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Abstract. Consistent validation of satellite CO2 estimates

is a prerequisite for using multiple satellite CO2 measure-

ments for joint flux inversion, and for establishing an accu-

rate long-term atmospheric CO2 data record. Harmonizing

satellite CO2 measurements is particularly important since

the differences in instruments, observing geometries, sam-

pling strategies, etc. imbue different measurement character-

istics in the various satellite CO2 data products. We focus

on validating model and satellite observation attributes that

impact flux estimates and CO2 assimilation, including ac-

curate error estimates, correlated and random errors, overall

biases, biases by season and latitude, the impact of coinci-

dence criteria, validation of seasonal cycle phase and ampli-

tude, yearly growth, and daily variability. We evaluate dry-

air mole fraction (XCO2
) for Greenhouse gases Observing

SATellite (GOSAT) (Atmospheric CO2 Observations from

Space, ACOS b3.5) and SCanning Imaging Absorption spec-

troMeter for Atmospheric CHartographY (SCIAMACHY)

(Bremen Optimal Estimation DOAS, BESD v2.00.08) as

well as the CarbonTracker (CT2013b) simulated CO2 mole

fraction fields and the Monitoring Atmospheric Composi-

tion and Climate (MACC) CO2 inversion system (v13.1) and
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compare these to Total Carbon Column Observing Network

(TCCON) observations (GGG2012/2014). We find standard

deviations of 0.9, 0.9, 1.7, and 2.1 ppm vs. TCCON for

CT2013b, MACC, GOSAT, and SCIAMACHY, respectively,

with the single observation errors 1.9 and 0.9 times the pre-

dicted errors for GOSAT and SCIAMACHY, respectively.

We quantify how satellite error drops with data averaging

by interpreting according to error2
= a2
+ b2/n (with n be-

ing the number of observations averaged, a the systematic

(correlated) errors, and b the random (uncorrelated) errors).

a and b are estimated by satellites, coincidence criteria, and

hemisphere. Biases at individual stations have year-to-year

variability of∼ 0.3 ppm, with biases larger than the TCCON-

predicted bias uncertainty of 0.4 ppm at many stations. We

find that GOSAT and CT2013b underpredict the seasonal cy-

cle amplitude in the Northern Hemisphere (NH) between 46

and 53◦ N, MACC overpredicts between 26 and 37◦ N, and

CT2013b underpredicts the seasonal cycle amplitude in the

Southern Hemisphere (SH). The seasonal cycle phase indi-

cates whether a data set or model lags another data set in

time. We find that the GOSAT measurements improve the

seasonal cycle phase substantially over the prior while SCIA-

MACHY measurements improve the phase significantly for

just two of seven sites. The models reproduce the mea-

sured seasonal cycle phase well except for at Lauder_125HR

(CT2013b) and Darwin (MACC). We compare the variabil-

ity within 1 day between TCCON and models in JJA; there

is correlation between 0.2 and 0.8 in the NH, with models

showing 10–50 % the variability of TCCON at different sta-

tions and CT2013b showing more variability than MACC.

This paper highlights findings that provide inputs to estimate

flux errors in model assimilations, and places where mod-

els and satellites need further investigation, e.g., the SH for

models and 45–67◦ N for GOSAT and CT2013b.

1 Introduction

Carbon–climate feedbacks are a major uncertainty in predict-

ing the climate response to anthropogenic forcing (Friedling-

stein et al., 2006). Currently, about 10 Gigatons (Gt) of car-

bon are emitted per year from human activity (e.g., fossil

fuel burning, deforestation), of which about 5 Gt stays in

the atmosphere, causing an annual CO2 increase of approx-

imately 2 ppm yr−1. The yearly increase is quite variable,

estimated at 1.99± 0.43 ppm yr−1 (http://www.esrl.noaa.

gov/gmd/ccgg/trends/global.html), however always positive

(Houghton et al., 2007). The remaining 5 Gt of carbon is

taken up by the ocean and the terrestrial biosphere; how-

ever, there are uncertainties in the location and mechanism

of these sinks, e.g., the distribution of land sinks between the

Northern Hemisphere and the tropics (e.g., Stephens et al.,

2007), and the localization of sources and sinks on regional

scales (Canadell et al., 2011; Baker et al., 2006). The un-

certainties in top-down source and sink estimates are a con-

sequence of uncertainties in model transport and dynamics

(e.g., Prather et al., 2008; Stephens et al., 2007) and sparse-

ness of available surface-based CO2 observations (Hunger-

shoefer et al., 2010; Chevallier et al., 2010). Satellites offer a

much denser and spatially contiguous data set for top-down

estimates, but are much more susceptible to biases as com-

pared to ground-based measurements (e.g., see summary in

Sect. 3.3.2 of Ciais et al., 2014).

This paper tests different characteristics of model and

satellite CO2 (e.g., seasonal cycle amplitude and phase, re-

gional and seasonal biases, effects of averaging, and diurnal

variations) through a series of specialized comparisons to the

Total Carbon Column Observing Network (TCCON). The

findings from this work can be propagated into assimilation

systems to determine the influence of various findings on top-

down flux estimates (e.g., see Miller et al., 2007; Deng et al.,

2014; Chevallier and O’Dell, 2013; Chevallier et al., 2014).

For example, this paper characterizes biases by latitude and

season; these biases can be assimilated to determine their ef-

fects on flux estimates (e.g., Kulawik et al., 2013). This paper

also shows a set of comparisons and tests that may be useful

for evaluating bottom-up flux estimates or transport schemes

in models.

The remainder of the paper is organized as follows: Sect. 2

describes the satellite XCO2
data and models used. The vari-

ous satellite and model XCO2
data are compared against TC-

CON observations in Sect. 3. Temporal characteristics of the

different XCO2
data and models, including the seasonal cy-

cle amplitude and phase, are compared in Sect. 4. Diurnal

behavior is evaluated in Sect. 5. Section 6 summarizes our

findings and discusses their impact on evaluating terrestrial

carbon fluxes.

2 Data and models used

The characteristics of the sets of carbon dioxide that will be

compared to TCCON are summarized in Table 1. The fol-

lowing sections contain detailed descriptions of the data set

versions and characteristics.

2.1 The TCCON

The TCCON consists of ground-based Fourier transform

spectrometers (FTSs) that measure high spectral (0.02 cm−1)

and temporal (∼ 90 s) resolution spectra of the direct sun in

the near infrared spectrum (Wunch et al., 2011a). Column

abundances of CO2, O2, and other atmospheric gases are de-

termined from their absorption signatures in the solar spectra

using the GGG software package, which employs a nonlin-

ear least squares spectral fitting algorithm to scale an a priori

volume mixing ratio profile. Absorption of CO2 is measured

in the weak CO2 band centered on 6220 and 6339 cm−1, and

of O2 in the band centered on 7885 cm−1.
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Figure 1. TCCON site locations used for this work. The color indi-

cates the year when each station started collecting data.

The total column dry-air mole fractions of CO2 (XCO2
)

are computed by ratioing the column abundances of CO2

and O2. The resulting dry-air mole fractions have been cali-

brated against profiles of CO2 measured by WMO-scale in-

strumentation aboard aircraft (Wunch et al., 2010; Messer-

schmidt et al., 2011). The precision and accuracy of the

TCCON XCO2
product is ∼ 0.8 ppm (2σ ) after calibration

(Wunch et al., 2010). The TCCON data used in this paper are

from the GGG2012 and GGG2014 releases, available from

http://tccon.ornl.gov/. In this paper we use 90 min average

TCCON values which have 1σ precision of 0.4 ppm (see Ap-

pendix B).

We use 20 TCCON stations, distributed globally (see

Fig. 1), and these data have been used extensively for

satellite validation and bias correction (e.g., Butz et al.,

2011; Morino et al., 2011; Wunch et al., 2011b; Reuter et

al., 2011; Schneising et al., 2012; Oshchepkov et al.; 2012),

in flux inversions (Chevallier et al., 2011), and in model

comparisons (Basu et al., 2011; Saito et al., 2012). We

use the GGG2014 data when available, and the GGG2012

data from sites Four Corners and Tsukuba_120HR.

Note that the overall bias between the GGG2012 and

GGG2014 XCO2
is 0.3 ppm (with the GGG2014 re-

sults smaller) (Wunch et al., 2015). The GGG2012 sites

have corrections based on the instructions from the TC-

CON partners, listed on the TCCON website (https:

//tccon-wiki.caltech.edu/Network_Policy/Data_Use_Policy/

Data_Description_GGG2012#Laser_Sampling_Errors). We

also apply a 0.9972 factor to Four Corners, as indicated

here: https://tccon-wiki.caltech.edu/Network_Policy/Data_

Use_Policy/Data_Description_GGG2012. Two instruments

have been operated at the Lauder site. We identify them

using 120HR (for the period of 20 June 2004 through 28

February 2011) and 125HR (for 2 February 2010 through

to the present) when results are instrument-specific. We

find biases in the Tsukuba_125HR for the time ranges in

this paper (possibly from high humidity combined with

solar tracker issues during this time period that were later

corrected, and/or bias updates that are needed) and do not

use Tsukuba_125HR in this paper.

Stations which have special circumstances regarding val-

idation and are considered locally influenced are Garmisch

which is in the midst of complicated terrain, for which local

atmospheric transport is difficult to model and to measure

from space; Four Corners, which is located in the vicinity of

two power plants with large CO2 emissions (Lindenmaier et

al., 2014). The meteorology is such that Four Corners reg-

ularly samples large localized plumes with column CO2 in-

creases of several ppm that last hours in the late morning.

Therefore, the low bias in models and satellite data relative

to the Four Corners TCCON is attributed to the smaller scale

enhancements from the power plants measured in TCCON

which are significantly diluted in the model and satellite re-

sults; Bremen is also affected by local urban sources, and

satellites and models would be expected to be biased low,

though it is similar to adjacent stations; and JPL, Pasadena,

and Edwards are in or adjacent to a megacity with complex

adjacent terrain. The Izaña TCCON station is on Tenerife,

a small island (about 50× 90 km) with complex topography

located about 300 km west of southern Morocco. The TC-

CON station is located at 2.37 km above sea level (about

770 hPa), whereas models and satellite observations are of

the surrounding ocean at about 1013 hPa. These stations are

not included in averages (e.g., average bias, average seasonal

cycle amplitude differences). In the future, either targeted

observations or more spatially resolved models could make

better use of these TCCON stations. Although we do not use

these stations in averaging, we show results from all TCCON

stations in this paper.

2.2 GOSAT CO2

The Greenhouse gases Observing SATellite (GOSAT) takes

measurements of reflected sunlight in three shortwave bands

with a circular footprint of approximately 10.5 km diameter

at nadir (Kuze et al., 2009; Yokota et al., 2009; Crisp et al.,

2012). The first useable science measurements were made in

April 2009, but due to changing observational modes in the

early months, we use data beginning in July 2009. In this

work, we use column-averaged dry-air mole fraction (XCO2
)

retrievals produced by NASA’s Atmospheric CO2 Observa-

tions from Space (ACOS) project, version 3.5 (see O’Dell

et al. (2012) for retrieval details). For each sounding, the re-

trieval produces an estimate of XCO2
, the vertical sensitivity

of the measurement (i.e., the averaging kernel), and the pos-

terior uncertainty in XCO2
. It also produces a number of other

retrieval variables, such as surface pressure and aerosols,

which are used in both filtering and bias correction. Post-

retrieval filter is employed based on a number of variables

associated with the retrieval. In addition to filtering, a re-

vised bias correction scheme has been developed for the v3.5

retrievals. This scheme is similar to the approach described

in Wunch et al. (2011b), which characterized the errors in

earlier versions of the ACOS retrieval using a simple spatial

uniformity assumption of XCO2
in the Southern Hemisphere
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Table 1. Summary of the CO2 data sets and models we used, showing the coverage for several different CO2 products. The obs/day are the

approximate number of CO2 observations which passed quality screening.

Satellite/TCCON Dates available Day/ Land/ Latitude Obs/ footprint

night ocean day

SCIAMACHY v2.00.08 Jan 2003–Apr 2012 day land 80◦ S–80◦ N ∼ 800 60× 30 km

GOSAT ACOS-v3.5 Jun 2009–Apr 2014 day both 80◦ S–80◦ N ∼ 360 10.5 km cir.

TCCON GGG2012 see Fig. 1 day both 45◦ S–80◦ N – –

Model Dates available Time res. Spatial res. (lat× lon)

CT2013b 2000–2012 3 h 2× 3◦ global, 1× 1◦ US

MACC 13.1 1979–2013 (used 2007–2013) 3 h 1.9× 3.75◦

(sometimes referred to as the Southern Hemisphere Approx-

imation) to assess errors and biases in the retrievals. V3.5

has corrections of GOSAT high (H ) and medium (M) gain

data over land, as well as glint-mode data over the ocean,

by using not only the Southern Hemisphere Approximation,

but also TCCON observations, and comparisons to an en-

semble mean of multiple transport model output. Details of

the post-retrieval filter and the bias correction scheme can be

found in the ACOS v3.5 user’s guide which will soon be at

https://co2.jpl.nasa.gov/.

2.3 SCIAMACHY CO2

The following description of the SCanning Imaging Absorp-

tion spectroMeter for Atmospheric CHartographY (SCIA-

MACHY) CO2 retrieval algorithm summarizes important as-

pects of Reuter et al. (2010 and 2011) and is adopted in parts

from the algorithm theoretical basis document (Reuter et al.,

2012b).

The Bremen Optimal Estimation DOAS (BESD) algo-

rithm is designed to analyze SCIAMACHY sun normalized

radiance measurements to retrieve the column-averaged dry-

air mole fraction of atmospheric carbon dioxide (XCO2
).

BESD is a so-called full physics algorithm, which uses a

two-band retrieval, with the O2 A absorption band used to

retrieve scattering information of clouds and aerosols, while

the 1580 nm band additionally contains CO2 information.

Similar to the ACOS three-band retrieval for GOSAT, the

explicit consideration of scattering by this approach reduces

potential systematic biases due to clouds or aerosols.

The retrieved 26-elements state vector consists of a

second-order polynomial of the surface spectral albedo in

both fit windows, two instrument parameters (spectral shift

and slit functions full width at half maximum in both fit win-

dows, described in Reuter et al., 2010), a temperature pro-

file shift, a scaling of the H2O profile and a default aerosol

profile, cloud water/ice path, cloud top height, surface pres-

sure, and a 10-layer CO2 mixing ratio profile. Even though

the number of state vector elements (26) is smaller than the

number of measurement vector elements (134), the inver-

sion problem is generally underdetermined, especially for the

CO2 profile. For this reason BESD uses a priori knowledge

as a side constraint. However, for most of the state vector el-

ements the a priori knowledge gives only a weak constraint

and therefore does not dominate the retrieval results. The de-

gree of freedom for XCO2
typically lies within an interval

between 0.9 and 1.1.

A post-processor adjusts the retrieved XCO2
to a priori

CO2 profiles generated with the simple empirical CO2 model

described by Reuter et al. (2012a). Additionally the post-

processor performs quality filtering and bias correction. The

bias correction is based on, e.g., convergence, fit residuals,

and error reduction. The bias correction follows the idea of

Wunch et al. (2011b) using TCCON as a reference to derive

an empirical bias model depending on solar zenith angle, re-

trieved albedo, etc. The theoretical predicted errors have been

scaled to agree with the errors vs. TCCON (Reuter et al.,

2011). More details can be found in BESD’s algorithm theo-

retical basis document (Reuter et al., 2012b).

2.4 CarbonTracker

CarbonTracker (CT) is an annually updated analysis of at-

mospheric carbon dioxide distributions and the surface fluxes

that create them (Peters et al., 2007). CarbonTracker uses the

Transport Model 5 (TM5) offline atmospheric tracer trans-

port model (Krol et al., 2005) driven by meteorology from

the European Centre for Medium-Range Weather Forecasts

(ECMWF) operational forecast model and from the ERA-

Interim reanalysis (Dee et al., 2011) to propagate surface

emissions. TM5 runs at a global 3◦× 2◦ resolution and at a

1◦× 1◦ resolution over North America. CarbonTracker sep-

arately propagates signals from fossil fuel emissions, air–sea

CO2 exchange, and terrestrial fluxes from wildfire emissions

and non-fire net ecosystem exchange. Similar to other ex-

isting CO2 inverse models, oceanic and terrestrial biosphere

surface fluxes are optimized to agree with atmospheric CO2

observations, while fossil fuel and wildfire emissions are

specified. First-guess fluxes from terrestrial biosphere mod-

els and surface ocean carbon analyses are modified by apply-

ing weekly multiplicative scaling factors estimated for 126

land and 30 ocean regions using an ensemble Kalman fil-
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ter optimization method. The CT2013b release of Carbon-

Tracker assimilates in situ observations between 2000 and

2012 from 103 data sets around the world, including time se-

ries from NOAA observatories, tall towers, and flasks sam-

pled by the NOAA Cooperative Air Sampling Network, and

flask and continuous measurements from partners including

Environment Canada, the Australian Commonwealth Scien-

tific and Industrial Research Organization, the National Cen-

ter for Atmospheric Research, the Lawrence Berkeley Na-

tional Laboratory, and the Brazilian Instituto de Pesquisas

Energéticas e Nucleares.

In order to explicitly quantify the impact of transport un-

certainty and prior flux model bias on inverse flux estimates

from CarbonTracker, the CT2013b release is composed of

a suite of inversions, each using a different combination of

prior flux models and parent meteorological model. Sixteen

independent inversions were conducted, using two terres-

trial biosphere flux priors, two air–sea CO2 exchange flux

priors, two estimates of imposed fossil fuel emissions, and

two transport estimates in a factorial design. CT2013b re-

sults are presented as the performance-weighted mean of

the inversion suite, with uncertainties including a compo-

nent of across-model differences. All CarbonTracker re-

sults and complete documentation can be accessed online at

http://carbontracker.noaa.gov.

2.5 MACC

Monitoring Atmospheric Composition and Climate (MACC,

http://www.copernicus-atmosphere.eu/) was the European

Union-funded project responsible for the development of

the pre-operational Copernicus atmosphere monitoring ser-

vice. MACC monitors the global distributions of greenhouse

gases, aerosols, and reactive gases, and estimates some of

their sources and sinks. Since 2010, it has been delivering

an analysis of the carbon dioxide in the atmosphere and of

its surface fluxes every year, based on the assimilation of air

sample mole fraction measurements (Chevallier et al., 2010).

It relies on a variational inversion formulation, developed

by LSCE, that estimates 8-day grid point daytime/nighttime

CO2 fluxes and the grid point total columns of CO2 at the

initial time step of the inversion window. The Bayesian er-

ror statistics of the estimate are computed by a robust ran-

domization approach. The MACC inversion scheme relies on

the global tracer transport model Laboratoire de Météorolo-

gie Dynamique (LMDZ; Hourdin et al., 2006), driven by the

wind analyses from the ECMWF. For release v13.1 of the

MACC inversion, used here, LMDZ was run at a horizon-

tal resolution 3.75◦ longitude× 1.9◦ latitude with 39 verti-

cal layers. The other elements of the inversion configuration

follow Chevallier et al. (2011), with climatological (i.e., not

interannually varying), terrestrial, and ocean prior fluxes and

interannually varying fossil fuel and biomass burning emis-

sions. The variational formulation of the inversion allowed

the 1979–2013 period to be processed in a single assimilation

window, therefore ensuring the physical and statistical con-

sistency of the inversion over the full 35-year period. Mole

fraction records from 131 measurement sites have been used

from the NOAA Earth System Research Laboratory archive,

the World Data Centre for Greenhouse Gases archive, and

the Réseau Atmosphérique de Mesure des Composés à Effet

de Serre (RAMCES) database (see the list in the Supplement

of Peylin et al., 2013).

3 Direct comparisons to TCCON

We show comparisons between satellite XCO2
, model-

simulated mole fraction fields, and TCCON XCO2
at 25 dif-

ferent TCCON sites, shown in Fig. 1. These sites span the

northern and southern hemispheres and cover a wide range of

latitudes and longitudes. In our analysis we mainly use sta-

tions with start dates in or before 2012 which have coverage

in all seasons so that seasonal cycle fits, which require 2 years

of data, can be made. Newer sites are not used for SCIA-

MACHY comparisons, as this data set ends in mid-2012 and

our version of CarbonTracker (CT2013b) ends at the end

of 2013. We show representative time series for CT2013b,

MACC, GOSAT, and SCIAMACHY for a Northern Hemi-

sphere site (Lamont, OK, US at 37◦ N) and two Southern

Hemisphere sites (Lauder, NZ at 45◦ S or Wollongong, New

South Wales, Australia at 35◦ S) in Fig. 2. Lauder is shown

for the models to show the phase lag for CT2013b seen at this

site in Table 5. Since there are not enough coincidences for

the satellites at Lauder, we show Wollongong for satellites.

These plots show matches using the geometric coincidence

criteria described in Table 2 below (for satellites) and give an

idea of the number of coincidences for each data set using

these criterion. As only TCCON/satellite-matched pairs are

shown, different subsets of TCCON are included for models

and the two satellites. These sites were chosen as they have

the most coincidences in the northern and southern hemi-

spheres, respectively, for satellites. All sets compare well; the

30-day moving averages show differences most easily, such

as a repeating blip in CT2013b comparisons at the summer

drawdown at Lamont and a seasonal mismatch in CT2013b

comparisons to Lauder, which will be discussed later in the

paper.

3.1 Coincidence criteria and other matching details

The SCIAMACHY and GOSAT comparisons in this paper

are based on two different definitions of coincidence crite-

ria between TCCON and satellite data. Satellite measure-

ments, which satisfy the so-called geometric criteria, are

within ±1 h, ±5◦ latitude and longitude of an unaveraged

TCCON observation. Following the match-ups, all TCCON

observations matching one satellite observation which are

within 90 min are averaged, reducing the TCCON random

error. The dynamical criteria (Wunch et al., 2011b; Keppel-

Aleks et al., 2011, 2012) are designed to exploit informa-
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Figure 2. Time series for matches of CT2013b, MACC, SCIAMACHY, and GOSAT vs. TCCON at Lamont (a–d) and Lauder (for models)

or Wollongong (for satellites) (e–h). The top plot of each set (a1, b1, c1, . . . ) shows a time series of all geometric matching pairs. The middle

panel of each set (a2, b2, c2, . . . ) shows the difference vs. TCCON, with the blue line denoting the 30-day average difference. The bottom

panel of each set (a3, b3, c3, . . . ) shows a histogram of the differences, indicating an approximate error and bias.

tion about the dynamical origin of an air parcel through a

constraint on the free-tropospheric temperature. This allows

us to relax the geometric constraints and find more coinci-

dent satellite soundings per TCCON measurement. Briefly,

a match is found when the measurements are within 5 days

and the following is satisfied:((
1Latitude

10

)2

+

(
1Longitude

30

)2

+

(
1Temperature

2

)2
)
< 1, (1)

where 1Temperature is the co-located NCEP temperature

difference at 700 hPa (Kalnay et al., 1996). Matches are

found with unaveraged TCCON data; TCCON observations

matching a single satellite observation are averaged within

90 min intervals. Table A2 summarizes the coincidence cri-

teria and data versions that are used. Other matching schemes

not included in this paper include a method implemented by

S. Basu described in Guerlet et al. (2013), which utilizes

model CO2 fields to determine coincidences, and Nguyen et

al. (2014) which uses a weighted average of distance, time,

and mid-tropospheric temperature. Dynamic and geometric

coincidence criteria are compared in Sect. 3.3 and geometric

coincidence criteria are used to spot-check dynamic coinci-

dence criteria results.

The choices used in this paper regarding model/TCCON

match-ups are linearly interpolating to the TCCON latitude,

longitude, and time for the models, and using the TCCON

surface pressure for calculating XCO2
. In the cases where the

TCCON surface pressure is greater than the model surface

pressure, the model surface CO2 value is replicated to the

missing pressure values. When comparing models vs. TC-
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Table 2. Fit of a and b in Eq. (2), with stations having data out to at least n= 50 for dynamic coincidence criteria, n= 10 (GOSAT) or

n= 40 (SCIAMACHY) for geometric coincidence criteria. The CT-CT column describes the CT2013b coincidence error, providing a lower

bound on the satellite/TCCON differences. The subtr. co-location error row estimates the correlated error for satellites only, subtracting the

quadrature TCCON error (0.35 ppm) and co-location error from the CT-CT column.

Dynamic Geometric Dynamic Geometric

SCIAMACHY CT-CT SCIAMACHY CT-CT GOSAT CT-CT GOSAT CT-CT

Station a b a b a b a b

Sodankylä 1.0 2.3 0.5 1.0 2.0 0.7

Bialystok 1.1 2.1 0.6 1.5 1.6 0.3 0.7 1.9 0.7 0.6 1.6 0.2

Bremena 1.2 2.0 1.0 1.4 1.6 0.3 1.0 1.9 0.6

Karlsruhe 1.4 1.9 0.8 1.6 1.8 0.5 1.0 1.8 0.7 1.3 2.0 0.6

Orléans 1.2 2.1 0.5 1.5 1.8 0.2 0.9 1.9 0.6 1.2 1.7 0.4

Garmischa 1.3 2.1 1.0 0.7 1.0 2.0 1.0 0.9 2.3 0.6

Park Falls 1.2 2.0 0.7 1.4 1.6 0.2 0.9 1.9 0.7 0.8 1.5 0.3

Four Cornersa 1.3 1.9 0.4 1.0 1.8 0.4 1.0 1.6 0.2

Lamont 1.3 1.9 0.6 1.2 1.5 0.3 1.0 1.7 0.6 0.8 1.3 0.3

JPL2007a 1.3 2.0 0.6

JPL2011a 1.5 1.8 1.0 1.0 1.7 0.7 1.1 1.5 0.4

Tsukuba 1.3 2.0 0.5

Izañaa 1.0 1.7 0.4 0.6 1.3 0.5 0.8 1.0 0.4

Saga 0.9 2.2 0.5 0.9 2.0 0.7

Mean NH 1.2± 0.2 2.1± 0.1 0.6± 0.1 1.4± 0.2 1.7± 0.2 0.3± 0.1 0.9± 0.1 1.9± 0.1 0.7± 0.1 0.9± 0.1 1.6± 0.1 0.4± 0.2

Mean NH: subtr. co-loc. error 1.0± 0.3 1.4± 0.3 0.5± 0.2 0.8± 0.2

Darwin 1.0 1.5 0.2 1.2 1.2 0.1 0.7 1.2 0.3 0.8 1.0 0.1

Ascension 0.7 1.1 b 0.8 0.8 b

Reunion 0.7 1.2 0.2

Wollongong 1.0 1.7 0.3 1.1 1.8 0.2 0.7 1.3 0.2 0.8 1.5 0.2

Mean SH 1.0± 0.1 1.6± 0.1 0.3± 0.1 1.2± 0.1 1.5± 0.4 0.2± 0.1 0.7± 0.1 1.2± 0.1 0.2± 0.1 0.8± 0.1 1.1± 0.4 0.2± 0.1

Mean SH: subtr. co-loc. error 0.9± 0.2 1.1± 0.2 0.6± 0.2 0.7± 0.1

a Bremen, Garmisch, Four Corners, JPL, and Izaña are influenced by local effects or complex terrain and are not included in averages. b Ascension data start in 2013 after CT2013 stops.

Figure 3. Bias (left panel) and standard deviation (right panel) for CT2013b, MACC, BESD-SCIAMACHY, and ACOS-GOSAT vs. TCCON

stations, arranged from high to low latitude. Comparisons which have a particularly low number of matches are TSUKUBA and Lauder for

SCIAMACHY and Lauder for GOSAT.

CON, the TCCON averaging kernel is applied to the model.

When using the model to assess satellite coincidence error,

the satellite averaging kernel is applied to the model at the

satellite and TCCON coincidences. Note that the TCCON

averaging kernel cannot be applied to satellite data and vice

versa because a profile of higher resolution than the compar-

ison observation is needed to apply an averaging kernel. In

the satellite/TCCON comparison, both products have ∼ 1 ◦

of freedom. (The satellites do initially retrieve a profile with

∼ 1.6◦ of freedom for GOSAT, but the profile is not what we

are validating.)

Because of the earth’s curvature, high-latitude sites could

have relaxed coincidence in longitude, particularly for ge-

ometric coincidence. However stations north of 60◦ N have

gaps in the winter months in the satellite record such that

relaxed criteria do not add additional stations to the analysis.
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Figure 4. Overall bias (left panel, with error bars showing the standard deviation of the bias) and standard deviation (right panel, with stars

showing the predicted error for satellites) for most stations (some stations removed, see text).

3.2 Bias and standard deviation for individual matches

Figure 3 shows a summary of the comparisons for geomet-

ric criteria where satellite matches are not averaged. Av-

eraging and the effects of coincidence criteria and satel-

lite averaging are addressed in Sect. 3.4. The black box

shows five European stations which are very close, geo-

graphically, yet have different biases. The gray bars labeled

TCCON bias uncertainty in Fig. 3 signify the overall cal-

ibration uncertainty in TCCON which is estimated to be

0.4 ppm (Wunch et al., 2010, 2011a). The significance of

the bias vs. TCCON is estimated by the 5 % t test (look-

ing up bias/standard deviation times the square root of the

number of comparisons in a t test table). The gray box is

the uncertainty in the TCCON station-to-station bias and all

comparisons with |bias|> 0.4 were found by the t test to be

significant. Therefore, from the above two pieces of infor-

mation, all biases differing from TCCON more than 0.4 ppm

are significantly different than TCCON. For GOSAT, bi-

ases larger than the TCCON bias uncertainty occur at

Sodankylä(+), Karlsruhe(+), Lamont(−), Tsukuba(+), and

Wollongong(+). SCIAMACHY has the same outliers as

GOSAT with additional biases at Bialystok(+), Orléans(+),

Park Falls(+), and Lauder(+). The sites with identified lo-

cal influences and the general bias with respect to these

sites are Bremen(+), Four Corners(−), JPL2007(−), and

JPL2010(−). The stations which have complex conditions

are Garmisch and Izaña, which show similar biases to sur-

rounding stations. For unaveraged results, model standard

deviations are lower than either satellite as satellite differ-

ences result from both systematic and random measurement

error, the latter which does not occur for models. The stan-

dard deviations show some variability from station to station

which are investigated below. The effects of averaging and

coincident criteria are investigated in Sect. 3.3.

Figure 4 shows the biases and standard deviations grouped

globally and over the northern and southern hemispheres.

To estimate the overall bias and standard deviations for

single observations, we take out the outliers as follows.

As described in Sect. 2.1, we take out JPL, Four Corners,

Bremen, Garmisch, and Izaña for averaging. For satellites,

we remove the above plus Tsukuba and Lauder due to

limited numbers of comparisons for SCIAMACHY. For

the mean NH bias, we take out stations poleward of 60◦ N,

which show a large positive bias for GOSAT and SCIA-

MACHY. There is an overall bias vs. TCCON on the order

of 0.7 ppm for CT2013b, and 0.2–0.3 ppm for the other

three sets. The overall bias is less of a concern than the bias

variability in satellite data which indicates regional errors

that will translate to regional errors in flux estimates. The

bias variability is 0.4, 0.4, 0.5, and 0.3 ppm for CT2013b,

MACC, SCIAMACHY non-polar, and GOSAT non-polar re-

spectively. Note SCIAMACHY data are corrected to have an

average zero bias with respect to TCCON GGG2012 which

is 0.3 ppm higher than GGG2014 (https://tccon-wiki.caltech.

edu/Network_Policy/Data_Use_Policy/Data_Description#

CORRECTIONS_AND_CALIBRATIONS). The overall

standard deviations are 0.9 ppm for CT2013b, 0.9 ppm

for MACC, 2.1 ppm for SCIAMACHY (all latitudes), and

1.7 ppm for GOSAT (all latitudes). These values represent

the overall performance of CT2013b, MACC, and single

soundings from SCIAMACHY and GOSAT. The standard

deviations are somewhat lower for the SH stations used, with

values of 0.8, 0.8, 2.0, and 1.6 for CT2013b, MACC, SCIA-

MACHY, and GOSAT, respectively. Reuter et al. (2013)

validated earlier retrieval versions of BESD-SCIAMACHY

and ACOS-GOSAT with TCCON and found 2.1 ppm

(BESD) and 2.3 ppm (ACOS) for the single sounding

precision and 0.9 ppm for the station-to-station biases. Their

findings for BESD are consistent with the findings of Dils

et al. (2014). The station-to-station biases are lower in our

analysis due to corrections in TCCON, improvements in

satellite estimates, and removal of several stations from the

estimates. The polar station Sondankyla north of 67◦ N is

compared to GOSAT and SCIAMACHY. A similar standard

deviation is found vs. other TCCON stations, but a higher

bias, 1.6 ppm for GOSAT and SCIAMACHY. Most of

the remaining analysis in the paper does not have enough
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coincidences at high latitudes so it is important to note this

result.

We test whether the biases seen in Figs. 3 and 4 are persis-

tent from year to year. When at least two full-year averages

exist for a station, the standard deviation of the yearly bias

is calculated. The average over all stations of the yearly bias

standard deviation is 0.3 ppm for all sets (CT2013b, MACC,

SCIAMACHY, GOSAT).

Another important comparison is of the predicted and ac-

tual errors. The predicted error (also referred to as the a pos-

teriori error) is reported for each satellite product and the ac-

tual error we take to be the standard deviation of the satellite

observation vs. TCCON. These two quantities should agree

if the TCCON error is much smaller than the a posteriori

error and the coincidence criteria do not degrade the agree-

ment. The predicted and actual errors vary from site to site,

e.g., from variations in albedo, aerosol composition, and so-

lar zenith angle. We calculate the correlation between the

standard deviation vs. TCCON and the predicted error for

each site as follows: the standard deviation of the satellite

vs. TCCON is calculated at each TCCON station. The corre-

lation of the standard deviation and predicted errors by sta-

tion are calculated. ACOS-GOSAT has a 0.6 correlation and

BESD-SCIAMACHY has a 0.5 correlation. This indicates

that the predicted error should be utilized, e.g., when assim-

ilating ACOS-GOSAT, as the variability in the predicted er-

ror represents variability in the actual error, though not per-

fectly. A scale factor should also be applied to the predicted

errors. For ACOS-GOSAT the predicted error averaged over

all TCCON sites is 0.9 ppm, as compared to the actual error

of 1.7 ppm and can be corrected by applying a factor 1.9 to

the reported GOSAT errors. For BESD-SCIAMACHY, the

prediction error of 2.3 ppm multiplied by 0.9 agrees with the

2.1 ppm actual error.

3.3 Errors as a function of coincidence criteria and

averaging

We now directly compare performance of geometric and dy-

namic coincidence criteria and averaging in terms of error.

Figure 5 shows SCIAMACHY and GOSAT standard devia-

tions vs. TCCON for geometric and dynamical coincidence

criteria in the Northern Hemisphere. The stations used were

those that had entries for all comparisons, listed in the Fig. 5

caption. For n= 1 no averaging is done and the dynamic co-

incidence criteria perform similarly to the geometric criteria,

though the dynamic error is ∼ 0.1 ppm higher for both satel-

lites. For n= 2, exactly two satellite observations were aver-

aged for each coincidence. The error drops substantially, but

not as 1/
√

2, which would be expected if the error were un-

correlated. For n= 4, the error again drops but it is not half

the n= 1 error, which is shown by the dotted line. At n= 4,

the dynamic coincidence error is the same as the geometric

error for SCIAMACHY, likely because dynamic coincidence

involves averaging observations farther apart in location and

Figure 5. Standard deviation of SCIAMACHY and GOSAT minus

TCCON for different coincidence criteria and number of satellite

observations averaged, n, in the Northern Hemisphere. The follow-

ing consistent set of stations was used for all comparisons: Bia-

lystok, Karlsruhe, Orléans, Garmisch, Park Falls, and Lamont. The

dotted line shows the error if it scaled as the inverse square root of

the number of averaged observations. The far right case for each

of the categories contains the maximum n that has results for all

stations.

time, which are less likely to have correlated errors. The last

bar is the maximum n, which has results for all stations in-

cluded. The dynamic criteria allow far more coincidences,

resulting in significantly lower average errors. Note that all

averaged satellite observations match one particular TCCON

observation.

3.4 Errors vs. averaging: random and correlated error

To test the effects of spatial averaging, we calculate station

by station standard deviations of satellite–TCCON matched

pairs as a function of n, where n is the number of satellite

observations that are averaged, which are chosen randomly

from available matches (so there should be no difference in

the characteristics of chosen points for larger vs. smaller n).

Figure 6 shows plots from Lamont for SCIAMACHY and

GOSAT for standard deviation difference to TCCON vs. n.

Initially the error drops down rapidly with n, however the

decrease slows with larger n. The curve fits well to the theo-

retically expected form:

error2
= a2
+ b2/n, (2)

where a represents correlated errors which do not decrease

with averaging for similar cases (including smoothing er-

rors, errors from interferents such as aerosols, TCCON er-

ror, and co-location error), b represents uncorrelated errors

which decrease with averaging, and n represents the num-

ber of satellite observations that are averaged. The purple
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Figure 6. Averaging matches of satellite data vs. TCCON at Lamont. As the number averaged increases, the standard deviation vs. TCCON

decreases. CT2013 at the satellite vs. at CT2013 at TCCON (purple) is used to quantitate spatiotemporal mismatch error. The points are fit

to Eq. (2) (black). For GOSAT the uncorrected data are also fit (black dashed). The initial guess minus TCCON standard deviation is shown

as a green dashed line. We see that in this case, for GOSAT at Lamont, averaging more than about four observations improves over the initial

guess.

dashed line represents the standard deviation of CT2013b at

the satellite time and location vs. CT2013b at the TCCON

time and location and represents a lower bound of the spa-

tiotemporal mismatch error (co-location error). As expected,

this value is much smaller for geometric than for our dynamic

coincidence criteria (other dynamic coincidence criteria may

do better; in our case the dynamic criteria consider points

±30◦ longitude, ±10◦ latitude, ±5 days, and ±2 K temper-

ature vs. 1 h, 5◦ for geometric criteria). The co-location er-

ror for large n is shown in the CT-CT columns of Table 2,

with Northern Hemisphere averages of 0.3, 0.6, 0.4, and 0.7

ppm, for SCIAMACHY geometric, SCIAMACHY dynamic,

GOSAT geometric, and GOSAT dynamic coincidences, re-

spectively. There is not much difference between the esti-

mated co-location error at North American sites of Lamont

and Park Falls where the CT2013b model is at 1× 1◦ vs.

other Northern Hemisphere sites where the CT2013b model

is at 3× 2◦. The co-location error is subtracted from the a

value in quadrature to estimate results without co-location

error.

We calculate a and b by station in Table 2, splitting out

geometric and dynamic coincidence criteria. The a term,

which does not reduce with averaging, is the correlated er-

ror, and the b term, which reduces with averaging, is the un-

correlated error. There is more correlated error, a, for SCIA-

MACHY geometric vs. dynamic matches in 5/6 stations in

the Northern Hemisphere, indicating that averaging is more

effective when it is over a larger spatial/temporal area, prob-

ably due to variability in the source of the correlated errors.

GOSAT geometric vs. dynamic averages show larger cor-

related error for 4/8 stations. The GOSAT dynamic corre-

lated error of 0.9 ppm is significantly reduced by subtraction

of the 0.7 ppm co-location error, whereas the 0.9 ppm geo-

metric error is not strongly changed by the subtraction of

0.4 ppm co-location error. Subtracting (in quadrature) the co-

location error (CT-CT column in Table 2) and TCCON error

of 0.35 ppm (Appendix B) results in the corrected correlated

error, a, shown in the mean NH: subtr. co-location error row

of Table 2.

The northern hemispheric average values, corrected by

co-location and TCCON error, are a = 1.4± 0.3 ppm,

b = 1.7± 0.2 ppm for SCIAMACHY geometric,

a = 1.0± 0.3 ppm, b = 2.1± 0.1 ppm for SCIAMACHY

dynamic, a = 0.8± 0.2 ppm, b = 1.6± 0.1 ppm for GOSAT

geometric, a = 0.5± 0.2 ppm, b = 1.9± 0.1 ppm for GOSAT

dynamic. These values indicate the expected error when

averaging GOSAT or SCIAMACHY observations within 5 ◦

and 90 min for geometric, and for 5 day regional averages

for dynamic coincidences.

The green dashed line in Fig. 6 shows the standard devi-

ation of the satellite prior vs. TCCON. Although using an

optimal constraint will result in an error lower than the prior

error in the absence of systematic errors, these satellite re-

trievals of CO2 have been set up to value average results over

single observations; while the error increases from the prior

for a single observation, average results have both less error

and minimal prior influence.
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Figure 7. Bias for 3-month groups for each station, where each station is normalized to have 0 yearly bias. For satellites, stations are included

when at least 20 matches are found in each season. Dynamic coincidence criteria are used. The station colors are coded by location: far NH

gray, European and Park Falls red/yellow, midlatitude green, SH blue.

Figure 8. Bias for 3-month groups for Southern Hemisphere (left panel), 0–45◦ N (middle panel), and poleward of 45◦ N (right panel).

Each station composing each group is normalized to have zero average over the year. The Southern Hemisphere (left panel, Lauder (except

SCIAMACHY), Wollongong, and Darwin) has relatively small biases. 0–45◦ N includes Tsukuba and Lamont. > 45◦ N includes Karlsruhe,

Park Falls, and Orléans for satellites, and those plus Sodankylä and Bialystok for models. The results that are significant according to the

t test are shown with a * in the bar plots.

3.5 Seasonally dependent biases

It is important to determine whether there are seasonally de-

pendent biases, as these will impact flux distributions. We

look at 3-month periods (DJF, MAM, JJA, SON), with the

overall yearly bias at each site subtracted out to isolate the

seasonal biases. To get enough comparisons, we use the dy-

namical criteria for satellite coincidences, as using the ge-

ometric criteria cuts down the comparisons with sufficient

seasonal coverage to three stations (Park Falls, Lamont, and

Wollongong). This is a simple averaging method which will

later be compared to seasonal cycle amplitude fit results.

Figure 7 shows the biases for stations that have at least

20 matches in each season, and Fig. 8 shows the results aver-

aged by SH, 0–45◦ N (which includes Tsukuba and Lamont),

> 45◦ N. The error bars shown in Fig. 8 are the standard de-

viation of the results in each bin, once the station-dependent

average biases are subtracted. Significance was tested using

the t test with biases larger at least 0.2 ppm. For the north

midlatitudes, the seasonal cycle peak is in MAM and the

minimum is in JJA, so the seasonal cycle error should be
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approximately bias (MAM) minus bias (JJA). For Lamont

and Tsukuba in JJA, SCIAMACHY is biased low vs. TC-

CON by about 1.4 ppm (the low bias is 0.8 ppm for Lamont).

In 45–53◦ N, SCIAMACHY is biased low vs. TCCON in

MAM and high in JJA, with about a 0.9 ppm spread. GOSAT

has the same pattern with a 0.5 ppm spread. SCIAMACHY

is biased low vs. TCCON in DJF by 0.7 ppm, but this does

not affect the seasonal cycle amplitude. GOSAT is similarly

low but has more station-dependent variability so is not con-

sidered significant. CT2013b is biased high vs. TCCON in

JJA by about 0.2 ppm and biased low vs. TCCON in DJF by

about 0.3 ppm. MACC is biased low vs. TCCON in MAM

by 0.2 ppm in 28–37◦ N. In the Southern Hemisphere, the

seasonal cycle maximum is in the October to January time

frame, and the minimum is in the April time frame. The sig-

nificant findings in the SH are that CT2013b is biased about

0.3 ppm low vs. TCCON in DJF and biased 0.2 ppm high

in MAM, which should lead to a 0.5 ppm underestimate of

the SH seasonal cycle. Geometric results, which including

fewer stations due to the cutoff of at least 20 observations

per season, corroborate the low bias for in MAM, high bias

in JJA, and low bias in DJF in 45–53◦ N for SCIAMACHY,

and the low bias in MAM and high bias in JJA in 45–53◦ N

for GOSAT.

4 Comparisons of seasonal cycle amplitude, phase,

and yearly increase

We compare model and satellite XCO2
to TCCON using the

NOAA fitting software CCGCRV (Thoning et al., 1989) to

calculate seasonal cycle amplitudes and yearly increases. At

least 2 years are needed to distinguish the seasonal cycle

from the yearly increase. The errors are calculated using the

bootstrap method (Rubin, 1981; Efron, 1979), the standard

deviation of differences within one bin divided by the square

root of the number of stations minus 1 (n> 1), the variability

of results when choosing different averaging (for satellites)

where one, two or four satellite observations are averaged for

GOSAT and SCIAMACHY, coincidence errors estimated by

the mean difference between CT2013b matched to the satel-

lite and CT2013b matched to TCCON, and the variability re-

sulting from small changes in the time range. Two data sets at

a time are matched, using the dynamic criteria, with the satel-

lite averaging four observations for SCIAMACHY and two

for GOSAT, which reduces the fit errors. Since different data

sets will have different data gaps and time ranges, the TC-

CON results will be somewhat different for each comparison.

Plots are individually examined to ensure that there are ade-

quate data. Stations are removed when there are large errors

for any of the above errors, and locally influenced stations

are also removed (see Sect. 2.1). The stations that were ex-

cluded based on variability of results for changes in the time

range on the order of a few months are Eureka for the models

and Sodankylä, Bialystok, Saga, and Lauder_125HR for the

satellites. At Bialystok, for example, the GOSAT-TCCON

seasonal cycle was 0.3 or −0.9 ppm depending on whether

the time series ended in November 2013 or on 1 January

2014, respectively. The time series shows large gaps in the

data in the winter and a gap around the seasonal cycle min-

imum in 2012. The findings show that the GOSAT seasonal

cycle amplitude at Bialystok may be influenced by a small

subset of the GOSAT points.

4.1 Seasonal cycle amplitude

The seasonal cycle amplitude is important for estimating

source and sink estimates and global distributions. Table 3

shows the seasonal cycle amplitudes grouped by latitude. As

described in Sect. 4, the error is calculated by several dif-

ferent methods. The error in Table 3 is root mean square of

the end date choice, bootstrap error, averaging choice, and

bin standard deviation. The co-location error (only relevant

for satellites) is calculated as an average bias in the bin; this

bias should be subtracted from the satellite–TCCON differ-

ences to remove the effects of co-location error. When n> 1,

results are considered significant using the t test of all the re-

sults in the bin (comparison of the mean difference/standard

error difference to a standard look up table). The calculated

seasonal cycle amplitudes are shown in Table 3, and results

are compared for consistency to the simpler seasonal cycle

biases calculated in Sect. 3.5 to understand what season the

discrepancy occurs.

The significant findings from Table 3 are as follows. (1) In

northern latitudes (46–53◦ N), GOSAT underestimates the

seasonal cycle by 0.4 ppm. This latitudinal range is com-

posed of two European sites and Park Falls, all of which

follows this pattern, so it is not just in Europe but also

North America at this latitude. This finding is consistent

with Lindqvist et al. (2015). The simple bias calculation

from Sect. 3.5 estimates that GOSAT should underestimate

the seasonal cycle by 0.5 ppm, with half the issue being a

low bias in MAM and half the issue being a high bias in

JJA. The co-location error is estimated as +0.1 ppm, so re-

moving the co-location error should increase the GOSAT-

TCCON discrepancy. The geometric criteria bias for this

same bin is −0.7± 0.4 ppm, which is consistent with the dy-

namic results, though with larger error bars and significantly

sparser time series plots. (2) There is an underestimate in the

CT2013b seasonal cycle for 45–53◦ N compared to TCCON

by 0.2 ppm. This is a small discrepancy but the error bars are

also small. Similarly in Sect. 3.5, a 0.2 ppm low bias is pre-

dicted. (3) There is an overestimate in the MACC seasonal

cycle in the 28–37◦ N range by 0.6 ppm. A smaller 0.2 ppm

low bias is seen in MAM for MACC. (4) CT2013b underes-

timates the SH seasonal cycle by 0.5 ppm. This is partially

from a low bias in DJF and partly from a high bias in MAM.

Findings from Sect. 3.5 which did not reach significance

in Table 3 are as follows. (1) SCIAMACHY should underes-

timate the seasonal cycle in 45–53◦ N by 2.5 ppm, which it

does not. There is a 0.4 ppm high bias with large error bars.
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Table 3. Seasonal cycle amplitude for different latitudes. Stations included for satellites are Karlsruhe, Orléans, Park Falls, Lamont, Dar-

win, Reunion (GOSAT), and Wollongong. Stations included for models are Sodankylä, Bialystok, Karlsruhe, Orléans, Park Falls, Lamont,

Tsukuba, Saga, Darwin, Reunion, Wollongong, Lauder_120HR, and Lauder_125HR. Bold shows entries with statistically significant differ-

ences.

Comparison Region Seasonal Seasonal amp. Seasonal amp. End date Co-loc. Bootstrap Averaging choices Bin SD

amp. (ppm) TCCON (ppm) difference (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

CT2013b 67–79◦ N (n= 2) 9.6 9.7 −0.1± 0.1 0.00 0.14 – –

46–53◦ N (n= 4) 7.9 8.1 −0.2 ± 0.1 0.04 0.13 – 0.1

28–37◦ N (n= 1) 6.3 7.4 −0.6± 0.5 0.03 0.14 – 0.5

SH(n= 4) 0.9 1.6 −0.5 ± 0.2 0.05 0.09 – 0.2

MACC 67–79◦ N (n= 2) 10.9 10.2 0.7± 0.5 0.3 0.33 – 0.33

46–53◦ N (n= 4) 8.4 8.2 0.2± 0.1 0.06 0.16 – 0.13

28–37◦ N (n= 3) 5.3 4.7 0.6 ± 0.2 0.05 0.16 – 0.16

SH (n= 5) 1.1 1.3 −0.2± 0.2 0.05 0.08 – 0.19

GOSAT 46–53◦ N (n= 3) 6.7 7.1 −0.4 ± 0.1 0.05 +0.1 0.06 0.07 0.1

(v3.5) 28–37◦ N (n= 1) 5.1 5.5 0.4± 0.1 0.03 −0.1 0.01 0.02 –

SH (n= 3) 2.0 2.1 −0.1± 0.2 0.09 +0.1 0.02 0.03 0.2

SCIAMACHY 46–53◦ N (n= 3) 7.5 7.8 0.4± 0.8 0.06 +0.4 0.09 0.03 0.8

(BESD-v02.00.08) 28–37◦ N (n= 1) 7.2 6.4 0.8± 0.1 0.11 −0.0 0.03 0.04 –

SH (n= 2) 2.2 2.0 0.2± 0.3 0.06 −0.2 0.03 0.01 0.3

Figure 9. Seasonal cycle amplitude. The TCCON values are shown by the circles. The averaging is done over 10× 10◦ bins every 5◦.

Comparisons vs. TCCON may be different than Table 4, since Table 4 has very close criteria for models and dynamic coincidence criteria

for satellite data. The models are sampled at GOSAT observations.

(2) SCIAMACHY should overestimate the seasonal cycle for

Lamont by 1.6 ppm. In Table 3, SCIAMACHY overestimates

by 0.8 ppm but statistical significance is not calculated for

one station. (3) MACC should underestimate the seasonal

cycle by 0.2 ppm in 28–37◦ N. In Table 3 MACC overesti-

mates the seasonal cycle by 0.6 ppm. The seasonal biases are

generally consistent with the seasonal cycle amplitude differ-

ences vs. TCCON and can be used to pinpoint which months

are the cause of the seasonal cycle amplitude differences vs.

TCCON; however, the mean seasonal biases find more sig-

nificant differences than the seasonal cycle fits.

Figure 9 shows a global map of fits of the seasonal cycle

amplitude of SCIAMACHY, GOSAT, CT2013b, and MACC,

with TCCON having at least 2 years of matches shown by

circles. This map shows how the results of Table 4 fit into

the global pattern (with the model fields matched to GOSAT

locations and times). Interestingly, the seasonal cycle ampli-

tude varies longitudinally; this pattern is seen in both satellite

data sets and both models. Since the amplitude is taken from

the sampled harmonic there is no extrapolation, although the

seasonal cycle will be underpredicted at high latitudes where

there are significant data gaps. The model data in Fig. 9 is co-

located with GOSAT, so the same gaps will occur in GOSAT

and the two models, other than fit errors larger than 10 % of

the amplitude, were screened out. This map is consistent with

Lindqvist et al. (2015), Fig. 8, which also finds high values

in the 45–50◦ N, 120–180◦ E range.
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Table 4. Yearly increases. Each comparison uses matched pairs with TCCON using locations which have at least 2 years of data for com-

parisons. See Table 3 for stations included. The start date and end date are averaged for the stations in each bin and are shown in the second

to last column. Bold text shows one difference larger than predicted errors. The last column shows the average global yearly increase for the

time period using Table 6.

Comparison Region Yearly incr. Yearly incr. Yearly incr. End date Bootstrap Co-loc. Avg. choice Bin SD Period Global

(ppm) TCCON (ppm) difference (ppm) choice (ppm) (ppm) (ppm) (ppm) (ppm) (year fract.) (ppm yr−1)

CT2013b 67–79◦ N (n= 2) 2.21 2.18 0.07± 0.1 0.00 0.07 – – Jun 2009–Oct 2012 2.06

46–53◦ N (n= 4) 2.12 2.19 −0.07± 0.1 0.03 0.11 – 0.04 Oct 2008–Dec 2013 2.03

28-37◦ N (n= 3) 2.17 2.45 −0.28± 0.5 0.02 0.11 – 0.14 Sep 2009–Feb 2012 2.01

SH (n= 5) 1.94 1.92 0.02± 0.2 0.03 0.04 – 0.07 Jul 2008–Aug 2012 1.97

MACC 67-79◦ N (n= 2) 2.13 2.25 −0.12± 0.04 0.02 0.18 – 0.24 Jun 2009–Oct 2013 2.16

46–53◦ N (n= 4) 2.27 2.29 −0.02± 0.1 0.04 0.09 – 0.07 Jan 2009–Dec 2013 2.14

28–37◦ N (n= 3) 2.35 2.45 −0.10± 0.1 0.02 0.09 – 0.14 Sep 2009–Sep 2012 2.08

SH (n= 5) 2.18 2.14 0.04± 0.1 0.04 0.03 – 0.03 Nov 2008–Jun 2013 2.07

GOSAT 46–53◦ N (n= 3) 2.17 2.31 −0.14± 0.1 0.05 0.04 −0.2 0.07 0.08 Oct 2009–Apr 2014 2.20

(v3.5) 28-37◦ N (n= 1) 2.25 2.55 −0.30± 0.02 0.01 0.01 −0.1 0.01 – Jun 2010–Jun 2014 2.20

SH (n= 4) 2.12 2.17 −0.1± 0.1 0.08 0.01 −0.4 0.05 0.10 Mar 2010–Jun 2014 2.21

SCIAMACHY 46-53◦ N (n= 3) 1.95 1.99 −0.04± 0.1 0.06 0.05 0.03 0.03 0.10 Jan 2009–Mar 2012 1.95

(BESD-v02.00.08) 28–37◦ N (n= 1) 2.03 2.16 −0.13± 0.1 0.11 0.02 0.09 0.04 – Jan 2010–Mar 2012 2.08

SH (n= 1) 1.76 1.96 −0.20± 0.1 0.06 0.01 −0.05 0.01 0.06 Oct 2007–Mar 2012 1.92

4.2 CO2 yearly growth rate

The same fitting program in the above section, CCGCRV,

also calculates a yearly increase. In Table 4 we compare

the fitted yearly increase for TCCON, which ranges from

1.92 to 2.55 ppm yr−1 for the different stations and time

ranges, to each of the data sets. None of the TCCON/satellite

or TCCON/model differences reach significance for the

t test, which is done when there is more than one result

per bin. However, the GOSAT Lamont station is low at

−0.3 ppm yr−1, with −0.1 of this estimated to result from

co-location error. To see how much of the observed variabil-

ity in the growth rate is temporal vs. spatial variability in

the growth rate, we compare the satellite and model yearly

XCO2
increase to the global annual increase (growth rate)

from surface measurements (http://www.esrl.noaa.gov/gmd/

ccgg/trends/global.html) which are 1.74, 2.12, 1.77, 1.67,

2.39, 1.70, 2.40, 2.51, 1.89 ppm yr−1 for global yearly in-

creases 2006–2014, and 1.76, 2.22, 1.60, 1.89, 2.42, 1.86,

2.63, 2.06, 2.17 ppm yr−1 for Mauna Loa yearly increases

2006–2014, with error bars 0.05–0.09 ppm yr−1 for global

and 0.11 ppm yr−1 for Mauna Loa. The average global yearly

increase predicted from the above using the time periods in

Table 4 is shown in the last column of Table 4. The correla-

tion r value between the yearly increase in TCCON and the

above ESRL global yearly increase is 0.61, and the corre-

lation with the Mauna Loa yearly increase is 0.67, whereas

the correlation r value between the yearly increase in TC-

CON and the yearly increase in columns is 0.82. Therefore,

the variability seen in Table 4 is partly from the time range

used but also partly from variations due to geographic loca-

tion (and sampling).

Reuter et al. (2011, JGR, Table 2) found agreement

within the calculated errors at Park Falls and Darwin for

BESD-SCIAMACHY and CT2009 vs. TCCON. However,

older data sets were used for this result. Looking specif-

ically at Park Falls, we see 1.80± 0.14 and 2.10± 0.22

for SCIAMACHY and TCCON, respectively and at Darwin

1.67± 0.08 and 2.16± 0.05 for SCIAMACHY and TCCON,

respectively, where the errors represent the standard devia-

tion of SCIAMACHY fits for similar latitudes.

4.3 Seasonal cycle phase

This section looks at the time offset correlation and standard

deviation between the test data sets and TCCON. This checks

whether, for example, a seasonal cycle is delayed or ahead

of the TCCON seasonal cycle, which has important implica-

tions for flux estimates (Keppel-Aleks et al., 2012), whether

there are seasonally dependent biases that are affecting the

seasonal cycle, and whether the data sets are seeing the same

seasonal cycle.

To compare seasonal cycle amplitudes, all data sets have

2 ppm yr−1 subtracted to approximately remove secular in-

creases (over the ±60 days’ offset this has a very small ef-

fect). For a 0 day offset, the data sets are matched as usual.

For a 1 day offset, TCCON is moved forward by 1 day and

compared to the data set. This is repeated for all offset times.

Correlations are fit to a second-order polynomial to deter-

mine the phase minimum difference. As TCCON is moved

forward or backward in time, different points will match up,

particularly when there are data gaps in either data set. This

can cause difficulties in interpretation. The maximum corre-

lation is limited by the ratio of the error to the variability. It

follows from the definition of correlation that

corr_max= corro
1√

1+
(
εx
σx

)2
√

1+
(
εy
σy

)2
, (3)

where corro is the noise-free correlation, εx is the error on x

and σx is the true variability for x, εy is the error on y and σy
is the true variability for y. Because we are estimating σ and

ε, there is uncertainty on the correlation maximum. In our

case σy is taken to be the TCCON variability and εy is esti-

Atmos. Meas. Tech., 9, 683–709, 2016 www.atmos-meas-tech.net/9/683/2016/

http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html
http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html


S. Kulawik et al.: Evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC 697

Figure 10. Top: cross correlation between TCCON and SCIAMACHY (top left) and GOSAT (top right) with matches using dynamic criteria

at Park Falls. The x axis shows results when satellite data are offset in days vs. TCCON. The dashed line shows the expected maximum

correlation based on the error (see Eqs. 2 and 3). The gray line is the correlation for the satellite priors, which are each out of phase by at

least 10+ days. The * is the peak of a polynomial fit of the correlation between −25 and +25 days. Bottom: standard deviation between

TCCON and SCIAMACHY (bottom left) and GOSAT (bottom right). The dashed line shows the Eq. (2) predicted error.

Table 5. The left two numerical columns show standard deviation drop within ±2 days of zero offset. Higher values with either model

indicate sites where temporal co-location is more important. The next two numerical columns show calculated phase difference between

CT2013b, MACC, and TCCON in days, with entries larger than 10 in bold. A phase difference of −10 days means that the model seasonal

cycle is 10 days behind TCCON. The next four columns show the same calculations for SCIAMACHY and GOSAT prior and retrieved

values, with entries larger than 10 in bold. Blank values are those for which a good fit was not found.

Synoptic Phase difference (days)

Station CT2013b MACC CT2013b MACC SCIA SCIA GOSAT GOSAT

(ppm) (ppm) prior retrieved prior retrieved

Eureka 0.1 0.0 +4 3

Sodankylä 0.3 0.3 −3 −4

Bialystok 0.4 0.2 0 +1 15 17 16 4

Bremena 0.2 0.2 −9 −9

Karlsruhe 0.5 0.3 −4 −4 12 8 16 4

Orléans 0.4 0.3 +5 −2 8 10 5 −1

Garmischa 0.4 0.3 −6 −7 9 9 7 0

Park Falls 0.5 0.3 −1 −5 18 −6 16 1

Four Cornersa 0.1 0.1 −9 −10 −25 −17 −18 −10

Lamont 0.5 0.3 −6 −5 −13 −14 −10 −3

Tsukuba 0.4 0.2 +8 +2

Edwardsa 0.0 −5 −27 −4

JPL2007a 0.1 0.0 +3 1

JPL2011a 0.1 0.0 −4 −5 −21 9

Pasadenaa 0.0 0.0 −3 +7 −9 17

Saga 0.2 0.0 +5 −1 −1 −2

Izañaa 0.0 0.0 +10 −4 −22 0

Darwin 0.0 0.1 +6 −19

Reunion 0.1 0.1 −10 3

Wollongong 0.1 0.07 +6 −11 4

Lauder_125HR 0.1 0.1 −20 +0

a indicates TCCON stations which are locally influenced (see Sect. 2.1).
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Figure 11. Top: cross correlation examples between TCCON and CT2013 (left) or MACC (right). Each panel shows the correlation and

second-order polynomial fits (top) and standard deviation (bottom) vs. offset in days of TCCON vs. satellite data. The correlation should be

at a maximum and standard deviation at a minimum at days offset= 0. The top panels show examples of stations with a phase difference of

less than 10 days. The bottom set shows example stations which have phase differences of at least 10 days.

mated using Table 2 with 10 SCIAMACHY and 4 GOSAT

averages. The error bars on the correlations are calculated

from Fisher’s z test. (Fisher, 1915, 1921). Figure 10 shows

SCIAMACHY and GOSAT results at Park Falls. Although

the prior performs well in regards to the standard deviation

vs. TCCON, Fig. 10 shows the prior has a clear seasonal cy-

cle phase error which is corrected by the satellite retrievals

for both SCIAMACHY and GOSAT at Park Falls.

Results of the seasonal cycle phase error are tabulated in

Table 5. Stations not shown have either too few match-ups

(e.g., Sodankylä) or too little variability compared to the

noise (e.g., Wollongong) to have useful comparisons. The

GOSAT retrieval markedly improves over the prior seasonal

cycle phase vs. TCCON at 12 out of 13 stations. For the six

stations that are not locally influenced (with no a by the sta-

tion name), GOSAT improves over the prior at all six sta-

tions, and additionally has a smaller phase difference than

one or more of the models at four of the six stations, is

the same at one station, and is worse at one station. SCIA-

MACHY improves over its prior for Park Falls and Four

Corners, mildly improves at Karlsruhe, and stays the same

or gets slightly worse in four cases. Mismatches in SCIA-

MACHY phase could be from mismatches in vertical sensi-

tivity (as higher altitudes have lagged seasonal cycles), ef-

fects of coincidence criteria, or seasonal-dependent biases.

To check the coincidence criteria, cross-correlations were

calculated for the geometric coincidence criteria which had

significantly fewer match-ups. Similar results for geomet-

ric coincidence criteria were found for GOSAT and SCIA-

MACHY for Lamont and Park Falls; the other stations are

too noisy to draw conclusions.

Table 5 also shows the phase differences for the models,

which have closer spatial/temporal matches and lower single-

match-up errors. Model–TCCON phase differences could re-

sult from errors in model flux distributions, seasonal tim-

ing, or transport errors. Table 5 shows the phase differences,

which vary from −20 to +10 days. Phase differences more

than 10 days are noticeable by eye when looking at time

series data and occur in the NH at Bremen, Four Corners

(negative), Orléans, and Izaña (positive, CT2013b only), al-

though Bremen, Four Corners, and Izaña are locally influ-

enced. Large phase differences also occur at some stations

Atmos. Meas. Tech., 9, 683–709, 2016 www.atmos-meas-tech.net/9/683/2016/



S. Kulawik et al.: Evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC 699

Table 6. Diurnal variability of CT2013b and MACC13.1 vs. TCCON in JJA arranged by latitude. TCCON variability and maximum theo-

retical correlation are shown, as well as actual correlation and slope for both models. The slope is the mode vs. TCCON fit to a straight line.
a indicates sites expected to be strongly influenced by local sources. Max correlation is calculated using Eq. (3), TCCON SD, and the lower

of the model–TCCON standard deviations from Appendix B. TCCON range, SD, shows the range of the values seen for the daily variability

for TCCON, as well as the standard deviation of the TCCON daily differences. The average row gives averages for all entries above it. The

average rows, e.g., DJF, are for stations Bialystok, Orléans, Park Falls, and Lamont. Eureka and Karlsruhe are not included because fewer

than five matches were found.

TCCON Max corr. CT2013b MACC 13.1

Station Lat. Range, SD (Eq. 3) Correlation Slope Correlation Slope

(deg) (ppm, ppm)

Sodankylä 67 −1.5 to 1.5, 0.5 0.6 0.35 0.23 0.40 0.19

Bialystok 53 −2 to +1, 0.5 0.6 0.65 0.55 0.66 0.36

Bremena 53 −2 to +1, 0.7 0.5 0.24 0.06 −0.20 −0.03

Orléans 48 −1 to +0.5, 0.7 0.7 0.72 0.51 0.70 0.31

Garmischa 47 −3 to 0, 0.8 0.6 0.55 0.50 0.69 0.45

Park Falls 46 −3.5 to +2, 1.0 0.8 0.77 0.32 0.54 0.23

Four Cornersa 37 −4.5 to +0.5, 1.8 0.9 0.39 0.03 0.22 0.02

Lamont 37 −3.0 to +1.0, 0.8 0.7 0.28 0.19 0.32 0.14

Tsukuba 36 −2 to +1.5, 0.8 0.6 0.79 0.47 0.64 0.24

JPL2011a 34 −1 to 1, 0.5 0.5 0.18 0.06 −0.05 −0.01

Saga 33 −0.5 to 0, 0.3 0.4 −0.14 −0.07 −0.11 −0.06

Izañaa 28 −0.5 to +0.5, 0.1 0.2 0.73 0.11 0.45 0.04

Darwin −12 −0.5 to +0.5, 0.2 0.3 0.04 0.03 0.10 0.03

Reunion −21 −0.3 to 0,0.2 0.3 −0.33 −0.04 0.72 0.10

Wollongong −34 −1.5 to +1.0, 0.4 0.5 0.33 0.47 0.27 0.15

Lauder_120HR −45 −0.5 to +0.5, 0.3 0.3 0.05 0.01 0.20 0.02

Lauder_125HR −45 −0.5 to +0.5, 0.2 0.4 0.41 0.23 0.30 0.06

Average JJA for all stations 0.8 0.30 0.21 0.40 0.15

Average DJF (see caption for station list) 0.8 0.52 0.16 0.54 0.17

Average MAM (see caption for station list) 0.8 0.59 0.29 0.43 0.15

Average JJA (see caption for station list) 0.8 0.51 0.39 0.56 0.26

Average SON (see caption for station list) 0.8 0.18 0.09 0.19 0.06

in the Southern Hemisphere. Although the seasonal cycle is

weaker in the Southern Hemisphere, the phase offset can be

seen in the CT2013b Lauder_125HR plots in Fig. 2. The cor-

relations vs. offset days show a phase difference of−20 days

for CT2013b and +0 days for MACC at Lauder_125HR, as

seen in Fig. 11. Note that the fits of the seasonal cycle in

the SH display more complexity, such as multiple local max-

imum, than fits in the NH and “phase lag” could easily be

an indication of an issue with the fit shape. Figure 11 shows

correlations and standard deviations vs. day offset for three

stations that have the seasonal cycle peak within ±10 days

for CT2013b and MACC (top panels), and for stations which

have a larger phase lag compared to TCCON (bottom pan-

els). There is often a small peak within ±3 days, which in-

dicates the models’ capability of picking up variations that

occur day to day (i.e., synoptic-scale variability), which indi-

cates both the strength of synoptic activity and matching be-

tween models and TCCON. This peak is not seen in satellite

data for dynamic coincidence criteria likely due to match-

ing, or geometric coincidence criteria likely due to the noise

– not that this synoptic peak occurs at 0, even when the sea-

sonal cycle has a phase lag (e.g., MACC model at Bremen, in

the lower right panel, or Lauder_125HR comparisons). The

synoptic-scale correlation varies between 0 and 0.17, as seen

in Table 5.

Izaña will be briefly discussed. As noted in Sect. 2.1, the

TCCON station is located on a small island at 2.37 km above

sea level (about 770 hPa), whereas the MACC and CT2013b

models at ∼ 2◦× 3◦ resolution do not resolve topography

and consequently have mean surface pressure at sea level,

about 1013 hPa at this location. Our standard treatment is to

interpolate the model to the TCCON pressure grid, then cal-

culate XCO2
using the TCCON pressure weighting function.

At Izaña this has the effect of chopping off the lower atmo-

sphere. The CT2013b result for this treatment has a +10 day

seasonal cycle phase difference at Izaña; whereas MACC has

no phase difference at Izaña. If, however, the model sur-

face pressure is used to calculate XCO2
, MACC goes from

a 0 to a −10 day phase lag, and CT2013b has 0 phase dif-

ference. An argument for using the model surface pressure
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would be if the upslope winds at Izaña (Sancho et al., 1991;

Bergamaschi et al., 2000) shifted the profile upwards rather

than chopping it off, which would occur if the air deviated

around the island instead. This finding has important impli-

cations for the choice of the comparison methodology and

the ideal location for validation sites. Validation sites within

complex geographical terrain have to be treated as special

cases as (a) the atmospheric models usually do not resolve

these variations and (b) satellite measurements rarely have

a perfect co-location with the ground-based site, meaning

that they could sample a substantially different altitude level.

This holds for both mountains (e.g., Izaña) and valleys (e.g.,

Garmisch). This highlights one of the many choices that are

made when comparing two products (e.g., whether to ap-

ply the averaging kernel, whether to use interpolation, how

to treat the surface pressure, or what coincidence criteria to

use).

Another finding worth noting is the comparisons at

Lauder. In 2010 the Lauder_125HR instrument began routine

operation, while the Lauder_120HR instrument continued to

take TCCON data through to the end of 2010. Both MACC

and CT2013b show no seasonal cycle correlation with the

120HR time series at Lauder, but do show correlation with

Lauder_125HR time series. We attribute this to the improved

precision of the 125HR data, and an increase of the seasonal

cycle amplitude in 2011 and 2012 as compared to other years

(e.g., compare 2011 vs. 2007). The phasing error found in the

CT2013b comparison with the Lauder_125HR may be due to

CT2013b not modeling the drivers of the seasonal cycle am-

plification in 2011 and 2012.

At Bremen and Four Corners, local effects that are not re-

solved at 3× 2◦ likely dominate, particularly since Bremen

is clustered with Orléans, Garmisch, and Karlsruhe, which

all compare fine, and because the correlation of daily vari-

ability, as seen in the next section, is also very low at these

two stations.

5 Daily variability (models vs TCCON)

At the surface, CO2 shows a strong diurnal cycle in areas

with active vegetation, e.g., Park Falls, during summer, and

synoptic trends based on regional dynamics. Even though the

diurnal cycle is markedly smaller in the total column (Olsen

and Randerson, 2004), it can be observed both by TCCON

and also in models, in our case CT2013b and MACC, as

seen in Fig. 12. Both diurnal variations and synoptic trends

can be seen in Fig. 12. Validating the amplitude of the di-

urnal variability in the column is important as the column

diurnal variability better represents the amount of CO2 emit-

ted or absorbed by surface processes as compared to sur-

face measurements, which are more impacted by boundary

layer height. To our knowledge this is the first comparison

of model fields to TCCON to compare the diurnal cycle. As

TCCON itself has not been validated at multiple times in 1

day, this is considered a comparison, not a validation. We

compare the difference between morning and afternoon in

models and TCCON. To minimize potential TCCON biases

that depend on the solar zenith angle (through the air mass

factor), we compare at two points in each day separated by

the largest time with the same solar zenith angle (SZA). The

methodology is to (1) identify two points, t1 and t2, from

the same day with the largest time difference but with the

same SZA. As the TCCON data used in this paper have been

averaged over 90 min, t1 or t2 may be interpolated between

two time points. (2) We compare TCCON at t2 minus TC-

CON at t1 and the same times for each model. We look at

the variability within 1 day for one season (JJA). Looking at

different seasons for the Northern Hemisphere at the bottom

of Table 6, both models showed clearly higher correlations

and slopes in MAM and JJA vs. DJF and SON, with SON

showing the lowest correlation and slope. In the SH, correla-

tions are highest in DJF, second highest in SON, and lowest

in MAM. However in the SH, the slopes are on the order of

15 % of the slope of TCCON. For CT2013b, at Darwin, cor-

relations are highest in DJF, less in SON, with slopes on the

order of 15 % of the slope of TCCON. Table 6 shows corre-

lations between CT2013b or MACC vs. TCCON in the daily

variability. In the NH, on average, the correlations are about

two thirds as large as could be expected, given the relative

sizes of the variability and errors (see text around Eq. 3). Ad-

ditionally, the two models have about one third to one half

the daily variability of TCCON (as seen from the smaller

slopes). In the far north (Eureka, Sodankylä), the correla-

tions indicate agreement but the model daily variability is

less than 1/4 TCCON. In the midlatitudes (excluding locally

influenced stations) there is the highest correlation (∼ 0.3–

∼ 0.7) with model daily variability 20 to 60 % of the vari-

ability of TCCON. Sites influenced by local sources, Bre-

men, Four Corners, and JPL2011, the models do not show

the diurnal variability that is seen by TCCON, as evidenced

by very small or zero slopes. Sites which have complicated

terrain, Garmisch and Izaña, do show correlations in the daily

variability similar to other nearby stations.

The CT2013b model in general shows more daily vari-

ability and higher correlations, which are in better agree-

ment with TCCON. Since the satellite observations are co-

incident ∼ once per day, the diurnal pattern will not be

well constrained by satellite observations, except as pre-

served in transported air coincident with satellite measure-

ments downwind. Model Observing System Simulation Ex-

periments (OSSEs) can determine the impact of the diurnal

cycle strength on flux estimates to determine the importance

of independently verifying the diurnal cycle in models.

6 Discussion and conclusions

We find standard deviations of 0.9, 0.9, 1.7, and 2.1 ppm vs.

TCCON for CT2013b, MACC, GOSAT, and SCIAMACHY,

respectively, with the single target errors 1.9 and 0.9 times

the predicted errors for GOSAT and SCIAMACHY, respec-
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Figure 12. (a) Time series for models and TCCON from 1 to 8 August 2011 at Bialystok. The end points of the solid lines show the time

points used for comparing daily variability; both diurnal and synoptic variations are seen. (b) Change throughout the day at Bialystok for 2

August 2011. The large diamonds at 06:00 and 18:00 show the two times with largest difference that have the same solar zenith angle that are

used in the analysis. The difference between these times are−2,−1.7, and−0.7 ppm for TCCON, CT2013, and MACC, respectively. Right:

CarbonTracker (c) and MACC (d) daily trends vs. TCCON daily trends for BIALYSTOK in JJA, from compiling differences as shown in

(b). Correlation is seen in the daily trends as compared to TCCON with the daily amplitude for the models smaller than TCCON.

tively. There is a correlation r value of 0.5 for SCIAMACHY

and 0.6 for GOSAT for the actual and predicted errors

grouped by station. Equation (2) and Table 2 show how

errors decrease when satellite results are averaged and es-

timate the magnitude of the correlated and random errors

components for averaged satellite results, where random er-

ror components decrease with an increasing number of aver-

aged observations. When satellite data are averaged and in-

terpreted according to the model error2
= a2
+ b2/n (where

n is the number of observations averaged, a is the system-

atic (correlated) errors, and b is the random (uncorrelated) er-

rors). The northern hemispheric average values from Table 2

are a = 1.4± 0.3 ppm, b = 1.7± 0.2 ppm for SCIAMACHY

geometric; a = 1.0± 0.3 ppm, b = 2.1± 0.1 ppm for SCIA-

MACHY dynamic; a = 0.8± 0.2 ppm, b = 1.6± 0.1 ppm for

GOSAT geometric; a = 0.5± 0.2 ppm, b = 1.9± 0.1 ppm

for GOSAT dynamic. The lowest correlated errors are found

when using dynamic coincidence criteria where values are

averaged from a larger spatiotemporal region, but the lower

value for GOSAT is only after the estimated co-location er-

ror is subtracted. The Southern Hemisphere errors are uni-

formly smaller, both in correlated and uncorrelated errors.

These data represent averaging of satellite data which match

one averaged TCCON value. The above error model should

help in assigning realistic retrieval error correlations in as-

similation systems in place of current ad hoc hypotheses. For

example, in Basu et al. (2013) observations within 500 km

and 1 h are assumed to have 100 % correlated errors, and

are inflated by a factor such that when observations are later

treated as if the errors were random, the final error of the av-

erage is the same as the error of one observation. This can

be improved by setting the inflation factor so that the average

observation error is a2
+ b2/n, with a and b set by the ge-

ometric values from Table 2, which should result in a lower

error than assuming 100 % correlation.

Regarding the quality of the dynamic relative to the geo-

metric coincidence criteria, the coincidence error estimated

by models is larger for dynamic coincidences by about

0.3 ppm, as seen in Table 2. However, the coincidence error

(0.3 to 0.4 ppm for geometric criteria and 0.6 to 0.7 ppm for

dynamic criteria) is not the dominant error. As seen in Fig. 5,

the dynamic coincidence criteria average 0.1 ppm higher er-

ror for unaveraged satellite comparisons. This is small com-

pared to a total error of 2.0 and 2.2 ppm, respectively, for

stations in the Northern Hemisphere. With maximum aver-

aging, as seen in Fig. 5, the errors are lower for dynamic

vs. geometric because the dynamic criteria finds more obser-

vations to average. Figure 6 shows that at Lamont the aver-

age difference between geometric and dynamic observations

is 0.4 ppm for unaveraged satellite observations, which is

higher than average. This error difference reduces to less than

0.2 ppm when all available observations are averaged, also
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seen in Fig. 6. While coincidence error is an important error

source, it is not the dominant error source. Although dynamic

coincidence criteria allow the inclusion of more stations in

analyses because of the larger number of coincidences, com-

parisons to geometric coincidence results are done when pos-

sible. Biases at individual stations have a year-to-year vari-

ability of∼ 0.3 ppm, with biases larger than the TCCON pre-

dicted bias uncertainty of 0.4 ppm at many stations. Using

fitting software, we find that GOSAT and CT2013b under-

predict the seasonal cycle amplitude in the Northern Hemi-

sphere between 46 and 53◦ N, MACC overpredicts in 26–

37◦ N, and CT2013b underpredicts the seasonal cycle ampli-

tude in the Southern Hemisphere. The seasonal cycle phase

indicates whether a data set or model lags another data set

in time. We find that the GOSAT phase improves substan-

tially over the prior and the SCIAMACHY retrieved phase

improves substantially for two of seven sites. The models re-

produce the measured seasonal cycle phase well except for at

Lauder_125HR (CT2013b) and Darwin (MACC). We com-

pare the variability within 1 day between TCCON and mod-

els in JJA; there is correlation between 0.2 and 0.8 in the NH,

with models showing 10 to 50 % the variability of TCCON

at different stations and CT2013b showing more variability

than MACC. This paper highlights findings that provide in-

puts to estimate flux errors in model assimilations, and places

where models and satellites need further investigation, e.g.,

the SH for models and 45–67◦ N for GOSAT and CT2013b.

We focus on validating aspects of model and satellite data

which may be important for accurate flux estimates and

CO2 assimilation, including accurate error estimates, over-

all biases, biases by season and latitude, impact of coinci-

dence criteria, validation of seasonal cycle phase and ampli-

tude, yearly growth, and daily variability. Our methodologies

can be used to correct known biases and data deficiencies

(e.g., Basu et al. (2013) accounted for global land/sea biases;

Nassar et al. (2011) corrected for hemispheric gradients). Al-

ternatively, biases can be mitigated through data assimilation,

such as the inversion method of Reuter et al. (2014) which

is insensitive to seasonal and regional biases outside a tar-

geted region. The bias evaluation performed in the present

study has been restricted to various satellite and model CO2

data products. To quantify the importance of each bias (sea-

sonal biases, location-dependent biases, seasonal cycle dif-

ferences, seasonal cycle phase differences, and diurnal cycle

differences) on carbon flux estimates requires detailed Ob-

serving System Simulation Experiments (OSSEs). For ex-

ample, Kulawik et al. (2013) tested the effect of a NH bias

of 0.3–0.5 ppm in JJA, finding flux biases were not insignif-

icant, and were comparable to flux updates from GOSAT in

some regions.

Biases vary by station (See Fig. 3); these station-

dependent biases have a standard deviation of ∼ 0.3 ppm

from year to year. Biases also vary by season as seen in

Figs. 7–8. Seasonal biases affect the seasonal cycle ampli-

tudes, which are important for biospheric flux attribution.

All sets show the same general patterns for the different lat-

itude bands (SH, 28–37, 46–53, 67–79◦ N). The statistically

significant differences are (1) a low bias in CT2013b sea-

sonal cycle amplitude of 0.2± 0.1 ppm for 45–53◦ N caused

by high values in JJA, (2) a high bias in the MACC sea-

sonal cycle amplitude for 46–53◦ N of 0.6 ppm, (3) a low bias

in the CT2013b Southern Hemisphere seasonal cycle ampli-

tude, and (4) a low bias in the GOSAT seasonal cycle ampli-

tude of 0.4± 0.1 ppm for 46–53◦ N, also seen in Lindqvist et

al. (2015), caused by a combination of higher values in JJA

and lower values in MAM vs. TCCON. A preliminary study

of how a seasonal bias in JJA in GOSAT of 0.5 ppm in the

NH affect fluxes using a global assimilation showed that the

effect was not minor (Kulawik et al., 2013).

The seasonal cycle phase is a sensitive indicator of sea-

sonally dependent biases in satellite data as well as issues

with model fluxes or transport errors. The GOSAT root mean

square (RMS) phase difference vs. TCCON across all sites

is 16.1 days for the prior; this improves to 6.8 days for the

GOSAT retrieved XCO2. The SCIAMACHY RMS phase

difference vs. TCCON across all sites is 16.4 days for the

prior; this improves to 13.2 days for the SCIAMACHY re-

trieved XCO2, reflecting the fact that SCIAMACHY data

significantly improved the seasonal cycle phase at just two

of the seven TCCON sites.

Model comparisons to TCCON are much less noisy as

there are many more matches. Most NH stations show the ex-

pected seasonal drop-off (e.g., see Fig. 11), with the peak cor-

relation near 0 days, and an additional spike within ±3 days

indicating the capture of synoptic variability. Stations that

showed phase differences larger than 10 days are Darwin

(Macc only), and Lauder_125HR (CT2013b only), as well

as all of the locally influenced stations.

In comparing CO2 diurnal variability between TCCON

and models, both models show up average 0.5 correlation to

the TCCON CO2 change between afternoon and morning for

select stations in the NH. This is on the order of about 2/3

of the maximum possible correlation given the error vs. vari-

ability (except the locally influenced JPL2011, Bremen, and

Four Corners which had little correlation and no slope). The

amplitude of the variability is higher in TCCON vs. the mod-

els, with CT2013b closer to TCCON than MACC. However,

note that TCCON daily variability has not been validated.

Diurnal pattern will not be constrained by satellite observa-

tions, except as preserved in transported air coincident with

satellite measurements downwind, and therefore may be im-

portant to independently verify the diurnal cycle in models to

ensure accurate flux attribution. The importance of the diur-

nal cycle on flux estimates needs to be tested.

Spatial and seasonal-dependent biases are obstacles to ac-

curate and better resolved CO2 flux estimates. This paper

highlights findings that provide inputs to estimate flux er-

rors in model assimilations, and places where models and

satellites need additional validation or improvement. Some

of the issues which need further investigation are the GOSAT
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and CT2013b seasonal cycles in the 46–53◦ N latitude range

(which are 0.4 and 0.2 ppm smaller than TCCON, respec-

tively), the MACC seasonal cycle in 28–37◦ N latitude range

(which is 0.6 ppm larger than TCCON), seasonal cycle am-

plitude and phase differences at SH stations, differences in

the diurnal cycle amplitude between models and TCCON,

and high biases for GOSAT and SCIAMACHY north of

67◦ N.
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Appendix A

Table A1. Coincidence criteria, data versions, and terminology used in our analysis.

Coincidence criteria

Geometric 5◦ in lat./long., ± 1 h

Dynamical from Wunch et al. (2011b); considers free-tropospheric

temperature, ± 10◦ lat, ± 30◦ long. and 5 days

(see Sect. 3.1)

Averaging: all averaging is done by station first and then averaging over station results

Model choices: MACC is interpolated to TCCON latitude, longitude, and time; CT2013b

special output is interpolated to TCCON time; model XCO2
uses TCCON surface pressure

Data sets

GOSAT ACOS-GOSAT version 3.5 with corrections and quality flags from the user’s

guide

SCIAMACHY BESD-SCIAMACHY v02.00.08

TCCON GGG2014 when available, GGG2012 data from Four Corners, Tsukuba, and

Bremen with GGG2012 bias corrections applied as described in Sect. 2.3

CarbonTracker CT2013b

MACC MACC v13.1
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Appendix B: TCCON and model errors by station

Table B1. We estimate the 90 min average TCCON standard deviation error by calculating the standard deviation of adjacent time points

and model standard deviation of CT2013b and MACC13.1 vs. TCCON by station. These values are used to estimate theoretical maximum

correlations for seasonal cycle and diurnal correlations using Eq. (3). a denotes stations strongly influenced by local effects and b Tsukuba

has higher TCCON error. These stations have been removed in the NH average (subset) row.

90 min average TCCON errors and model error vs. TCCON by station

Station TCCON adjacent CT2013b standard MACC standard

standard deviation (ppm) deviation (ppm) deviation (ppm)

Eureka 0.2 0.8 0.9

Ny Alesund 0.8 0.8 0.8

Sodankylä 0.3 0.7 0.8

Bialystok 0.3 0.7 0.7

Bremena 0.5 1.3 1.4

Karlsruhe 0.4 0.9 0.9

Orléans 0.3 0.7 0.7

Garmisch 0.3 0.9 0.9

Park Falls 0.4 0.8 0.8

Four Cornersa 0.7 1.1 1.1

Lamont 0.3 0.8 0.8

Tsukubab 0.9 1.0 1.1

JPL2007a 0.6 1.3 1.1

Izaña 0.2 0.8 0.6

NH average 0.44 0.91 0.92

NH average (subset) 0.35 0.79 0.79

Darwin 0.4 0.9 1.0

Wollongong 0.4 0.8 0.7

Lauder_120HR 0.4 0.8 0.8

Lauder_125HR 0.3 0.6 0.5

SH average 0.38 0.78 0.75
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