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On the use of autocorrelation functions, permeability tensors, and 

computed tomography to characterise the anisotropy of Diesel 

particulate filter materials 

Abstract: We show how the combination of the spatial autocorrelation function 

and permeability calculations, applied to 3D X-ray computed tomography data, 

can yield quantitative information on the anisotropy of both meso-structure and 

fluid flow in Diesel Particulate Filter (DPF) materials, such as Cordierite and 

SiC. It was found that both the degree of anisotropy, and the orientation of the 

permeability and meso-structure are similar, but not identical. We confirm that 

the morphological anisotropy of cordierite materials is weak, and clearly 

influenced by the extrusion process that determines the main direction of 

anisotropy.  

Properties of the autocorrelation function are discussed and it is shown why 

estimating the characteristic lengths of real meso-structures (grain or “pore” size) 

is not possible. Finally, we show that the autocorrelation function applied on 

grey-level images can give a good estimate of the degree of anisotropy even with 

limited resolution. 

Keywords: Anisotropy; Autocorrelation function; Computed tomography; 

Permeability tensor; Diesel particulates filter; Ceramics 

Introduction 

3D images such as the reconstruction of X-ray tomography data can provide a wealth of 

information on the internal structure of materials, but quantification of specific 

geometrical or topological characteristics linked to some bulk physical property is far 

from straightforward. It is well known that properties of the crystal lattice of such 

materials are anisotropic, but the degree of anisotropy of the macroscopic properties 

depends on the meso-structure (i.e. the arrangement of the material and the pore space). 

This study focuses on methods to quantify the differences in physical properties as a 

function of direction, i.e. their anisotropy, and how it can be linked to measures of 

anisotropy of the internal structure of the material. 
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The methods to measure the anisotropy of meso-structures through image 

analysis have mostly originated from the study of 2D images to characterize deformed 

grains in the domains of geosciences [1] or metallurgy [2]. More recently, in the 

medical domain research aiming at characterizing the structure of trabecular bones has 

produced various secant-based methods to compute standardized histomorphometry 

parameters [3]. Such methods are based on shooting parallel lines at different angles in 

the object, and counting the number of traversals through the porous or solid phase 

versus the lengths of the segments.  The most widely used is called Mean Intercept 

Length (MIL) [4], others include Intercept Segmentation Deviation (ISD) [5], or Line 

Fraction Deviation (LFD) [6]. There are also point-based methods, that perform local 

measurements (again by shooting lines) from different points in the image, such as 

Volume Orientation (VO) [7], Star Chord Length (SCL) [8], Star Volume Distribution 

(SVD) [9], or Star Length Distribution (SLD) [10]. The main drawback of these 

methods is that they require segmented images, i.e. images that have been processed to 

separate the background (the pore space) and the foreground (the bone in these works). 

The segmentation step can be a strong source of error for images with high level of 

noise or affected by acquisition artefacts. Methods, circumventing the need to segment 

and thus working directly on the grey-level images, have been investigated. Examples 

are the Fast Fourier Transform (FFT) for 2D radiographs [11], Gabor wavelets [12], or 

Tensor Scale Distribution (TSD) [13]. The main problem of these methods is their 

expensive computational time that makes their extension to 3D almost prohibitive. 

These practical limitations to 2D require a priori knowledge of a symmetry plane of the 

studied material to be unbiased. An attractive alternative, combining possibility to 

process grey-level images and computational efficiency, is the spatial Auto-Correlation 

Function (ACF) [14, 15]. 
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The ACF gives a similarity measure in the volume as a function of distance and 

direction. It consists in a cross-correlation of the image with itself. The ACF belongs to 

the family of the two-points correlation functions. These functions condense a lot of 

information about the morphology of the processed images, making then suitable for 

applications as different as advanced segmentation of 3D images of granular materials 

[16] or reconstruction of different realisations of similar heterogeneous materials [17]. 

In these examples, as in most of the applications, the studied materials are considered as 

isotropic, making the two-points correlation function depend on the distance only. 

Regarding the anisotropy estimate, autocorrelation has been compared with MIL by 

Wehrli et al. in [18, 19]. For high resolution images of trabecular bones MIL is 

considered as the gold standard, but the authors favour autocorrelation because of its 

speed and lower sensitivity to noise. The ACF can be easily computed for 3D images 

after segmentation or not. As shown in this paper, when the full 3D ACF is analysed the 

different directions of anisotropy can be revealed without a priori. We focus on this 

method to quantify the anisotropy of Diesel Particulate Filter (DPF) materials from 3D 

reconstructions of X-ray tomography data and compare the results with the ones given 

by another approach based on their filtration properties. 

Diesel Particulate Filter (DPF) materials are usually porous ceramics, often 

containing micro-cracks [20, 21]. The reasons for this choice are manifold: i- they can 

be used at very high temperatures (typically around 800 °C, but sometimes in excess of 

1000 oC); ii- they have very good thermal shock resistance in their temperature range of 

application (especially if micro-cracked); iii- they are inert to many gases and 

combustion products; iv- they can be manufactured with tailored porosity fraction. 

They are typically produced by extrusion of a slurry into the desired filter shape, 

with successive sintering at high temperature [22, 23]. This extrusion process causes 
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anisotropy at both microscopic (grains, pores) and macroscopic (properties) levels. In 

other words, the crystallographic (grain orientation), meso-structural (pore space 

orientation), and material properties (mechanical, thermal, and filtration) acquire a 

preferential orientation along the extrusion axis. This orientation dependence extends at 

the component level, and is exacerbated by the cellular geometry of the filter. 

Indeed, a dependence of material properties on direction has been reported at the 

component level (Young’s modulus and thermal expansion, [24]) and at the material 

level (Coefficient of Thermal Expansion [25], Fracture toughness [26, 27], stress-strain 

curves [28]). Recently, an analysis of both X-ray refraction and computed tomography 

images [29-31] has shown that the orientation of the pore space is directly correlated 

with the anisotropy of the mechanical and thermal properties.  

The pore space in these materials is totally interconnected and has a very 

complex geometry making its decomposition in representative pore elements difficult. 

Extracting relevant average properties allowing the use of models based on ‘unit cells’ 

containing voids of defined geometry [32, 33] is consequently questionable. Instead, we 

need to consider, as done in this work, approaches that tackle the problem of 

determining global properties of the materials using the complete 3D images. 

Besides mechanical and thermal properties, certainly important for the structural 

stability of such DPFs, the functional properties (and especially filtration) are extremely 

relevant for their performance. Not much work is available in the open literature dealing 

with the effect of the meso-structure of such filters on the filtration properties. 

Relevantly for the present study, synthetic cordierite meso-structures have been 

investigated using X-ray tomography data in [34]; however, while global porosity 

fraction and permeability values have been obtained, no information about the 

permeability tensor orientation has been given. Otherwise, much work has been 
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dedicated to numerical models of permeability and pressure drop, see e.g. [35], the latter 

being relevant for industrial applications. 

While the meso-structure of these materials has been classically investigated by 

means of scanning electron microscopy (see e.g. [27, 36]), since the resolution needed 

lies within the realm of SEM, a global view of the meso-structure is also needed, yet 

with the highest possible resolution. Optical microscopy (OM) can yield relevant 

information, but is 2D and lacks resolution. On the contrary, X-ray computed 

tomography (CT) has the potential to disclose features in the bulk (3D analysis), with a 

resolution in between SEM and OM, and a large field of view, comparable to OM. As 

with other imaging techniques, if one is to go beyond qualitative assessment of the 

features of a structure, image processing algorithms are needed to extract quantitative 

information. 

The scope of this work is to apply specific methods (Autocorrelation function; 

Permeability calculations) to 3D CT reconstructions in order to characterize the 

structural and filtration anisotropies. We consider samples extracted from filters of 

different materials (cordierites and silicon carbide) having similar porosity fraction but 

different arrangement of the pore space. We determine their permeability tensors as well 

as the autocorrelation function of the computed tomography reconstructions and use 

these results to quantify the anisotropy of the materials by two different methods. These 

global approaches have the advantage of being directly comparable with analytical and 

numerical global models, designed to extract or predict properties.  

Characterization methods 

Computed Tomography 

X-ray computed tomography (CT) is a non-destructive imaging technique based on 
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differences in X-ray absorption from the multiple constituents of a specimen (different 

materials, densities, and/or features such as inclusions, pores, cracks, matrix). The 

specimen is placed between an X-ray source and a detector, then rotated so that a series 

of 2D radiographic images (usually thousands) can be acquired over a rotation of the 

specimen on 180° or 360°. These 2D radiographic images are then processed so that a 

3D digital reconstruction of the specimen can be obtained. The reconstructed volume is 

a 3D image composed of 3D pixels with a grey value representing the X-ray attenuation 

in the corresponding volume in the specimen. Therefore, to be able to resolve a certain 

feature, two conditions are required: first, the feature must be significantly larger than 

the pixel size of the reconstructed volume, and second, there should be enough contrast 

in the grey values corresponding to the different features of interest. 

Laboratory X-ray computed tomography 

Laboratory XCT experiments were performed on a GE v|tome|x L 300/180 equipped 

with a 180 kV source, a tungsten transmission target (actual focal spot size below 2 µm 

as determined with JIMA test pattern RTC02), and a GE 2000 × 2000 pixel DXR-250 

detector. The source was operated at a voltage of 60 kV and a current of 170 µA. The 

sample projections were taken at 1500 angular positions per 360° (increments of 0.24°), 

and an exposure time of 3 seconds. The samples were placed 8 mm downstream from 

the source, with a source-detector distance of 800 mm, and a binning of 2×2 pixels, so 

that the effective magnification obtained was 50. The resulting pixel size was 4.0 µm 

and the scan time 1h15min. In order to ensure the projection of the entire sample, pieces 

of 2 × 2 cells were cut out of the honeycomb filter. 

Synchrotron radiation X-ray computed tomography 

Synchrotron-CT measurements were performed at the beamline BAMline [37, 38] at the 
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synchrotron source BESSY II of the Helmholtz-Zentrum Berlin für Materialien und 

Energie (HZB), Berlin, Germany. The beam energy was set to 15 keV, in order to 

achieve optimal contrast for the investigated porous filter structures. A PCO4000 CCD 

camera (4008 × 2672 pixels) was used in combination with an Optique Peter 

microscope equipped with a CdWO4 scintillator and a 10-fold magnifying objective, 

resulting in a pixel size of 0.434 µm. A series of 3200 projections were acquired per 

180° rotation, with a 4 s exposure. A small sample-detector distance of 15 mm was set 

to ensure a limited scattering range of refractive edge artefacts and the entrance slits 

were narrowed to the field of view (FoV = 1.7 × 1.1 mm2) in order to avoid detector 

backlighting [39, 40]. To avoid the sample size exceeding the FoV, small splinters of 

less than 1.5 mm size were prepared from each sample, containing just one crossing 

region and one protruding wall of the filter. 

Autocorrelation Function 

The autocorrelation function of a real-valued image I is defined as: 

 ACF 𝐯   〈I 𝐮 . I 𝐮 𝐯 〉 (1) 

where I(u) is the value of the image at the position specified by the vector u, I(u+v) the 

value of the image at the position u plus the lag vector v, and < > is the averaging 

operator over the support of the image. With this expression ACFI(v) is the expectation 

of the product of the image I with a copy of I that is offset by v. 

Most of the time what is called autocorrelation function does not correspond to 

expression (1), but to the NACFC, the normalised autocorrelation function of the 

centred image (I(u) -  I ) [41], noted CI(v): 

 C 𝐯 〈 〉 𝐯
  

〈 𝐮 〈 〉 . 𝐮 𝐯 〈 〉 〉

〈 𝐮 〈 〉 〉
 (2) 
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where Var(I) is the variance of the image I. 

Both expressions (1 and 2) quantify, as a function of v, the correspondence of I 

with its copy offset by v. A maximum always occurs for v = 0 and, in case of a periodic 

image, for any v = lp, lp being the lattice vectors defining the periodic cell. For all other 

values of v, ACFI and CI contain information about the effect of distance (‖𝐯‖) and 

orientation (𝐯 ‖𝐯‖⁄ ) on the correlation of the image I with itself. This encouraged some 

authors to attempt extracting dimensional information (grain size for instance) from 

ACFI or CI, but with a limited success for real or realistic 3D images of materials (see 

[41] for a review on usage in geosciences, and Appendix A for a note concerning the 

use of CI for this purpose). On the contrary, anisotropy estimates seem to be more 

achievable even if some aspects remain unclear [42, 43].  

To illustrate the possibilities offered by the use of the autocorrelation function, 

we consider the example of the dense packing of ellipsoidal particles represented by 

Fig. 1. 

 

 

 

 

Figure 1: About 1500 of the ellipsoids represented in b) were randomly distributed in a 

cube to obtain the close packing shown in a). 
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The starting point was a random close packing of 105 non-overlapping spheres 

produced using a generator based on [44] (see Appendix A for more details). All the 

spheres, having the same density (set equal to 1) and the same diameter (set equal to 

2.2995 10-2 in relative units to the cube edge), were placed within a unit cube (edges 

equal to one). Periodic boundary conditions were applied and the resulting packing had 

a theoretical porosity fraction equal to 0.3634. The positions of the sphere centres were 

modified by dividing the B coordinate (green axis Fig. 1) by 2, and the C coordinate 

(blue axis) by 10. An ellipsoidal particle (Fig. 1.b) was then placed at each modified 

centre position, and a rotation of 23° around the A axis (red axis) applied. Finally, the 

discrete binary image IEl (10003 pixels) presented in Fig. 1.a was generated from the 

central region of this ellipsoid packing. 

The resulting image is simpler than 3D images of real materials because: 

 all particles are identical (geometry, density, and orientation),  

 there is no overlap between particles 

 all distances between near neighbours are different (because of randomness), but 

similar (because of compactness). 

On the other hand, this image is much more relevant than examples regularly 

used in the literature (single 2D/3D objects or loose aggregates [41, 43, 45]) as it 

represents a very dense random packing (porosity fraction of the final discretised 

packing = 0.3279) with very anisotropic particles.  

The corresponding NACFC, CIEl(v), was computed in about 3 minutes on a 

middle-range PC using a classic Fast Fourier Transform algorithm [46]. CIEl(v) is a 3D 

real-valued function with complicated visual representation. For isotropic images, it is 
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sufficient to represent CIEl(r.w) as a function of r for any direction w (see examples in 

Appendix A).  

For anisotropic images, 1D or 2D representations can be misleading if the 

anisotropy principal directions are not known [42]. This is the reason why approaches to 

the determination of the pore space anisotropy such as the one presented in [30] do not 

fully describe the orientation of the meso-structure. In Fig. 2.a, the shape of CIEl(v) is 

deformed because the axis C, perpendicular to the section, is not a principal direction of 

anisotropy. In Fig. 2.b, the axis perpendicular to the section is A, a principal direction of 

anisotropy, and the 2D image is not deformed.  

 

Figure 2: Three different representations giving a partial view of CIEl(v): a) Section in 

the plane AB; b) Section in the plane BC as a colour-height map; c) Volume VIEl(0.5) 

composed by all the pixels having a correlation value c ≥ 0.5. 

Consequently, determining the principal directions of anisotropy appears 

mandatory before any further analysis. For that purpose, we developed the following 

procedure: first, VIEl(c), the volume made by the pixels with a correlation function (or its 

normalised version) value larger than a given threshold c (c = 0.5 for the example given 

in Fig. 2.c), is built. Second, the tensor of inertia of this volume is computed. Third, 1, 

2, 3, the principal directions of this tensor are computed, giving the three principal 

directions of anisotropy. 
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For each principal direction of anisotropy, it is then easy to represent the 

evolution of NACFC as a function of the lag along this direction. The resulting curves 

are presented Fig. 3 for the image IEl. 

 

Figure 3: Evolutions of NACFCIEl along the three directions of anisotropy (from left to 

right: 1, 2, 3). 

Well defined minima and maxima are visible for the three directions. The lags 

corresponding to the minima (La) indicate the offset for which the level of anti-

correlation is maximum, and the lags corresponding to the maxima (Lc) indicate the 

offset for which the level of correlation is maximum. La and Lc are clearly different for 

the three directions of anisotropy. Nonetheless, they cannot be interpreted in terms of 

characteristic dimensions of the image components (grains size or grains distances, see 

Appendix A), and we must refrain from using their values for anisotropy 

characterisation. Furthermore, in most real cases La and Lc are not even detectable, as 

exemplified by the materials studied in this work. 

Instead, the use of the properties of VIEl(c) should be favoured. The principal 

directions of anisotropy are the principal directions of its tensor of inertia, and we 

propose to estimate the degree of anisotropy DA as the ratio of the larger to the smaller 

moment of inertia with respect to the directions of anisotropy (DA_Inertia), or the ratio 

of the major to the minor length axis of the ellipsoid (DA_Ellips) having the same 

tensor of inertia as VIEl(c) (see Appendix B). 
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Applied to the volume VIEl(0.5) visualised Fig. 2.c, this leads to the two 

following values: 

 DA_Inertia = 4.62 

 DA_Ellips = 8.66 

Interestingly, the fact that DA_Ellips > DA_Inertia implies that the shape of the 

ellipsoid VIEl(c) is closer to a disc than to a needle (see Appendix B). 

A priori, both quantities are relevant, and it is only in the frame of a comparison 

between different methods for estimating the degree of anisotropy that a choice between 

them can be done. In this work, comparison is done with the values extracted from the 

permeability tensor computed from binary 3D images. 

Computation of permeability tensor 

In his seminal experimental work, Darcy [47] showed that when water is flowing 

through sand filters there is a linear relation between the flux and the pressure drop 

divided by the thickness of the filter. The coefficient of proportionality is the hydraulic 

conductivity. It comprises two terms: the first, viscosity, depends on the fluid, and the 

second, permeability, depends on the porous medium. More recently, several theoretical 

derivations of Darcy's law have been proposed leading to the vector form that is now 

generally used:  

 𝐕   𝐊 . 𝛁p (3) 

where V is Darcy's velocity (m s-1), K the permeability tensor (m2), µ the fluid dynamic 

viscosity (kg m-1 s-1),  the gradient operator, and p the fluid pressure (kg m-1 s-2). 

If, at the pore scale, the fluid flow is driven by Stokes’ equations, Eq. 3 can be derived 
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by change of scale using volume averaging [48]. With this method we not only derive 

Eq. 3, but also establish conditions for Darcy's equation to be valid. In so doing, we 

introduce the concept of REV (Representative Elementary Volume, i.e. the smallest 

volume over which the computed permeability tensor will be representative of the 

porous material), and construct a partial differential problem (the closure problem). The 

solution of this problem can be used to compute the permeability tensor directly from 

the local geometry [49]. The closure problem can be written as:  

 

 𝛁𝐝 ∇  𝐃  𝐈  0  ;   𝛁. 𝐃  0 (4) 

where I is the identity tensor, d an unknown vector and D an unknown tensor. This set 

of equations, very similar to Stokes equations, is completed by the following boundary 

conditions: 

 𝐃  0  at A   ;  𝐝 r l   𝐝 r  ;  𝐃 r l   𝐃 r , i 1,2,3 (5) 

where Asl is the solid-liquid interface. The porous medium is supposed to be periodic, 

and (li, i=1,2,3) are the components of the lattice vector defining the periodic cell. 

From D, the permeability tensor can be expressed as: 

 𝐊 ε 〈𝐃〉  (6) 

where  is the global porosity fraction, and -l is the notation for the averaging operator 

applied to the pore space only (see [48] for details). 

This change of scale is possible when the sample is large enough to be 

representative of the porous medium. The 3D image is then an REV, and periodic 

boundary conditions (Eq. 5) can be used without noticeable perturbations of the closure 

problem solution [50]. Consequently, when the conditions for the change of scale are 
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verified, it is possible to compute the permeability tensor of a porous sample directly 

from a segmented 3D image by solving the closure problem (Eq. 4 to 6). 

From Eq. 4 to 6 it is obvious that, through the boundary condition at the solid-

liquid interface Asl, the permeability tensor is an implicit function of the geometry at the 

meso-scale only. Simplifying this implicit function, for instance to a reduced set of 

measureable characteristic parameters, is the object of a longstanding and continuous 

effort of research with rather limited advances [51, 52]. 

For many materials, direct measurement of permeability in a single direction is 

arduous, and estimating the full permeability tensor is generally impossible. Combining 

modern imaging techniques to acquire high quality 3D images describing the local 

meso-structure and efficient numerical code to solve the closure problem, a good 

approximation of the complete permeability tensor can be obtained. Although in 

practical applications solving the closure problem is always computationally 

demanding, this approach produces a relevant characteristic for anisotropic media that is 

experimentally unreachable. 

In this work the closure problem is solved using an enhanced version of 

permea3D, a code developed at ICMCB (Bordeaux, France) and presented in [49]. In 

the frame of this work, the parallelization for very large 3D images was implemented. 

Diesel particulate filter materials and their meso-structure 

A total of five materials were investigated, four are cordierites (named Cord1 to Cord4) 

and one is SiC. Cordierite materials were provided by Corning Incorporated (Corning, 

NY, USA) and Oak Ridge National Laboratory (Oak Ridge, TN, USA). All of them are 

extracted from larger honeycomb filters, all produced by the extrusion process 

mentioned above. In the case of cordierite, raw materials consisted of SiO2, MgO, 

hydrated Al2O3, and Al2 Si2O5(OH)4 (Caolin). Different porosity fractions were 
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achieved by adding different amounts of pore formers. Sintering was made at 

temperatures in excess of 1300 oC, with successive cooling at rates below 1 oC/min in 

N2-enriched air. SiC filter materials were commercially available. Porosity fraction was 

determined by mercury intrusion with an Autopore 6520 Micromeritics, Norcross, USA. 

Porosity fraction values are reported in Table 1, together with the results of image 

analysis of computed tomography data (see below). 

Table 1: Characteristics of the 3D binary sub-volumes. Pixel size (PS, in µm), 

dimensions along the A, B and C axes (NA, NB, NC, in pixels), porosity measured from 

the CT images (CT) of the sub-volumes, and porosity obtained by mercury porosimetry 

(Hg) on samples of the same materials. 

Sample IEl Cord1 Cord2 Cord3.1 Cord3.2 Cord4.1 Cord4.2 SiC 
PS (µm) 1 4.00 4.00 0.868 0.868 0.868 0.868 0.868 

NA 1000 565 750 930 720 537 950 838 
NB 1000 755 650 1090 1140 1047 1110 1010 
NC 1000 58 99 275 240 260 250 390 

CT 0.33 0.53 0.47 0.49 0.51 0.68 0.68 0.41 

Hg - 0.52 0.48 0.50 0.50 0.65 0.65 0.38 

 

Samples Cord3, Cord4, and SiC were scanned on the synchrotron beamline 

BAMline, BESSY II, HZB Berlin, Germany; 2D slices of their corresponding 

reconstructions are shown in Fig. 4. Cordierite samples Cord1 and Cord2 were scanned 

in a laboratory CT system at BAM (see section on computed tomography), and their 

image size (as well as the field-of view) is much larger (see caption of Figure 4). For 

comparison purposes, slices of Cord1 and Cord2 carry an inset with the same field of 

view as slices of Cord3, Cord4, and SiC.  

Qualitatively, Cord1 to Cord3 are similar materials, as they have similar 

chemical composition, pore former content and sintering schedule. In fact, they show 

similar pore space features: “pore elements” (intended as the dark objects visible in the 

CT slices) are sharp-edged and have a wide size distribution (accepting the legacy of the 
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classic approach of measuring the pore size distribution by means of mercury porosity). 

On the contrary Cord4 possesses much smoother pore/material interfaces and a larger 

porosity fraction (though finer pore space features). For SiC, traces of the powder 

particles composing the final material are clearly visible (analogous to IE1); 

correspondingly, the “pore elements” have a rounded shape. The total porosity fraction 

is lower than for the cordierite samples. 

 

 
 
Figure 4: Overview of DPF samples under investigation. (a) IEl: Image size 1000 x 1000 

pixels; (b) Cord1: Image size 2.18 x 2.18 mm2, inset size 0.31 x 0.31 mm2; (c) Cord2: 

Image size 2.18 x 2.18 mm2, inset size 0.31 x 0.31 mm2; (d) Cord3: Image size 0.31 x 0.31 

mm2; (e) Cord4: Image size 0.31 x 0.31 mm2; (f) SiC: Image size 0.31 x 0.31 mm2. 

Interestingly, the homogeneity of the “pore elements” visible in the CT slices is 

higher for SiC and Cord4 than for Cord1 to Cord3. This is due to the fact that the SiC 

sample was probably manufactured using a sieved SiC powder (i.e., with narrow 

a) b) c) 

d) e) f) 
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particle size distribution), and Cord4 was manufactured with smaller pore former 

particles than in the case of Cord1 to Cord3. 

No clear global orientation of the pore space is visible from the CT slices. 

Results 

Analysis of Computed Tomography Data 

The slices presented in Fig. 4 are extracted from the five 3D grey-level volumes used in 

this work. Their characteristics are given in Table 2; PS is the pixel size, in µm, and 

NA, NB, NC the dimensions of the reconstructed volumes in pixels. In the first column 

of Fig. 5, 3D renderings of two of these volumes are presented. 

Table 2: Characteristics of the 3D reconstructed volumes. PS is the pixel size, and NA, 

NB, NC are the dimensions (in pixel) of the volumes along the three directions. 

Sample Cord1 Cord2 Cord3 Cord4 SiC 
PS (µm) 4.00 4.00 0.434 0.434 0.434 

NA 1000 860 3201 3001 2501 
NB 800 820 2701 2101 2701 
NC 200 240 2672 2672 2672 

 

The study of the anisotropy requires a unique definition of the sample 

orientation. In this work we used reference axes related to the materials processing: A is 

along the wall length (red), B is in the extrusion direction (green), and C is normal to 

the wall (blue). Since sample positioning for the tomographic acquisitions was not 

precise enough, the volumes have been numerically realigned with the A, B, C axes. 

For permeability and NACFC calculations domains fully immersed in the 

porous sample are necessary. They were obtained by extracting cuboid sub-volumes 

with boundaries near the interfaces between the porous material and the free fluid 

zones. In the middle column of Fig. 5 the boundaries of the sub-volumes (in black) are 

visible through the pore space of Cord2 (top) and Cord3 (bottom). Due to the peculiar 
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shape of samples Cord3 (Fig. 5) and Cord4, it was possible to extract two overlapping 

sub-volumes with the zone corresponding to the intersection of two walls in common. 

These sub-volumes are labelled Cord3.1, Cord3.2, Cord4.1, and Cord4.2 hereafter. 

 

 

 

 
Figure 5: Visualization of process going from the initial reconstructed CT data to the 

binary sub-volumes used for computations. Top: sample Cord2, bottom: sample Cord3. 

First column: 3D rendering of the initial volumes. Second column: 3D rendering of the 

complete volumes after alignment with the processing axes (in yellow). The selected 

sub-volumes that were used for the calculations are visible in black. Third column: 3D 

rendering of sub-volumes fully contained within the porous material. 

Since permeability computations require binary images, the sub-volumes were 

segmented following the procedure exposed by Bernard et al. [42]: first, we filtered the 

grey-level images using an in-house developed anisotropic diffusion filter. The 

histograms of the filtered images presented two well identified peaks separated by a 

plateau. The grey-level situated in the middle of the two peaks was used as threshold 
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value for binarization. Finally, considering the very large sizes (in terms of number of 

pixels) of the sub-volumes from the synchrotron acquisitions, they were sub-sampled by 

a factor of two. 

Table 1 summarises the characteristics of the seven binary sub-volumes (plus the 

synthetic image presented Fig. 1) that are used for computations: pixel size (PS, in µm), 

dimensions along the A, B and C axes (NA, NB, NC, in pixels), and porosity fraction 

(CT). For comparisons, the porosity fraction values obtained by mercury porosimetry 

(Hg) are also given. Values obtained through the two methods are in good agreement. 

Autocorrelation functions 

The results detailed in this section were obtained for the binary images (solid/pore 

space) used for permeability computations. This ensures full and consistent comparison 

between the methods. It is of importance to notice that the NACFC can be computed 

from grey-level images as easily as from binary images. The differences between the 

two approaches are discussed in the last section of this paper. 

For each of the eight binary sub-volumes (Table 1) the NACFC was computed 

and the volumes VI(c) were built. The latter contain all the pixels for which the NACFC 

is larger than the threshold c. The threshold c needs to be large enough to avoid VI(c) 

having an irregular shape [42], but small enough to have a sufficient number of pixels 

within VI(c). The NACFC vary rapidly for small lags (Fig. 6) and, when pixels are 

large, the volumes VI(c) might be poorly discretized (composed of a small number of 

pixels) and subjected to important changes of shape for relatively small variations of c. 

Consequences of this discretization effect on the degree of anisotropy are analysed in 

the corresponding section. To minimize both problems, VI(c) for c between 0.05 and 0.5 

were considered.  
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In Fig. 6 the values of the NACFC are plotted along the principal directions of 

anisotropy (major axis of the equivalent ellipsoid) of the volumes VI(0.2) presented in 

the insets. As indicated when presenting the autocorrelation function, the parameters La 

and Lc are not detectable, except for SiC, a material having a meso-structure similar to a 

sphere-packing with large overlaps (see Appendix A). 

 
 
Figure 6: The correlation function CI(c) along the direction of maximum anisotropy for 

five binary sub-volumes as a function of lag c (µm). Insets: 3D rendering of the 

corresponding volumes VI(0.2). 

The intersections of the curves NACFC(c) with the horizontal line at 0.2 (dashed 

line Fig. 6) give, along the directions of maximum anisotropy, the lags for which this 

level of correlation is reached. Qualitatively, these values are correlated with the size of 

the main features appearing in the CT sections presented in Fig. 4; small features (SiC, 

Cord4) induce small correlation lags and large features (Cord1, Cord2) larger 
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correlation lags. This qualitative correlation is mainly due to a scale effect between the 

different images and cannot be used to estimate the dimensions of any specific features 

(see Appendix A). 

From the 3D rendering of VI(0.2) shown in Fig. 6 it is obvious that the degrees 

of anisotropy are much smaller for these images of real materials than for the synthetic 

image IEl (Fig. 2). By definition, the volumes VI(c) are discrete objects, and the quality 

of their discretization varies with the acquisition pixel size and with the size of the 

features composing the images. Indeed, Cord1, Cord2 and Cord3 comprise large 

features, but for images acquired with 4 µm pixel size (Cord1 and Cord2) the 

discretization quality is much lower than for Cord3 that was acquired with 0.434 µm 

pixel size (sub-sampled at 0.868 µm). Cord4 and SiC were also acquired with 0.434 µm 

pixel size (sub-sampled at 0.868 µm), but as they are composed of small features, the 

discretization quality is only marginally better than for acquisitions with 4 µm pixel 

size.  

The parameters through analysis of the volumes VI(c) for the eight cuboidal 

binary sub-volumes (Table 1) and the c values between 0.05 and 0.5 were used to 

estimate the anisotropy in terms of amplitude (DA_Ellips(c)) and orientation. The 

detailed results are exposed in the following sections. 

Permeability computation 

The closure problem (Eq. 4) completed by the boundary conditions (Eq. 5) was solved 

for each sub-volume extracted from the CT images. This tensor problem reduces to 

three vector problems, each vector solution corresponding to Dn (n = A or B or C) a line 

of the tensor D. 

Each vector problem comprises four degrees of freedom: the three components 

of the line Dn and the corresponding component of the d vector. The total number of 
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unknown is roughly equal to (4NANBNCCT) where NA, NB, NC are the dimensions 

of the computation domain, and CT the porosity fraction of the binary sub-volume 

(Table 1). The resulting number of unknowns range from 4.8 107 (Cord1) to 1.3 109 

(IEl), with an average equal to 4.9 108.  

These values clearly indicate that calculations are computationally demanding, 

resulting in CPU times varying from a few hours to a few days using up to 120 threads 

on a middle-range Linux server. 

Each computed vector field Dn (n = A or B or C) is related to the local 

perturbation caused by the solid phase to the macroscopic Darcy flow induced by a 

macroscopic pressure gradient in the n direction [49, 50]. As such, its 3D representation 

yields information on the homogeneity of the fluid flow at the sample scale. In Fig. 7 

the vector fields are visualised using streamlines and isosurfaces of the module 

normalised to the maximum component (i.e. D  
‖𝐃 ‖

‖𝐃 ‖
). For all the pixels 

enclosed by those isosurfaces the corresponding D  is larger than the selected threshold 

(0.35 in Fig. 7). These regions act like bottlenecks and control the permeability, as they 

correspond to the zones where the fluid is flowing and where the local perturbation is 

high. 

The features shown in Fig. 7 reflect and complement the observations made on 

the meso-structures of Fig. 4. In cross-sections or CT slices, the size of the features 

composing the pore space (“pore elements”) are discernible, while the connections 

between them are not. Through the permeability computations both aspects, i.e. “pore 

elements” and connection sizes, are evidenced, and the consequences of the differences 

in pore space morphologies are highlighted by these representations. When large "pore 

elements" are present (Cord1, Cord2, Cord3), the size of the sample is crucial to 

determine the representativeness of the investigated volume to calculate the 
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permeability. For Cord1 and Cord2 3D images were acquired using a laboratory XCT 

with pixels of 4.0 µm. This resulted in a scanned sample much larger than the "pore 

elements"; consequently, a homogeneous flow distribution in all directions (Fig. 7a and 

b) is observed. In the C direction (Fig. 7b) the sample thickness is always limited and, 

when "pore elements" are large, the two sides of the filter wall might be connected 

through a few "pore elements" constituting channels that control the global flow. 

Figure 7: 3D representations of computed vector fields Dn as streamlines (in blue) and 

isosurfaces 𝐷  0.35 (in red) of the normalized vector modules for Cord1 in the 

directions B (a) and C (b), for Cord3.2 in the direction C (c), and Cord4.1 in the 

direction C (d). 

Homogeneity is then related to the spatial density of these channels (in the A-B 

plane). Large scanned samples can then be considered as representative (Fig. 7b), 

whereas the smaller ones, acquired by synchrotron-CT (Cord3, Fig. 7.c) need to be 
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more closely inspected, because of the very limited number of channels controlling the 

flow. The representativeness of high resolution images is good for samples having very 

small "pore elements", as seen in Fig. 7d, showing DC for Cord.4.1. (Note that the 

vector field for SiC (not shown in Fig. 7) looks similar to that of Cord4, and is 

homogeneously distributed).  

From the computed vector fields Dn (n = A, B, C) the permeability tensor of 

each sample is obtained using Eq. 6. The resulting symmetric full tensor for sample 

Cord3.1 is given by Eq. 7. 

 D = 
0.733 0.013 0.072
0.013 0.842 0.024
0.072 0.024 0.639

 (7) 

In this example, as well as for the others, the diagonal terms are dominant, 

indicating that the axes (A, B, C) are not very different from the principal directions. 

The values of the diagonal terms reported in Table 3 reveal that for all cordierite 

materials permeability is slightly higher in the extrusion direction B compared to 

directions A and C. For the synthetic image IEl these axes are not related to any process, 

and for SiC, it seems that due to the nature of the material (round nearly monodisperse 

SiC sintered powder particles), the extrusion process does not really influence the meso-

structure. 

The eigenvalues and eigenvectors of the tensors D can be easily computed, 

thereby providing a new way to characterise sample anisotropies in amplitude (degree 

of anisotropy DA) and direction. We define the degree of anisotropy DA_k (k typically 

symbolises permeability) as the ratio of the larger to the smaller eigenvalues of the 

permeability tensor. The principal directions of anisotropy correspond to the directions 

of the eigenvectors of the permeability tensor. For sample Cord3.1, the eigenvalues (i, 

i=1,3) and the eigenvectors (i, i=1,3) of the tensor given by Eq. 7 are given Table 4. 
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The eigenvalues and eigenvectors for the eight binary sub-volumes (Table 

IV.1.2) are listed in Appendix C.  

Table 3: Values of the permeability tensor diagonal entries and of the degree of 

anisotropy calculated by the three methods proposed in the text. 

Sample IEl Cord1 Cord2 Cord3.1 Cord3.2 Cord4.1 Cord4.2 SiC 
kAA 3.21 6.01 2.45 0.73 0.85 1.91 1.92 0.70 
kBB 1.53 6.70 3.31 0.84 1.04 2.12 2.13 0.65 
kCC 0.52 5.93 2.64 0.64 0.76 1.80 1.81 0.63 

DA_k 9.53 1.14 1.36 1.42 1.44 1.18 1.18 1.12 
DA_Ellips (0.20) 8.83 1.18 1.37 1.56 1.43 1.26 1.26 1.08 
DA_Inertia (0.20) 4.62 1.19 1.42 1.54 1.43 1.28 1.27 1.08 

 

Table 4: Eigenvalues and Eigenvectors for sample Cord3.1 

Eigenvalues 
Eigenvectors 

  A  B  C 

1  0.845  1  4.800 E‐2  0.99400  ‐9.824 E‐2 

2  0.772  2  0.88500  3.282 E‐3  0.46558 

3  0.597  3  ‐0.46312  0.10929  0.87953 

 

Anisotropy 

As stated above, the permeability tensor can be seen as an implicit function of the meso-

scale geometry only. The NACFC is also fully determined by the same meso-scale 

geometry, and it contains most, if not all, the information about this geometry. This 3D 

real-valued function looks much simpler than the local-scale geometry itself (Fig. 2) and 

the determination of anisotropy is in general possible. We stress that even if it is highly 

tempting to use it for extracting relevant meso-structural parameters, some limitations 

need to be taken into account, as presented in Appendix A. From the NACFC we can 

estimate the meso-structural anisotropy, i.e., in our case, an averaged characteristic of 

the spatial distribution of the voids and the solid. This property must be distinguished 

from the functional anisotropies that are related to effective physical properties 

determined at the global scale. For instance, in the cases of effective mechanical or 
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thermal properties of multi-materials, the local-scale geometry must be complemented 

by the local-scale characteristics of the material (local-scale physical properties) that 

play an essential role, generally amplifying the difference between structural and 

functional anisotropies. As both normalised autocorrelation function and permeability 

tensor are fully determined by the meso-scale geometry, a comparison of the anisotropy 

characteristics derived from them seems relevant. 

For a given binary sub-volume (Table 1), the computed permeability tensor 

gives one set of eigenvalues and eigenvectors. Equivalent information is obtained from 

VI(c) for each value of c. In this section, anisotropies derived from the permeability 

tensor and from the properties of VI(c) are compared in amplitude (degree of anisotropy 

DA) and direction (principal direction of anisotropy). 

Degree of anisotropy 

Two different estimates of the degree of anisotropy based on the morphology of the 

volumes VI(c) are proposed; DA_Inertia(c), directly derived from the tensor of inertia, 

and DA_Ellips(c), defined as the ratio of the major to the minor axis of the ellipsoid 

having the same tensor of inertia (see Appendix B). For the synthetic 3D image IEl these 

two estimates are very different; DA_Ellips(0.2) = 8.83 and DA_Inertia(0.2) = 4.62. 

DA_k obtained from the permeability tensor computed for this image being 9.53, 

DA_Ellips(c) appears to agree much better with DA_k. In the case of all the other 

samples DA_Ellips(c) and DA_Inertia(c) are very similar (Table 3), indicating that the 

volumes VI(c) are nearly spherical (see Appendix B). We therefore choose to favour the 

use of DA_Ellips(c) for the remainder of the paper. 
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Figure 8: 𝐷𝐴 (the ratio between the anisotropy factors extracted from the NACFC and 

permeability calculations) as a function of the threshold value c for all the investigated 

sub-volumes. 

The ratio DA  DA_Ellips c /DA_k is introduced to evaluate the agreement 

between the approaches quantifying the meso-structural and the filtration anisotropy. 

Figure 8 presents the evolutions of DA for all the samples as functions of c, the 

threshold values used to build VI(c).  

The main point to be stressed is that all the values of DA lie between 0.9 and 

1.15 for c between 0.05 and 0.5. This shows that the meso-structural anisotropy 

(induced by the arrangement of the features composing the 3D images) and the filtration 

one (permeability) are strongly correlated for this family of materials. It also shows that 

the NACFC gives a good approximation of the permeability degree of anisotropy at a 

largely reduced computation cost.  
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The evolutions of DA with c can be analysed in more details to extract some 

specific information relatively to the considered materials. For that, we first distinguish 

two groups of materials: the materials showing large "pore elements" in Fig. 4, i.e. 

Cord1, Cord2 and Cord3, and the materials showing small "pore elements" in Fig. 4, i.e. 

Cord4 and SiC:  

 For the first group, there are two regions limited by a c value between 0.2 and 

0.3. Below this value DA is almost constant (Cord1, continuous line with 

diamonds) or smoothly increasing with c (Cord2, dashed line with diamonds, 

Cord3, dashed lines). Above this value, smooth (Cord3) or abrupt (Cord1, 

Cord2) changes appeared. The abrupt variations are directly related to the 

discretization effect previously described. For Cord1 and Cord2 the volumes 

VI(c) contain a small number of pixels (Fig.6) and undergo significant changes 

of shape when c is varying, inducing the abrupt variations visible in Fig. 9. For 

Cord3, the variations of DA for the two binary sub-volumes (Cord3.1 and 

Cord3.2) are nearly parallel with a constant shift, and without noticeable 

discretization effects. In fact, the sub-volume Cord3.1 is extracted between two 

crossing regions of the filter web, while Cord3.2 is extracted across one of these 

crossing regions. Consequently, Cord3.2 is more homogeneous and isotropic 

than Cord3.1 (see Fig. 9a). 

 For the second group, variations of DA with c are of two kinds: a smooth 

decrease for c ≤ 0.3 followed by abrupt variations in the case of Cord4 

(continuous lines), an almost constant value for c ≤ 0.25, followed by variations 

of limited amplitude in the case of SiC (continuous line with triangles). These 

images are affected by the discretization procedures, because the pixel size is 

small (0.434 µm, sub-sampled at 0.868 µm), but "pore elements" are also small. 
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For Cord4, the variations of DA for the two binary sub-volumes are very similar. 

This can be explained by the facts that the pore space meso-structure is 

homogeneous (and therefore all sub-volumes tend to have similar geometric 

anisotropy), and the two volumes are extracted at similar distances from the 

crossing points of the filter web (see Fig. 9b). 

 

Figure 9: (a) Location of Cord3.1 and Cord3.2 sub-volumes; (b) Location of Cord4.1 

and Cord4.2 sub-volumes. 

 For the synthetic image IEl, DA is essentially constant, and, for this very 

homogeneous image, the value of DA effectively quantifies the relation between 

the meso-structural and the filtration estimates of anisotropy. 

From the comments presented above, it appears that, if a single value has to be 

selected for c, c equal to 0.2 is a good choice. Therefore, this value will be used for DA 

in the rest of this work (see Table 3). 

The NACFC also contains information about the scale, i.e. a given degree of 

correlation c is reached at a given lag in a specific direction, and DA_Ellips(c) shows 

the differences in lag according to direction (Fig. 3). The decrease of DA towards 1 with 
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increasing c for Cord4 can then be interpreted, for that material, as an increase of the 

correlation between meso-structural and filtration anisotropies with an optimum at 

c=0.3. This corresponds to a lag of about 16 µm in one direction (Fig. 3), and 13.5 µm 

in the other (DA   1 implying that DA_Ellips = DA_k = 1.18, Table 3). These values 

seem consistent with the meso-structure presented Fig. 4 (16 µm = 1/19 of the side of 

the section). Nevertheless, this interpretation cannot be generalised, as for IEL and SiC 

the correlation between the two types of anisotropy is independent of c, and 

consequently of the explored scales. The prominent results of this section are that, for 

these materials, meso-structural anisotropy and filtration anisotropy are clearly 

correlated. On a case by case basis, some information about the structure can be 

extracted from the small variations of DA with c. 

Directions of anisotropy 

The second characteristic after the degree of anisotropy is the direction of anisotropy. 

For the cordierite samples the main direction of anisotropy obtained from the 

permeability tensor is close to the direction of extrusion B (Appendix C). To compare 

these directions with the ones corresponding to the principal directions given by 

analysing the morphology of VI(c), the graphic presented Fig. 10 is used. It shows the 

projection on the plane (A, C) of the surface of a unit sphere with centre at the origin of 

the coordinate system (A, B, C). All points represent the intersections of the principal 

direction lines (drawn through the origin) and the unit sphere. The angle between a 

given line and the B axis is equal to 90 degrees minus the latitude of the intersection 

point on the surface of the sphere (circles corresponding to some values of latitude are 

drawn in light grey). For sample Cord3, points corresponding to permeability (triangles) 

or NACFC (squares) are confined in a limited zone (Fig. 10 central image) for both of 
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the binary sub-samples (Cord3.1 in white, Cord3.2 in grey). 

Focussing on the central region of Fig. 10 (upper inset), it appears that the 

intersection points of the main direction of VCord3.1(c) and VCord3.2(c) tend towards the 

intersection points of the principal direction of the permeability tensor (triangles) when 

c increases.  

On the lower inset of Fig. 10 the pairs of intersection points corresponding to the 

main direction of VI(0.2) and of the permeability principal direction (symbols with a 

black dots) are displayed for each of the six cordierite binary sub-samples. All these 

directions have a maximum misalignment of 10 degrees with the axis B.  

Table 5: Components of the principal directions of the permeability tensor and of the 

volume VI(0.2) for the synthetic and SiC samples.. 

Sample IEl SiC 
Axes A B C A B C 

Permeability 0.99998 -0.00276 -0.00450 0.97144 0.22907 -0.06196  
VI(0.2) 0.99997 0.00044 0.00047 0.84866 0.50899 -0.14393 

 

As seen above, for all the cordierite samples the main direction of anisotropy is 

strongly correlated with the direction of extrusion B. This is not the case for the 

synthetic image IEL, for which this notion is irrelevant, and for SiC, for which the meso-

structure appears as unaffected by the extrusion process. The main directions of 

permeability and VI(0.2) are reported in Table 5 for the synthetic image and SiC 

showing for them also a strong correlation between filtration and meso-structural 

anisotropy. 
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Figure 10: Intersections between the principal directions of anisotropy (calculated from 

the NACFC at various values of c, and drawn passing through the origin of the sphere) 

and the unit sphere. On the upper right corner, a magnification of the central region is 

shown, with the evolution of the intersection point for increasing values of c. In the 

lower right corner, the intersections of the principal direction of the permeability tensor 

(dotted symbols) and of the principal direction of VI(0.2) with the unit sphere are 

compared (linked by a line for the same sample). 

Discussion 

The results presented above indicate a strong correlation between the meso-structural 

anisotropy DA_Ellips(0.2) estimated using the NACFC and the filtration anisotropy 

DA_k estimated from the permeability tensor. Extending this correlation to any 
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functional anisotropy would be misleading, as in many cases local-scale physical 

properties also influence the results. Even in the cases where the only local parameter is 

the local geometry, different modes of transfer might induce different degrees of 

anisotropy as shown by Sato et al. [53] for Berea sandstone on samples having a layered 

structure that induced a permeability anisotropy of 8.5 and a diffusion anisotropy of 1.4. 

This difference is a consequence of the form of the closure problems (Eq. 4 and 5 for 

filtration) that determines the effects of local-geometry on effective properties. 

This work focused on NACFC vs. permeability and logically all results were 

generated using binary images (solid/pore space) as required for permeability 

computations. It is of importance to notice that NACFC can be computed on the grey-

level images as easily as on the binarised ones. The direct use of grey-level images 

would circumvent the critical segmentation step, which inevitably influences the 

permeability computation.  

To assess the consequences of using a grey-level image instead of a segmented 

one, the following procedure was followed: 

 A sub-volume of 600 x 600 x 540 pixels was extracted from the centre of the 

original grey-level image of Cord4 (with a pixel size of 0.434 µm). 

 This sub-volume was then sub-sampled by factors of 2, 3, 4, 5, 6, 8, and 9. 

 For each of these sub-volumes, the NACFC was calculated, and DA∗ 0.2  

evaluated from the corresponding volumes VI(0.2). For a given pixel size, 

DA∗ 0.2  is the ratio of DA_Ellips 0.2  of VI(0.2) (for the corresponding sub-

volume) to DA_k given in Table 3. 

Figure 11 shows a section of the high resolution sub-volume (a), and 

approximately the same section sub-sampled by a factor of 8 (b). The representation of 



 35

the local meso-geometry is of course strongly altered. The consequences for the 

anisotropy quantification are shown in Fig. 11c (showing the evolution of DA∗ 0.2  

with pixel size). The dashed line indicates the value of DA 0.2  for Cord4 previously 

calculated. It appears that globally, the approximation of DA_k obtained from the 

NACFC of the sub-sampled sub-volumes (DA_Ellips 0.2  of VI(0.2)) is acceptable for 

sub-sampling factors between 1 and 8 (pixel sizes between 0.434 µm and 3.47 µm). The 

two first points (0.434 µm and 0.868 µm) are very close to the dashed line. This 

confirms that Cord4 is homogeneous, as previously indicated, and that the first sub-

sampling does not alter the features of the local meso-geometry. These results denote 

that a good approximation of the filtration anisotropy can be achieved by calculating the 

NACFC of a grey-level 3D image even if the local meso-geometry is poorly resolved.  

 

 
 a) b) c) 
 
Figure 11: The same section of Cord4 (260 x 234 µm2) with pixels of 0.434 µm (a) and 

3.47 µm (b). Evolution of  𝐷𝐴∗ 0.2  with the pixel size (c). The dashed line indicates the 

value obtained for the binary image. 

The permeability and the autocorrelation functions yield relevant information 

about the anisotropy of their filtration and morphological properties. For cordierite 

samples, the direction of extrusion is clearly the principal direction of anisotropy. As 

found in [54, 55], the degree of anisotropy of the meso-structure is similar to that of the 

crystal texture, which in turn induces anisotropy of the coefficient of thermal expansion 

and Young’s modulus (since the properties themselves are anisotropic). This correlation 
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is strongly influenced by micro-cracking in DPF materials [56]. In the present case, 

however, pore space is dominant over micro-cracking (see also the analysis in [29, 30]), 

because microcracks have negligible dimensions. In fact, Table IV.4.1 shows that an 

increase in meso-structural anisotropy (compare Cord 1 to Cord 2 or Cord3) 

corresponds to an increase in permeability anisotropy. It is interesting to note that for 

SiC the meso-structure is almost isotropic (DA_Ellips(0.2) = 1.08), but 

DA_Ellips(0.2)/DA_k = 0.96, which implies that the filtration properties of SiC are 

more textured than its physical and mechanical properties [57]. It is generally confirmed 

that cordierite materials possess relatively weak morphological texture, and that 

increasing porosity fraction (and decreasing the size of the pore space features, i.e. 

smaller but more pore space features) actually decreases the degree of anisotropy. In 

fact, the thermal and physical properties also become less anisotropic [58]. 

Conclusions 

To study quantitatively the anisotropy of both meso-structure and fluid flow in Diesel 

Particulate Filter (DPF) materials we used the normalised autocorrelation function of 

the centred image (NACFC), and permeability calculations for 3D CT data 

reconstructions. 

For large 3D images such as the ones considered here, permeability calculations 

are computationally demanding, therefore requiring advanced numerical tools. From the 

resulting permeability tensor, the principal direction and the degree of anisotropy are 

easily deduced. 

On the contrary, the NACFC is easy to calculate, but the resulting 3D real-

valued function is difficult to interpret. For that, we first clarified, by a theoretical 

analysis, the nature of the information that can be extracted (Appendix A), and we 

developed a new method to quantify the anisotropy based on the morphological 
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properties of the volume VI(c) constituted by all the pixels for which NACFC is larger 

than a certain threshold c. Examining the variations of these properties for c varying 

between 0.05 and 0.5, we shown that, for all the considered samples, the values 

provided by both approaches are in very good agreement. If a single value of c has to be 

used, c equal 0.2 is a good choice. 

We focused our attention on Cordierite and SiC, two widely used materials for 

DPF. In general, meso-structural anisotropy directly affects physical properties, but the 

two may only be loosely linked. In this work we found that meso-structural and 

filtration anisotropies are strongly correlated for both the degree of anisotropy and the 

orientation. In line with the few other studies available in the open literature, it appears 

that cordierite materials are weakly anisotropic and clearly influenced by the extrusion 

process that determines the main direction of anisotropy. A slight dependence of 

anisotropy on the feature size of the meso-structure as seen on 2D images was put into 

evidence for a family of cordierite materials (all having porosity fraction around 0.5): 

the finer the grain and the "pore elements" size, the more anisotropic the meso-structure 

and the permeability. Since the meso-structure in such materials is dictated by the raw 

powder and by the pore-former particle size, we deduce that controlling those 

parameters would allow controlling the degree of anisotropy of both the filtration and of 

the physical properties of such materials. 

The autocorrelation function can yield several insights on the meso-structure, 

such as the dependence of the degree of orientation on the length range of the meso-

structure considered in the analysis: homogeneous structures such as SiC (and ideal 

materials) show the same degree of anisotropy at all length scales.  

The approach based on the analysis of the NACFC that we proposed appears as 

precise and efficient even for materials having a small degree of anisotropy. Finally, we 
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showed that the NACFC applied on grey-level images can give a good estimate of the 

degree of anisotropy even with limited resolution.  
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Appendix A: Why NACFCI(v) of an image cannot be used for grain size 

estimation 

Attempts to characterize rock meso-structure using CI(v), the NACFCI(v) of image I, as 

defined by Eq. 2, are already dated [43, 59], but the transition to quantification of grains 

sizes, even proposed as modules in some software [45], generally leads to poor 

approximations for dense aggregates [41]. The main reason is linked to a property of the 

function CI(v) that we expose in this appendix. 

First we must define what is the inversed image IInv(u) of a real valued image 

I(u): 

 I 𝐮   I 𝐮   Max I 𝐮   Min I 𝐮  (8) 

If I(u) is a binary image (0/1), IInv(u) is also binary, with the pixels with grey 

value = 0 corresponding to the pixels of I(u) with grey value = 1, and vice-versa. The 

background of I(u) is now the object of IInv(u) and vice versa. 

Using the definition of the autocorrelation function given by Eq. 1, taking into 

account the linearity of the averaging operator < > and the fact that the average of a 

constant is equal to this constant, the following relation between the ACFs of I(u) and 

IInv(u) is obtained after a little bit of algebra: 

 ACF 𝐯   〈I 𝐮 . I 𝐮 𝐯 〉 (9) 
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ACF 𝐯 〈 I 𝐮 Max I 𝐮 Min I 𝐮 . I 𝐮 𝐯 Max I 𝐮 𝐯 Min I 𝐮 𝐯 〉(10) 

 ACF 𝐯   ACF 𝐯 Max I   Min I . Max I   Min I 2〈I〉  (11) 

Similarly, it can be shown that the NACFCs are related by: 

 C 𝐯   C 𝐯  (12) 

Consequently, any characteristic length obtained from C 𝐯  and associated to 

an object (the grains for instance) can also be obtained from C 𝐯  and now 

associated to the background of I(u). Accordingly, NACFCI(v) cannot be used to 

determine object dimensions.  

Single items or, more generally, loose aggregates of items constitute exceptions 

to this rule. Indeed, when the distance between the different items is large enough, there 

is a lag interval for which C 𝐯  is well approximated by the function corresponding to a 

single item. 

To support this analysis we computed C 𝐯  for different 3D images (7503 

pixels) representing spheres aggregates of different densities, i.e. different number of 

spheres per unit volume. The spheres diameters equal 20 pixels and Nsph, the number 

of spheres within the discretized volume, varies from 100 to 100000 (Fig. 12). To insure 

a random and homogeneous spatial distribution of the spheres, centres positions were 

computed using a random close packing generator based on [44]. This generator works 

as following: 

1. Initialization: Nsph points are randomly placed within a cube. These points will 

be the centres of the Nsph spheres composing the packing, and the distance 

between the nearest centres will determine the spheres diameter. At this stage, due 
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to the unconstrained random placement, the centres will be very heterogeneously 

distributed within the cube and the resulting spheres diameter will be very small. 

2. Homogenisation phase: At each iteration, the two nearest spheres are 

symmetrically moved away along their centres line to a distance DI. During this 

phase, a large value is given to DI creating an efficient virtual shacking of the 

packing that will homogenise the distribution of the centres within the cube.  

3. Densification phase: During this phase, DI is slowly decreased at each iteration, 

and the spheres diameter will gradually increase until convergence to a value 

corresponding to a dense random packing. 

For more details on the parameters to be used during the different phases to effectively 

converge to a dense random packing, refer to [44]. 

 

 

Nsph = 1000  Nsph = 10000 Nsph = 64119 Nsph = 100000

 
Figure 12: 3D rendering of some of the random spheres packings used in this work. For 

Nsph < 64119 there is no overlap between the different spheres. For Nsph = 64119, all 

spheres are in contact with their nearest neighbours. For Nsph > 64119 there is some 

overlap between nearest spheres. 

On Fig. 13.a are represented C v. 𝐗 , the NACFC in the direction of the axis X, 

for 6 values of Nsph. It appears that up to Nsph=7500 there is a distinct plateau for v 

moderately larger than  the spheres diameter. The value of this plateau is given by the 

following formula: 
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〈 𝐮 〉

〈 𝐮 〉  〈 𝐮 〉
 (13) 

which corresponds to the value of the NACFC for v >  in the case of a single sphere. 

This means that each sphere is surrounded by an empty spherical domain having a 

radius larger than 2. Table 6 gives, for the different values of Nsph,  the volume 

fraction of the background in the corresponding three-dimensional discrete images, and 

MinDC, the minimum of the distances between sphere centres. For Nsph > 7500, 

MinDC is larger than 2, and interferences between neighbouring spheres begins. It can 

be noted that this occurs for very loose packing ( larger than 90%).  

 

Figure 13: Evolution of the shape of NACFC with the number of spheres in the 3D 

images. 

When the number of spheres is increased, the shapes of the NACFC curves are 

modified (Fig. 13) with appearance of a minimum at a lag (La) where the anti-

correlation of I(u) and I(u+v) is maximum, and a maximum at a lag (Lc) where the 

correlation of I(u) and I(u+v) is maximum. Both lags are characteristics of the complete 

a) b) 
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image, simultaneously taking into account spatial distributions of the objects (the 

spheres) and of the background.  

Table 6: Evolution with Nsph, the number of spheres in the volume, of , the porosity in 

%, and MinDC, the minimum of the distances between sphere centres. 

Nsph 100 1000 2500 5000 7500 10000 25000 50000 64119 75000 100000 

 (%) 99.90 99.01 97.53 95.05 92.56 90.08 75.59 50.37 36.35 26.47 11.12 

MinDC 371.57 172.46 80.05 46.81 40.90 37.16 27.38 21.73 20.00 18.98 17.25 

 

Looking at Fig. 13 we observe that using any characteristic value of the NACFC 

(for instance 0.5 in [43]) to estimate the grains diameter is illusory. Indeed, the short-lag 

part of all the NACFC curves varies continuously with the sphere number. This is true 

for non-overlapping spheres aggregates (Nsph <= 64119, the value for having a random 

close packing) or for overlapping spheres aggregates. 

La and Lc are characteristic distances related to the entire image and it is a priori 

not possible to distinguish the effects of its different components. This is unequivocally 

illustrated by the results of the series of tests summarized in Fig. 14. Seven discretized 

grey-level images (7503 pixels) of aggregates comprising 25000 equal spheres were 

generated. In these aggregates the positions of the spheres centres were the same, but 

the spheres diameter varied between =20 pixels and =32 pixels by steps of 2 pixels.  

On Fig. 13a are represented C v. 𝐗  for the 7 values of . La and Lc increase 

with , while both the anti-correlation and correlation levels decrease. La corresponds to 

the lag for which the average intersection between the spheres and the background is 

maximum. The positions of the sphere centres being constant (Fig. 14b), the variations 

of La can only be attributed to small variations of the distance between the spheres and 

the larger zones of the background. Lc represents the lag for which both background 

regions and the spheres reach maximum overlap. The increase of Lc is therefore also 

due to the variation of the distance between spheres and background regions, and the 
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fact that it grows slightly faster than La can be explained by an increase of the distance 

between the nearest larger zones of the background.  

 

 

 
Figure 14: a) Evolution of the shape of NACFC with the diameter  of the 25000 

spheres composing the considered aggregates. b) Sections of the aggregates for  = 20, 

24, 28, and 32 (left-right and up-down). 

Appendix B: Tensor of inertia and ellipsoid 

The general equation of an ellipsoid centred at (0,0,0) and aligned on the X, Y, Z axes 

is: 

    1 (14) 

where a, b, and c are the principal semi-axes. 

Assuming that the density of the ellipsoid is uniform, its moments of inertia with 

respect to the directions X, Y and Z are given by the following expressions: 

a) 
b) 
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I   b c

I   a c

I   a b

 (15) 

Reciprocally, if (X,Y,Z) is the coordinate system based on the principal 

directions of a moment of inertia tensor, the principal semi-axes of the ellipsoid having 

the same moment of inertia with respect of the directions X, Y and Z are given by the 

following expressions: 

 

a  I I I

b  I I I

c  I I I

 (16) 

When presenting the autocorrelation function, two definitions were introduced 

for the degree of anisotropy; DA_Inertia and DA_Ellips. Considering an ellipsoid 

described by Eq. 12 for which a ≥ b ≥ c and using the relations 13 and 14, the following 

expressions are obtained: 

 

DA_Inertia   

DA_Ellips   

DA_Inertia  _   

  
  with 𝛼  

 (17) 

 is larger than 1, and depending on its value, DA_Inertia is larger or smaller 

than DA_Ellips.  

If we take the case of needle (e.g. a = 10, and b = c = 1), we obtain DA_Ellips = 

10 and DA_Inertia = 50.5, and in the case of a disc (e.g. a = b = 10, and c= 1), we get 

DA_Ellips = 10 and IZZ/IXX ~ 1.98. This implies that the objects in Fig. 1 have the shape 
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of discs rather than that of needles, as expected from their definition. Trivially, in the 

case of a sphere (i.e., a = b = c), DA_Ellips = DA_Inertia = 1. 

Appendix c: Permeability eigenvalues and eigenvectors 

Sub‐sample IEL 

Eigenvalues 
Eigenvectors 

  A  B  C 

1  3.208  1  0.99998  ‐2.756 E‐3  ‐4.501 E‐3 

2  1.714  2  4.223 E‐3  0.92935  0.36918 

3  0.336  3  3.166 E‐3  ‐0.36919  0.92935 

Sub‐sample Cord1 

Eigenvalues 
Eigenvectors 

  A  B  C 

1  7.898  1  ‐5.596 E‐2  0.99571  ‐7.366 E‐2 

2  7.105  2  0.96822  3.610 E‐2  ‐0.24748 

3  6.944  3  0.24376  8.517 E‐2  0.96609 

Sub‐sample Cord2 

Eigenvalues 
Eigenvectors 

  A  B  C 

1  3.916  1  7.765 E‐2  0.99161  ‐0.10331 

2  3.098  2  ‐6.421 E‐2  0.10838  0.99203 

3  2.881  3  0.99491  ‐7.040 E‐2  7.208 E‐2 

Sub‐sample Cord3.1 

Eigenvalues 
Eigenvectors 

  A  B  C 

1  0.845  1  4.800 E‐2  0.99400  ‐9.824 E‐2 

2  0.772  2  0.88500  3.282 E‐3  0.46558 

3  0.597  3  ‐0.46312  0.10929  0.87953 

Sub‐sample Cord3.2 

Eigenvalues 
Eigenvectors 

  A  B  C 

1  1.044  1  ‐7.458 E‐3  0.98976  0.14253 

2  0.885  2  0.83933  ‐7.128 E‐2  0.53893 

3  0.723  3  ‐0.54358  ‐0.12364  0.83020 

Sub‐sample Cord4.1 

Eigenvalues 
Eigenvectors 

  A  B  C 

1  2.116  1  7.030 E‐2  0.99746  ‐1.118 E‐2 

2  1.909  2  0.98855  ‐7.116 E‐2  ‐0.19258 

3  1.797  3  0.13350  1.676 E‐3  0.98122 

Sub‐sample Cord4.2 

Eigenvalues  Eigenvectors 
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  A  B  C 

1  2.133  1  ‐8.971 E‐2  0.99591  ‐9.824 E‐2 

2  1.927  2  0.97713  9.018 E‐2  0.46558 

3  1.802  3  0.19280  6.353 E‐3  0.87953 

Sub‐sample SiC 

Eigenvalues 
Eigenvectors 

  A  B  C 

1  0.699  1  0.97144  0.22907  ‐6.196 E‐2 

2  0.651  2  ‐0.23597  0.96012  ‐0.14994 

3  0.625  3  2.514 E‐2  0.16027  0.98675 

 

 


