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We analyze the role of temperature in the rate-independent cohesion and decohesion behavior of
an elastic film, mimicked by a one-dimensional mass-spring chain, grounded to an undeformable sub-
strate via a one-dimensional sequence of breakable links. In the framework of equilibrium statistical
mechanics, in both isometric (Helmholtz ensemble) and isotensional (Gibbs ensemble) conditions,
we prove that the decohesion process can be described as a transition at a load threshold, sensibly
depending on temperature. Under the classical assumption of having a single domain wall between
attached and detached links (zipper model), we are able to obtain analytical expressions for the
temperature dependent decohesion force, qualitatively reproducing important experimental effects
in biological adhesion. Interestingly, although the two ensembles exhibit a similar critical behavior,
they are not equivalent in the thermodynamic limit since they display dissimilar force-extension
curves and, in particular, significantly different decohesion thresholds.

I. INTRODUCTION

Mechanical systems with micro-instabilities attracted
a great deal of interest in recent years. In particular, the
relationship between microstructural instabilities and the
macroscopic (homogenized) response represents a funda-
mental issue in describing the behavior of complex mate-
rials and structures. For instance, the relation between
the energetic favorable transition strategy and the corre-
sponding behavior of macroscopic observables represents
a crucial aspect in the modeling of such multistable sys-
tems. As a matter of fact, micro-instabilities are at the
origin of several important phenomena observed in many
biological materials and artificial structures. Examples
of the former case are the conformational transitions in
polymeric and biopolymeric chains [1–14], the attach-
ment and detachment of fibrils in cell adhesion [15–20],
the unzipping of macromolecular hairpins [21–26], the
sarcomeres behavior in skeletal muscles [27–33] and the
denaturation or degradation of nucleic acids, polypep-
tidic chains or other macromolecules of biological origin
[34–43]. On the other hand, with regard to artificial sys-
tems, we recall the peeling of a film from a substrate [44–
50], the waves propagation in bistable lattices [51–55],
the energy harvesting through multistable chains [56–58],
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the plasticity and the hysteresis in phase transitions and
martensitic transformations of solids [59–69].

The common feature in all these examples is that the
observed macroscopic material behavior results from the
evolution of the system in a complex multi-wells energy
landscape associated to different configurations of the
system at the microscale. Indeed, in all previous ex-
ample the micro (molecular) systems are composed by
units characterized by two (or more) distinct physical
states with different static and dynamic features. As a
result, under external (mechanical, thermal or electrome-
chanical) loading, the system can experience a transition
between different configurations with resulting variable
macroscopic properties.

Schematically, we can identify two main classes of mi-
croinstabilities in multistable materials. On one side, we
may observe a bistable (or multistable) behavior between
one ground state and one (or more) metastable state.
These states represent different, yet mechanically resis-
tant conformations. This case can be represented in a
one dimensional setting by introducing an effective two-
wells potential energy U , as schematized in Fig.1a. We
observe that the choice of a simple one dimensional sys-
tem is aimed at a purely analytical investigation of the
phenomenon. Thus, our one dimensional two-wells en-
ergy can be thought to be deduced based on a coarse-
graining approach, applied to the real multi-variables
structure of a unit. In other words, x represents an effec-
tive order parameter adopted to describe the transition
between the different wells, whereas all other variables
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can be considered to be minimized out. Of course, this
is a simplification useful to provide an easier physical
interpretation of the underlying complex full scale phe-
nomenon. For instance, in this class can be inscribed
conformational (folded → unfolded) transitions in poly-
mers or protein macromolecules (e.g., β-sheets domain
unfolding, α-helix to β-sheet transitions) or martensitic
phase changes between different configurations in metal-
lic alloys. The other class corresponds to transitions be-
tween unbroken and broken states of breakable units of
the system. This process can be reversible, partly re-
versible or irreversible according to the specific physical
phenomenon. Examples of this scheme include unzip-
ping of hairpins, denaturation of macromolecules, fibril-
lar biological adhesion, cell adhesion, and peeling of films.
The (coarse-grained) one dimensional energy considered
in this second case is shown in Fig.1b. Here, the un-
broken configuration corresponds to a potential well and
the broken configuration corresponds to constant energy
and zero force. In Ref.[70], the authors suggest that this
second case can be deduced as a limit case of the first
one when the natural configuration of the second state is
degenerate. Of course the assumption of a non-coercive
energy density changes the mathematical structure of the
model. In particular, as we show in the following (see the
discussion in Sect. III), we solve the possible integrability
problems of the partition function by excluding, thanks
to the considered boundary conditions, the fully detached
configuration.

The statistical mechanics of such systems can be stud-
ied by means of the spin variables approach. The first
models based on this technique have been developed for
describing the response of skeletal muscles [27, 28]. More
recently, this approach has been generalized to study
different allosteric systems [30–33], and macromolecular
chains [71–76]. The main idea consists in introducing a
series of discrete (spin) variables to identify the state of
the system units. For example, the bistable potential en-
ergy of Fig.1a (continuous line) can be approximated by
a bi-parabolic function (dashed lines) with the switch-
ing among the wells described by the spin variable. This
strongly facilitates the calculation of the partition func-
tion and the corresponding thermodynamic quantities,
delivering possible analytical results with a correspond-
ing clear physical interpretation. It is important to re-
mark that, as discussed in detail in Refs. [71, 74], the
evaluation of the partition function based on the spin
approach assumes that for both configurations all possi-
ble deformations (values of x in Fig.1) can be attained
by the system. This corresponds to the assumption of a
multivalued energy function (see superposition of dashed
lines in Fig.1). As shown numerically in Refs. [71, 74],
with typical experimental temperatures, the effect of this
approximation can be considered (statistically) negligi-
ble since these artificial configurations (superposition of
dashed curves) have an energy sensibly higher than real
configurations (continuous lines).

While the use of spin variables has been largely

FIG. 1. Two different classes of micro-instabilities: bistability
between a folded (ground) state and an unfolded (metastable)
state in panel (a), and link transition between attached and
detached state in panel (b).

adopted to model units with transitions between ground
and metastable states (see Fig.1a), the case of units un-
dergoing transition between unbroken and broken states
(Fig.1b) has been investigated, to the best of our knowl-
edge, only in the cases of parallel links [77–79]. In the
case considered here, the film deposited on a given sub-
strate is represented as a lattice of masses connected in
series by harmonic springs and linked to a substrate by
breakable links. This assumption may reproduce differ-
ent types of adhesion forces as in the case of biological
and cellular adhesion [47, 80]. Furthermore, such type
of systems has been recently applied to study thermal
effects in the mechanical denaturation of DNA [81].

It is important to observe that in the recalled exam-
ples of biological adhesion and decohesion phenomena the
binding enthalpies range from about one kBT (for hydro-
gen bonds, e.g. controlling the stability of base pairs in
DNA) to tens of kBT (for covalent bonds, e.g. linking
neighboring bases in a DNA strand or protein structures)
[82, 83]. As a result, the role of temperature cannot be
neglected so that the framework of statistical mechanics
here proposed represents a proper theoretical setting [84].

Another important effect considered in this paper, is
the possibility of two types of loading. Indeed, the peel-
ing of the film can be induced by prescribing a given
extension (Helmholtz ensemble, hard device, Fig.2c), or
by applying an external force to the last unit of the chain
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FIG. 2. Energies and force-displacement relation of the harmonic (horizontal) shear springs in panel (a), and breakable (vertical)
links in panel (b). Different loading conditions: assigned force (Gibbs ensemble, soft device) in panel (c), and assigned end
displacement (Helmholtz ensemble, hard device) in panel (d).

(Gibbs ensemble, soft device, Fig.2d). More specifically,
as described in Refs.[74, 75], these two boundary condi-
tions can be deduced as limiting conditions of real load-
ing experiments, when the stiffness of the device is large
(hard device) or is negligible (soft device), respectively.
From a theoretical point of view, one important problem
regards the analysis of the equivalence of the two en-
sembles in the thermodynamic limit (i.e. for very large
systems) [85–91].

Here, based on the proposed spin variables approach,
we are able to deduce a fully analytical solution of the
two boundary problems for an arbitrary number N of el-
ements of the chain and also in the thermodynamic limit
(N → ∞). The main result of this paper is the deduc-
tion of analytic expressions of the temperature depen-
dent debonding force in both cases of isotensional and
isoextensional loading. Interestingly we obtain a new
effect as compared with the other case of bistable un-
breakable elements (with units as in Fig.1a). Indeed in
the case of non-degenerate wells (Fig.1a) the transition
between the two homogeneous (folded↔unfolded) states
takes place at a temperature independent force [71–75]
(see also Ref. [92] for the case when the two wells have
different elastic constants). More specifically, the confor-
mational transition corresponds to a force-displacement
diagram with a temperature dependent slope, but a tem-
perature independent average force (corresponding to
the Maxwell force of the two wells energy). This re-

sult can be schematically interpreted in the framework
of the Bell relation f = ∆E/∆x (see Fig.1a for the def-
inition of ∆E and ∆x), discovered in the context of
cell adhesion [15, 16, 89], where this value of the aver-
age force represents the threshold necessary to make the
unfolding rate equal to the (reverse) folding one. This
threshold force can be explained as follows. We con-
sider two potential energies U1(x) = 1

2
k(x− `1)2 −fx and

U2(x) = ∆E + 1
2
k(x − `2)2 − fx, corresponding to the

wells of the units. The equilibrium positions can be ob-
tained by ∂Ui/∂x = 0 and we get xi = `i + f/k (i = 1,2).
Hence, the unfolded configuration is more favorable of
the folded one when U2(x2) < U1(x1), which corresponds
to f < ∆E/∆x where ∆x = `2 − `1. Differently, in the
case of breakable links of interest in this paper (with en-
ergy function as in Fig.1b), we obtain an unusual tem-
perature dependent force threshold. More specifically,
in this case not only the slope of the force-displacement
diagram grows with temperature, but importantly the
average decohesion force decreases as the temperature in-
creases. Remarkably, this decohesion force becomes zero
for a given critical temperature. This result describes
the expected effect that thermal fluctuations may antici-
pate the decohesion, allowing the escape from the energy
well and, therefore, the exploration of the whole config-
urations in Fig.1b. Here, we analytically describe this
effect and the whole process is explained by means of a
phase transition occurring at a given critical tempera-
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ture. In particular, we obtain that the system is able to
undergo a complete decohesion even without any exter-
nal mechanical action. As we show, the decohesion force
threshold may be significantly different in the Helmholtz
and Gibbs ensembles also in the thermodynamical limit.
We also remark that a similar effect of a temperature
dependent denaturation force is observed in DNA both
experimentally and theoretically [81, 93].

Summarizing, we underline that from the statistical
mechanics point of view, the system here investigated
is particularly interesting for three reasons: (i) it can
be analytically solved within both statistical ensembles;
(ii) it shows a phase transition at a critical temperature
that can be calculated in closed form; (iii) it exhibits the
ensembles non-equivalence in the thermodynamic limit,
which is an unusual and intriguing behavior.

The paper is organized as it follows. In Section II,
we introduce the system. In Sections III and IV, we
study the Helmholtz and Gibbs ensembles, respectively.
In Section V, we study the thermodynamic limit for both
ensembles. The conclusions (Section VI) and a mathe-
matical Appendix close the paper.

II. PROBLEM STATEMENT

We schematize the decohesion of a layer from a sub-
strate by considering a one-dimensional chain of elements
embedded in an on-site potential reproducing the be-
havior of detachable links. This type of models and its
continuous version describing reversible decohesion has
been previously introduced to describe a wide range of
phenomena such as peeling of tapes, adhesion of geckos
and denaturation of DNA or other chemical structures
[47, 48, 94]. However, in those cases thermal effects are
typically neglected. On the contrary, as we already stated
in the introduction, these effects may play a central role
in the decohesion behavior of biological materials. It is
important to remark that our paradigmatic system has
the advantage of analytical simplicity letting a clear phys-
ical interpretation. On the other hand, it can be gener-
alized in various ways even though this would need a
numerical treatment. For example, the assumption of
biparabolic energy can be extended by adding a persis-
tence length to the elastic chain (changing from flexible
to semi-flexible), a more realistic two-dimensional lattice
tethered to the substrate can be considered, a deformable
substrate can be introduced, and so forth. Of course,
each new ingredient can modify the system response and,
in particular, can complicate the deduction of its critical
behavior.

The horizontal springs of the one-dimensional lattice
(elastic constant k) are purely harmonic with potential

energy ϕ = 1
2
k (yi+1 − yi)2

(Fig.2a), while the vertical
ones (elastic constant h) can be broken or unbroken de-
pending on their extension yi (Fig.2b). When ∣yi∣ > yM
they are broken and when ∣yi∣ < yM they are unbro-
ken. Therefore, an unbroken spring leads to a contribu-

tion to the potential energy equal to ψ = 1
2
hy2

i (when
∣yi∣ < yM ) and a broken one a contribution equal to
ψ = 1

2
hy2

M (when ∣yi∣ > yM ). As anticipated, two dif-
ferent loading conditions are considered. In the first case
(Fig.2c), the process is controlled by the prescribed posi-
tion yN+1 = yd of the last element of the chain (isometric
condition within the Helmholtz ensemble). In the second
case (Fig.2d), the process is controlled by the applied
force f (isotensional condition within the Gibbs ensem-
ble).

The most important point, on which is grounded our
approach, is that each vertical element is characterized
by two different states (broken and unbroken configura-
tions). Therefore, we associate each unit with a spin
variable and the energy potential of each vertical spring
can be written as

ψ = 1

4
(1 + si)hy2

i +
1

4
(1 − si)hy2

M , (1)

where si = +1 corresponds to the unbroken state and
si = −1 corresponds to the broken state, i = 1, ...,N . With
this assumptions we have a phase space composed on the
N continuous variables yi and the N discrete variables
si. The switching of the variable si and their statistics at
thermodynamic equilibrium are directly controlled by the
statistical ensemble (Helmholtz and Gibbs in our case)
imposed to the system.

The statistical mechanics analysis of this system can-
not be analytical and it is computational expensive. Nev-
ertheless, since we are studying the cohesion-decohesion
process under an external mechanical action applied to
one end point of the system, we can simplify the model
(see Fig.2d) by assuming to haveN−ξ broken elements on
the right of the chain and ξ unbroken elements on the left
of the chain. In other words we suppose to have a single
moving interface or domain wall between the attached re-
gion and detached region. This is a plausible hypothesis,
especially if we work at not too large temperature values
and not too low values of the force. Indeed, in the zero-
temperature case, this configuration is the only energy
minimizer of the system [47, 48]. Moreover this hypothe-
sis coincides with the so-called zipper model, largely used
to describe the helix-coil transitions in proteins, the gel-
sol transition of thermo-reversible gels, and the melting
or denaturation of DNA [95–98]. The analysis of other
regimes, for high values of the temperature is the subject
of a forthcoming paper and it is out of the aim of this
one [99].

Under these hypotheses, the set of the two-state spin
variables si is substituted by the single variable ξ belong-
ing to the phase space of the system, and taking its values
in the set {0,1,2, ...,N}. In this regard, the variable ξ
can be considered as a multivalued spin variable.

The aim of this work is to fully analyze the cohesion-
decohesion process in both the Helmholtz and Gibbs en-
sembles, thus providing a complete picture of the effect
of the temperature and loading type on this prototypical
physical system.
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III. HARD DEVICE: HELMHOLTZ ENSEMBLE

Consider first the case of a prescribed extension yN+1 =
yd of the last element of the chain, as represented in
Fig.2c (isometric condition). As previously anticipated,
the variables belonging to the phase space of this system
are the extensions yi of the vertical springs (i = 1, ...,N),
and the number ξ of unbroken links. The total potential
energy is

Φ =
N

∑
i=0

1

2
k (yi+1 − yi)2 +

ξ

∑
i=1

1

2
hy2

i +
N

∑
i=1+ξ

1

2
hy2

M , (2)

where y0 = 0 and yN+1 = yd in the case of assigned dis-
placement is imposed. It is worth noticing that the last
term in Φ is not an irrelevant additive constant since it
depends implicitly on ξ, which is a variable of the phase
space of the system. The assumption of y0 = 0 repro-
duces typical boundary conditions of experimental cases.
On the other hand, as can be deduced by the follow-
ing analysis, such an assumption also solves the possible
integrability problems concerning the partition function
calculation, that can come from the non coercivity of the
potential energy of the breakable links. We also observe
that in an analogy with the classical Griffith approach to
fracture mechanics [100], here we model the decohesion
behavior of the layer by considering the energetic com-
petition between the elastic energy of the chain and the
unbinding energetic contribution (fracture energy).

The energy function Φ can be rearranged by means of
the following matrix definition

A(ξ) = [ A11 A12

A21 A22
] ∈MN,N(R), (3)

which is based on these four sub-matrices

A11 =

⎡⎢⎢⎢⎢⎢⎢⎣

2 + η −1 0 ⋯
−1 2 + η −1 ⋯
0 −1 2 + η ⋯
⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎦

∈Mξ,ξ(R), (4)

A22 =

⎡⎢⎢⎢⎢⎢⎢⎣

2 −1 0 ⋯
−1 2 −1 ⋯
0 −1 2 ⋯
⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎦

∈MN−ξ,N−ξ(R), (5)

A12 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 ⋯ 0 0
0 ⋯ 0 0
0 ⋰ ⋮ ⋮
−1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

∈MN,N−ξ(R), (6)

A21 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1
⋮ ⋮ ⋰ 0
0 0 ⋯ 0
0 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎦

∈MN−ξ,N(R), (7)

where

η = h
k

(8)

is the main non dimensional parameter of the paper,
representing the ratio between the elastic constants of
vertical and horizontal elastic elements. Moreover we
introduce the vectors v = (0,0,0, ...,0,1) ∈ RN and
y = (y1, y2, y3, ..., yN) ∈ RN . The energy function can
then be rewritten as follows

Φ (y, ξ; yd) =
1

2
kA(ξ)y ⋅ y − kydv ⋅ y

+1

2
ky2
d +

1

2
kη(N − ξ)y2

M , (9)

where y and ξ are the main variables belonging to the
phase space of the system.

This expression of Φ is useful in the following Gaus-
sian integration for the partition function since it is con-
stituted by the sum of a quadratic form and a linear
form in y, with an additional term independent of y.
The partition function of the system analyzed within the
Helmholtz ensemble can therefore be written as

ZH (β, yd) =
N

∑
ξ=0
∫
RN

e−βΦ(y,ξ;yd)dy. (10)

where β = (kBT )−1, kB is the Boltzmann constant and
T the absolute temperature. When Eq.(9) is substituted
in Eq.(10), we get

ZH (β, yd) = e−β
k
2 y

2
d

N

∑
ξ=0

e−β
kη
2 (N−ξ)y2

M (11)

×∫
RN

e−β
k
2A(ξ)y⋅yeβkyd v⋅ydy,

where we can use the property of the Gaussian integrals

∫
RN

e−
1
2My⋅y+b⋅ydy =

√
(2π)N
detM

e
1
2M

−1b⋅b, (12)

holding for any symmetric and positive definite matrix
M. Indeed, by considering M = βkA(ξ) and b = βkyd v
in Eq.(12), we easily obtain

ZH (β, yd) = ( 2π

βk
)
N/2 N

∑
ξ=0

e−β
ky2
M
2 η(N−ξ)

× 1√
detA(ξ)

e−β
ky2
d

2
{1−A−1(ξ)v⋅v}

= ( 2π

βk
)
N/2

e−Nβ
ky2
M
2 η

N

∑
ξ=0

Γξ(β, yd), (13)

where

Γξ(β, yd) =
eβ

ky2
M
2 η ξ

√
detA(ξ)

e−β
ky2
d

2
{1−A−1NN (ξ)} (14)

and we have used the definition of v.
The knowledge of the partition function allows us to

determine the expectation value of the force conjugated
to the assigned displacement yd [85]

⟨f⟩H = − 1

β

∂ lnZH
∂yd

= − 1

β

1

ZH

∂ZH
∂yd

, (15)
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which can be rewritten as

⟨f⟩H =
∑Nξ=0 {1 −A−1

NN(ξ)}Γξ(β, yd)
∑Nξ=0 Γξ(β, yd)

k yd

=
⎛
⎝

1 −
∑Nξ=0A−1

NN(ξ)Γξ(β, yd)
∑Nξ=0 Γξ(β, yd)

⎞
⎠
k yd. (16)

Another important quantity to describe the decohesion
dependence from the temperature is the average value
⟨ξ⟩H of unbroken vertical springs. It can be directly eval-
uated through the expression

⟨ξ⟩H = 1

ZH

N

∑
ξ=0
∫
RN

ξe−βΦ(y,ξ;yd)dy =
∑Nξ=0 ξ Γξ(β, yd)
∑Nξ=0 Γξ(β, yd)

.

(17)

Moreover we can determine the expectation value of
the whole position vector y (assigning the deformed con-
figuration of the chain at given displacement):

⟨y⟩H = 1

ZH

N

∑
ξ=0
∫
RN

ye−βΦ(y,ξ;yd)dy. (18)

Then, we can use the definition of Φ, thus obtaining the
more explicit expression

⟨y⟩H = e−β
k
2 y

2
d

1

ZH

N

∑
ξ=0

e−β
kη
2 (N−ξ)y2

M (19)

×∫
RN

e−β
k
2A(ξ)y⋅yeβkydv⋅yydy.

Since, by differentiating (12) with respect to b we get

∫
RN

e−
1
2Ay⋅y+b⋅yydy =

√
(2π)N
detA

e
1
2M

−1b⋅bA−1b, (20)

straightforward calculations give

⟨y⟩H =
∑Nξ=0 {A−1(ξ)v} Γξ(β, yd)

∑Nξ=0 Γξ(β, yd)
yd. (21)

In Eqs.(32)-(35) we report the fully analytical ex-
pressions of the expectation values of the force, debon-
dend fraction and displacement vector obtained by us-
ing the explicit formulas in Eqs.(96)-(98) of the quan-
tities detA(ξ),1 − A−1

NN(ξ),{A−1(ξ)v}
i

reported in the
Appendix.

In Fig.3 we illustrate the obtained behavior for a sys-
tem under isometric loading for a ‘short’ chain with only
N = 6 elements and for a ‘longer’ chain with N = 30
elements. The case with N = 6 [left panels (a) and (c)
of Fig.3] shows the importance of discreteness, exhibiting
distinct rupture occurrences in the decreasing steps of the
quantity ⟨ξ⟩H , and in the peaks of the force-displacement
(⟨f⟩H , yd) curves along the whole decohesion process.
The resulting evolution of the displacements is also re-
ported in Fig.4b. As expected, for large values of the
temperature T the debonding process is less “localized”,

with the system exploring more configurations. As a re-
sult, the curves are smoother and it is more difficult to
recognize the single ruptures.

Similar results are obtained also if we change the ad-
hesion energy (see Fig.4a). Indeed, as h is increased the
detachment process is more localized and the peak de-
creases with the system passing from a peeling type de-
cohesion to a pull-off type decohesion, as observed in the
case of athermal decohesion [47, 48].

Remark. In passing, we recall that we assume, both in
the hard and soft device, y0 = 0, thus fixing the left end
point. Of course this choice can be varied according with
the specific experimental phenomenon to be reproduced.
As a result, in these and later force-displacement curves,
after the force plateaux, when the system is fully de-
tached, we have a new elastic branch. In the opposite
assumption of free left end point, such an effect is not
observed and the force decreases to zero when the full
detachment is attained. However, as discussed above,
if the system is in a non-connected configuration (e.g.,
completely detached), the partition function corresponds
to a non-convergent integral, generating some technical
difficulty. Of course, it is possible to find some ways to
introduce the rupture but we preferred to follow a simpler
procedure for the sake of simplicity and clarity.

The case with a larger number of elements (N = 30)
is represented in the right panels (b) and (d) of Fig.3.
Observe that the system is initially characterized by load
oscillations corresponding to the first debonding effects,
but the diagram rapidly converges to a constant force
plateau as the debonding front propagates far from the
loading end point. The increasing of temperature cancels
out also this initial discreteness effect.

The main interesting feature, previously anticipated, is
the observation of the temperature dependent unfolding
plateau, with a detachment force threshold sensibly de-
creasing as the temperature grows. This behavior, which
marks the strong difference of the bistable elements of the
type reported in Fig.1a, with respect with the breakable
links considered here, is thoroughly studied in Section
V A where we consider the thermodynamic limit N →∞.

We remark that the gradual increase of the debonded
fraction ⟨ξ⟩H obtained in the hard device is in agree-
ment with the behavior observed in the unfolding of
proteins or other macromolecules under isometric con-
ditions [71, 74, 89]. Indeed, the force spectroscopy of
protein chains under isometric conditions is characterized
by a sawtooth-like force-extension response showing that
the domains unfold progressively in reaction to the pre-
scribed increasing extension [4] (similarly to the response
seen in Fig.3, at least for small values of N). A com-
pletely different behavior is observed in the Gibbs (isoten-
sional) ensemble [101], studied in the following section,
where a much more cooperative behavior is established
and the vertical elements break quite simultaneously, at
a given critical force.



7

0 20 40 60 yd
0

10

20

30

40

50
〈f
〉 H T

N=6

(a)

0 50 100 150yd

0

5

10

15

20

25

〈f
〉 H

T

N=30

(b)

0 20 40 60 yd

0

1

2

3

4

5

6

〈ξ
〉 H

T
N=6

(c)

0 50 100 150yd
0

5

10

15

20

25

30

〈ξ
〉 H

T

N=30

(d)

FIG. 3. Average force ⟨f⟩H in top panels (a) and (b), and average number of unbroken elements ⟨ξ⟩H in bottom panels (c)
and (d), versus yd for a decohesion process (yd increasing) under isometric conditions (Helmholtz ensemble). We adopted the
parameters N = 6 and yM = 4 for panels (a) and (c), and N = 30 and yM = 2 for panels (b) and (d). Other parameters are
common: k = 5, h = 20, and six values of β−1 = kBT = 4,7.2,10.4,13.6,16.8, and 20 (in arbitrary units).

To conclude, we also observe that the behavior of the
force-extension curves, characterized by a force plateau,
is in good qualitative agreement with several results ob-
tained in peeling experiments and simulations concerning
adhesive films and bioclinical structures [102–106].

IV. SOFT DEVICE: GIBBS ENSEMBLE

Consider now the case when the film is loaded by a
fixed force f (Fig.2b, isotensional condition). In this case
we introduce the Gibbs ensemble. The total energy of
the system can now be written as Φ − fyN+1, where Φ
is the energy function introduced within the Helmholtz
ensemble in Eq.(9). Thus, the Gibbs partition function

can be written as

ZG (f) = ∫
RN+1

N

∑
ξ=0

e−βΦ(y,ξ;yN+1)eβfyN+1dydyN+1

= ∫
+∞

−∞
ZH (yN+1) eβfyN+1dyN+1. (22)

Of course this corresponds to the Laplace transform of
the Helmholtz partition function [85]. By using Eqs.(13)-
(14), we get

ZG (f) = ( 2π

βk
)
N/2

e−Nβ
ky2
M
2 η

×
N

∑
ξ=0
∫

+∞

−∞
Γξ(β, yN+1)eβfyN+1dyN+1, (23)

where the integral is Gaussian due to the structure of Γξ
and, therefore, can be easily evaluated. A straightfor-
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FIG. 4. Panel (a): Variable decohesion behavior at different value of adhesion energy (h = 1 → 30, η = 0.2 → 6). Here we
assumed k = 5, N = 30, kBT = 3 and yM = 1.2. Panel (b): Average displacements evolution under isometric loading for the
same chain considered in the left panels (a) and (c) of Fig.3.

ward calculation leads to

ZG (f) = ( 2π

βk
)
N+1

2 N

∑
ξ=0

1
√

detA(ξ) {1 −A−1
NN(ξ)}

×e−
βky2

M
2 η(N−ξ)eβ

f2

2k
{1−A−1NN (ξ)}

−1

= ( 2π

βk
)
N+1

2

e−N
βky2

M
2 η

N

∑
ξ=0

Ωξ(β, f), (24)

where

Ωξ(β, f) =
eβ

ky2
M
2 ηξeβ

f2

2k
{1−A−1NN (ξ)}

−1

√
detA(ξ) {1 −A−1

NN(ξ)}
. (25)

The expected value of the extension ⟨yd⟩ = ⟨yN+1⟩ of the
last element of at given applied force f can then be eval-
uated as [85]

⟨yd⟩G = 1

β

∂ lnZG
∂f

= 1

β

1

ZG

∂ZG
∂f

, (26)

that gives

⟨yd⟩G =
∑Nξ=0 {1 −A−1

NN(ξ)}−1
Ωξ(β, f)

∑Nξ=0 Ωξ(β, f)
f

k
. (27)

Similarly, we can also determine the average number of
unbroken links

⟨ξ⟩G = 1

ZG
∫
RN+1

N

∑
ξ=0

ξe−βΦ(y,ξ;yN+1)eβfyN+1dydyN+1

=
∑Nξ=0 ξΩξ(β, f)
∑Nξ=0 Ωξ(β, f)

. (28)

Eventually, we can evaluate the average value of the
displacement of each elements of the chain. This quantity
is defined by the expression

⟨y⟩G = 1

ZG

N

∑
ξ=0
∫
RN+1

ye−βΦ(y,ξ;yN+1)eβfyN+1dydyN+1.

(29)

The comparison of Eq.(29) with Eqs.(18) and (14) yields

⟨y⟩G = ( 2π

βk
)
N/2 e−Nβ

ky2
M
2 η

ZG

N

∑
ξ=0
∫

+∞

−∞
yN+1Γξ(β, yN+1)

× eβfyN+1A−1(ξ)vdyN+1, (30)

where the final integral is Gaussian due to the structure
of Γξ(β, yN+1). The calculation can be performed to give
the final result in the form

⟨y⟩G =
∑Nξ=0 {1 −A−1

NN(ξ)}−1A−1(ξ)vΩξ(β, f)
∑Nξ=0 Ωξ(β, f)

.

(31)

By using again Eqs.(96)-(98), obtained in the Appendix,
we obtain the analytic expressions given in Eqs.(58)-(61).

The obtained results for the isotensional loading are il-
lustrated in Fig.5 for the same chains considered in Fig.3,
where the case of isometric loading is described. Impor-
tant differences between the Helmholtz and the Gibbs
responses can be recognized. In particular, the analysis
of the evolution of ⟨ξ⟩G within the Gibbs ensemble shows
that the detachment process corresponds to a coopera-
tive breaking of the vertical elements. This result can
be compared with the sequential unfolding behavior, ob-
served with an extension controlled decohesion, obtained
with the hard device. This dissimilarity between the



9

0 20 40 60 〈yd〉G
0

10

20

30

40

50

60

f T

N=6

(a)

0 50 100 150〈yd〉G

0

5

10

15

20

25

f T

N=30

(b)

0 10 20 30 40 50 60
f

0

1

2

3

4

5

6

〈ξ
〉 G

T
N=6

(c)

0 5 10 15 20 25 30
f

0

5

10

15

20

25

30

〈ξ
〉 G

T

N=30

(d)

FIG. 5. Average position ⟨yd⟩G in top panels (a) and (b), and average number of unbroken elements ⟨ξ⟩G in bottom panels
(c) and (d), versus f for a decohesion process (f increasing) under isotensional conditions (Gibbs ensemble). We adopted the
parameters N = 6 and yM = 4 for panels (a) and (c), and N = 30 and yM = 2 for panels (b) and (d). Other parameters are
common: k = 5, h = 20, and six values of β−1 = kBT = 4,7.2,10.4,13.6,16.8, and 20 (in arbitrary units).

Helmholtz and the Gibbs ensembles has been already ob-
served in the unfolding of proteins where the isotensional
condition produces a cooperative response whereas the
isometric condition generates a non-cooperative response
[71, 74, 89].

Another important difference concerns the shape of the
force-extension curves measured within the two statisti-
cal ensembles. While the isometric case leads to a series
of peaks corresponding to the rupture occurrences, the
isotensional case is characterized by a monotone force-
extension curve. Also this feature can be explained by the
quite simultaneous rupture of all the elements observed
within the Gibbs ensemble. Again, the simultaneous or
cooperative ruptures can be identified in the isotensional
behavior of ⟨y⟩G, plotted in Fig.6b, while the sequential
or non-cooperative ruptures were observed in the isomet-
ric behavior of ⟨y⟩H , plotted in Fig.4b. Also in this case
we may observe the significant effect of temperature on
the decohesion threshold (particularly evident for large
values of N). This behavior is thoroughly studied in

Section V B by considering the thermodynamic limit for
N →∞.

In Fig.6a we report also in the case of assigned force the
effect of variable adhesion energy. Again by increasing
the adhesion energy the system decohesion changes from
a peeling type to a pull-off type decohesion [47, 48].

V. THERMODYNAMIC LIMIT

In this Section, we study the behavior of the system,
under both isometric and isotensional conditions, for a
large chain length (ideally, N → ∞), and we obtain ex-
plicit analytic results to describe the system behavior in
the thermodynamic limit.
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FIG. 6. Panel (a): Variable decohesion behavior in the Gibbs ensemble at different value of adhesion energy (h = 1 → 30, η =
0.2→ 6). Here we assumed k = 5, N = 30, kBT = 3 and yM = 1.2. Panel (b): Average displacements evolution in the isotensional
loading for the same chain considered in the left panels (a) and (c) of Fig.5.

A. The thermodynamic limit in the Helmholtz
ensemble

To analyze the behavior in the thermodynamic limit
within the Helmholtz ensemble, we first report the final

expressions for the expected values of the force, for the
average number of attached elements, and for displace-
ment vector, as given in Eqs.(16),(17), and (21). After
nondimensionalization and the use of Eqs.(96)-(98), we
obtain

⟨F⟩H = βyM ⟨f⟩H = 2
β̃

η

Y
D

N

∑
ξ=0

eβ̃ξ
γ(ξ + 1) − γ(ξ)

[(N − ξ + 1)γ(ξ + 1) − (N − ξ)γ(ξ)]3/2
e−

β̃
η

γ(ξ+1)−γ(ξ)
(N−ξ+1)γ(ξ+1)−(N−ξ)γ(ξ)Y

2

, (32)

⟨ξ⟩H = 1

D

N

∑
ξ=0

ξeβ̃ξ
1

[(N − ξ + 1)γ(ξ + 1) − (N − ξ)γ(ξ)]1/2
e−

β̃
η

γ(ξ+1)−γ(ξ)
(N−ξ+1)γ(ξ+1)−(N−ξ)γ(ξ)Y

2

, (33)

⟨Yi⟩H =
⟨yi⟩H
yM

= Y
D

i−1

∑
ξ=0

eβ̃ξ
(i − ξ)γ(ξ + 1) − (i − ξ − 1)γ(ξ)

[(N − ξ + 1)γ(ξ + 1) − (N − ξ)γ(ξ)]3/2
e−

β̃
η

γ(ξ+1)−γ(ξ)
(N−ξ+1)γ(ξ+1)−(N−ξ)γ(ξ)Y

2

+Y
D

N

∑
ξ=i

eβ̃ξ
γ(i)

[(N − ξ + 1)γ(ξ + 1) − (N − ξ)γ(ξ)]3/2
e−

β̃
η

γ(ξ+1)−γ(ξ)
(N−ξ+1)γ(ξ+1)−(N−ξ)γ(ξ)Y

2

, i = 1, ...,N (34)

D =
N

∑
ξ=0

eβ̃ξ
1

[(N − ξ + 1)γ(ξ + 1) − (N − ξ)γ(ξ)]1/2
e−

β̃
η

γ(ξ+1)−γ(ξ)
(N−ξ+1)γ(ξ+1)−(N−ξ)γ(ξ)Y

2

, (35)

where we introduced the dimensionless parameters

β̃ =
hy2

M

2kBT
, Y = yd

yM
, (36)

and where

γ(z) = 1√
η2 + 4η

⎛
⎝

2 + η +
√
η2 + 4η

2

⎞
⎠

z

− 1√
η2 + 4η

⎛
⎝

2 + η −
√
η2 + 4η

2

⎞
⎠

z

, (37)

(see Appendix for details).
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To begin, we consider Eq.(32), with D given in Eq.(35).
In the limit of large N , we introduce the continuum vari-
able x = ξ/N and substitute the summations with inte-
grals

N

∑
ξ=0

φ(ξ) ≃ ∫
N

0
φ(ξ)dξ + φ(0) + φ(N)

2

= N ∫
1

0
φ(Nx)dx + φ(0) + φ(N)

2
, (38)

where we have considered a generic function φ.

Remark Observe that this expression corresponds to the
trapezoidal rule for approximating a definite integral or,
equivalently, to the Euler-Maclaurin formula with only
one remainder term [107]. We point out that this more

refined approximation is essential, as proved in the fol-
lowing, to show the important different behavior in the
hard and soft device, also in the thermodynamic limit.

After this substitution, we observe that in the new ver-
sion of Eq.(32) we have several terms of the form γ(Nx)
and γ(Nx + 1). Under the hypothesis of large values of
N , it is easy to see that the function γ in Eq.(37), can
be approximated by γ(z) ≃ 1

√
η2+4η

bz, with

b =
2 + η +

√
η2 + 4η

2
> 1. (39)

Therefore, after introducing

Λ = β̃ − 1

2
ln b, ρ = b

b − 1
, (40)

we eventually obtain

⟨F⟩H = 2
β̃

η

N∫
1

0

eΛNx

[N(1−x)+ρ]3/2
e−

β̃
N(1−x)+ρ

Y2

η dx + e
− β̃
N+ρ

Y2

η

2(N+ρ)3/2 + eΛNe
− β̃
ρ
Y2

η

2ρ3/2

N∫
1

0

eΛNx

[N(1−x)+ρ]1/2
e−

β̃
N(1−x)+ρ

Y2

η dx + e
− β̃
N+ρ

Y2

η

2(N+ρ)1/2 + eΛNe
− β̃
ρ
Y2

η

2ρ1/2

Y, (41)

To simplify this result, we can apply the change of variable s = N(1−x)+ρ, that allows us to prove that a universal
force-extension curve exists in the thermodynamic limit (N →∞) and its shape is given by the formula

⟨F⟩H = 2
β̃

η

∫
+∞

ρ
1
s3/2

e−Λse−
β̃
s
Y2

η ds + 1
2
ρ−3/2e−Λρe−

β̃
ρ
Y2

η

∫
+∞

ρ
1
s1/2

e−Λse−
β̃
s
Y2

η ds + 1
2
ρ−1/2e−Λρe−

β̃
ρ
Y2

η

Y (42)

where it is not difficult to verify that both integrals are well defined provided that

Λ > 0, (43)

a condition thoroughly discussed below. Now, a direct calculation of the two integrals gives

⟨F⟩H = 2

¿
ÁÁÀ β̃

η
Λ

√
π {[1 − g−(Y)] e−2

√
β̃
ηΛY − [1 − g+(Y)] e2

√
β̃
ηΛY} +

√
β̃
η
ρ−3/2e−Λρe−

β̃
ρ
Y2

η Y

√
π {[1 − g−(Y)] e−2

√
β̃
ηΛY + [1 − g+(Y)] e2

√
β̃
ηΛY} +

√
Λρ−1/2e−Λρe−

β̃
ρ
Y2

η

, (44)

where the functions g± are defined by means of the error function, as

g±(Y) = erf
⎛
⎜
⎝

√
Λρ ±

¿
ÁÁÀ β̃

ρ η
Y
⎞
⎟
⎠
. (45)

Recalling that ⟨F⟩H = βyM ⟨f⟩H , the force is given by

⟨f⟩H = yM
√
kh

√
1 − T

Tc

√
π [(1 − h−(yd))e−Ω(yd) − (1 − h+(yd))eΩ(yd)] + 1

ρ

√
Θ1(yd)e−Θ1(yd)e−Θ2

√
π [(1 − h−(yd))e−Ω(yd) + (1 − h+(yd))eΩ(yd)] + 1

ρ

√
Θ2e−Θ1(yd)e−Θ2

, (46)

where

Ω(yd) =
ydyM

√
kh

kBT

√
1 − T

Tc
, Θ1(yd) =

ky2
d

2kBT

1

ρ
, Θ2 =

hy2
M

2kBT
ρ, (47)
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h±(yd) = erf
⎛
⎜
⎝

¿
ÁÁÀ ky2

M

2kBT

⎡⎢⎢⎢⎣

√
ηρ

√
1 − T

Tc
±
√

1

ρ

yd
yM

⎤⎥⎥⎥⎦

⎞
⎟
⎠
, (48)

and, for later convenience, we introduced the critical tem-
perature

Tc =
hy2

M

kB ln b
=

hy2
M

kB ln
2+η+

√
η2+4η

2

. (49)

Importantly, in Eq.(44) or Eq.(46), we obtained the
closed form expression for the force-extension behavior
during the detachment process in the thermodynamic
limit under isometric condition. It is possible to see that
the main fraction in Eqs.(44) and (46) converges to 1
when Y → +∞ and yd → +∞, respectively.

Thus, we can obtain the asymptotic value

⟨F⟩as = lim
Y→∞

⟨F⟩H = 2

¿
ÁÁÀ β̃

η
(β̃ − 1

2
ln b). (50)

Equivalently, we have

⟨f⟩as = lim
yd→∞

⟨f⟩H =
√
khyM

√
1 − T

Tc
. (51)

This formula describes the asymptotic value of the force
plateau in terms of the temperature and the material pa-
rameters of the system. Based on this equation, we may
observe that the previously required condition, stated in
Eq.(43) and assuring the convergence of the above inte-
grals, corresponds to the requirement of subcritical tem-
peratures T < Tc.

The obtained results are illustrated in Fig.7a, where
the force displacement relation is plotted for different
values of the temperature. In particular, we compare
the force-displacement response of a discrete system with
N = 100 elements given by Eq.(16) (colored dashed
curves) with the result of Eq.(46) obtained in the ther-
modynamic limit (black continuous curves). Moreover,
in Fig.7a, we also reported the asymptotic value of the
decohesion force provided by Eq.(51) (horizontal straight
lines). We can observe that the obtained result in the
thermodynamic limit is able to represent the first force
peak, which is the peculiar property of the system loaded
under isometric condition. For low values of the tem-
perature, the solution given in Eq.(46) is only an ap-

proximation of the system response for N → ∞. How-
ever, this representation can be arbitrarily improved by
adding more Euler-Mclaurin remainder terms in Eq.(38)
that could be substituted with

N

∑
ξ=0

φ(ξ) ≃ ∫
N

0
φ(ξ)dξ + φ(0) + φ(N)

2

+
p

∑
k=1

B2k

(2k)!
[φ(2k−1)(N) − φ(2k−1)(0)] , (52)

where B2 = 1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30,
and so on, are the Bernoulli numbers, and p is an integer
representing the number of additional remainder terms
[107]. Although we tested the better approximations ob-
tained through Eq.(52) for increasing values of p, the
final results are much more cumbersome than Eqs.(44)
and (46), and therefore in this work, for simplicity, we
only use Eq.(38). In any case, the asymptotic result
given in Eq.(51) is in perfect agreement with the nu-
merical result obtained with a discrete system analyzed
through Eq.(16). This behavior explains the variation
of the plateau force with the temperature in terms of a
phase transition occurring at the critical temperature Tc.
This point is further discussed in the following develop-
ment.

In Fig.7b, we plot the obtained temperature dependent
value of the asymptotic unfolding force for different val-
ues of the non dimensional parameter η. We note that
the force approaches zero at the critical temperature Tc,
and that Tc is an increasing function of the ratio η. It
is important anyway to remark that our single domain
wall assumption becomes questionable as we approach
the critical temperature and slightly lower values of Tc
should be expected with an exact multi-walls solution.
This aspect is out of the aim of this paper and is the sub-
ject of future work [99]. It is also worth to point out that

the value of the critical force for T = 0 is ⟨f⟩as =
√
khyM ,

perfectly coherent with the result obtained in the case of
pure mechanical peeling [47].

To better elucidate the decohesion behavior, the mean-
ing of the critical temperature and of the associated phase
transition we further analyze the behavior of the variable
⟨ξ⟩H given in Eq.(33), measuring the average number of
unbroken vertical springs. As before, by assuming a large
value of N and using (38), we can substitute the sums
with the corresponding integrals and we find

⟨ξ⟩H =
N ∫

1
0

NxeΛNx

[N(1−x)+ρ]1/2
e−

β̃
ρ
Y2

η
1

N(1−x)+ρ dx + 1
2
ρ−1/2NeΛNe−

β̃
ρ
Y2

η

N ∫
1

0
eΛNx

[N(1−x)+ρ]1/2
e−

β̃
ηY

2 1
N(1−x)+ρ dx + e

− β̃
η
Y2 1

N+ρ

2(N+ρ)1/2 + 1
2
ρ−1/2eΛNe−

β̃
ρ
Y2

η

. (53)
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FIG. 7. Panel (a): comparison between the force-extension curves given in Eq.(16) (colored dashed curves) with the thermody-
namic limit obtained in Eq.(46) (black continuous curves) and the asymptotic force value given in Eq.(51) (horizontal dashed
straight lines). We adopted the parameters N = 100, k = 5, h = 20, yM = 1.2, and β−1 = kBT = 4.0,5.57,7.14,8.71,10.2,11.8,13.4,
and 15 (in arbitrary units). Panel (b): critical behavior of the asymptotic force within the Helmholtz ensemble. We plotted
⟨f⟩as versus kBT = β−1 (see Eq.(51)) for different values of the ratio η = h/k between the elastic constants of the vertical and
horizontal elements. Here k = 1, yM = 1 (in arbitrary units) and we plotted ten curves with 1/10 ≤ η ≤ 10.

We can now apply the change of variable s = N(1 − x) + ρ and get

⟨ξ⟩H = ∫
N+ρ
ρ (N − s + ρ) s−1/2eΛ(N−s+ρ)e−

1
s
β̃
ηY

2

ds + 1
2
ρ−1/2NeΛNe−

β̃
ρ
Y2

η

∫
N+ρ
ρ s−1/2eΛ(N−s+ρ)e−

1
s
β̃
ηY

2

ds + e
− β̃
η
Y2 1

N+ρ

2(N+ρ)1/2 + 1
2
ρ−1/2eΛNe−

β̃
ρ
Y2

η

. (54)

Then, we can determine the expectation number ⟨ζ⟩H = N−⟨ξ⟩H of broken links in the thermodynamic limit (N →∞),
eventually obtaining

⟨ζ⟩H = ∫
+∞

ρ s1/2e−Λse−
1
sαY

2

ds − ρ ∫
+∞

ρ s−1/2e−Λse−
1
sαY

2

ds

∫
+∞

ρ s−1/2e−Λse−
1
sαY

2
ds + 1

2
( b−1
b

)1/2
e−Λρe−α

b−1
b Y

2

= 1

Λ

√
π {e−2

√
β̃Λ
η Y (Λρ + 1

2
+
√

β̃Λ
η
Y) [1 − g−(Y)] + e2

√
β̃Λ
η Y (Λρ + 1

2
−
√

β̃Λ
η
Y) [1 − g+(Y)]} + 2

√
Λρe−Λρe−

β̃
ρ
Y2

η

√
π {e−2

√
β̃Λ
η Y [1 − g−(Y)] + e2

√
β̃Λ
η Y [1 − g+(Y)]} +

√
Λρ−1/2e−Λρe−

β̃
ρ
Y2

η

.

(55)

This result proves that for a long chain the number of
broken elements must depends only on the extension Y
and on the temperature T .

To get a further physical interpretation of the unbroken
to broken transition corresponding to the critical temper-
ature Tc, we consider the limit when Y →∞, describing
the full detachment state in the thermodynamic limit.
From Eq.(55) we can eventually obtain, for large values
of Y, the asymptotic relation

⟨ζ⟩H ∣Y→∞ ∼ Y ( β̃

ηΛ
)

1
2

. (56)

It means that we have a linear relation between ⟨ζ⟩H and
Y for Y → ∞. This expression can be written with the
physical parameters of the system as

⟨ζ⟩H ∣yd→∞
yd

∼ 1

yM

√
k

h

1
√

1 − T
Tc

. (57)

This behavior is confirmed in Fig.8, where we plotted
⟨ζ⟩H calculated through Eq.(17) or Eq.(33) for a discrete
system with N = 100, and the quantity ⟨ζ⟩H ∣yd→∞/yd,
obtained from Eq.(57).

We observe that the attainment of the vertical asymp-
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FIG. 8. Asymptotic behavior of the number of broken ele-
ments ⟨ζ⟩H within the Helmholtz ensemble and with yd →∞.
The number of broken elements ⟨ζ⟩H (colored continuous
lines), calculated through Eq.(17) or Eq.(33), and ⟨ζ⟩H ∣yd→∞
(colored dashed straight lines), obtained from Eq.(57), are
represented versus the (deformation type) quantity yd/ ⟨ζ⟩H .
They show the same asymptotic behavior. We adopted the
parameters N = 100, k = 5, h = 20, yM = 1.2, and β−1 = kBT =
6.0,7.8,9.6,11.4,13.2, and 15 (in arbitrary units).

totes indicate that as we increase yd the total displace-
ment and the number of broken links grows to infinity
with a fixed limit ratio (measuring the deformation of
the detached portion) depending on the temperature. We
therefore conclude that for T → Tc we have a phase tran-
sition corresponding to the rupture of all the vertical el-
ements of the chain, i.e. to the complete detachment of
the chain from the substrate. For this reason, the critical
temperature can also be referred to as the denaturation
temperature of the system (terminology frequently used
in the biological context [34–36]). Once again we remark
that the obtained value of the critical temperature can
be slightly overestimated due to the neglect of solutions
with more domain walls [99].

B. Thermodynamic limit in the Gibbs ensemble

Consider now the thermodynamic limit in the case of
isotensional loading. As in the previous case, we first re-
port the expressions for the expected values of the aver-
age extension, average number of attached elements, and
displacement vector, given in Eqs.(27), (28), and (31).
After nondimensionalization and the use of Eqs.(96)-(98),
we obtain

⟨Y⟩G = ⟨yd⟩
yM

= ηF
2β̃E

N

∑
ξ=0

eβ̃ξ
(N − ξ + 1)γ(ξ + 1) − (N − ξ)γ(ξ)

[γ(ξ + 1) − γ(ξ)]3/2
e
η

4β̃

(N−ξ+1)γ(ξ+1)−(N−ξ)γ(ξ)
γ(ξ+1)−γ(ξ) F

2

, (58)

⟨ξ⟩G = 1

E

N

∑
ξ=0

ξeβ̃ξ
1

[γ(ξ + 1) − γ(ξ)]1/2
e
η

4β̃

(N−ξ+1)γ(ξ+1)−(N−ξ)γ(ξ)
γ(ξ+1)−γ(ξ) F

2

, (59)

⟨Yi⟩G =
⟨yi⟩G
yM

= ηF
2β̃E

i−1

∑
ξ=0

eβ̃ξ
(i − ξ)γ(ξ + 1) − (i − ξ − 1)γ(ξ)

[γ(ξ + 1) − γ(ξ)]3/2
e
η

4β̃

(N−ξ+1)γ(ξ+1)−(N−ξ)γ(ξ)
γ(ξ+1)−γ(ξ) F

2

+ ηF
2β̃E

N

∑
ξ=i

eβ̃ξ
γ(i)

[γ(ξ + 1) − γ(ξ)]3/2
e
η

4β̃

(N−ξ+1)γ(ξ+1)−(N−ξ)γ(ξ)
γ(ξ+1)−γ(ξ) F

2

, i = 1, ...,N (60)

E =
N

∑
ξ=0

eβ̃ξ
1

[γ(ξ + 1) − γ(ξ)]1/2
e
η

4β̃

(N−ξ+1)γ(ξ+1)−(N−ξ)γ(ξ)
γ(ξ+1)−γ(ξ) F

2

(61)

where β̃ is defined in Eq.(36), the adimensional force is
given by F = βfyM , and the function γ(z) is defined in
Eq.(37).

Consider the force-extension relation in Eq.(58). In

the limit of large N , we substitute the summations with
the corresponding integrals, as described in Eq.(38). As
before, we can approximate the function γ(z) defined in
Eq.(37) as γ(z) ≃ 1

√
η2+4η

bz. First, we get

⟨Y⟩G =
N ∫

1
0 e

ΛNx[N(1 − x) + ρ]e
η

4β̃
F

2
[N(1−x)+ρ]

dx + 1
2
(N + ρ) e

η

4β̃
F

2
(N+ρ) + 1

2
ρeΛNe

η

4β̃
F

2ρ

N ∫
1

0 e
ΛNxe

η

4β̃
F2[N(1−x)+ρ]

dx + 1
2
e
η

4β̃
F2(N+ρ) + 1

2
eΛNe

η

4β̃
F2ρ

ηF
2β̃

. (62)
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By considering the change of variable s = N(1 − x) + ρ, we obtain

⟨Y⟩G = ∫
N+ρ
ρ s eΛ(N+ρ−s)e

η

4β̃
F

2s
ds + 1

2
(N + ρ) e

η

4β̃
F

2
(N+ρ) + 1

2
ρeΛNe

η

4β̃
F

2ρ

∫
N+ρ
ρ eΛ(N+ρ−s)e

η

4β̃
F2s

ds + 1
2
e
η

4β̃
F2(N+ρ) + 1

2
eΛNe

η

4β̃
F2ρ

ηF
2β̃

. (63)

In the thermodynamic limit (N →∞), we have

⟨Y⟩G = ∫
+∞

ρ s e
−(β̃− 1

2 ln b− η

4β̃
F

2
)s
ds + 1

2
ρe

−(β̃− 1
2 ln b− η

4β̃
F

2
)ρ

∫
+∞

ρ e
−(β̃− 1

2 ln b− η

4β̃
F2)s

ds + 1
2
e
−(β̃− 1

2 ln b− η

4β̃
F2)ρ

ηF
2β̃

. (64)

Both integrals in Eq.(64) converge if

β̃ − 1

2
ln b − η

4β̃
F2 > 0. (65)

This condition will be throghougly discussed in the following. By integrating, we eventually obtain the force displace-
ment relation in the thermodynamic limit

⟨Y⟩G =
⎛
⎜
⎝
ρ + 1

β̃ − 1
2

ln b − η

4β̃
F2

× 2

2 + β̃ − 1
2

ln b − η

4β̃
F2

⎞
⎟
⎠
ηF
2β̃

. (66)

It is easy to verify that ⟨Y⟩G is an increasing function of F and it diverges when the forces attains the same asymptotic
value given in Eq.(50), obtained in the case of assigned displacement (Helmholtz ensemble). The force-extension
relation given in Eq.(66) can be written in terms of the temperature and the other physical parameters of the system,
as follows

⟨yd⟩G =
⎡⎢⎢⎢⎢⎢⎣

1

1 − e−
hy2
M

kBTc

+ 1
hy2
M
β

2
(1 − T

Tc
− f2

khy2
M

)
× 2

2 + hy2
M
β

2
(1 − T

Tc
− f2

khy2
M

)

⎤⎥⎥⎥⎥⎥⎦

f

k
. (67)

As before, ⟨yd⟩G is an increasing function of f and it di-
verges when the force attains the same asymptotic value
given in Eq.(51), obtained for the Helmholtz ensemble
with

F ≤ Fas = 2

¿
ÁÁÀ β̃

η
(β̃ − 1

2
ln b), (68)

thus interpreting the condition in Eq.(65) or, equivalently

f ≤ fas =
√
khyM

√
1 − T

Tc
. (69)

The other important parameter of the system is the
number of unbroken vertical elements, which can be cal-
culated through Eq.(59). This expression can be elabo-
rated in the limit N →∞, obtaining the asymptotic form

⟨ξ⟩G =
N ∫

1
0 Nxe

ΛNxe
η

4β̃
F

2
[N(1−x)+ρ]

dx + 1
2
NeΛNe

η

4β̃
F

2ρ

N ∫
1

0 e
ΛNxe

η

4β̃
F2[N(1−x)+ρ]

dx + 1
2
e
η

4β̃
F2(N+ρ) + 1

2
eΛNe

η

4β̃
F2ρ

. (70)

As before, we can use the change of variable s = N(1 − x) + ρ, which delivers

⟨ξ⟩G = ∫
N+ρ
ρ (N + ρ − s) eΛ(N+ρ−s)e

η

4β̃
F

2s
ds + 1

2
NeΛNe

η

4β̃
F

2ρ

∫
N+ρ
ρ eΛ(N+ρ−s)e

η

4β̃
F2s

ds + 1
2
e
η

4β̃
F2(N+ρ) + 1

2
eΛNe

η

4β̃
F2ρ

. (71)

From now on, we consider the average number of broken vertical elements ⟨ζ⟩G = N − ⟨ξ⟩G given by

⟨ζ⟩G = ∫
N+ρ
ρ (s − ρ) eΛ(N+ρ−s)e

η

4β̃
F

2s
ds + 1

2
Ne

η

4β̃
F

2
(N+ρ)

∫
N+ρ
ρ eΛ(N+ρ−s)e

η

4β̃
F2s

ds + 1
2
e
η

4β̃
F2(N+ρ) + 1

2
eΛNe

η

4β̃
F2ρ

. (72)
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FIG. 9. Behavior of the detachment process within the Gibbs ensemble in terms of force-extension relation, panel (a), and
average number of broken elements, panel (b). We compare the results in the thermodynamic limit given in Eqs.(67) and
(73) (colored dashed curves) with their discrete counterparts given in Eqs.(58) and (59) (black curves), applied to a system
with N = 100. The horizontal, in panel (a), and vertical, in panel (b), dashed straight lines represent the values of the force
that induces complete decohesion of the system. We adopted the parameters k = 5, h = 20, yM = 1.2, and β−1 = kBT =
4.0,5.57,7.14,8.71,10.2,11.8,13.4, and 15 (in arbitrary units).
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FIG. 10. Comparison between the Helmholtz force-extension curves (⟨f⟩H versus yd, solid lines) and the Gibbs force-extension
curves (f versus ⟨yd⟩G, dashed lines) proving the non-equivalence of the two statistical ensembles in the thermodynamic
limit. Panel (a): comparison between the results for a discrete system with N = 100 based on Eqs.(16) and (27). Panel (b):
comparison between the results in the thermodynamic limit based on Eqs.(46) and (67). In both panels, the horizontal dashed
straight lines correspond to ⟨f⟩as given in Eq.(51). We adopted the parameters k = 5, h = 20, yM = 1.2, and β−1 = kBT =
4.0,5.57,7.14,8.71,10.2,11.8,13.4, and 15 (in arbitrary units).

This result proves that the limit of ζ for N →∞ exists and can be written as follows

⟨ζ⟩G = ∫
+∞

ρ (s − ρ) e−(β̃−
1
2 ln b− η

4β̃
F

2
)s
ds

∫
+∞

ρ e
−(β̃− 1

2 ln b− η

4β̃
F2)s

ds + 1
2
e
−(β̃− 1

2 ln b− η

4β̃
F2)ρ

= 1

β̃ − 1
2

ln b − η

4β̃
F2

× 2

2 + β̃ − 1
2

ln b − η

4β̃
F2

= 1
hy2
M
β

2
(1 − T

Tc
− f2

khy2
M

)
× 2

2 + hy2
M
β

2
(1 − T

Tc
− f2

khy2
M

)
, (73)
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where the critical temperature Tc is given in Eq.(49).
Coherently with previous results we observe that the
number of detached element monotonically grows with
F and diverges for the same force threshold in Eq.(50)
or Eq.(51), corresponding to a transition to the fully de-
tached configuration. This point confirms the presence
of the phase transition for the isotensional condition as
well.

In Fig.9 we compare the results obtained in the ther-
modynamic limit, Eqs.(67) and (73), with their discrete
counterparts given in Eqs.(58) and (59), applied to a sys-
tem with N = 100. Again, this figure shows the practical
utility of the fully explicit expressions in the thermody-
namic limit since the two behaviors are significantly su-
perimposed also in the case of isotensional loading.

C. Comparison of the Helmholtz and Gibbs
ensembles

In this section we focus on the important differences
of the decohesion behavior that we obtained under the
different loading conditions. The comparison between
the hard and soft device loading can be drawn by ob-
serving the force-extension relation in the correspond-
ing Helmholtz and Gibbs ensembles reported in Fig.10.
In particular, in Fig.10a, we plotted Eqs.(16) and (27),
representing the force-extension response for a discrete
system, where we used a large value of N and differ-
ent values of the temperature T . On the other hand,
in Fig.10b, we plotted Eqs.(46) and (67), representing
the force-extension behavior in the thermodynamic limit.
Observe the the force-extension behavior is markedly dif-
ferent in the two ensembles. In the case of hard device
the system starts to unfold at a threshold force larger
than ⟨f⟩as and (at low temperatures) oscillates around
this value approaching the asymptotic limit only after the
initial discrete debonding process. Differently, in the case
of isotensional loading the force monotonically increases
attaining the limit value given in Eq.(51) only when the
total displacement diverges and the whole detachment
is observed. This behavior can be seen in both panels
of Fig.10, proving that the analytic expressions found in
the case of thermodynamic limit are well adapted to rep-
resent the system behavior for large values of N also in
the case when the only first correction term of the Euler-
McLaurin formula is considered.

The difference between the Helmholtz and Gibbs en-
semble can be clearly appreciated also in Fig.11. In panel
(a), we show a zoom on the first peak of the force ex-
tension relation within the Helmholtz ensemble for sev-
eral temperatures in the range between zero and the
critical temperature. These curves are compared with
the asymptotic value ⟨f⟩as given in Eq.(51). In addi-
tion, the values of these Helmholtz force peaks, given by
max{⟨f⟩H}, have been plotted in panel (b) versus the
system temperature (red curve). For the Gibbs case, the
largest force corresponds to the asymptotic one and we

can therefore write: sup{f} = ⟨f⟩as. This quantity is
represented by the blue curve in panel (b) of Fig.11. To
conclude, we underline that the decohesion force thresh-
old for the Helmholtz case is sensibly larger than the
same quantity for the Gibbs ensemble, especially for low
values of the temperature.

The non-equivalence of the ensembles in the decohesion
process can be further appreciated by comparing the ini-
tial slope of the force extension curves, represented by
Eqs.(46) and (66) in the thermodynamical limit. Indeed,
we can calculate the effective stiffness observed by the de-
vice at the beginning of the peeling process, i.e., for small
values of force and extension. It means that we have to
determine the derivatives of the curves given in Eqs.(46)
and (66) for small force or extension. Their calculation
give

∂ ⟨F⟩H
∂Y

∣
Y=0

= 4
β̃

η
Λ

2 (1 + 1
4ρ

) e−Λρ −Θ

Λe−Λρ +Θ
, (74)

(
∂ ⟨Y⟩G
∂F

∣
F=0

)
−1

= 2
β̃

η
Λ

1

Λρ + 2
2+Λ

, (75)

for the Helmholtz ensemble and the Gibbs ensemble, re-
spectively. Here, for the sake of simplicity, we defined
the quantity

Θ = 2
√
πΛρ [1 − erf (Λρ)] . (76)

In terms of physical parameters the effective stiffnesses
are

kHeff =
∂ ⟨f⟩H
∂yd

∣
yd=0

= kBT
y2
M

∂ ⟨F⟩H
∂Y

∣
Y=0

, (77)

kGeff =
⎛
⎝
∂ ⟨yd⟩G
∂f

∣
f=0

⎞
⎠

−1

= kBT
y2
M

(
∂ ⟨Y⟩G
∂F

∣
F=0

)
−1

. (78)

The plot of the effective stiffness defined in Eqs.(77) and
(78) versus the temperature can be found in Fig.12a, from
which we can deduce again the non-equivalence of the
ensembles. The behavior of the stiffness is similar for the
two ensembles for low values of the temperature. In this
case, we have the common limiting value

kHeff(T = 0) = kGeff(T = 0) = k
ρ
, (79)

with ρ defined in Eq.(40), in agreement with the results
obtained in Ref.[47]. On the contrary, the ratio between
the two stiffnesses diverges as the temperature converges
to its critical value (see Fig.12b). The behavior of the two
stiffness coefficients plotted in Fig.12 is responsible for
the markedly different initial slope of the force extension
curves shown in Fig.10.

VI. DISCUSSION AND CONCLUSION

In this paper, we elaborated a model to describe the
cohesion/decohesion process related to a film deposited
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FIG. 11. Comparison between the Helmholtz and the Gibbs response. Panel (a): zoom of the first peak in the force extension
curves for the Helmholtz ensemble, based on Eq.(16) (colored curves), and asymptotic value ⟨f⟩as given in Eq.(51) (black

horizontal lines). Panel (b): critical behavior of both ensembles, represented by the quantity max{⟨f⟩H} for the isometric
condition (red curve) and by sup{f} = ⟨f⟩as for the isotensional one (blue curve). We adopted the parameters N = 100, k = 5,

h = 20, yM = 1.2, and β−1 = kBT assumes 48 values from zero to kBTc (in arbitrary units).
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FIG. 12. Effective stiffness within the Helmholtz and Gibbs ensembles, in panel (a), and their ratio in panel (b). We adopted
the parameters k = 5, h = 20, yM = 1.2 (in arbitrary units).

on a substrate, by focusing on the effects of thermal fluc-
tuations. The paradigmatic system adopted is composed
of a one-dimensional elastic chain grounded to a sub-
strate through a series of breakable links. We analyzed
this process under an additional mechanical action, rep-
resented by either an external force or a prescribed exten-
sion applied to the end-terminal of the chain. These two
conditions correspond to the Gibbs and the Helmholtz
ensembles in the framework of equilibrium statistical me-
chanics, respectively. Based on a spin variables approach
[71, 72] and using some known properties of tridiagonal
matrices [108, 109], we are able to obtain an analytical de-
scription of the decohesion behavior of the system with a
resulting clear physical interpretation of the results. We
firstly developed the theory for the Helmholtz ensem-

ble and then we obtained the results for the Gibbs one
with the Laplace transform describing the relationship
between the partition functions of the two ensembles [85].
Eventually, for both statistical ensembles, we obtained
explicit force-extension relations, the average number of
broken units, and the average extension of all the ele-
ments of the chain as function of the temperature and of
the external mechanical action (a force for the Gibbs en-
semble and an extension for the Helmholtz one). These
achievements, summed up in Eqs.(32)-(35) (Helmholtz)
and Eqs.(58)-(61) (Gibbs), and obtained for an arbitrary
number N of elements of the chain, are useful to fully un-
derstand the behavior of the system, to compare with ex-
isting results concerning the folding/unfolding of macro-
molecular bistable chains, and finally to perform the anal-
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ysis of the thermodynamic limit. Indeed, when N →∞,
the sums in Eqs.(32)-(35) (Helmholtz) and Eqs.(58)-(61)
(Gibbs) can be substituted by suitable integrals. As we
showed, to obtain a more detailed description of the re-
sults and in particular to describe the existence of a force
peak anticipating the decohesion force in the hard device
we adopted the Euler-McLaurin approximation formula.
This approach will be in our opinion useful in many other
limit analysis in Statistical Mechanics and indeed we have
shown its importance in describing the fundamental dif-
ferences of the behavior in the thermodynamic limit for
the hard and soft device. In particular, such an analy-
sis allows us to prove that in the thermodynamic limit
the decohesion of the film from the substrate takes place
at a given critical force, which is temperature depen-
dent. This is an important difference between the co-
hesion/decohesion process and the folding/unfolding of
bistable chains, where the transition force is tempera-
ture independent. More explicitly, in the case of bistable
chains only the slope of the transition path changes with
the temperature, while keeping fixed the average value
of the transition plateau. In the cohesion/decohesion
process the origin of the temperature dependent peel-
ing force is explained through the observation of a phase
transition taking place at a given critical temperature
able to fully detach the film from the substrate. In the
subcritical regime, the thermal fluctuations promote the
detachment of the film and, therefore, a lower peeling
force is needed for higher temperatures. The decreasing
trend of the peeling force with the temperature is the
same for both statistical ensembles. However, these en-
sembles are nonequivalent in the thermodynamic limit
since they show a different force-extension curve. In par-
ticular, the force extension curve for the Helmholtz case
is characterized by a force peaks followed by some oscilla-
tions before reaching the asymptotic force value. On the
contrary, the force extension curve for the Gibbs case is
always monotonically increasing from zero to the asymp-
totic force value. This observation leads to two different
critical behaviors, as shown in Fig.11b.

The existence of finite-temperature phase transitions
in low-dimensional many-body models is a subject of
large interest in theoretical physics [110, 111]. It is useful
to remark that the existence of a genuine phase transi-
tion in our system (at thermodynamic limit and for both
isometric and isotensional conditions) is coherent with
the observation (both theoretical and numerical) of dif-
ferent kinds of phase transitions in the Peyrard model
for the DNA thermal denaturation [112]. In both cases,
the system is one-dimensional along the longitudinal di-
rection with a one-dimensional series of interactions in
the transverse direction. Another interesting example
of phase transition in low-dimensional systems concerns
the tension-induced binding of two parallel semi-flexible
polymers [113]. In this case, the mean-field theory pre-
dicts a phase transition describing the discontinuous in-
creasing bonding of the chains with an increasing applied
force. However, the authors explain that the transition

turns into a crossover if the mean-field theory is substi-
tuted with the exact solution. On the other hand, the
observation of a genuine phase transition in our model is
due to important differences as compared with Ref.[113]:
the force is transversal in our case whereas the binding
tension is longitudinal in Ref.[113]; moreover, we adopted
a flexible chain whereas a two semi-flexible chains are in-
troduced in Ref.[113]; finally, our model is discrete, while
the model of Ref.[113] has continuous worm like chains
with discrete links. As we show in this paper, these differ-
ences can lead to different critical behaviors and different
universal classes.

Although the equivalence of the Gibbs and Helmholtz
statistical ensemble has been proved for a large class of
systems (namely, single flexible polymer chains without
confinement effects and with a continuous pairing in-
teraction potential between neighboring monomers [86–
91]), interestingly, it cannot be assumed for other struc-
tures. Indeed, other classes of problems, e.g. concerning
the escape of a polymer confined between two surfaces
and the desorption of a polymer initially tethered onto
a surface, exhibit an unusual non-equivalence between
the defined statistical ensembles [114–119]. In particular,
in Refs.[114, 115] an end-tethered polymer chain com-
pressed between two pistons is considered and shows non-
equivalence of the ensembles and a phase transition cor-
responding to the escape from the gap between the pis-
tons. Ref.[116] deals with the desorption of a single chain
from a substrate without excluded volume interactions:
also in this case the equivalence of the ensembles and the
emergence of a phase transition are thoroughly discussed.
In Ref.[117] a Gaussian chain is tethered on a rigid pla-
nar surface at one end and the ensemble non-equivalence
comes from a pure confinement effect and does not in-
volve any potential interaction, unlike in our case. Dif-
ferent rectangular, spherical and cylindrical geometries
of confinement have been considered in Ref.[118]. Fi-
nally, in Ref.[119], the desorption of a self-avoiding poly-
mer chain from a surface has been studied yielding the
non-equivalence of the ensembles, the existence of a first-
order phase transition without phase coexistence and a
quantitative relation between adsorption exponent and
adsorption energy. These results have been theoretically
proved by means of the grand canonical ensemble method
and confirmed by Monte Carlo simulations. Such investi-
gations are coherent with our achievements and prove the
possibility to have the non-equivalence between different
(canonical) ensembles in statistical mechanics. In sys-
tems with strong interactions and low dimensionality, we
always observe strong fluctuations, which are persisting
also in the thermodynamic limit, thus inducing a different
behavior for different statistical ensembles [117, 118, 120].
In our system the strong interactions, which are non-local
and long-range, are generated by the ladder network ge-
ometry composed of linear and breakable springs. As dis-
cussed in Refs.[117, 118, 120], the resulting fluctuations of
the macroscopic observables cause a non-uniform conver-
gence to the thermodynamic limit eventually producing
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the ensembles non-equivalence.

Another important result concerns the temperature de-
pendent effective stiffness of the system, as reported in
Fig.12. In particular, the model describes the decreasing
of the stiffness with the temperature. Moreover, also in
this case we observe a loading type dependent stiffness
with the ratio between Helmholtz and Gibbs stiffness di-
verging as the temperature approaches its critical value.
We remark that the considered dual types of loading pro-
cesses represent limiting values of real applied conditions
as the stiffness of the loading device changes [74, 75].
Thus, we observe that the real response in term of stiff-
ness and decohesion force cannot be considered as an
intrinsic property of the system, since it depends on the
loading condition. For example, we can think to the case
of the variable stiffness of the atomic force microscopy de-
vice or to the interacting molecule (RNA vs DNA) and
so on. These real cases are placed in-between the ideal
Helmholtz and Gibbs ensembles.

It is important to remark that while the presented
model is interesting bacause it leads to a fully analytic
approach able to explain the emergence of the phase
transition and the non-equivalence of the ensembles, it
could be generalized to take into consideration more com-
plex effects. For instance, the spin variable methodol-
ogy, here employed to calculate the partition functions,
is limited to the study of the equilibrium thermodynam-
ics. It could be interesting to generalize it to the dynamic
regime, where the whole energy landscape and in partic-
ular the energy barriers may play a crucial role [121–123].
Moreover, our approach could be applied to different sys-
tem configurations including fiber bundles with breakable
strands characterized by variable detaching thresholds,
buckling of films deposited over substrates, cracks prop-
agation in brittle or plastic solids and rupture phenomena
in polymer networks.

APPENDIX: PROPERTIES OF AξN(η)

We prove here some properties concerning the matrix

AξN(η), defined in Eq.(3). To begin, we consider the
following arbitrary tridiagonal matrix T

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1 0 ⋯ 0
c1 a2 b2 ⋱ ⋮
0 c2 ⋱ ⋱ 0
⋮ ⋱ ⋱ aN−1 bN−1

0 ⋯ 0 cN−1 aN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈MN,N(R), (80)

where the diagonal is composed by the elements
(a1, ..., aN), the superdiagonal by (b1, ..., bN−1) and the
subdiagonal by (c1, ..., cN−1). It has been proved [108,
109] that the elements of the inverse matrix T −1 can be

represented as

[T −1]
ij
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ϑN

(−1)i+jbi × ... × bj−1ϑi−1ϕj+1, i < j

1
ϑN
ϑi−1ϕi+1, i = j

1
ϑN

(−1)i+jcj × ... × ci−1ϑj−1ϕi+1, i > j

(81)

where the sequences ϑi and ϕi are given by the recursive
relations

{ ϑi = aiϑi−1 − bi−1ci−1ϑi−2, i = 2, ...,N,
ϑ0 = 1, ϑ1 = a1,

(82)

and

{ ϕi = aiϕi+1 − biciϕi+2, i = N, ...,1,
ϕN+2 = 0, ϕN+1 = 1, ϕN = aN .

(83)

While Eq.(82) is an increasing recursive relation going
from i = 1 to i = N , Eq.(83) is a decreasing recursive
relation going from i = N to i = 1. We also remember
that detT = ϑN [108, 109].

In the case of the matrix AξN(η) in Eq.(3), we have
that bi = ci = −1∀i. Under this hypothesis, the general
result can be simplified as follows

[T −1]
ij
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ϑN
ϑi−1ϕj+1, i < j

1
ϑN
ϑi−1ϕi+1, i = j

1
ϑN
ϑj−1ϕi+1, i > j

(84)

where the sequences ϑi and ϕi are given by the simplified
recursive relations

{ ϑi = aiϑi−1 − ϑi−2, i = 2, ...,N,
ϑ0 = 1, ϑ1 = a1,

(85)

and

{ ϕi = aiϕi+1 − ϕi+2, i = N, ...,1,
ϕN+2 = 0, ϕN+1 = 1, ϕN = aN .

(86)

These properties of the tridiagonal matrices are used here
to determine the determinant and the inverse of our main
tridiagonal matrix. Such properties have been exploited
to perform analytically these algebraic operations, which
can be rather expensive from the numerical point of view.
It is important to remark that the tridiagonal structure
of our matrices comes from the geometry of the lattice
structure used in our investigation (with horizontal and
vertical springs). In addition, the physical hypothesis of
considering a single domain wall induces a block struc-
ture of the tridiagonal matrix, as described in Eq.(3) and
following equations. More specifically, the introduction
of the single domain wall assumption reduces previous
properties to difference equations with piecewise constant
coefficients, which can be easily solved as discussed in this
Appendix.
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Since we need to determine detAξN(η), [AξN(η)]
−1
v⃗ ⋅

v⃗ = [AξN(η)]
−1

NN
, and [AξN(η)]

−1
v⃗, it is sufficient to cal-

culate only the sequence ϑi associated to the matrix

AξN(η). Indeed, we have that

detAξN(η) = ϑN , (87)

v⃗T [AξN(η)]
−1
v⃗ = [AξN(η)]

−1

NN

= ϑN−1ϕN+1/ϑN = ϑN−1/ϑN , (88)

{[AξN(η)]
−1
v⃗}

i
= ϑi−1ϕN+1/ϑN = ϑi−1/ϑN . (89)

Therefore, we consider Eq.(85) with a1 = ... = aξ = 2 + η
and aξ+1 = ... = aN = 2. Then, for i ≤ ξ we have the
difference equation ϑi = (2 + η)ϑi−1 − ϑi−2, whose general
solution can be written as

ϑi = p(
2 + η +

√
∆

2
)
i

+ q (2 + η −
√

∆

2
)
i

, (90)

with ∆ = η2 + 4η and where the coefficients p and q must
be fixed through the condition ϑ0 = 1 and ϑ1 = a1. A
straightforward calculation leads to the explicit solution
for i ≤ ξ

ϑi =
1√
∆

(2 + η +
√

∆

2
)
i+1

− 1√
∆

(2 + η −
√

∆

2
)
i+1

.(91)

For i > ξ, we have the simpler difference equation ϑi =
2ϑi−1 − ϑi−2, with the general solution ϑi = r + si. In
this case, the coefficients r and s must be obtained by
imposing ϑξ−1 and ϑξ by means of Eq.(90). Hence, the
result for i > ξ can be eventually found as

ϑi = (i − ξ + 1)ϑξ − (i − ξ)ϑξ−1, (92)

where ϑξ−1 and ϑξ are given by Eq.(90). The obtained
results can be summarized through the final expression
holding for 1 ≤ i ≤ N

ϑi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

γ(i + 1), i ≤ ξ

(i − ξ + 1)γ(ξ + 1) − (i − ξ)γ(ξ), i > ξ
(93)

where the function γ(z) is defined as follows

γ(z) = 1√
∆

(2 + η +
√

∆

2
)
z

− 1√
∆

(2 + η −
√

∆

2
)
z

. (94)

A more compact form of the solution can be also written
as

ϑi = [γ(i + 1) − (i − ξ + 1)γ(ξ + 1) + (i − ξ)γ(ξ)]1(ξ − i)
+ [(i − ξ + 1)γ(ξ + 1) − (i − ξ)γ(ξ)] , (95)

in terms of the Heaviside step function 1(x), defined as
1(x) = 1 if x ≥ 0, and 1(x) = 0 if x < 0. To conclude,
Eqs.(87)-(89) assume the final form

detAξN(η) = (N − ξ + 1)γ(ξ + 1) − (N − ξ)γ(ξ), (96)

1 − [AξN(η)]
−1

NN
= γ(ξ + 1) − γ(ξ)

(N − ξ + 1)γ(ξ + 1) − (N − ξ)γ(ξ)
,

(97)

{[AξN(η)]
−1
v⃗}

i
= ϑi−1

(N − ξ + 1)γ(ξ + 1) − (N − ξ)γ(ξ)
,

(98)

where ϑi is given in Eq.(95) and the function γ(z) in
Eq.(94).
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