Jintong Ren

Jin-Kao Hao
email: jin-kao.hao@univ-angers.fr

Eduardo Rodriguez-Tello

Liwen Li

Kun He

A new iterated local search algorithm for the cyclic bandwidth problem

Keywords: Heuristic, computational methods, cyclic bandwidth minimization, graph labeling, combinatorial optimization

The Cyclic Bandwidth Problem is an important graph labeling problem with numerous applications. This work aims to advance the state-of-the-art of practically solving this computationally challenging problem. We present an effective heuristic algorithm based on the general iterated local search framework and integrating dedicated search components. Specifically, the algorithm relies on a simple, yet powerful local optimization procedure reinforced by two complementary perturbation strategies. The local optimization procedure discovers high-quality solutions in a particular search zone while the perturbation strategies help the search to escape local optimum traps and explore unvisited areas. We present intensive computational results on 113 benchmark instances from 8 different families, and show performances that are never achieved by current best algorithms in the literature.

Introduction

Let G(V, E) be a finite undirected graph with vertex set V (|V | = n), edge set E (|E| = m) and C n a cycle graph. An embedding ϕ (also called a labeling or an arrangement) of G in C n is a one-to-one mapping from V to V . The cyclic bandwidth of ϕ for G is given by

C B (G, ϕ) = max {u,v}∈E {|ϕ(u) -ϕ(v)| n }, (1)
where ϕ(u) represents the label assigned to vertex u and |x| n = min{|x|, n -|x|} is the cyclic distance.

The Cyclic Bandwidth Problem (CBP) is then to find a labeling ϕ * ∈ Ω which minimizes the cyclic bandwidth of a given graph, where Ω is the set of all possible labellings. See Fig. 1 for an illustrative example. by reordering all the vertices on a cycle according to their labels in the clockwise direction. The cyclic bandwidth of the shown embedding C B (G, ϕ) equals 4, which is defined by the edges {d, e}, {e, g} and {i, j}. One observes that the cyclic bandwidth corresponds to the minimum steps needed to go from one endpoint to the other endpoint of these edges either in a clockwise or counterclockwise direction on the cycle graph.

First introduced to formulate a design problem in the area of ring interconnection networks [START_REF] Leung | On some variants of the bandwidth minimization problem[END_REF], the CBP has also been found to be a relevant model for a number of additional applications including VLSI design [START_REF] Bhatt | A framework for solving vlsi graph layout problems[END_REF], data structure representations [START_REF] Rosenberg | Bounds on the costs of data encodings[END_REF], code designs [START_REF] Chung | Labelings of graphs[END_REF] and parallel computer systems [START_REF] Hromkovič | On embedding interconnection networks into rings of processors[END_REF].

In terms of computational complexity, the decision version of the CBP is N P-complete [START_REF] Lin | The cyclic bandwidth problem[END_REF]. Consequently, the CBP is computationally challenging for solution methods.

Given the relevance of the problem, a number of studies have been proposed in the literature. A majority of early studies are of theoretical nature and focused on finding exact cyclic bandwidths for special graphs or determining lower bounds for general graphs. For example, in [START_REF] Hromkovič | On embedding interconnection networks into rings of processors[END_REF], the relationship between the bandwidth B P (G) and cyclic bandwidth B C (G) for a graph G was identified: B P (G) ≥ B C (G) ≥ 1 2 B P (G). The authors of [START_REF] Yuan | Optimal labelling of unit interval graphs[END_REF] showed that for seven graph labeling problems including the CBP, there exists a labeling that is simultaneously optimal for every unit interval graph. More investigations [START_REF] Lin | Minimum bandwidth problem for embedding graphs in cycles[END_REF][START_REF] Lam | Characterization of graphs with equal bandwidth and cyclic bandwidth[END_REF][START_REF] Lam | On bandwidth and cyclic bandwidth of graphs[END_REF] were carried out to identify two extreme cases to obtain exact cyclic bandwidths for some special graphs. An exact algorithm [START_REF] Romero-Monsivais | A new branch and bound algorithm for the cyclic bandwidth problem[END_REF] used the branch and bound method to solve small graphs with up to 40 vertices. The study of [START_REF] Zhou | Bounding the bandwidths for graphs[END_REF] was devoted to a systematic method to calculate lower bounds for B P (G) and B C (G) according to distance and degree-related parameters. In [START_REF] Chan | Cyclic bandwidth with an edge added[END_REF], the authors proposed a method to obtain sharp upper bounds of a graph by adding a new edge. Based on semidefinite programming (SDP) relaxations of the quadratic assignment problem, better lower bounds of B P (G) and B C (G) were introduced in [START_REF] Klerk | On semidefinite programming bounds for graph bandwidth[END_REF].

Besides these theoretical studies, practical solution methods based on metaheuritics began to appear in recent years. To our knowledge, there are two such algorithms in the literature. In [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF], the authors proposed the first tabu search algorithm (T S CB) and compared it with a simulated annealing algorithm adapted from an algorithm designed for the related Bandwidth Minimization Problem [START_REF] Harper | Optimal assignments of numbers to vertices[END_REF]. Computational results confirmed the value of T S CB on a set of benchmark instances. Recently, a three-phase heuristic algorithm called IT P S was presented in [START_REF] Ren | An iterated three-phase search approach for solving the cyclic bandwidth problem[END_REF], which improved several best known results in the literature. Very recently, the population-based evolutionary approach was investigated in [START_REF] Ren | A study of recombination operators for the cyclic bandwidth problem[END_REF], where five classical permutation crossovers (order crossover, order-based crossover, cycle crossover, partially mapped crossover, distance preserved crossover) [START_REF] Larrañaga | Genetic algorithms for the travelling salesman problem: a review of representations and operators[END_REF] were compared within a hybrid genetic algorithm combining such a crossover and a descent search. This study found that the order-based crossover performs the best among the five compared crossovers. However, these hybrid genetic algorithms do not compete well with the best performing CBP algorithms. Indeed, the experimental results reported in the above studies showed that IT P S [START_REF] Ren | An iterated three-phase search approach for solving the cyclic bandwidth problem[END_REF] and T S CB [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF] represent the state-of-the-art for solving the CBP. Meanwhile, these two algorithms are complementary because they performed the best on different benchmark instances.

In this work, we aim to enrich the solution toolbox for effectively solving the cyclic bandwidth problem. For this, we investigate a new iterated local search (N ILS) algorithm which distinguishes itself by two original features. First, we devise a new and effective strategy to explore candidate neighbor solutions generated by the conventional swap operator. Second, we employ two perturbation procedures with different intensities to better diversify the search. Compared to the two existing heuristic algorithms T S CB and IT P S, the proposed algorithm is simpler (e.g., it uses only one neighborhood against 2 for T S CB and IT P S) and requires fewer parameters (4 against 8 for T S CB and 9 for IT P S), making it much easier to use.

To assess the performance of the proposed algorithm, we show computational results on the set of 113 well-known benchmark instances in the literature and make comparisons with the results of T S CB and IT P S. Our experiments indicate that the proposed algorithm dominates the reference algorithms and achieves a performance that has never been reported in the CBP literature.

The remainder of the paper is organized as follows. In Section 2, we present the main algorithm and its key components. In Section 3, we show the computational results on the benchmark instances and comparisons with reference results in the literature. In Section 4, we report additional experiments to investigate the influences of main algorithmic components on the global performance of the algorithm. Conclusions are drawn in Section 5.

New iterated local search algorithm

Iterated local search [START_REF] Lourenço | Iterated local search[END_REF] is a general search framework with numerous successful application examples (e.g., [START_REF] Fu | Knowledge-guided local search for the prize-collecting steiner tree problem in graphs[END_REF][START_REF] Grosso | Finding maximin latin hypercube designs by Iterated Local Search heuristics[END_REF][START_REF] Meignan | A neutrality-based iterated local search for shift scheduling optimization and interactive reoptimization[END_REF][START_REF] Zhou | An iterated local search algorithm for the minimum differential dispersion problem[END_REF]. The basic idea of this approach is to use a local optimization procedure to find local optima and a perturbation procedure to move away from each local optimum discovered. The new iterated local search algorithm (NILS) presented in this work for the CBP follows this general approach and relies on three key components specially designed for this problem: a dedicated tabu search procedure (DTS) with a specific neighborhood exploration strategy, a directed perturbation procedure (Directed Pertub) with a randomized shift-insert operator and a strong perturbation procedure with a destruction-reconstruction heuristic (Strong Pertub).

The algorithm employs the dedicated tabu search procedure to attain highquality local optimal solutions and probes additional nearby local optimal solutions with the help of the directed perturbation procedure. To better diversify its search, the algorithm uses the strong perturbation procedure to displace the process to more distant unexplored regions. These three procedures are iterated to ensure a large exploitation and exploration of the whole search space.

The pseudo-code of the NILS algorithm is presented in Algorithm 1. The algorithm starts with a random initialization solution ϕ. The inner 'while' loop iteratively performs the dedicated tabu search procedure (Section 2.1), followed by the directed perturbation procedure (Section 2.2). At each iteration, the input solution is first improved by DTS which is based on the neighborhood N f (Section 2.1) and the evaluation function f e (See below). When DTS stagnates, Directed Pertub is used to modify the incumbent solution to provide a new input solution for the next round of DTS. The process of DTS and Directed Pertub is repeated L 3 times (L 3 is a parameter called exploration limit). When the inner 'while' loop terminates, we consider that the search has sufficiently examined the current and close regions. As a result, we heavily alter the incumbent solution with the strong perturbation procedure to move the search to a far and away region, then the 'DTS-Directed Pertub' process is triggered to explore new local optimal solutions. The whole algorithm is repeated until a given cut off time limit T max is reached, and the best solution found ϕ * is returned.

Algorithm 1 New iterated local search algorithm for the CBP

1: Input: Finite undirected graph G(V, E), neighborhood N f , evaluation function f e ,
tabu search depth L 1 , directed perturbation strength L 2 , exploration limit L 3 , controlling percent α and cutoff time limit T max 2: Output: The best solution found ϕ * 3: ϕ ← InitialSolution() 4: ϕ * ← ϕ 5: while the cutoff time limit T max is not reached do 6:

Count ← 0 7:

while Count < L 3 do 8: To assess the quality of a candidate solution ϕ, the algorithm adopts the extended evaluation function f e (ϕ) introduced in [START_REF] Ren | An iterated three-phase search approach for solving the cyclic bandwidth problem[END_REF], which is defined as follows.

(ϕ, ϕ *) ← DT S(ϕ, ϕ * , N f , f e , L
f e (ϕ) = C B (G, ϕ) + Z(C B (G, ϕ)) |E| (2)
where

Z(C B (G, ϕ)) = {u,v}∈E
I uv represents the number of edges whose cyclic distances equal C B (G, ϕ), and the indicator variable

I uv = 1 if |ϕ(u)-ϕ(v)| n = C B (G, ϕ)
, and I uv = 0 otherwise. The second term of f e (ϕ) in the range (0, 1] is used to distinguish solutions with the same cyclic bandwidth.

Algorithm 2 New tabu search phase if f e (ϕ b) < f e (ϕ *) then 24:

ϕ * ← ϕ b 25:

end if 26: end while 27: return ϕ, ϕ *

Dedicated tabu search

The dedicated tabu search (DTS) procedure (Algorithm 2) is designed to exploit candidate solutions with the help of the neighborhood N f (see below).

DTS starts with an input solution ϕ and iteratively makes transitions from the current solution to a neighbor solution. At each iteration of the outer 'while' loop, DTS first identifies the critical vertices relative to the current solution (line 8, Alg. 2), and then for each critical vertex, swaps the label of this vertex against the label of another specifically selected vertex to generate a neighbor solution (lines 9-15, Alg. 2). After each solution transition, the performed swap operation is recorded in the so-called tabu list [START_REF] Glover | Tabu search[END_REF] to avoid revisiting the replaced solution. Once all the critical vertices are examined, operations are performed to update the counter of non-improving iterations, local best solution found during DTS and global best solution. DTS terminates when the local best solution cannot be improved for L 1 consecutive iterations.

To transform the incumbent solution, DTS uses the conventional swap operator which operates on specifically identified vertices. Let ϕ be the current solution, and ϕ ⊕ swap(u, v) be the neighbor solution obtained by exchanging the labels of vertices u and v. Like [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF], we constraint the candidate vertex u to a specific subset of critical vertices C(ϕ) defined as follows.

Let C B (u, ϕ) = max v∈A(u) {|ϕ(u) -ϕ(v)| n } (A(u) is the set of adjacent vertices of u) be the cyclic bandwidth of vertex u with respect to ϕ. Then the critical vertex set C(ϕ) is given by C

(ϕ) = {w ∈ V : C B (w, ϕ) = C B (G, ϕ)}.
Now for a given critical vertex u ∈ C(ϕ), let mid(u) denote the middle point of the shortest path in the cycle graph C n containing all the vertices adjacent to u [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF]. Then we define S(u) ⊆ V to be the set of vertices which are closer than u ∈ C(ϕ) to the middle point mid(u) or equal to mid(u), i.e., S(u

) = {v ∈ V : |mid(u) -ϕ(v)| n ≤ |mid(u) -ϕ(u)| n }.
It is worth noting that S(u) is related not only to the critical vertex u but also to the labeling ϕ.

Given a solution ϕ and a critical vertex u ∈ C(ϕ), we use N f (ϕ, u) to denote the set of solutions that can be obtained by swapping u and a vertex in S(u).

Then, based on C(ϕ) and S(•), DTS applies at each iteration the swap operator to transform ϕ to a new (neighbor) solution. For a vertex u ∈ C(ϕ), the associated S(u) is identified and the best eligible swap(u, v) (v ∈ S(u)) is applied (see Alg. 2, line 10) to obtain a new incumbent solution (a swap is eligible if it is not forbidden by the tabu list or if it leads to the best solution found so far). Then the performed swap(u, v) is added in the tabu list and the reverse operation swap(v, u) will not be allowed for the next tl iterations (tl is called tabu tenure). In this work, we adopt the dynamic tabu tenure method used in [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF][START_REF] Ren | An iterated three-phase search approach for solving the cyclic bandwidth problem[END_REF], which fixes tl according to a periodic step function.

Fig. 2 provides a simple illustration of solution transformation. According to the definition of set S(u) above, we identify the critical set C(ϕ) = {e, i, g, j}.

Then the swap operation is applied to a vertex u ∈ C(ϕ) with a suitable vertex of S(u). For instance, starting from the critical vertex e, the middle point mid(e) is recognized as i with label 6. Then, the distance between e and i is 1 and S(e) = {i, d}. So for the critical vertex e, there are two possible swaps: swap(e, i) and swap(e, d). Since swap(e, d) generates a better solution than swap(e, i) does, it is applied to obtain the new incumbent solution. Note that when one examines next critical vertex, its S(•) will be defined relative to the new solution. After all the critical vertices are examined, DTS terminates its current iteration and starts its next iteration with a new critical set.

Directed perturbation with randomized shift-insert

When DTS stops, the search is considered to be trapped in a local optimum (it is stagnating since it cannot improve its best solution during L 1 iterations).

To escape the trap, we apply a directed perturbation procedure (depicted in Algorithm 3), which relies on a randomized version of the ShiftInsert operator [START_REF] Ren | An iterated three-phase search approach for solving the cyclic bandwidth problem[END_REF]. Our RandomizedShiftInsert operator works as follows. First, we identify an edge e = {x, y} with the largest cyclic distance (i.e., C B (G, ϕ)). Then, one endpoint of the edge is chosen (say x) and used to perform β (a random number between 1 and C B (G, ϕ)) chained swaps where each swap involves x and the next vertex in the direction of decreasing the cyclic distance of edge e. Based on this operator, the directed perturbation procedure modifies the input solution by applying L 2 times the RandomizedShiftInsert operator. This perturbation procedure has the desirable property that it changes the input solution without deteriorating too much of its quality. ϕ ← RandomizedShif tInsert(ϕ) 6:

Counter ← Counter + 1 7:

if f e (ϕ) < f e (ϕ *) then 8:

ϕ * ← ϕ 9:

end if 10: end while 11: return ϕ, ϕ *

In the example shown in Fig. 3(a), the edge with the largest cyclic distance is {i, j} indicated in green. The RandomizedShiftInsert operator uses i as the starting vertex to perform 2 swaps (2 is randomly determined from 1 and 4) in a clockwise direction, leading to the solution shown in Fig. 3(b).

We investigate the degree of influence of the directed perturbation procedure over the search performance of the proposed NILS algorithm in Section 4.

Strong perturbation with destruction-reconstruction

When the process of DTS and directed perturbation stops, the search is considered to be trapped in a deep local optimum. To enable the algorithm to continue its search, we introduce a strong perturbation to definitely bring the search to a distant new region. The core idea is to move uncritical vertices to get closer to the critical vertices. For this purpose, the strong perturbation performs two steps: erase the labels of some specifically selected vertices (destruction step) and then re-assign new labels to them according to a greedy strategy (reconstruction step).

To destruct a solution, we first identify the set of vertices C R whose labels will be removed:

C R (ϕ) = {w ∈ V : C B (w, ϕ) ≤ α • C B (G, ϕ)} where α ∈ [0, 1] is a controlling parameter. Thus, C R (ϕ) is composed of vertices with a cyclic bandwidth up to α • C B (G, ϕ). Then, we use L a to collect the labels freed by the vertices of C R (ϕ): L a = {l(w) : w ∈ C R (ϕ)}.
To reconstruct the solution, we re-assign the labels of L a to the vertices of C R (ϕ) with a greedy heuristic. Starting from a random node u ∈ V \ C R (ϕ), we employ a breadth first search to traverse the whole graph. In order to select a label from L a for each vertex v ∈ C R (ϕ) ∩ A(u) (A(u) is the set of adjacent vertices of u), we first identify the set of labels L in (u) whose cyclic distances to l(u) are no more than L B : L in (u) = {l e : |l(u) -l e | n ≤ L B , l e ∈ L a } where L B is the analytical lower bound of the graph according to [START_REF] Lin | Minimum bandwidth problem for embedding graphs in cycles[END_REF]. If L in (u) is not empty, a random label from L in (u) is selected and assigned to v. Otherwise, a random label from L a \ L in (u) is assigned to v. Then, the same operation is performed on each vertex v ∈ A(u). The entire reconstruction step finishes when all vertices in C R (ϕ) are re-assigned labels. respectively in Fig. 4(d). When we consider allocating labels to the adjacent vertices of c, L in (c) is empty, so we choose a label from L a \ L in (c) = {7, 8} (7 in our case) for vertex f . We repeat the above operation until each vertex in C R (ϕ) receives a label. And the solution in Fig. 4(e) with a cyclic bandwidth of 4 is returned as the output of the strong perturbation procedure.

An illustrative example is shown in

The impact of the strong perturbation procedure, introduced here, on the behavior of the N ILS algorithm is investigated in Section 4.

Relations with previous studies

N ILS distinguishes itself from two previous algorithms T S CB [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF] and IT P S [START_REF] Ren | An iterated three-phase search approach for solving the cyclic bandwidth problem[END_REF] by the following features. First, unlike [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF][START_REF] Ren | An iterated three-phase search approach for solving the cyclic bandwidth problem[END_REF], the dedicated tabu search procedure of N ILS relies on a single neighborhood while both T S CB and IT P S explore two neighborhoods in a probabilistic way. As such, the key optimization component of our algorithm is simpler and more focused while making its search more effective and more computationally efficient. Second, N ILS employs two perturbation strategies which are different from the previous studies. The directed perturbation with the randomized shiftinsert operation favors the generation of more diverse solutions, while the destruction-reconstruction based strong perturbation provides a complementary and guided strategy to bring the search to new promising search regions.

Last but not least, the N ILS algorithm requires much fewer parameters (4 against 8 for T S CB and 9 for IT P S), making it much easier to use and analyze. As we show in the next section on computational experiments, the N ILS algorithm integrating these specific features performs extremely well on the set of 113 well-known CBP benchmark instances.

Experimental results

This section starts presenting the experimental conditions under which the empirical comparisons were carried out. It continues by giving details about the methodology used to identify the most appropriate combination of input parameter values for the proposed N ILS algorithm. This section concludes by providing an in-depth comparative analysis which considers the proposed N ILS algorithm and two solution approaches which are currently considered as the reference methods in the state-of-the-art: T S CB [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF] and IT P S [START_REF] Ren | An iterated three-phase search approach for solving the cyclic bandwidth problem[END_REF].

Experimental setup

The experimentation of this work was carried out on 113 graphs which were previously employed to assess the performance of the state-of-the-art algorithms reported by Rodriguez-Tello et al. [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF], and latter by Ren et al. in [START_REF] Ren | An iterated three-phase search approach for solving the cyclic bandwidth problem[END_REF].

These graphs are organized in two different groups. The first one is made up of 85 graphs belonging to 7 different families of standard graphs (paths, cycles, two dimensional meshes, three dimensional meshes, complete r-level k-ary trees, caterpillars and r-dimensional hypercubes). Their order |V | varies in the range from 9 to 8192, while their size |E| goes from 8 to 53248. The values of the optimal solutions for these graphs are known, the reader is referred to [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF] for consulting the details. Therefore, attaining the optimal solutions for these instances is an important factor to evaluate the performance of algorithms.

The second group contains 28 graphs coming from the Harwell-Boeing Sparse Matrix Collection1 . These instances were directly constructed from sparse adjacency matrices produced in practical and engineer real world applications.

Their order fluctuates in the interval 9 ≤ |V | ≤ 715 and their size are in the range 46 ≤ |E| ≤ 3720. The optimal solutions for 7 small graphs are known, while for the remaining 21 graphs lower and upper bounds can be calculated according to [START_REF] Lin | Minimum bandwidth problem for embedding graphs in cycles[END_REF].

The performance assessment of the three analyzed algorithms was done using the same comparison metrics previously employed in [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF] The proposed N ILS algorithm was coded using the C++ programming language2 . Given that the source codes of the T S CB and IT P S methods are publicly available (see [START_REF] Ren | An iterated three-phase search approach for solving the cyclic bandwidth problem[END_REF]), the three analyzed algorithms were compiled in gcc 4.4.7 using the optimization flag -O3. These three algorithms were independently executed 50 times, using different random seeds, over each test instance and with a maximum running time of 600 seconds.

Tuning of parameters

In order to automatically determine the most suitable combination of input parameter values for the proposed N ILS algorithm, we have decided to employ I/F-Race, an iterated procedure based on the use of racing and Friedman's non-parametric two-way analysis of variances by ranks. It is part of the popular irace package [START_REF] López-Ibáñez | The irace package, iterated race for automatic algorithm configuration[END_REF][START_REF] López-Ibáñez | The irace package: Iterated racing for automatic algorithm configuration[END_REF] for automatic parameter configuration.

For this tuning experiment, the irace parameter controlling the maximum number of runs of the algorithm being tuned (tuning budget) was fixed to 2000. Then, a subset of 10 instances, identified as challenging for the state-ofthe-art algorithms [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF][START_REF] Ren | An iterated three-phase search approach for solving the cyclic bandwidth problem[END_REF], was selected and consistently used. This subset includes certain Harwell-Boeing instances (bcsstk06, 494 bus, dwt 592, 662 bus, 685 bus, can 715), as well as some graphs from different standard topologies (path1000, cycle1000, mesh2D20x50, mesh3D13, tree2x9, caterpillar44, hyper-cube11).

Our N ILS algorithm requires to define five different input parameters before start working. The first one is the cutoff time T max . It was fixed to 600 seconds for all the experiments presented in this work, which is the same value employed by the state-of-the-art algorithms [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF][START_REF] Ren | An iterated three-phase search approach for solving the cyclic bandwidth problem[END_REF]. The other four input parameters of N ILS are listed in Table 1, along with their description, type, and range of possible values.

After the execution of our automatized tuning experiments, the parameter values for obtaining the best performance of N ILS identified by irace are: L 1 = 100, L 2 = 20, L 3 = 2000, and α = 0.84. Hence, these values are consistently employed along the whole experimentation reported in the following.

Comparisons with state-of-the-art algorithms

This section presents a performance assessment of our N ILS algorithm compared to the two best performing algorithms in the CBP literature (i.e., T S CB [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF] and IT P S [START_REF] Ren | An iterated three-phase search approach for solving the cyclic bandwidth problem[END_REF]). We ignore the recent hybrid genetic algorithms studied in [START_REF] Ren | A study of recombination operators for the cyclic bandwidth problem[END_REF], because their results are dominated by those of these two reference algorithms. This assessment was carried out under the experimental conditions previously detailed in Section 3.1.

Table 2 summarizes the results provided by this computational experiment or- From Table 2, one observes that our N ILS algorithm has reached better average best cyclic bandwidth values (See column Avg. Cb b) than the two state-of-the-art algorithms for all the 8 subsets of instances tested. Indeed,

N ILS was able to attain new best-known results for 18 standard graphs and for 4 Harwell-Boeing instances, respectively. For the remaining 91 benchmark graphs it matches the best recorded results in the literature. We remark that for the first 6 graph types N ILS attained the optimal solution values (see column % Best) for each of its runs, while IT P S could only do this for the subsets tree and caterpillar. In contrast, T S CB could not ensure optimal solutions for any subset of instances.

It is worth noting that the three large instances in the subset mesh3D (3dimensional meshes) and the three instances of the hypercube subset (r-dimensional hypercubes) are among the most difficult benchmarks. To illustrate this, consider the graph mesh3D13 (with 2197 vertices and 6084 edges) for which neither T S CB , nor IT P S can get the optimal objective value of 133 (553 and 551, respectively). Nevertheless, N ILS is able to find the optimal solution for this graph, which represents an important improvement in solution quality with respect to that furnished by IT P S and T S CB (75.86% and 75.95%). It proves the effectiveness of N ILS for solving challenging instances.

Concerning the O-RMSE values scored by the three compared algorithms, our N ILS algorithm reports the ideal value of zero for 5 subsets (path, cycle, mesh2D, tree and caterpillar). On the other hand, IT P S did it only for one subset (tree) and T S CB for none of them. This means that our algorithm is more robust than the two reference algorithms, considering it achieved the optimal solution at every execution for all the graphs in most of the subsets. For the two remaining subsets of instances (mesh3D and hypercube), N ILS also achieved lower O-RMSE values (0.36 and 0.26) than those scored by T S CB (1.47 and 0.34) and IT P S (1.39 and 0.59). Moreover, the average computational time expended by N ILS to attain these solutions (see column Avg. T b) is largely reduced with respect to that consumed by the competing algorithms. An exception is the case of the hypercube subset, where the computational effort needed by N ILS is 6.50% higher than that of T S CB (584.21 vs. 546.23), but N ILS produced much better solutions than T S CB .

An in-depth statistical significance analysis, using the methodology described in Section 3.1, was performed for validating the experimental results produced in our performance comparisons. This analysis, presented in Table 3, and detailed in the last four columns of Tables A.1 and A.2, revealed that N ILS was able to statistically outperform T S CB and IT P S in 51.33% and 44.25% of the 113 tested instances (58 and 50 graphs, respectively). For the remaining benchmark instances, it was not possible to identify a statistical difference in performance between N ILS and the state-of-the-art algorithms.

If we check the detailed results of Tables A-1 et A-2 in the Appendix, we can make some general comments about the behaviors of the three algorithms with respect to the size (complexity) of the benchmark graphs. First, we observe that within each of the 8 graph families, larger graphs with more vertices and edges are usually more difficult to solve for all algorithms. This is especially true for the largest instances such as path, cycle, mesh2D, mesh3D as well as large instances of the Harwell-Boeing family. Second, between IT P S and T S CB , IT P S reached an equal or a better performance for most graphs except some cycle, mesh2 and hypercube graphs, while T S CB was more successful on some large graphs. Third, our N ILS algorithm performed remarkably well on almost all graphs compared to the reference algorithms both in terms of best solutions found and computational efficiency. This is particularly the case for the instances which are difficult for the reference algorithms such as the largest path, cycle, mesh2D, mesh3D and hypercube graphs.

Finally, to study the behaviors of the three compared algorithms throughout the execution, we performed an additional experiment to obtain the convergence charts (running profiles) of the algorithms on four representative and difficult instances: two standard graphs (path1000 and mesh2D28x30) and two Harwell-Boeing graphs (685 bus and hypercube11). For this experiment, we ran each algorithm 50 times to solve each instance with the time limit of 600 seconds and recorded the best objective values during the executions. Fig. 5 shows the corresponding convergence charts that indicate how the average best objective values found by each algorithm (y-axis) evolves as a function of the running time of the algorithm (x-axis). We observe that even if all the algorithms are able to improve the solution quality quickly at the beginning of their search, our N ILS algorithm has a better behavior on the long term. Indeed, when the reference algorithms began to slow down their improvement or even stagnate on their best solution after some 100 seconds, our N ILS algorithm continued its search to find still better solutions. This experiment shed light on why N ILS competes highly favorably with the reference algorithms.

Table 2 Summary of the experimental performance comparison among the two reference methods in the CBP literature (i.e., T S CB [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF] and IT P S [START_REF] Ren | An iterated three-phase search approach for solving the cyclic bandwidth problem[END_REF]) and the N ILS algorithm over 113 benchmark instances: 85 standard graphs with known optimal solutions, and 28 Harwell-Boeing instances. [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF] and IT P S [START_REF] Ren | An iterated three-phase search approach for solving the cyclic bandwidth problem[END_REF]) and the N ILS algorithm over 113 benchmark instances: 85 standard graphs with known optimal solutions, and 28 Harwell-Boeing instances.

Analysis of the two perturbation strategies

The N ILS algorithm applies two perturbation strategies to achieve diversification effects of different intensities: directed perturbation with the randomized shift-insert operation and strong perturbation using a destructionreconstruction process. In this section, we investigate the influence of these perturbation strategies on the performances of the algorithm. For this purpose, we created two N ILS variants: N ILS dp by disabling the directed perturbation component of N ILS and N ILS sp by disabling the destructionreconstruction based strong perturbation. We ran both variants to solve the 113 benchmark instances according to the condition specified in Section 3.1 and reported their computational results in Tables 4 and5 together with those produced by N ILS.

In these tables, the information of the compared algorithms is shown employing the same column headings as those used in Table 2. The last three columns (Statistics) present the statistical results obtained by using the methodology detailed in Section 3.1.

From these tables, we observe that removing any of these perturbation strategies greatly deteriorates the performance of the N ILS algorithm.

Specifically, the results of Table 4 show that the directed perturbation is important for 7 out of 8 families of instances in terms of most performance indicators. Without the directed perturbation, the algorithm leads to worse results in terms of best and average objective values while its performance is less stable. Globally, the statistical analysis indicates that for 50 instances (44.25%), the directed perturbation plays a significant and positive role. This is particular the case for instances belonging to three families (mesh2D, mesh3D, and Harwell-Boeing). Similarly, the results of Table 5 disclose that the strong perturbation also impacts the performance of the N ILS algorithm even if the impact is less important compared to that of the directed perturbation. This observation is supported by our statistical assessment, which revealed that a relevant statistical difference in favor of N ILS with respect to N ILS sp exists for only 34 benchmark instances (30.09%). Disabling the strong perturbation in our algorithm leads to a less stable implementation for all the graph families except for the tree family (observe column O-RMSE). The benefit of using the strong perturbation is particularly visible on instances of four families (path, cycle, mesh3D, and Harwell-Boeing). In this sense, the strong perturbation is complementary with respect to the directed perturbation, given that they help to improve the solution of instances from different families.

Concerning the average expended computational time, we can observe that both N ILS dp and N ILS sp consume more CPU resources than N ILS for most of the benchmark instances evaluated. Only in the case of the hypercube graphs, N ILS makes use of a higher average computational time than the other two reference algorithms. But this is largely compensated by the better quality solutions provided by our N ILS algorithm.

To further highlight the benefits of employing the two proposed perturbation strategies, we illustrate in Fig. 6 a detailed comparison between N ILS and the two variants N ILS dp and N ILS sp on four representative instances (cy-cle1000, caterpillar44, hypercube13, and 662 bus) from different benchmark families. The plots are based on the results of 50 independent runs of the algorithms.

Fig. 6(a) shows that the results of N ILS and N ILS dp share the same median except that there are several outliers for N ILS dp, while N ILS sp has a worse performance in terms of the median and interquartile range. This indicates the important role of strong perturbation for instance cycle1000. shows a better performance than N ILS with a smaller first quartile, median and third quartile. That explains why there is a statistical difference against N ILS for one hypercube instance registered in Table 5 (column -). However, N ILS has obtained smaller outlier values than N ILS sp, which also leads to a better average cyclic cost (1492.00 vs. 1502.67). To sum up, this experiment shows that both N ILS dp and N ILS sp report a worse performance than N ILS in each representative instance in Fig. 6, which means that the directed perturbation and strong perturbation play complementary roles in N ILS.

Conclusions

The N P-hard cyclic bandwidth problem has a number of relevant applications. The N ILS algorithm presented in this work enriches the practical solu-tion toolbox for effectively solving this challenging problem. For the 85 standard instances with known optimal solutions, N ILS attains the optimal cyclic bandwidth costs for 82 instances (96.47%) while the two best performing algorithms in the literature only achieve 59 (69.41%) and 63 (74.12%) optimal solutions respectively. Remarkably, our algorithm establish 4 new record results (improved upper bounds) for 4 Harwell-Boeing instances. Moreover, the algorithm is highly robust across the instances of most tested families with very different structures and topologies.

Finally, the proposed algorithm has the advantage of requiring fewer parameters compared to the two leading algorithms presented in [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF][START_REF] Ren | An iterated three-phase search approach for solving the cyclic bandwidth problem[END_REF]. As a result, it is easier for the user to apply it to solve new problem instances. Given that the source code of our algorithm will be publicly available, we hope this work will help to better solve some practical cyclic bandwidth problems and contribute to design other more powerful CBP algorithms.

A Detailed performance evaluation

This appendix presents the detailed results of the proposed N ILS algorithm and the two reference algorithms (T S CB [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF] and IT P S [START_REF] Ren | An iterated three-phase search approach for solving the cyclic bandwidth problem[END_REF]). Table A.1 shows the results for the 85 standard graphs with known optimal solutions, while [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF] and IT P S [START_REF] Ren | An iterated three-phase search approach for solving the cyclic bandwidth problem[END_REF] was executed. The resulting p-values (marked as 1 and 2) as well as the final outcome of the statistical comparison are presented in the last four columns. A symbol + or -indicates respectively that N ILS offers a significant better or worse performance than the reference algorithms. A symbol indicates implies that it is not possible to conclude a statistically significant difference between the compared algorithms.

Table A.1: Detailed performance assessment of the N ILS algorithm with respect to two state-of-the-art methods: T S CB [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF] and IT P S [START_REF] Ren | An iterated three-phase search approach for solving the cyclic bandwidth problem[END_REF]. It comprises a total of 85 instances with known optimal solution values belonging to 7 different standard topologies (paths, cycles, two dimensional meshes, three dimensional meshes, complete r-level k-ary trees, caterpillars and r-dimensional hypercubes).

(10 Fig. 1 .

 101 Fig. 1. An illustrative example: (a) graph G (n = 10) with its vertices named by a to j and a labeling (labels named by 1 to 10); (b) embedding to cycle graph C 10by reordering all the vertices on a cycle according to their labels in the clockwise direction. The cyclic bandwidth of the shown embedding C B (G, ϕ) equals 4, which is defined by the edges {d, e}, {e, g} and {i, j}. One observes that the cyclic bandwidth corresponds to the minimum steps needed to go from one endpoint to the other endpoint of these edges either in a clockwise or counterclockwise direction on the cycle graph.

Algorithm 3

 3 Directed perturbation 1: Input: input solution ϕ, best solution ϕ * , and perturbation strength L 2 2: Output: perturbed solution ϕ, updated best solution ϕ * 3: Counter ← 0 4: while Counter < L 2 do 5:

Fig. 2 .

 2 Fig. 2. Illustration for solution transformation: a graph with its labeling ϕ, critical set C(ϕ) = {e, i, g, j} and set S(e) for the first critical vertex e.

Fig. 3 .

 3 Fig. 3. Illustration of the RandomizedShiftInsert operator: (a) The cycle graph before the operation, (b) The cycle graph after the operation (i.e., swap(i, a) followed by swap(i, b)).

Fig. 4 .

 4 Given a graph G(V, E) (|V | = 10, L B = 3), the objective value of the solution in Fig. 4(a) is 4 (C B (G, ϕ) = 4). For the destruction step, if we set α to be 0.8, we get C R (ϕ) = {a, b, c, f, h} and L a = {2, 3, 4, 7, 8}; while the partial solution after removing the vertices in C R (ϕ) is showed in Fig. 4(b). For the greedy reconstruction step, we starting from a random vertex u ∈ V \C R (ϕ) = {d, e, i, j, g} (say d in Fig. 4(c)), we first allocate labels to vertices v ∈ C R (ϕ)∩A(d) = {b}. According to the description above, L in (d) = {2, 3, 4, 8} (labels 9 and 10 are already assigned to vertices). A random label (2 in Fig. 4(c)) is chosen from {2, 3, 4, 8} to be assigned to vertex b. Once all the adjacent vertices of d ({b, g, e}) are successfully re-assigned, they will go through the same operation iteratively following the principle of the breadth first search. And vertices c and a are re-assigned labels 3 and 4

Fig. 4 .

 4 Fig. 4. Illustration of the strong perturbation procedure using destruction and reconstruction on a graph with C B (G, ϕ) = 4, analytical lower bound L B =3 and controlling parameter α = 0.8. (a) input solution; (b) partial solution after removing 5 vertices of C R ; (c) beginning of solution reconstruction from vertex d; (d) reconstruction in progress; (e) completion of the reconstruction.

 ganized by instance subsets (see column 1). The first seven subsets correspond to standard graph topologies, whereas the last one is composed of graphs coming directly from engineering real world problems. Column 2 (Num.) shows the number of benchmark instances in each subset. Four columns are employed to register the results (averaged over all the graphs in a subset) produced by each compared algorithm: the best cyclic bandwidth reached (Avg. Cb b), the computational time (in seconds) expended to attain this objective cost (Avg.T b), the overall relative root mean square error (O-RMSE), and the success percentage for finding the optimal (or best-known) solutions (% Best). Detailed results for each of the 113 benchmark instances used in this experiment are shown in Tables A.1 and A.2 provided in Appendix A.

Fig. 5 .

 5 Fig.5. Convergence charts (running profiles) of T S CB , IT P S and N ILS for solving four representative difficult instances (path, mesh2D28x30, 685 bus and hyper-cube11). The results were obtained from 50 independent executions of each compared algorithm.

Fig. 6 .

 6 Fig. 6. Boxplots depicting the cyclic bandwidth cost reached by N ILS, N ILS dp and N ILS sp when used for solving four representative instances from the subsets cycle, caterpillar, hypercube, and Harwell-Boeing. The results were obtained from 50 independent executions of each compared algorithm. On the contrary, N ILS sp performs better than N ILS dp with smaller medians, tighter interquartile ranges and smaller minimal values for the other 3 instances in Fig. 6(b)-6(d). It is worth noting that in Fig. 6(c), N ILS sp

 Cb * Cb b Avg. Cb Dev. Avg. T b D Cb b Avg. Cb Dev. Avg. T b D Cb b Avg. Cb Dev. Avg. T

 Input: input solution ϕ, best solution ϕ * , neighborhood N f , evaluation function f e and tabu search depth L 1 2: Output: improved solution ϕ, updated best solution ϕ *

	3: l ← 0	// Counter of non-improving iterations
	4: ϕ ← ϕ		// Copy of the current solution
	5: ϕ b ← ϕ		// Local best solution
	6: ϕ ib ← ϕ		// Best solution in inner loop
	7: while l < L 1 do	
	8:	C(ϕ) ← CriticalSet(ϕ)		// Identify the critical vertices
	9:	for Each u ∈ C(ϕ) do	
	10:	ϕ ← F indBestN eighbor(N f (ϕ, u))	// Choose a best neighbor solution
	11:	U pdate tabu list	
	12:	if f e (ϕ) < f e (ϕ ib) then	
	13:	ϕ ib ← ϕ	
	14:	end if	
	15:	end for	
	16:	ϕ ← ϕ	
	17:	if f e (ϕ ib) < f e (ϕ b) then	
	18:	l ← 0	
	19:	ϕ b ← ϕ ib	
	20:	else	
	21:	l ← l + 1	
	22:	end if	
	23:		

1:

Table 1

 1 Description and ranges for the input parameters of the N ILS algorithm automatically tuned with irace[START_REF] López-Ibáñez | The irace package, iterated race for automatic algorithm configuration[END_REF].

	Parameter	Description	Type	Range/Values
	L 1	Tabu search depth	Categorical	{1, 2, 5, 10, 20, 50, 100, 200, 500,
				1000, 1500, 2000, 3000, 5000,
				10000, 20000}
	L 2	Directed perturbation strength	Categorical	{1, 2, 5, 10, 20, 50, 100, 200, 500,
				1000, 1500, 2000, 3000, 5000,
				10000, 20000}
	L 3	Exploration limit	Categorical	{1, 2, 5, 10, 20, 50, 100, 200, 500,
				1000, 1500, 2000, 3000, 5000,
				10000, 20000}
	α	Controlling percent	Real	(0.0, 1.0)

Table 3

 3 Summary of the statistical signification analysis from the comparison among the two reference methods in the CBP literature (i.e.,

	N ILS	Avg. T b O-RMSE % Best	6.24 0.00 100.00	9.38 0.00 100.00	10.45 0.00 100.00	132.87 0.36 100.00	1.52 0.00 100.00	18.07 0.00 100.00	584.21 0.26 0.00	40.69 2.15 28.57	
		Avg. Cb b	1.00	1.00	11.40	64.50	54.67	15.07	1492.00	20.39	
	IT P S	b O-RMSE % Best	158.22 3.01 80.00	162.75 4.22 73.33	112.86 0.44 40.00	266.65 1.39 70.00	23.36 0.00 100.00	60.54 0.07 100.00	591.41 0.59 0.00	141.24 3.90 28.57	
			1.87	2.60	12.07	140.50	54.67	15.07	2017.33	23.50	
			66.67	73.33	66.67	30.00	91.67	93.33	0.00	28.57	
			2.01	1.82	1.88	1.47	0.02	0.07	0.34	2.65	
	CB T S		131.85	40.71	144.52	328.32	75.90	75.31	546.23	112.70	
		Avg. Cb	2.53	2.40	27.67	180.30	55.08	15.13	1551.67	22.21	26/87/0
		Num.	15	15	15	10	12	15	3	28	
		Graph type	path	cycle	mesh2D	mesh3D	tree	caterpillar	hypercube	Harwell-Boeing	Win/Match/Fail	T S CB

b Avg. T b O-RMSE % Best Avg. Cb b Avg. T

Table 4

 4 Summary of comparative results between N ILS and its N ILS dp variant (i.e., without the directed perturbation component) on the 8 families of 113 benchmark instances. Cb b Avg. T b O-RMSE % Best Avg. Cb b Avg. T b O-RMSE % Best + -

					N ILS dp			N ILS	Statistics
	Graph type Num. Avg. path 15	1.00	9.48	0.00 100.00	1.00	6.24	0.00 100.00	0 15 0
	cycle	15		1.00 14.63	0.38 100.00	1.00	9.38	0.00 100.00	2 13 0
	mesh2D	15	58.73 98.56	2.94 66.67	11.40 10.45	0.00 100.00	9 6 0
	mesh3D	10	208.20 257.35	1.69	0.00	64.50 132.87	0.36 100.00 10 0 0
	tree	12	54.92 66.68	0.02 91.67	54.67	1.52	0.00 100.00	3 9 0
	caterpillar	15	17.73 174.91	0.36 73.33	15.07 18.07	0.00 100.00	8 7 0
	hypercube	3	1586.00 550.01	0.34	0.00	1492.00 584.21	0.26	0.00	3 0 0
	Harwell-Boeing	28	41.00 125.37	10.04 28.57	20.39 40.69	2.15 28.57 15 13 0
	Total	113								50 63 0

Table 5

 5 Summary of comparative results between N ILS and its N ILS sp variant (i.e., without the strong perturbation component) on the 8 families of 113 benchmark instances. Cb b Avg. T b O-RMSE % Best Avg. Cb b Avg. T b O-RMSE % Best + -

					N ILS sp				N ILS	Statistics
	Graph type Num. Avg. path 15	1.00 30.22	0.45 100.00	1.00	6.24	0.00 100.00 10 5 0
	cycle	15		1.00 20.50	2.18 100.00	1.00	9.38	0.00 100.00 11 4 0
	mesh2D	15	11.40 16.86	0.03 100.00	11.40 10.45	0.00 100.00	1 14 0
	mesh3D	10	64.50 136.14	0.57 100.00	64.50 132.87	0.36 100.00	0 10 0
	tree	12	54.67	1.70	0.00 100.00	54.67	1.52	0.00 100.00	0 12 0
	caterpillar	15	15.07 40.64	0.08 100.00	15.07 18.07	0.00 100.00	4 11 0
	hypercube	3	1502.67 536.50	0.25	0.00	1492.00 584.21	0.26	0.00	0 2 1
	Harwell-Boeing	28	20.39 49.47	2.53 28.57	20.39 40.69	2.15 28.57	8 20 0
	Total	113								34 78 1

Table A .

 A 2 concerns the 28 Harwell-Boeing graphs arising from engineering applications. In these tables, columns 1 to 3 indicate the name, number of vertices (|V |) and number of edges (|E|) of each instance. Column Cb * shows the known optimal cost from the literature[START_REF] Chung | Labelings of graphs[END_REF][START_REF] Hromkovič | On embedding interconnection networks into rings of processors[END_REF][START_REF] Lin | The cyclic bandwidth problem[END_REF][START_REF] Smithline | Bandwidth of the complete k-ary tree[END_REF], while the theoretical lower (L B) and upper (U B) bounds for the instances (TableA.2) are computed according to the formulas L B = ∆(G)/2 and U B = |V |/2 , where ∆(G) is the maximum degree of the graph[START_REF] Lin | Minimum bandwidth problem for embedding graphs in cycles[END_REF]. The remaining columns present, for each algorithm, the best (Cb b), average (Avg. Cb) and standard deviation (Dev.) of the cyclic bandwidth cost attained in 50 independent runs, the computation time needed to reach this cost (Avg. T b), and the variation (D) between its best result (Cb b) and the corresponding best-known bound (either Cb * or L B depending on the type of graph). A statistical significance analysis comparing N ILS against T S CB

Table A

 A

			p-value1 SS 1 p-value2 SS 2	1.49E-22 + 3.10E-20 +	3.03E-21 + 3.13E-20 +
				0	0
	.1 -Continued from previous page	T S CB IT P S N ILS	Graph |V | |E| Cb b D	cycle825 825 825 1 7 7.96 0.28 85.64 6 7 14.32 4.65 472.48 6 1 1.00 0.00 30.99	cycle1000 1000 1000 1 8 8.76 0.56 149.60 7 14 25.76 7.63 514.27 13 1 1.00 0.00 46.43

* Cb b Avg. Cb Dev. Avg. T b D Cb b Avg. Cb Dev. Avg. T b D Cb b Avg. Cb Dev. Avg. T

Table A

 A

			p-value1 SS 1 p-value2 SS 2	0 1.00E+00 1.00E+00	0 2.81E-22 + 1.00E+00	0 1.00E+00 1.00E+00	0 1.00E+00 1.00E+00	0 1.00E+00 1.00E+00	0 2.39E-04 + 1.00E+00	0 1.89E-20 + 1.44E-06 +
	.1 -Continued from previous page	T S CB IT P S N ILS	Graph |V | |E| Cb b D	tree13x2 183 182 46 46 46.00 0.00 0.31 0 46 46.00 0.00 0.01 0 46 46.00 0.00 0.01	tree2x7 255 254 19 19 20.00 0.20 47.33 0 19 19.00 0.00 1.00 0 19 19.00 0.00 0.50	tree17x2 307 306 77 77 77.00 0.00 0.54 0 77 77.00 0.00 0.07 0 77 77.00 0.00 0.05	tree21x2 463 462 116 116 116.00 0.00 0.80 0 116 116.00 0.00 0.21 0 116 116.00 0.00 0.12	tree25x2 651 650 163 163 163.00 0.00 1.08 0 163 163.00 0.00 0.56 0 163 163.00 0.00 0.28	tree5x4 781 780 98 98 98.24 0.43 133.63 0 98 98.00 0.00 4.66 0 98 98.00 0.00 0.90	tree2x9 1023 1022 57 62 64.16 1.02 553.57 5 57 57.38 0.49 273.19 0 57 57.00 0.00 16.29

* Cb b Avg. Cb Dev. Avg. T b D Cb b Avg. Cb Dev. Avg. T b D Cb b Avg. Cb Dev. Avg. T

http://math.nist.gov/MatrixMarket/data/Harwell-Boeing

The source code of our N ILS algorithm will be available at: https://github. com/thetopjiji/NILS

Acknowledgement

We are grateful to the anonymous referees for their helpful comments and suggestions, which helped us to improve the presentation of the work.

Table A.2

Detailed performance assessment of the N ILS algorithm with respect to two state-of-the-art methods: T S CB [START_REF] Rodriguez-Tello | Tabu search for the cyclic bandwidth problem[END_REF] and IT P S [START_REF] Ren | An iterated three-phase search approach for solving the cyclic bandwidth problem[END_REF]. It