Algorithm 1 Distance-Guided Local Search (DGLS)

	1: c ←initial-candidate-solution()	
	2: Q spheres ← {c}	the first sphere in the queue Q spheres
	3: repeat	
	4:	c ← dequeue(Q spheres)	
	5:	loop runsPerSphere times	This loop performs a sphere examination
	6:	s ← c	
	7:	bst ← c, distBst ← 0	best solution of current run with d(bst, c) = 0
	8:	repeat	
	9:	s ← LS-Step(s)	increase an iteration counter here
	10:	distToCenter ← 0	
	11:	if need-calc-dist()	It might not be necessary to calculate the
	12:	distToCenter = d(c, s)	distance at each iteration, see point 6 below
	13:	end if	
	14:	if (obj(s) < obj(bst)) or	
	15:	(obj(s) = obj(bst) and distToCenter > distBst)
	16:	bst ← s	
	17:	distBst← distToCenter
	18:	end if	
	19:	until distToCenter > maxRadius or inner-stop-condition()
	20:	insert(bst, Q spheres)	insert it in the queue at the appropriate position
	21:	end loop	
	22: until general-stop-condition()	return best objective value ever reached

 1. initial-candidate-solution() is a routine that provides the search process with an initial candidate solution that is either obtained by external means or generated at random. 2. dequeue(Q spheres) returns the center of the first sphere and removes it from the priority queue.

	3. LS-step(s) calls the underlying LS operator to move from the current
	solution s to a neighboring solution s next , returning s next . By sequentially
	calling s ←LS-step(s) multiple times, one actually executes the under-lying LS. This LS should incorporate techniques to avoid getting blocked
	on a unique local optimum, e.g., one should not use a simple deterministic
	Steepest Descent (or First Improvement) that is very prone to looping by
	visiting and revisiting the same local minimum again and again.
	4. insert(bst, Q spheres

Table 1 :

 1 14],2 we modify a number Comparison of DGLS and standard LS launched from a coloring obtained by randomly modifying a number of colors ("Start dist." in Column 3) of a legal coloring. DGLS has significantly higher success rates.

		Algo-	Start Succes Final objective values		Iterations to success
	Graph, k	rithm	dist.	rate	avg (std) min max	avg (std) min	max
	le450 25c, 25 DGLS	150	5/10	1.1 (1.1) 0	2	69901 (97969) 774
	le450 25c, 25 LS	150	2/10	2 (1.5) 0	5	68060 (66132) 1928
	le450 25d, 25 DGLS	190	5/10	2 (2.3) 0	6	40906 (46484) 3468
	le450 25d, 25 LS	190	1/10	2.9 (1.8) 0	5	70035 (0) 70035 70035
	flat300 28, 28 DGLS	200	5/10	12.3 (15.3) 0	36	72331 (84670) 2577
	flat300 28, 28 LS	200	0/10	35.9 (2) 31	38	-	(-)	-	-
	dsjc250.5, 28 DGLS	140	4/10	0.7 (0.6) 0	2	148541 (74090) 80443
	dsjc250.5, 28 LS	140	0/10	1.5 (0.5) 1	2	-	(-)	-	-
	dsjc500.1, 12 DGLS	300	6/10	1.1 (1.9) 0	6	31430 (38929) 1794
	dsjc500.1, 12 LS	300	0/10	3.3 (1.3) 1	5	-	(-)	-	-
	dsjc500.5, 48 DGLS	230	5/10	0.8 (0.9) 0	2	66981 (55317) 20765
	dsjc500.5, 48 LS	230	3/10	3.8 (3.8) 0	11	4900 (3779) 1985 10237
	dsjc500.9, 126 DGLS	150	10/10	0 (0) 0	0	20398 (36871) 933
	dsjc500.9, 126 LS	150	4/10	0.7 (0.6) 0	2	61623 (87229) 1022
	dsjc1000.1, 21 DGLS	800	4/10	1.3 (1.4) 0	4	153604 (42788) 80134
	dsjc1000.1, 21 LS	800	1/10	2.4 (1.1) 0	4	257524 (0) 257524
	dsjc1000.5, 85 DGLS	450	4/10	8.1 (7.8) 0	25	116658 (43243) 53091
	dsjc1000.5, 85 LS	450	0/10	15.3 (7.2) 3	25	-	(-)	-	-
	dsjc1000.9, 223 DGLS	250	10/10	0 (0) 0	0	13631 (35213) 511
	dsjc1000.9, 223 LS	250	4/10	0.9 (0.8) 0	2	5904 (8547) 642 20701

Table 2

 2

	compares the

Table 2 :

 2 Graph k-coloring result on overly-difficult instances; both LS and DGLS were launched from the best solution visited by 5 LS runs of 300000 iterations.

Table 3 :

 3 1 A DGLS version in which the second criterion for ranking spheres (see point 4 of the list below Algorithm 1 in Section 2.2) is replaced by a First In First Out (FIFO) policy. The sphere centers in the priority queue are still sorted by their objective values, but this DGLS variant breaks ties using the FIFO (arrival) order. Comparison of 3 DGLS variants with 2 LS variants with restarts

		Algorithm	Start	Succes Final objective values Restarts
	Graph, k		dist.	rate	avg (std) min max	avg
	le450 25c, 25		150	5/10	1.1 (1.1) 0	2	9.8
	flat300 28, 28	DGLS-standard	200	5/10	12.3 (15.3) 0	36	203.8
	dsjc250.5, 28		140	4/10	0.7 (0.6) 0	2	49.3
	le450 25c, 25 DGLS with FIFO sphere flat300 28, 28 ranking (second criterion) dsjc250.5, 28	150 200 140	5/10 4/10 4/10	1.3 (1.6) 0 18.6 (15.3) 0 1 (1) 0	5 35 3	6.4 162 51.9
	le450 25c, 25	DGLS that computes	140	6/10	0.9 (1.1) 0	3	6
	flat300 28, 28	distances only every 200	200	1/10	30.1 (10.4) 0	37	122.8
	dsjc250.5, 28	iterations	140	4/10	0.8 (0.7) 0	2	36.1
	le450 25c, 25 Standard LS with a restart	150	3/10	1.3 (1.5) 0	5	7.7
	flat300 28, 28	applied every 30000	200	1/10	28.3 (9.6) 0	35	9
	dsjc250.5, 28	iterations	140	2/10	1 (0.6) 0	2	8.3
	le450 25c, 25 Standard LS with a restart	150	3/10	1.7 (1.3) 0	4	2.1
	flat300 28, 28	applied every 100000	200	0/10	33 (2) 30	36	3
	dsjc250.5, 28	iterations	140	1/10	1.3 (0.6) 0	2	2.7

2 A DGLS version that calculates the distance value only every 200 iterations. Recall that Algorithm 1 uses a function need-calc-dist() that is generally used to skip computing distances when exact distance values are not needed. For instance, if the current solution is at distance 0.2 • maxRadius from the center, the next 0.8 • maxRadius iterations can not lead to distances larger than maxRadius. But if the distance calculation is skipped for 200 iterations, an LS run can leave the sphere during these iterations.

Table 4 :

 4 Comparison of DGLS and standard LS launched from a solution obtained by dislocating a number ("Dislocated vtx" in Column 3) of vertices from a perfect clique.

			Algo-	Disloca-Succes Final objective values		Iterations to success
	Graph,	n, k	rithm	ted vtx	rate	avg (std) min max	avg (std) min	max
	C1000.9, 1000, 68 DGLS	40	10/10	0 (0) 0	0	5061 (13185) 157 44605
	C1000.9, 1000, 68 LS	40	9/10	0.1 (0.3) 0	1	294406 (191687) 166278
	C500.9, 500, 57 DGLS	40	10/10	0 (0) 0	0	7394 (11984) 379 36801
	C500.9, 500, 57 LS	40	10/10	0 (0) 0	0	131209 (120215) 346
	MANN a27, 378, 126 DGLS	21	10/10	0 (0) 0	0	26756 (37578) 14
	MANN a27, 378, 126 LS	21	5/10	0.7 (0.8) 0	2	280488 (299632) 14
	c-fat500-2, 500, 26 DGLS	14	10/10	0 (0) 0	0	29084 (20134) 15	62210
	c-fat500-2, 500, 26 LS	14	4/10	7.2 (5.9) 0	12	200016 (244950) 15
	c-fat500-5, 500, 64 DGLS	34	10/10	0 (0) 0	0	18864 (2651) 16359 23982
	c-fat500-5, 500, 64 LS	34	0/10	31 (0) 31	31	-	(-)	-	-
	keller4 +1 , 172, 12 DGLS	5	8/10	0.2 (0.4) 0	1	231362 (167365)	6
	keller4 +1 , 172, 12 LS	5	1/10	0.9 (0.3) 0	1	6	(0)	6	6
	keller4 +2 , 172, 12 DGLS	6	5/10	0.5 (0.5) 0	1	29525 (58946) 30
	keller4 +2 , 172, 12 LS	6	2/10	0.8 (0.4) 0	1	101532 (27384) 74148

Table 5

 5 compares these algorithms. The second block or rows (rows 6-8) suggest that using a very small radius maxRadius = 0.25 • k leads to weaker DGLS flavor. Such DGLS can end up generating (a web of) thousand of small spheres (see the last column) associated to small-length runs that do not have enough intensification strength. The third block of rows (rows 9-11) shows

		Algorithm	Start Succes Final objective values Average
	Graph, n, k		dist.	rate	avg (std) min max	restarts
	C500.9, 500, 57		40	10/10	0 (0) 0	0	7
	MANN a27, 378, 126	DGLS-standard	21	10/10	0 (0) 0	0	10.3
	c-fat500-2, 500, 26		14	10/10	0 (0) 0	0	3.9
	C500.9, 500, 57	DGLS with a small	40	4/10	1.3 (1.2) 0	3	24265.2
	MANN a27, 378, 126	maxRadius = 0.25k	21	9/10	0.1 (0.3) 0	1	4068.5
	c-fat500-2, 500, 26	instead of 1.5k	14	5/10	6 (6) 0	12	595.7
	C500.9, 500, 57	DGLS with max	40	10/10	0 (0) 0	0	23.5
	MANN a27, 378, 126	1000•n (100x more)	21	10/10	0 (0) 0	0	12.6
	c-fat500-2, 500, 26	iterations per sphere	14	2/10	9.6 (4.8) 0	12	1.8
	C500.9, 500, 57 MANN a27, 378, 126 c-fat500-2, 500, 26	DGLS with no stagnation avoidance	40 21 14	7/10 10/10 3/10	0.6 (0.9) 0 0 (0) 0 8.4 (5.5) 0	2 0 12	871.5 254.2 4
	C500.9, 500, 57	Standard LS with a	40	10/10	0 (0) 0	0	2.2
	MANN a27, 378, 126	restart every 100000	21	6/10	0.6 (0.8) 0	2	7.7
	c-fat500-2, 500, 26	iterations (max 10)	14	5/10	3.6 (5.5) 0	12	6.3

Table 5 :

 5 Comparison of different DGLS and LS variants

Table 6 :

 6 come from the fact that we use no Column Generation and no local search on explicit (decoded) routes. Additionally, our Results of LS and DGLS on CARP considering a time limit of 300 seconds. For each row, we execute 10 times LS and DGLS.

	CARP instance		LS			DGLS	
	Graph, best	bst	avg	worst	bst	avg	worst
	egl-S1-A, 5018	5154	5249.5	5336	5050	5180.8	5276
	egl-S1-B, 6388	6454	6584	6658	6473	6599.7	6658
	egl-S1-C, 8518	8725	8778.6	8852	8616	8710	8917
	egl-S2-A, 9884	11057 11166.8 11379	10993 11148.9 11379
	egl-S2-B, 13100	16251 16677.1 16861	16140 16602.9 16895
	egl-S2-C, 16425	18998 19582.1 19868	19309 19568.9 19807
	egl-S3-A, 10220	11236 11334.1 11391	11236 11289.9 11342
	egl-S3-B, 13682	16251 16677.1 16861	15468 16007.1 16251
	egl-S3-C, 17188	19392 19581.3 19650	19306	19460	19627

Table 8 :

 8 The success rate of DGLS for different value of maxRadius (above table) or runsPerSphere (below table) on the k-clique problem. See alsoTable 4 (p. 18) for the main results with maxRadius = 1.5 • k and runsPerSphere = 3 that correspond to the bold column in both tables above. Recall DGLS is launched from a solution obtained by dislocating a number (Column "Dislocated vertices?') of vertices from a perfect clique.

			Dislocated				maxRadius			
	Instance,	n, k	vertices	0.25•k	0.5•k	0.75•k	1•k	1.25•k	1.5•k	1.75•k	2•k
	C1000.9, 1000, 68	40	6/10	9/10	8/10	10/10	10/10	10/10	10/10	10/10
	C500.9, 500, 57	40	7/10	9/10	7/10	7/10	10/10	10/10	10/10	6/10
	MANN a27, 378, 126	21	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10
	c-fat500-2, 500, 26	14	0/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10
	c-fat500-5, 500, 64	34	0/10	0/10	10/10	10/10	10/10	10/10	10/10	10/10
	keller4 +1 , 172, 12	5	1/10	0/10	10/10	9/10	9/10	8/10	7/10	0/10
	keller4 +2 , 172, 12	6	2/10	4/10	2/10	1/10	10/10	5/10	10/10	7/10
			Dislocated			runsPerSphere			
	Instance,	n, k	vertices	1	2	3	4	5	6	7	
	C1000.9, 1000, 68	40	10/10	8/10	10/10	8/10	10/10 10/10 10/10	
	C500.9, 500, 57	40	10/10	9/10	10/10	10/10	7/10	0/10	0/10	
	MANN a27, 378, 126	21	2/10	10/10	10/10	10/10 10/10 10/10 10/10	
	c-fat500-2, 500, 26	14	10/10 10/10 10/10	10/10 10/10 10/10 10/10	
	c-fat500-5, 500, 64	34	10/10 10/10 10/10	10/10 10/10 10/10 10/10	
	keller4 +1 , 172, 12	5	5/10	7/10	8/10	9/10	10/10 10/10 10/10	
	keller4 +2 , 172, 12	6	6/10	2/10	5/10	3/10	2/10	2/10	2/10	

For instance, in practical cases for graph coloring, one can have maxRadius = 100 and if d(c, s) =

at some iteration, then the distance calculation can be skipped 80 iterations!

Colorings available on line at cedric.cnam.fr/ ~porumbed/graphs/tsdivint/

We used the tool MDSJ "Java Library for Multidimensional Scaling (Version 0.2)" from University of Konstanz, available on-line at http://algo.uni-konstanz.de/software/mdsj/

We chose to consider two objective values obj 1 and obj 2 to be very close if and only |obj 1 -obj 2 | ≤ ∆, where ∆ is the difference between the best and the third best objective value ever discovered by the current run.

For the k-coloring and k-clique problems, the evaluation of each neighbor requires O(1) time, i.e., strong streamlining routines are used. In CARP, the evaluation of each neighbor is linear in the number |E R | edges (clients), in the number of vehicles and in the size of the longest route.

See http://mat.gsia.cmu.edu/COLOR03/ or more exactly the benchmark in the tar archive available for download at mat.gsia.cmu.edu/COLOR03/BENCHMARK/benchmark.tar.

Acknowledgments

We are grateful to the reviewers for their valuable comments which helped us to improve the paper. The idea of using MDS to represent intuitively the trajectory of an LS was originally proposed by Pascale Kuntz during the PhD thesis of the first author and this contribution is acknowledged.

C The success rate of DGLS for different values of runsPerSphere and maxRadius

Here, we analyze the effectiveness of DGLS over several values of runsPerSphere and maxRadius on the graph coloring and the k-clique problem (in Table 7 and resp.