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Nonlinear Control Strategies for a UAV Carrying a
Load with Swing Attenuation

M. E. Guerrero-Sánchez, R. Lozano, P. Castillo, O. Hernández-González∗, , C.
D. Garćıa-Beltrán, G. Valencia-Palomo

Abstract

Two nonlinear control schemes for Unmanned Aerial Vehicles (UAV) carrying
a load and their comparative results are presented in this paper. The goal is
to carry the load to a desired position, with oscillation attenuation along the
trajectory. The proposed control structures are hierarchical schemes consist-
ing of nonlinear controllers to stabilize the vehicle translational movements and
the payload swing together with a State-Dependent Differential Riccati Equa-
tion (SDDRE) controller to stabilize the rotational dynamics. We present new
methodologies, where the nonlinear controllers are proposed to obtain precise
aerial vehicle positioning and efficient load oscillation reduction. It is shown
that asymptotic stability can be guaranteed by the use of the Lyapunov ap-
proach and La Salle’s invariance principle. Numerical experiments were carried
out to validate the nonlinear control behaviors.

Key words: Nonlinear control, Payload swing attenuation, Quadrotor,
Lyapunov analysis

1. INTRODUCTION

Precise helicopter payload positioning with minimum swing has been re-
searched and subject to development in recent years. Transportation of a pay-
load suspended by a cable using Unmanned Aerial Vehicles (UAVs) is also a
topic of current interest. However, this configuration has the drawback of need-
ing an additional degree of freedom to the mathematical model in order to
consider the swinging behavior of the load. Furthermore, the payload oscilla-
tion adversely affects the stability of the quadrotor. In fact, accidents can be
caused by violent suspended payload swing [1], therefore, it is very important
to reduce payload swing to increase safety and performance.

Some solutions have been proposed in the literature to solve the problem of
transporting a hanging payload using UAVs. An example was the proposal in [2]
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to reduce the load swing for a helicopter with a cable-attached load using input
shaping. In that paper, the input shaped movements illustrate greatly-reduced
residual oscillation, with only a minor increase in the displacement time. Also,
a Linear Quadratic Regulator (LQR) control scheme was developed to lift and
carry the payload in [3]. The nonlinear mathematical model is linearized when
the UAV is flying in hover mode. Two stages for taking-off are employed: first,
the aircraft takes-off without considering the load effect and then, it switches
to a mode considering the load effect. An extension of this strategy is pre-
sented in [4], where an iterative LQR (iLQR) controller of a high-level dynamic
mathematical model for a single aircraft carrying a payload is developed. Fur-
thermore, in [5] the effect of dynamic disturbances on the load caused by step
variations in the mass of the payload and how this affects the flight performance
of helicopters and quadrotors using proportional-integral-derivative (PID) con-
trollers is studied. Practical implementation of transit and precise positioning
of loads with single or multiple UAVs are showed in [5]-[6]. In [6] the proposal
is to split the system into two subsystems and use two control loops: one for the
translational subsystem and one for controlling the rotation of each helicopter.
In these results, the mathematical models are linearized and the controllers are
developed from the linearized models.

In [7] two control strategies, a proportional-derivative (PD) controller and
a sliding mode controller (SMC) with a sliding mode disturbance observer
(SMDO), are tested in a quadrotor to evaluate their performance and stability
under uncertain payload masses. [8] develops a nonlinear algorithm to control
the aerial robot and the payload for positioning and trajectory tracking mis-
sions, nevertheless, the model is designed in two dimensions. In [9] the same
control strategy is applied to two quadrotors carrying a payload attached to
them by cables. [10] proposes the use of dynamic programming to generate an
optimal trajectory and an adaptive controller for maneuvering without oscil-
lation effects. Unfortunately, in these works the cable and load dynamics are
neglected, they are treated as vehicle disturbances. Also, a model-based control
algorithm for the translational and rotational stabilization for a quadcopter with
hanging payload is introduced in [11]. However, the rotational kinetic energy
of the load is neglected. A well-known technique since the 90s: Interconnection
and Damping Assignment Passivity - Based Control (IDA-PBC) for an aircraft
carriying a hanging load is applied in [12] and then, [13] introduces controllers
with total energy-shaping. However, these algorithms need solving complicated
Partial Differential Equations (PDEs) to obtain a controller. Therefore, the con-
trollers in [12] and [13] have not a relative simplicity and intuitive design. Also,
these algorithms can not be extended for the three-dimensional case, because
the obtained PDEs can not be solved.

A dynamic programming-based approach that ensures oscillation-free tra-
jectory tracking is studied in [14]. Similarly, the differentially-flat property to
design trajectories is used in [16]-[17]. An adaptive controller for a flying robot
carrying a load attached using a flexible cable is proposed in [18]-[19]. Here, the
cable is considered as links connected in series. In [20]-[21], position tracking
of the vehicle is achieved using geometric control and a mathematical model of
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the aircraft with a hanging load attached.
A method to parameterize aerial robots with a suspended payload using a

complementary constraint is presented in [22]; this approach can incorporate in
a nonlinear optimization problem further constraints from the quadrotor, the
environment or the mission. A mathematical model and geometric controller
for a quadrotor with a suspended payload through a flexible cable is presented
in [23]. In [24] the attitude motion is decoupled from the system, for which a
nonlinear controller is developed for the lift vector. While the vehicle’s velocity
and position error are converted into rotation control in order to design the
translational motion control law. A control algorithm for a quadrotor based on
a backstepping strategy for trajectory tracking, without being affected by the
payload swing, is developed in [25]. In [26] and [27] a path tracking controller is
developed based on existing Lyapunov-based path tracking control laws for free-
flying aerial vehicles that are further backstepped through the vehicle rotation
dynamics. A nonlinear adaptive control algorithm for the overall system which
consists of an aircraft with a hanging payload has been designed under the
parametric uncertainties in [28]. However, the resulting control laws include the
system dynamics and are complex to implement. Finally, other relevant works
regarding quadrotors control can be found in [29]-[31].

Transportation and precise positioning of a payload using a quadrotor can
be analyzed similarly to the case of a crane, which has been extensively studied
in the literature. For example, an extension of a Proportional Derivative (PD)
control law using a coupled-dissipation nonlinear term was proposed in [32]-
[33] in order to attenuate the load swing of an overhead crane. A nonlinear
tracking controller for three-dimensional overhead cranes regardless of the initial
conditions and mass variations of the load is proposed in [34]. Also, an energy-
based control law that ensures an improved transient response with a model-free
structure is developed in [35].

As noted above, several approaches have been used to solve the control
problem of a UAV carrying a load. However, few works propose nonlinear
control laws that take advantage of the natural coupling between the horizontal
position of the quadrotor and the payload oscillation, as it has been proposed
in some studies that solve the control problem for an overhead crane.

Considering the aforementioned points, we propose a three-dimensional ma-
thematical model and two control laws with an intuitive design for a quadrotor
carrying a load. With its simple structure and less computational algorithm, the
proposed strategies may be feasible for real applications. The control laws are
based on a hierarchical scheme considering the well-known time-scale separation
between rotational and translational dynamics of the quadrotor. Two nonlinear
control strategies to control the vehicle position and the payload swing are then
proposed. Our proposed controllers take advantage of the natural coupling ex-
isting between the horizontal quadcopter movement and the payload oscillation,
and thus, they do not need the resolution of PDEs. This means that nonlinear
feedback terms can be included in the control design for providing additional
information to reduce the payload oscillation through the natural coupling be-
tween the horizontal position of the vehicle and the payload swing. The first
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Figure 1: Quadcopter with a cable-attached load.

strategy is a PD control with a nonlinear coupled term. The second strategy is a
nonlinear coupling control based on the first algorithm. Asymptotic stability of
the two control laws are guaranteed by the Lyapunov technique and La Salle’s
invariance principle. The main contribution of this work resides in the design
of these control strategies for the system consisting of a quadrotor and a cable-
suspended payload, which to our best knowledge, has not yet been previously
studied in the literature. The main advantage of the proposed control laws is
its relatively easy and intuitive design. Moreover, it allows a state-dependent
differential Riccati equation controller for the rotational dynamics to be used to
perform the quadrotor stabilization. The backward integration solution method
is used to solve the State-Dependent Differential Riccati Equation (SDDRE)
and thus to obtain the optimal gains. The Euler-Lagrange mathematical model
of the orientation dynamics is changed to form a State-Dependent Coefficient
(SDC) parameterization.

The paper is structured as follows: Section 2 presents the nonlinear model
of a quadcopter carrying a hanging payload; Section 3 develops two nonlin-
ear coupling control strategies for the vehicle translational movements and the
payload oscillation; Section 4 introduces a state-dependent differential Riccati
equation controller to stabilize the quadrotor rotational movements; Section 5
describes numerical simulations and their corresponding results; finally, Section
6 discusses the conclusions and perspectives.

2. MATHEMATICAL MODEL

This section introduces the mathematical model of a quadcopter with a
hanging load attached by a cable.

Some assumptions are proposed for achieving the main goal:

A1 The payload could be considered as a point-mass.
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A2 Non-aggressive maneuvers are considered, then by physical constraints α
will move between −90◦ < α < 90◦.

From Figure 1, let us consider a body fixed coordinate frame B = {e1, e2, e3}
and an inertial coordinate frame O = {ex, ey, ez}, fixed to the ground. The

state vector is defined as q =
[
ξ η µ

]T ∈ R8, where ξ
4
=
[
x y z

]T
is

the position of the UAV center of mass relative to O, η
4
=
[
ψ θ φ

]T
are the

Euler angles, where θ, φ ∈ (−π/2, π/2). µ
4
=
[
α β

]T
defines the swing angles

of the payload, l represents the length of the cable and d is the distance between
the rotors and the gravity center. Finally, fi, i = 1 : 4 introduces the thrust

force provided by rotor i. The control input is defined as u =
[
f τψ

]T ∈ R4,

where f is the total thrust and τ =
[
τψ τθ τφ

]T
denotes the torques.

The total kinetic energy K(q, q̇) and the total potential energy V (q) of the
system can be represented as follows (more details see [13])

K(q, q̇) =
1

2
Mξ̇T ξ̇ +

1

2
η̇TJη̇ +

1

2
mξ̇Tp ξ̇p +

1

2
Ip(α̇

2 + β̇2); (1)

V (q) = (M +m)gz +mgl(1− cα); (2)

where M is the mass of the UAV and m is the mass of the load, Ip contains the
mass moments of inertia of the payload, ξp is the payload position, while J acts
as the inertia matrix. To simplify equations, we have used the short notation
cα = cos(α).

The motion equations for a quadrotor transporting a load are obtained using
the Euler-Lagrange method:

M(q)q̈ + C(q, q̇)q̇ +G(q) = Bu; (3)

where M(q) ∈ R8×8, C(q, q̇) ∈ R8×8 , G(q) ∈ R8, B ∈ R8×4 and are defined as
follow,

M(q) =

 (m+M)I3×3 03×3 Φµ
03×3 Ωη 03×2
ΦTµ 02×3 Γµ

 ; C(q) =

 03×3 03×3 Cµ
03×3 Cη 03×2
02×3 02×3 Υµ

 ;

(4)

G(q) =
[
Gz 01×3 Gα

]T
; B(q) =

[
Re3 01×3 01×2
03×3 I3×3 03×2

]T
; (5)
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with

Φµ =

 mlcαcβ −mlsαsβ
mlcαsβ mlsαcβ
mlsα 0

 ; Ωη =

 Iψs
2
θ + c2θ(Iθs

2
φ + Iφc

2
φ) (Iθ − Iφ)(cθsφcφ) −Iψsθ

(Iθ − Iφ)(cθsφcφ) Iθc
2
φ + Iφs

2
φ 0

−Iψsθ 0 Iψ

 ;

(6)

Γµ =

[
ml2 + Ip 0

0 ml2s2α + Ip

]
;Cµ =

 −ml(cαsβ β̇ + sαcβα̇) −ml(cαsβα̇+ sαcβ β̇)

ml(cαcβ β̇ − sαsβα̇) ml(cαcβα̇− sαsβ β̇)
mlcαα̇ 0

 ;

(7)

Cη =

 cη11 cη12 cη13
cη21 cη22 cη23
cη31 cη32 0

 ; Gz =

 0
0

(M +m)g

T ; Gα =

[
mglsα

0

]T
;

(8)

Re3 =
[
sφsψ + cφcψsθ cφsθsψ − cψsφ cθcφ

]
; Υµ =

[
0 −ml2sαcαβ̇

ml2sαcαβ̇ ml2sαcαα̇

]
;

(9)

where R is the rotational matrix from the body frame to the inertial one, cη11 =

Iψ θ̇sθcθ + (Iθ − Iφ)φ̇c2θsφcφ − Iθ θ̇sθcθs2φ − Iφθ̇sθcθc2φ, cη12 = Iψψ̇sθcθ − (Iθ −
Iφ)(θ̇sθcφsφ+ φ̇cθs

2
φ)+(Iθ+Iφ)φ̇cθc

2
φ−Iφψ̇sθcθc2φ−Iθψ̇sθcθs2φ, cη13 = −Iψ θ̇cθ+

(Iθ − Iφ)ψ̇c2θsφcφ, cη21 = ψ̇sθcθ(Iθs
2
φ + Iφc

2
φ − Iψ), cη22 = φ̇sφcφ(Iφ − Iθ), cη23 =

Iψψ̇cθ + (Iθ − Iφ)(ψ̇cθc
2
φ− θ̇sθcφ− ψ̇cθs2φ), cη31 = −ψ̇c2θsφcφ(Iθ − Iφ) and cη32 =

(Iθ − Iφ)(θ̇sφcφ + ψ̇cθs
2
φ − ψ̇cθc2φ)− Iψψ̇cθ.

2.1. Longitudinal dynamics

Let us consider the longitudinal dynamics (i.e., y = ψ = φ = β = 0). Then,
the motion equations can be written as follows

fsθ = (M +m)ẍ+ml(cαα̈− sαα̇2); (10)

fcθ = (M +m)z̈ +ml(sαα̈+ cαα̇
2) + (M +m)g; (11)

τθ = Iθ θ̈; (12)

0 = ml2α̈+mlcαẍ+mlsαz̈ +mlgsα. (13)

The previous equations can be expressed in the matrix form (3) as

M̃(q)q̈ = B̃u− C̃(q, q̇)q̇ − G̃(q); (14)
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where

M̃(q) =


M +m 0 0 mlcα

0 M +m 0 mlsα
0 0 Iθ 0

mlcα mlsα 0 ml2

 , C̃(q, q̇) =


0 0 0 −mlsαα̇
0 0 0 mlcαα̇
0 0 0 0
0 0 0 0

 ,

G̃(q) =


0

(M +m)g
0

mlgsα

 , B̃(q) =


sθ 0
cθ 0
0 1
0 0

 .
Notice that det

(
M̃
)
6= 0. The translational dynamics from (14) can be rewrit-

ten as

ξ̈xz =
1

det(M̃)
(Dhf +N) ; (15)

where

ξxz =
[
x z

]T
, D =

[
Iθl

2m(mc2α +M) Iθl
2m2sαcα

Iθl
2m2sαcα Iθl

2m(ms2α +M)

]
> 0,

N =
[
n1 n2

]T
, hf =

[
fsθ fcθ

]T
,

with n1 = −Iθl3m2α̇2sα(M + 2mc2α), n2 = −Iθl3m2α̇2cα(M + 2ms2α)−Iθl2mMg(M+
m).

From the quadrotor dynamics, it is observed that the rotation dynamics is
decoupled of the translational dynamics, i.e. it does not depend on the sec-
ond one. Nevertheless, the translational dynamics is related with the attitude
dynamics. This property allows separation into two dynamics, in general for
control purposes. This implies that it is possible to have two general control
schemes for this vehicle; an inner and outer control loops.

3. NONLINEAR CONTROL STRATEGIES

Let us decompose the three-dimensional translational dynamics into 2 two-
dimensional translational dynamics for UAVs, since the natural configuration
of the quadrotor (rigid structure in cross) provides natural movements in the
lateral or longitudinal axis, i.e., the quadrotor normally moves for simplicity
either in its lateral axis or in its longitudinal axis.

Therefore, we consider first the vehicle within the longitudinal plane and
then, in the lateral plane. Thus, the mathematical model (10) to (13) can be
defined only by (10), (11) and (13). Moreover, (15) can be written as

ξ̈xz =
1

det(M̃)
(DLu∗ +N) ; L =

[
1 0
0 cθ

]
; u∗ =

[
θd
f

]
; (16)
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with cθ 6= 0 since θ ∈ (−π/2, π/2). The control objective in this work is to
regulate the quadrotor position to a constant desired position denoted by ξxzd =[
xd zd

]T
, i.e.,

lim
t→∞

ξxz = ξxzd, (17)

while at the same time reduce the payload angle α to zero, i.e.,

lim
t→∞

α = 0. (18)

3.1. PD Control Law with Nonlinear Coupled Term

Equation (13) can be rewritten as

α̈ = −1

l
ẍcα −

z̈ + g

l
sα; (19)

Note that for small angles

lim
α→0

α̈ = −1

l
ẍ− z̈ + g

l
α. (20)

From the above expression, it is possible to observe that near the equilibrium
point, the payload swing angle dynamics is influenced by the horizontal and
vertical dynamics. Then, let f be the control variable for stabilizing the vertical
dynamics and θd the control variable to stabilize the vehicle translational po-
sition and the cable-suspended payload. Based on the previous, we design the
following PD control law with nonlinear coupled term:

uo =

[
θdo
fo

]
= uPD + uC ; (21)

where the “o” sub-index refers to a PD control with nonlinear coupled term,
uPD is a PD controller with gravity compensation and uC a nonlinear coupling
term between ẋ and α̇. These expressions are defined as

uPD =

[
−kpx(x− xd)− kvxẋ
−kpz(z−zd)−kvz ż+(M+m)g

cθ

]
; uC =

[
−kvαα̇2ẋ
−kvαα̇2ż

cθ

]
;

where kpx and kpz are proportional gains and the kvx, kvz, kvα are used to
inject damping into the system. Then, uPD steers the system to reach the
desired horizontal and vertical positions, while uC provides to attenuation of
the swing angle of the payload.

Theorem 3.1. The control law (21) guarantees asymptotic stability of the lat-
eral or longitudinal quadrotor dynamics with a payload connected by a cable such
that

lim
t→∞

[
x z α

]
=
[
xd zd 0

]
. (22)
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Proof. Now let us propose the following continuous differentiable scalar function
as the Lyapunov function candidate

E = H +
1

2
kpx(x− xd)2 +

1

2
kpz(z − zd)2 − (M +m)gz; (23)

where H = 1
2

˙̃q
TM̃ (q̃) ˙̃q + V (q̃) is the total energy of system and V (q̃) =

(M +m) gz +mg (1− cα). Then,

E =
1

2
˙̃q
TM̃

(̇̃
q
)

+mg (1− cα) +
1

2
kpx(x− xd)2 +

1

2
kpz(z − zd)2.

Observe that mg (1− cα) > 0 because −1 6 cα 6 1. Therefore, E is positive
definite. Now, differentiating (23) with respect to time, we get

Ė = Ḣ + kpx(x− xd)ẋ+ kpz(z − zd)ż − (M +m)gż. (24)

Introducing Ḣ into (24), it follows that

Ė = ˙̃q
TM̃(q̃)¨̃q +

1

2
˙̃q
T ˙̃M(q̃) ˙̃q + ˙̃q

T∇q̃V (q̃) + kpx(x− xd)ẋ+ kpz(z − zd)ż − (M +m)gż.

Substituting (14) into above, it yields

Ė = − ˙̃q
T
C̃(q̃, ˙̃q) ˙̃q − ˙̃q

T
G̃(q̃) + ˙̃q

T
B̃uo +

1

2
˙̃q
T ˙̃M(q̃) ˙̃q + ˙̃q

T∇q̃V (q̃)

+ kpx(x− xd)ẋ+ kpz(z − zd)ż − (M +m)gż.

Taking into account that the skew-symmetric relationship ˙̃q
T
(

1
2

˙̃M(q̃) ˙̃q − C̃(q̃, ˙̃q)
)

˙̃q =

0 is satisfied and G̃(q̃) = ∇q̃V (q̃), we obtain

Ė = ˙̃q
T
B̃uo + kpx(x− xd)ẋ+ kpz(z − zd)ż − (M +m)gż.

Considering y = ˙̃q
T
B̃ =

[
ẋ cθ ż

]
and using (21), it follows that

Ė = −kvxẋ2 − kvz ż2 − kvαα̇2(ẋ2 + ż2) ≤ 0. (25)

Note that from (25) Ė(0) = 0. And, if Ė < 0 using the direct Lyapunov method,
it could be shown that every trajectory approaches the origin. However, Ė ≤ 0
and therefore, Ė is negative semidefinite.

Using the La Salle’s invariance principle, all the trajectories of the system
converge at the equilibrium points and this implies asymptotic stability. Let X
be the set of all points in Ω where Ė = 0. If Ė = 0→ X= {(x, z, α)|Ė(x, z, α) =
0} → −kvxẋ2 − kvz ż2 − kvαα̇2(ẋ2 + ż2) = 0 → ξ̇xz = 0 → ξ̈xz = 0, which is
the set X= {(x, y, z)|x = constant ∧ z = constant}. We will prove that the
constant x, z is the equilibrium point x = xd, z = zd. Therefore, ξxz ∧ E are

constant. Also, if ξ̇xz = 0 ∧ ξxzd =
[
xd zd

]T → Ḣ = ėxz = 0. Moreover, if
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ξxz = ξxzd it is clear that θdo from (21) is zero. However, the above expressions
are satisfied even if α̇ = 0 ∨ α̇ 6= 0.

To complete the proof, the stability is analyzed for the case when α̇ = 0 and
the case when α̇ 6= 0. From (13) one sees that if ξ̈xz = 0 then,

lα̈+ gsα = 0. (26)

Note that the above equation is satisfied if α̈ = 0 ∧ sα = 0 or α̈ = − gl sα ∧
sα 6= 0. Hence, from sα 6= 0 → α̇cα 6= 0 → α̈cα− α̇2sα 6= 0. However, from (10)
one sees that if the input is zero (i.e., θdo = 0) ∧ ξ̈xz = 0 → α̈cα − α̇2sα = 0.
Obviously, the above expression contradicts sα 6= 0, and hence, α̈ = − gl sα ∧
sα 6= 0 is not satisfied. Then, sα = 0. From (26) α̈ = − gl sα, if sα = 0 → α̈ = 0
and α̈ = 0 ∧ sα = 0 is satisfied. Based on the above, it can be concluded that
α = 0. �

The conditions of the invariance principle are satisfied. Therefore, (21) guar-
antees asymptotic stability at the equilibrium (22). Thus, the control law (21)
solves the regulation problem of the quadrotor position and leads the load angle
to zero. Similar analysis can be used for the lateral dynamics.

3.2. Nonlinear Control Law

To improve the translational control and reduce the swing of the angle, the
following nonlinear control is proposed:

uT = L−1 (−kpexz − kv ėxz − kfD−1N −
1

2
kf det(M̃)

d

dt
D−1ėxz

− 1

2
ke det(M̃)

d

dt
D−1

[
0 0
1 0

]
ėxz) / (kk + kf ) ; (27)

where uT =
[
θdT fT

]T
, the “T” sub-index refers to a nonlinear control law,

exz = ξxz − ξxzd defines the error vector of the quadrotor position, kp, kv, kf ,
ke and kk are non-negative constant control gains.

The nonlinear control (27) is developed following some ideas from [33]. The
control law presented in [33] is proposed for an overhead crane. In our proposal
we exploit and increase the coupling between the horizontal position of the
quadrotor and the load oscillation by the last term from (27).

Theorem 3.2. The system represented in (10)-(13) with the control law (27)
guarantees asymptotic stability at the equilibrium (22).

Proof. Consider the following Lyapunov candidate function

E = kkH +
1

2
kf ė

T
xz

(
det(M̃)

)
D−1ėxz +

1

2
kpe

T
xzexz; (28)

which is positive definite. Then, differentiating (28) along the trajectories of
the system

Ė = kkḢ + kf ė
T
xz(det(M̃))D−1ëxz + kpexz ė

T
xz +

1

2
kf ė

T
xz(det(M̃))

d

dt
D−1ėxz.

(29)
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Substituting Ḣ into (29), yields

Ė = kk

(
˙̃q
TM̃(q̃)¨̃q +

1

2
˙̃q
T ˙̃M(q̃) ˙̃q + ˙̃q

T∇q̃V (q̃)

)
+ kpexz ė

T
xz

+ kf ė
T
xz(det(M̃))D−1ëxz +

1

2
kf ė

T
xz(det(M̃))

d

dt
D−1ėxz.

Introducing (14) into the above and taking into account that G̃(q̃) = ∇q̃V (q̃)

and the skew-symmetric relationship ˙̃q
T
(

1
2

˙̃M(q̃) ˙̃q − C̃(q̃, ˙̃q)
)

˙̃q = 0 is satisfied,

we obtain

Ė = kk

(
˙̃q
T
B̃u
)

+ kf ė
T
xz(det(M̃))D−1ëxz + kpexz ė

T
xz +

1

2
kf ė

T
xz(det(M̃))

d

dt
D−1ėxz.

Substituting (16) into the above equation, it follows that

Ė = kk

(
˙̃q
T
B̃u
)

+ ėTxz (kfLu∗ + kfD
−1N + kpexz +

1

2
kf (det(M̃))

d

dt
D−1ėxz

)
.

Note that ˙̃q
T
B̃u = ėTxzLu∗ thus, we obtain the following

Ė = ėTxz (kk + kf )Lu∗ + kfD
−1N +

1

2
kf det(M̃)

d

dt
D−1ėxz + kpexz.

Finally, using (27) into u∗, we get

Ė = −kv
(
ėTxz ėxz + ėTxz det(M̃)Ṅ

[
0 0
1 0

]
ėxz

)
≤ 0.

�
The proposed control law guarantees the regulation of the UAV to a desired

position and simultaneously damped the payload oscillation. The controller for
the lateral plane can be obtained in a similar way.

4. SDDRE CONTROLLER

A nonlinear SDDRE control strategy for the attitude subsystem is developed.

4.1. SDDRE background

Consider the nonlinear system expressed as follows

ẋ(t) = f (x(t), t) + g (x(t), u(t), t) ;

y(t) = h (x(t), t) ;
(30)

where x(t) ∈ Rn, f(x(t), t) and g(x(t), u(t), t) are smooth functions, the equi-
librium point is f(0, t) = 0. The cost function to be minimized is given by:

J =
1

2

∫ ∞
0

(
xT (t)Q(x(t))x(t) + uT (t)R(x(t))u(t)

)
dt; (31)
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where the state and input weighting matrices are assumed state-dependent such
that Q = QT , Q > 0 and R = RT , R > 0. The state-dependent coefficient
parameterization needs to be used to form:

f (x(t), t) = A (x(t), t)x(t);

g (x(t), u(t), t) = B (x(t), t)u(t);

h (x(t), t) = C (x(t), t)x(t);

(32)

where A(x(t), t) ∈ Rn×n, B(x(t), u(t), t) ∈ Rn×m both depends on the state
variables and u(t) ∈ Rm. Thus, system (30) can be rewritten as follows

ẋ(t) = A (x(t), t)x(t) +B (x(t), t)u(t);

y(t) = C (x(t), t)x(t).
(33)

The SDC parameterization was realized, i.e., the variables x(t) and u(t) were
factorized to obtain the standard form for SDDRE derivation. The pair of
(A (x(t), t) , B (x(t), t)) is completely controllable in the linear sense and the pair
(A (x(t), t) , C (x(t), t)) is completely observable in the same sense. To minimize
the above cost function (30), a state optimal feedback controller can be obtained
as follows

u(t) = −R−1 (x(t), t)BT (x(t), t)K (x(t), t)x(t); (34)

where K is the positive solution of the SDDRE, which is expressed as follows
[36]

K̇ = −K (x(t), t)A (x(t), t)−AT (x(t), t)K (x(t), t)

+KB (x(t), t)R−1 (x(t), t)BT (x(t), t)K (x(t), t)−Q (x(t), t) . (35)

Thus, (34) is a nonlinear controller with the characteristic that the linearization
of the system equations is not required. The SDDRE can be solved by using
backward integration, state transition matrix, Lyapunov based method, etc [37].
In this work, the SDDRE controller is solved applying the backward integration
method as this method is widely used in the solution of optimal control problems
with a final boundary condition.

4.2. Rotational subsystem nonlinear SDDRE Control

The Euler-Lagrange rotational equations of a quadrotor can be written from
(3) as follows:

Ωη(η)η̈ + Cη(η)η̇ = τ. (36)

Remember that η =
[
ψ θ φ

]T
. The idea is to apply the SDDRE approach.

Then, considering the state vector as x(t) =
[
η η̇

]T
, (36) can be represented

as (30), with

f (x(t), t) =

[
η̇

−Ω−1η (η)Cη(η)η̇

]
, g (x(t), u(t), t) =

[
03×1

Ω−1η (η)τ

]
.

12



Thus, the SDDRE approach takes the nonlinearities of the dynamics by forcing
it to a quasi-linear form employing state-dependent coefficient. Then, one can
rewrite (36) as a possible set of SDC matrices:

ẋ(t) =

[
03×3 I3×3
03×3 −Ω−1η (η)Cη(η)

]
x(t) +

[
03×3

Ω−1η (η)

]
τ. (37)

Note that this parametrization is not unique and the existence of a solution
of the SDDRE for a particular factorization of the system is not guaranteed.
Even, how to precisely select the corresponding SDC matrix from all possible
candidates via the presented parametrization, is worth investigating and cur-
rently under development. Also, other important aspect in the existence of the
solution of the SDDRE is the selection of the Q(x(t), t) and R(x(t), t) weighting
matrices, in general these matrices may be state-dependent.

A key aspect of this approach is to obtain a fully controllable pair A(x(t), t)
and B(x(t), t) and the matrices A(x(t), t) and C(x(t), t) form a fully observable
pair. Therefore, to prove the controllability of the proposed model in state space
structure, the linear sense of the SDC parameterization should be verified. Then,
we obtain the linear form from these matrices as:

A =

[
03×3 I3×3
03×3 03×3

]
, B =

[
03×3

dig[I−1φ , I−1θ , I−1ψ ]
3×3

]
.

The controllability matrix has full rank, then the system is controllable. Using
the nonlinear system (37), the SDDRE (35) is then solved on-line via backward
integration method to obtain the K(x(t), t) ∈ R6×6 control gain matrix with
the following final values:

K =


20.0342 0.0342 0 0 0 0
0.0342 0.0342 0 0 0 0

0 0 21.2463 0.0469 0 0
0 0 0.0469 0.0664 0 0
0 0 0 0 17.3611 0.0469
0 0 0 0 0.0469 0.0543

 .

Therefore, we can apply the feedback controller (34) to obtain a control scheme
for the rotational subsystem stabilization.

5. NUMERICAL SIMULATIONS AND RESULTS

To validate the behavior of the two proposed translational controllers given
by (21) and (27), some simulations have been carried out. We compare both
controllers under the same conditions. In order to implement the SDDRE,
the solution of the optimal gain matrix was substituted into the control law
(34). The weighting matrices were selected as R = dig[1, 100, 100]3×3 and
Q = dig[20, 20, 15, 30, 15, 20]6×6. The simulation goal was to displace the UAV
following a square of 5 meter length at 1 meter height, fastly and with reduction
of the payload oscillation.
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In simulations we used model parameters close to real aerial platforms, such
parameters are M = 0.4Kg, m = 0.03Kg, l = 0.35m, Iψ = 0.3gm2, Iθ = Iφ =
0.177kgm2. In the following figures the behavior of the PD control strategy
with nonlinear coupled term and the nonlinear control strategy are showed.

5.1. PD Control Law with Nonlinear Coupled Term

Figure 2a displays the positions x, y and z of the aircraft during the flight
test. Notice that, big changes in coordinates x and y are demanded and achieved
in a short period of time of about 5m in 7s. Observe also that the performance
of the controller is similar in the x and y axis. Figure 2b shows the payload
swing angles α and β. Note that the main goal of this paper is to attenuate
the swing angles while carrying the load. Here, we can see good performance of
the closed-loop system, since the oscillation angles always remain well bounded
and smaller than ±15o, despite the fast maneuvers performed along the x and y
axis. The quadrotor rotation dynamics is shown in Figure 2c, it can be noticed
that the orientation controller steers the attitude of the quadrotor converge to
the origin. The thrust force and torques are presented in Figure 2d. Lastly, a
three-dimensional view of the way in which the quadrotor follows the set-points
is displayed in Figure 2e.

5.2. Nonlinear Control Law

Similarly to the previous case, a second simulation has been obtained in
order to show the behavior of the second developed control strategy. Figure 3a
displays the positions x, y and z of the quadrotor during the validation. On
one hand, note that the performance of the two control strategies were similar
for the positions x and y. However, a reduction of the settling time can be
observed in the second control law. In this way, big changes in coordinates x, y
are demanded and achieved in short time, about 5m in 5s. On the other hand,
the vertical position dynamics of the two control laws are very similar as could
be expected from (20). Figure 3b presents the load swing angles α and β. We
can see that the swing angles show an overshoot maximum of ±10o and that the
swing reduction is accomplished in almost 4s, regardless of the fast maneuvers
performed along the x and y axis. The quadrotor rotation is displayed in Figure
3c, and the inputs signals are shown in Figure 3d. Finally, a view in the three-
dimensional space of the quadrotor move is presented in Figure 3e, here we can
observe the appropriate behavior of our controller.

5.3. Comparison among the proposed control laws

In summary, Figures 2a-3e show good behavior of the proposed controllers.
Nevertheless, the nonlinear control law was found to have better performance
than the PD control law with a nonlinear coupled term for the control objective
of transporting a payload from an initial position to the goal position, with
reduction of the swing. This is clear in Figures 2b, 2c, 3b and 3c. From Figures
2b and 3b, it can be observed that the settling time and the overshoot of the
payload oscillation angle obtained from control law uo is larger than the payload
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Figure 2: Simulation results for the PD control law with nonlinear coupled term.
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Figure 3: Simulation results for the nonlinear control law.
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swing angle obtained with the control law uT . From Figures 2c and 3c, it can
be observed a similar behavior for the quadrotor attitude. Also, these figures
show that the swing angles and the orientation dynamics, are quickly regulated
to zero using the controller uT . From the simulation results, we can see more
advantages in the nonlinear control law, in the sense that it has better transient
response.

6. CONCLUSIONS

This work described two novel control laws for stabilizing a quadcopter trans-
poting a payload attached by a cable. The proposed controllers take advantage
of the natural coupling existing between the horizontal vehicle movement and
the payload oscillation.

We have presented a PD control law with nonlinear coupled term and a fully
nonlinear control law to reduce the oscillation of the load attached by a rod to
a UAV. The main advantage of the proposed control strategies is their relative
simplicity and intuitive design. The numerical results showed the good perfor-
mance of the two developed control laws for the purpose of carrying a load, with
swing suppression. The attitude dynamics was stabilized by a feedback control
law that solves a state-dependent differential Riccati equation. Numerical ex-
periments have shown that the performances of the proposed controllers are
satisfactory. However, the nonlinear control law had better performance in the
payload swing angle. Future works include extending the translational control
laws for the three-dimensional case, the cable dynamic model and the variation
of payload weight taken as input uncertainties.
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