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In memoriam Kosta Dos̆en

The automorphism groups of types in several systems of type theory are studied. It is shown

that in simply typed λ-calculus λ1βη and in its extension with surjective pairing and terminal

object these groups correspond exactly to the groups of automorphisms of finite trees. In

second-order λ-calculus and in Luo’s framework (LF) with dependent products, any finite

group may be represented.

1. Introduction

Saunders Mac Lane was deeply interested in studies of relations between (in his own

words) ‘algebra and neighbouring fields of algebra and geometry.’ He wrote ‘These studies

have given me the lively impression that many of the ideas of algebra do indeed arise

from these other fields, and that this origin highlights the sense in which the science of

mathematics exemplifies the interdependence of its parts’ (Mac Lane 1976). In this paper,

certain algebraic constructions go towards logic, but their logical ‘incarnation’ illustrates

the interdependence of the different parts of mathematics in a similar way.

Some combinatory algebras and associated semigroups and groups of untyped λ-terms

were considered, e.g., in Barendregt (1984), ch. 21. Below, we study the groups of typed

λ-terms. This gives the main results a more categorical flavour because the types may be

seen as objects of certain categories. For example, the set of types isomorphic to a given

type together with the set of isomorphisms between these types is a groupoid.

It is shown that arbitrary finite groups can be represented as groups of automorphisms

of (a) second-order types (types of system F) and (b) dependent products in dependent

type theories. (We considered the typed logical framework LF (Luo 1994), but the same

construction will work for other systems with a dependent product like the calculus of

constructions (Coquand and Huet 1988).)

To give a broader context to these results, we consider also the groups of automorphisms

of simple types and show that they are exactly the groups of automorphisms of finite

trees. We show that the class of the automorphism groups of types with pairing and

terminal object reduces to the class of automorphism groups of simple types. This class



may be described also as class of groups that may be obtained from symmetric groups

by cartesian product and wreath product (Babai 1995).

It is well known, that all finite groups can be represented as groups of automorphisms of

certain mathematical structures, e.g., partially ordered sets, Cayley coloured diagrams, etc.

From an algebraic point of view, this paper just adds a few more possible representations.

However, as far as we know, this is a first study in literature where the automorphism

groups of types are considered.

The interest of this study is that it shows the richness of algebraic structures based

on the notion of isomorphism of types and opens new connections with other domains

of mathematics and computer science. The notion of isomorphism of types plays an

important role in the contemporary foundational research, e.g., in Homotopy Type Theory

(HoTT) (HoTT 2013). Isomorphisms of second-order types are studied in connection

with ML-style programming languages (Di Cosmo 1995). Dependent types and their

isomorphisms are used in many popular proof assistants, such as Coq (Delahaye 1999).

Isomorphisms (and retractions) of types have also some very pragmatic applications

that may go as far as cryptography. On a practical side, an interest of automorph-

isms may be that they do not change the types of data, and so may be used more

‘discreetly.’

Technically, the results are not very difficult. There is a close connection with the study

of isomorphisms of types in Di Cosmo (1995), but a principal difference is that some

well-known methods such as normalization and characterization of invertible terms in

λ-calculus needed to be ‘reoriented’: Di Cosmo used them to establish the existence of

an isomorphism and to develop the algorithms of verification that the given types are

isomorphic while we study the structure of the sets of invertible terms themselves in

order to describe the groups of automorphisms. The higher order case required also the

idea that Cayley coloured diagrams may be ‘modelled’ using the higher order types. In

this case, an important role is played by α-equality based on the renaming of bound

variables.

As a main source about invertible terms, we use the classical paper (Dezani 1976).

We use also some fundamental results about normalization (Barendregt 1984; Hankin

1994; Di Cosmo 1995), otherwise we tried to make our proofs as self-contained as

possible.

To address a larger audience of algebraists, logicians and topologists, an elementary

presentation of the main formal systems from type theory and λ-calculus is included.

2. Formal systems

2.1. Untyped lambda calculus

The presentation in this subsection is mostly based on Hankin (1994).

Untyped λ-calculus is a formal system, i.e., symbolic language together with some rules

for the manipulation of syntactic expressions (terms) of the language. From the point of

view of computation, it is very powerful: It has the same computational power as Turing

machines or any other equivalent formalism, such as partial recursive functions.



The syntax of untyped λ-calculus is very simple. The class of λ-terms consists of

words constructed from the following alphabet: variables x, y, z . . .; abstraction operator

λ; parentheses ( , ). The class Λ of λ-terms is the least class such that

— if x is a variable, x ∈ Λ;

— if M ∈ Λ, then (λx.M) ∈ Λ;

— if M,N ∈ Λ, then (MN) ∈ Λ.

In this formalism, everything is considered as an untyped function. The intuitive meaning

of the three clauses above is that a function can be a variable or an application of a

function to another function, or to be obtained from another function by abstraction

(application of λ-operator to some variable x).

The symbol ≡ denotes syntactic equality. Usual convention is to elide internal . and

λ, assume that abstraction associates to the right, application to the left, and application

precedes abstraction (that permits to omit some of the parentheses). For example,

λx1x2x3.MN1N2N3 ≡ (λx1.(λx2.(λx3.(((MN1)N2)N3)))).

Sometimes we will need to abbreviate even more. Given a list of indexes i1, . . . , in, instead

of Ai1 . . . Ain , we will write Ai1÷in . This abbreviation may be used with the convention

above, for example, λx1÷n.MN1÷n will have the same meaning as λx1 . . . xn.MN1 . . . Nn.

In the term λx.M, M is called the scope of λx. All occurrences of a variable x in some

term that are not in the scope of any λx are called free. The set of all the free variables

of M is denoted FV(M). All the free occurrences of x in M are bound by λx in λx.M.

The term without free variables is called closed.

Example 2.1. A well-known use of untyped λ-calculus is to define combinators, i.e., closed

terms used as constants or to combine other terms:

— I ≡ λx.x (identity combinator).

— K ≡ λxy.x (first projection).

— S ≡ λxyz.xz(yz) (generalized function application).

— B ≡ λxyz.x(yz) (composition).

— The fixed point combinator Y ≡ λf.((λx.f(xx))(λx.f(xx))) that may be used to define

(partial) recursion.

Combinators will not be really used in this paper, this example only illustrates the

traditional use of untyped λ-calculus as a universal model of computation.

The intended use of λ-terms as operators that are applied to other λ-terms requires

an equality relation. Equality of untyped λ-terms is generated by three basic conversions

(also called α-, β- and η-conversions).

Below, [N/x]M denotes the substitution of N for all the free occurrences of x in M

with renaming of bound variables. If several substitutions are used, it will be assumed

that they associate to the right: [N1/x1] . . . [Nn/xn]M will have the same meaning as

[N1/x1](. . . ([Nn/xn]M) . . .). Moreover, to shorten the formulas, we will use the notation

with ÷, that is, [N1÷n/x1÷n]M will also mean [N1/x1](. . . ([Nn/xn]M) . . .).

First, substitution is defined for the case when no renaming is needed.

— The variable convention and α-conversion.



Definition 2.2. ((Hankin 1994), Def. 2.7: change of bound variables, α-conversion.) M ′

is produced from M by a change of bound variable (without renaming) if M ≡ C[λx.N]

and M ′ ≡ C[λy.[y/x]N], where y does not occur at all in N and C[] is a context with

one hole.

Definition 2.3. ((Hankin 1994), Def. 2.8: α-conversion and α-congruence.) M is α-

congruent to N, written M ≡α N, if N results from M by a series of changes of bound

variable.

Two standard examples: λx.xy ≡α λz.zy but not λx.xy ≡α λy.yy.

Convention 2.4. ((Hankin 1994), Def. 2.9: variable convention) If M1, . . . ,Mn occur in

a certain context, then in these terms all bound variables are chosen to be different

from free variables.

— Substitution (general case). As in Hankin (1994), to define substitution one needs

1. to identify α-congruent terms;

2. to consider the λ-terms as representatives of their equivalence classes;

3. to interpret the substitution [N/x]M as an operation on equivalence classes, using

representatives according to the variable convention.

With this strategy, substitution is defined as follows:

1. [N/x]x ≡ N.

2. [N/x]y ≡ y if x is not y.

3. [N/x](λy.M) ≡ λy.([N/x]M).

4. [N/x](M1M2) ≡ ([N/x]M1)([N/x]M2).

Because of variable convention, it is not possible that some free variable of N be

‘captured’ by λy.

— Now the equality = in the untyped λ-calculus is defined as the smallest equivalence

relation such that

– if M ≡α N, then M = N;

– (λx.M)N = [N/x]M (β);

– λx.Mx = M (x /∈ FV(M)) (η);

– The relation = is closed w.r.t. the rules:

M = M ′ N = N ′

MN = M ′N ′

M = N

λx.M = λx.N
.

Sometimes reflexivity, symmetry and transitivity are also included as rules but we

do not need to do it explicitly since = is defined as an equivalence relation. The

equalities marked (β) and (η) are usually called β- and η-conversions (β-conversion

corresponds to function application).

Example 2.5. For any terms M,N,R,

— IM = M, KMN = M, BMN = λx.M(Nx), SMNR = MR(NR);



— For the fixed point combinator Y and any term F

YF = (λf.(λx.f(xx))(λx.f(xx)))F = (λx.F(xx))(λx.F(xx)) =

= F((λx.F(xx))(λx.F(xx))) = F(YF)

(this explains why it is called the fixed point combinator);

— λx1÷n.yx1÷n = y.

The first two items use only β-conversion (several times), the last uses only η.

The notion of equality in λ-calculus is closely connected with the notions of normal

form and normalization.

Definition 2.6. (Cf. Hankin (1994), Def. 2.21.) If M ∈ Λ and M has no subterms of the

form (λx.R)S , then M is a β-normal form.

By analogy, a βη-nf (sometimes we shall write merely nf) is a β-nf which also does not

contain any subterms of the form λx.(Rx) with x /∈ FV(R).

Normalization is the process based on reductions (oriented conversions) leading to

a normal form. In the untyped λ-calculus, two reductions are considered: (λx.M)N →
[N/x]M (β) and λx.(Mx) → M (x /∈ FV(M)) (η). The α-congruence is not used as a

reduction but only to respect the variable convention. A reduction sequence cannot be

extended only if it ends by an nf.

Remark 2.7. In difference from the untyped case, in typed λ-calculi, the so-called η-

expansion is often considered instead of the η-reduction. It may be useful there because

the number of expansions is bound by the ‘depth’ of types, but here it does not make

much sense.

Definition 2.8. (Cf. Hankin (1994), Def. 3.21.)

— If M ∈ Λ, then M has a β-nf (βη-nf) if there exists an N such that M = N and N is

a β-nf (βη-nf).

— M weakly normalizes (WN (M)) if there exists a finite reduction sequence starting

with M and leading to some normal term.

— M strongly normalizes (SN (M)) if all reduction sequences starting with M are finite.

In Λ, there are terms that are not SN but do have normal form.

For example, (λx.y)((λx.xx)(λx.xx)) is WN but not SN . The normal form is y (it is

obtained if we do leftmost β-reduction), but β-reduction at the right may be iterated and

give an infinite reduction sequence.

However, there are some obvious cases when SN is ‘hereditary’:

— SN (M) ⇒ SN (Mx), SN (M) ⇒ SN (λx.M);

— SN (N1) ∧ . . . ∧ SN (Nm) ⇒ SN (λx1÷k .zN1÷m).

In the untyped λ-calculus, not all the terms have normal forms. For example, the

fixponts combinator Y does not have any normal form. Respectively, for some terms, the

normalization process may not terminate. M →∗ N will mean that there exists a reduction

sequence from M to N. We write WN (M) if M →∗ N for some normal N.



The βη-reduction in Λ does have the so called Church–Rosser property (CR):

— If M →∗ M1 and M →∗ M2, then there exists N such that M1 →∗ N and M2 →∗ N.

This implies the following Church–Rosser theorem:

Theorem 2.9. ((Barendregt 1984), Th. 3.3.9).

i. The βη-reduction has CR property.

ii. If M1 = M2, then there exists some term N such that M1 →∗ N and M2 →∗ N.

This has two important consequences: (i) if M has a βη-normal form N, then M →∗ N,

i.e., M is weakly normalizing; (ii) M does have at most one normal form: all reduction

sequences that terminate, do terminate with the same nf.

Remark 2.10. The pure λ-calculus is a very powerful formalism. All computable functions

are representable, but such representations use clever coding tricks. An alternative to this

approach is to add constants with associated reduction rules (so called δ-rules) (Hankin

1994). Obviously, if some constants are added without any extra rules, it does not change

the reduction properties. Still, as we shall see, it may be useful when some transformations

of terms (such as erasure in typed λ-calculus) are considered.

2.2. Finite hereditary permutations

Now we consider the characterization of terms in the untyped λ-calculus that possess an

inverse (Dezani 1976). In our presentation, we follow Dezani (1976) and Di Cosmo (1995).

The theorem of Mariangiola Dezani–Ciancaglini formulated below plays a central role

in the description of invertible terms not only in untyped λ-calculus, but also in various

typed systems.

Definition 2.11. (Cf. Dezani (1976), p. 323.) Let M and N be normal terms. For M to be

inverse of N means that both relations λx.M(Nx) →∗ λx.x and λx.N(Mx) →∗ λx.x are

valid.

We take the following definition of the finite hereditary permutation (f.h.p.):

Definition 2.12. (Cf. Dezani (1976) and Di Cosmo (1995), def. 1.9.2.) An untyped λ-term

M is an f.h.p. iff

— M ≡ λx.x, or

— M ≡ λz.λxσ(1)÷σ(n).zM1÷n where σ is a permutation of the set {1, . . . , n} and λxi.Mi is

a f.h.p. for all 1 6 i 6 n.

The first variable of an f.h.p. after the λ-prefix will be called its head variable.

Remark 2.13. It follows immediately from this definition that f.h.p.’s are closed terms.

Example 2.14. The following terms are f.h.p.’s:

— λz.λx2x1.zx1x2.

— λz.λx2x1x3.zx1x2(λy2y1.x3y1y2).



As in Di Cosmo (1995), in our definition, the terms M1÷n themselves are not f.h.p.’s

(an abstraction λxi has to be applied). Dezani considered the terms Nixσ(i) instead of

Mi where Ni are f.h.p.’s, but then Nixσ(i) are not β-normal ((Dezani 1976), p. 334). In

difference from both Di Cosmo and Dezani, we apply permutation to the indexes in the

prefix and not at the right under the application. When the erasures of typed λ-terms will

be considered, it will help to reconstruct directly their type from the λ-prefix. In fact both

definitions are related by α-conversion via xi 7→ xσ−1(i) and thus are equivalent.

Let us notice that the f.h.p.’s are not necessarily normal, even in Di Cosmo’s version.

For example, if in the definition of an f.h.p. Mn is xσ(n), then an η-reduction is possible; if

Mn−1 ≡ xσ(n−1), then another η-reduction is possible afterwards, and similar η-reductions

may be possible inside Mi.

One may notice that such η-reductions are the only reductions possible due to the

definition of an f.h.p. Via these reductions, an f.h.p. always reduces to a unique normal

form that is also an f.h.p.

The detailed technical proof may be already found in Dezani (1976); however, let us

quote Di Cosmo (1995) who provides a brief explanation: ‘One may easily show that the

f.h.p.’s are typable terms. . . By the usual abuse of language we may then speak of typed

f.h.p.’s. Recall now that all typed terms possess a (unique) normal form (see Barendregt

(1984)).’

(Di Cosmo speaks here about the system λ1βη without pairing nor terminal object.)

We shall permit us one more abuse of language and call f.h.p.’s all terms that possess

an nf, and this nf is an f.h.p.

The main result about invertible untyped λ-terms is given by the following theorem:

Theorem 2.15. (See Di Cosmo (1995), Theorem 1.9.1; cf. Dezani (1976), main theorem.)

Let M be an untyped term that possesses a normal form. Then M is invertible iff it is an

f.h.p.

2.3. The calculus λ2βηπ∗ and its subsystems

The proof-theoretical presentation of λ2βηπ∗ is closely related to Di Cosmo (1995), with

some modifications that are explained below.

The class of types of λ2βηπ∗ is constructed from the type variables X,Y , Z . . .; constant

T; type constructors →,×, ∀ and parentheses ( , ). It is the least class Θ such that

— T ∈ Θ;

— if X is a type variable, X ∈ Θ;

— if A ∈ Θ and X is a type variable, then ∀X.A ∈ Θ;

— if A,B ∈ Θ, then (A→ B), (A× B) ∈ Θ.

To omit some of the parentheses, it is assumed that (in order of priority) ∀ <→< ×,

all operations associate to the right, and the convention that permits to elide internal ∀
and . is applied. For example,

∀XY .X → Y → X ×X ×X ≡ (∀X.(∀Y .(X → (Y → (X × (X ×X)))))).



Usually the types A → B are referred to as the arrow (or function) types, and A × B as

the product types. The intended meaning of T is the terminal object in the categorical

sense, and the ∗ below will stand for the unique term of type T. The variables in types

are bound by ∀. In the type ∀X.A, the scope of ∀X is A. The α-equality and variable

convention are extended to types. This permits to define the substitution of types into

types in a way similar to the untyped λ-terms.

Before the notion of a term is introduced, it is useful to define the class of pre-terms,

since such notions as the α-equality may be extended to this class. We assume that a

countable set of term variables x, y, z, . . . is fixed.

The class of pre-terms is the smallest class Θ such that

— the types A ∈ Θ, the term variables x and the constant ∗ are pre-terms;

— if M and N are pre-terms, then (MN) is a pre-term;

— if M and N are pre-terms, then 〈M,N〉 is a pre-term;

— if M is a pre-term, then p1M, p2M are pre-terms;

— if A ∈ Θ and M is a pre-term, then so is λx : A.M;

— if X is a type variable and M is a pre-term, then (λX.M) is a pre-term.

In the pre-terms, there are two binders, λ and ∀ (it may be used inside types), but it is

easily seen that the notion of α-equality, the variable convention and the definition of the

substitution can be extended to pre-terms.

To define well-typed terms, we will introduce a deductive system closely related to

the second-order propositional calculus. Below, Γ,∆ . . . will denote the contexts of type

declarations, i.e., the lists of typed term variables x : A, y : B . . . where each variable name

x, y, . . . is used at most once. When there is no confusion with the notion of a context as

a ‘word with a hole’ C[], they will be called merely contexts.

The typing judgements are the expressions of the form Γ ⊢M : A where Γ is a context,

M is a pre-term and A is a type.

Well-formed terms (or merely terms) are pre-terms that are part of the typing judgements

derivable in the deductive system below.

Remark 2.16. The term environment is used in Di Cosmo (1995), but in type theory (in

particular, in the system LF considered below) ‘context’ is the usual term, and a unified

terminology seems preferable. As in Di Cosmo (1995), the type variables X,Y . . . are not

explicitely included in the context. For the calculus λ2βηπ∗, it is a minor technical point,

because (in difference from dependent type systems) the order of variables in the context

is without importance. There exist other presentations where they are included and given

type (or kind) Type, e.g., X : Type, Y : Type . . .. Another difference from Di Cosmo (1995)

is that in our paper the bound term variables are typed. Di Cosmo used untyped bound

variables in his λ2βηπ∗ (but typed in its first-order part), and this is not very convenient

in the presence of β2 reduction because it requires substitution into the types of bound

variables, cf. Longo et al. (1993).

Axioms:
x : A ∈ Γ

Γ ⊢ x : A Γ ⊢ ∗ : T



Rules:

Γ, x : A ⊢M : B

Γ ⊢ λx : A.M : A→ B
(→ −intro)

Γ ⊢M : A→ B Γ ⊢ N : A

Γ ⊢ (MN) : B
(→ −elim)

Γ ⊢M : A Γ ⊢ N : B

Γ ⊢ 〈M,N〉 : A× B
(×− intro)

Γ ⊢M : A× B

Γ ⊢ p1M : A
,

Γ ⊢M : A× B

Γ ⊢ p2M : B
(×− elim)

Γ ⊢M : A

Γ ⊢ λX.M : ∀X.A
(∀ − intro) ∗

Γ ⊢M : ∀X.A

Γ ⊢MB : A[B/X]
(∀ − elim) ∗ ∗

* For the type variable X not free in the type of any free term variable that occurs in

the term M. This restriction is often formulated in such a way that X should not occur

in the types of variables in Γ at all, but with α-equality our formulation is equivalent.

**For any type B.

Traditionally, in logic these rules are called → −intro, → −elim, × − intro, × − elim,

∀− intro and ∀− elim. They also represent λ-abstraction, application, pairing, projection,

universal abstraction and universal application rules that are usually considered in

λ-calculus.

To define the equality relation, the following basic equalities are considered:

(β) (λx : A.M)N = M[N/x], (η) λx : A.(Mx) = x if x /∈ FV(M)

(π) pi〈M1,M2〉 = Mi, (SP) 〈p1M, p2M〉 = M

(top) M = ∗ if M : T

(β2) (λX.M)A = M[A/X], (η2) λX.(MX) = M

The equality generated by β, η, π, SP, top, β2, η2 is denoted by =2.

Remark 2.17. Di Cosmo does not say clearly whether =2 is defined on pre-terms or

well-typed terms. We do need it only for the case when M,N are well typed and have the

same type in the same context. Di Cosmo carefully studied the normalization properties

of λ2βηπ∗ and its subsystems. For some of them, e.g., λ1βη and λ2βη, the SN and CR

were known long before. For the full λ2βηπ∗ and λ2βη∗, he devised a special system

reductions and had shown that it is WN and CR. In all cases, the equality may be defined

by the condition of coincidence of normal forms.

We shall need the following subsystems of λ2βηπ∗ also used by Di Cosmo:

— The calculus λ2βη which is λ2βηπ∗ without product types, pair, projections and T.

Equality for λ2βη is generated by β, η, β2, η2 and denoted =2 as well (this ‘abuse of

notation’ is justified by the properties of normalization, explained below).

— The calculus λ1βηπ∗ which is λ2βηπ∗ restricted to the first order or simple types.

Equality for λ1βηπ∗ is generated by β, η, π, SP, top and denoted by =1.

— The calculus λ1βη which is λ1βηπ∗ without product types, pairing, projections and T.

Equality for λ1βη is generated by β, η and denoted =1 (justified by normalization).

Normalization provides a decision procedure for =2 and =1. The normalization

properties of the whole calculus λ2βηπ∗ are rather complex. The detailed discussion

may be found in Di Cosmo (1995), ch. 2.



Di Cosmo confronted the following problem. If we consider reductions corresponding

to the equalities β, η, π, SP, top, β2, η2 oriented from left to right, then the resulting system

of reductions is not CR. There are critical pairs, for example,

M
η
← λx : T.(Mx)

top
→ λx : T.(M∗)

that do not reduce to any common term. To obtain a system of reductions that is CR

for the whole calculus λ2βηπ∗ and for λ1βηπ∗, Di Cosmo adds the extra rewriting rules

called gentop, SPtop and ηtop, all to deal with the constant T which is known to cause

problems for CR (Di Cosmo (1995), p.69).

These supplementary rules do not change the equality relation. With these rules,

he proves that λ1βηπ∗ and λ2βηπ∗ are effectively weakly normalizing (Di Cosmo

(1995), Theorems 2.5.1 and 2.5.2). The CR property of the extended system of re-

ductions guarantees the uniqueness of normal forms and the decidability of =2

and =1.

Di Cosmo also shows that many subsystems of λ1βηπ∗ and λ2βηπ∗ are SN and CR

for ordinary system of reductions. As we already mentioned, the ordinary systems of

reductions for λ2βη and λ1βη based on the equalities above are SN and CR. For these

subsystems, we can refer to the Theorems 3.2.3 and 3.1.19 of Di Cosmo (1995), respectively

(though the proofs were known before). The reductions are taken from left to right, in

particular, one takes η-reductions, not expansions. However, it will be useful to permit

some limited η-expansions when we consider typed isomorphisms in connection with the

f.h.p.s (see Sections 3–5).

To complete this section, let us say a few words about categorical properties of

typed λ-calculi. It is well known that λ1βηπ∗ may be seen as a free cartesian closed

category (Asperti and Longo 1991; Lambek and Scott 1988). In this category, types play

the role of objects, × plays the role of cartesian product, → of internal hom-functor, T of

terminal object; morphisms from A to B are the equivalence classes (w.r.t. =1) of closed

λ-terms ⊢ M : A → B. In a very limited way, this fact will be used in Section 4. The

reader will need only the very basic notions of category theory.

2.4. Dependent type systems

In this subsection, we consider Luo’s typed logical framework (LF) (Luo 1994). In

Section 5, we give a detailed proof of our main theorem about a representation of

arbitrary finite groups by automorphisms of types in the second-order system λ2βηπ∗.
The detailed consideration of LF will make clear that the proof that we propose for

λ2βηπ∗ can be easily transferred to LF. The way how it may be obtained for many

other known dependent type systems (like the calculus of constructions) and for type

theories specified in LF will also be clear, though we do not consider these cases in this

paper.

Because LF is mostly used to specify type theories, types in LF are called kinds (to

distinguish them from types in the specified type theories).

In difference from the systems considered above, the well-formed kinds, contexts and

terms of LF cannot be defined independently.



In LF, there are five forms of judgements:

— Γ ⊢ valid (Γ is a valid context).

— Γ ⊢ K kind (K is a kind in the context Γ).

— Γ ⊢M : K (M is an object of the kind K).

— Γ ⊢M = M ′ : K (M and M ′ are equal objects of the kind K).

— Γ ⊢ K = K ′ (K and K ′ are equal kinds in Γ).

First, we define simultaneously (by mutual induction) the classes of pre-terms, pre-

kinds and pre-contexts. They are the smallest classes that satisfy the following definition.

As before, a countable set of term variables is fixed, and there is also a constant

Type.

— The constant Type and the expressions El(M) where M is a pre-term are pre-kinds.

In LF, the constant Type represents a special kind whose elements are terms M that

may be ‘lifted’ to kinds of the form El(M). Informally, El(M) may be read as ‘elements

of M.’

— If K , K ′ are pre-kinds, and x is a term variable then (x : K)K ′ is a pre-kind. The

variable x is bound in K ′ by (x : K) (K ′ is the scope of (x : K)).

— The list of distinct term variables with pre-kinds x1 : K1, . . . , xn : Kn is a pre-context.

— Each term variable x is a pre-term.

— If M, N are pre-terms, then (MN) is a pre-term.

— If M is a pre-term, K is a pre-kind and x a term variable, then [x : K]M is pre-term.

The variable x is bound in M by [x : K] (M is its scope).

Remark 2.18. It follows immediately from this definition that for any pre-kind K , we

have K ≡ (x1÷n : K1÷n)K0, where K0 is either Type or has the form El(M).

The notion of α-equality, the variable convention and the definition of the substitution

can be extended to pre-terms, pre-kinds and pre-contexts.

In the syntax of LF, (x : K)K ′ denotes dependent product, and [x : K]M denotes

abstraction. In case when it is known that x is not free in K ′, we will write K → K ′

instead of (x : K)K ′. In our joint works (Soloviev and Luo 2002; Luo et al. 2013) and

in Luo (1994), the expression (K)K ′ is used but in this paper the aim is to make the

link with simply typed case more clear. As above, ≡ is the syntactic identity up to the

renaming of bound variables.

The well-formed terms, kinds and contexts are parts of the judgements that are derivable

in the deductive system below. In fact, the theorem about the so-called pre-supposed

judgements holds: It says that if a complex judgement is derivable, then the judgements

that assure the well-formedness of its parts are derivable separately. For example, if

Γ ⊢ M = N : K is derivable, then Γ ⊢ valid,Γ ⊢ K kind,Γ ⊢ M : K,Γ ⊢ N : K are

derivable. For details, see Luo et al. (2013) and Soloviev and Luo (2002).



Below, we give the principal inference rules of LF.

Contexts and assumptions

<>⊢ valid

Γ ⊢ K kind x 6∈ FV(Γ)

Γ, x : K ⊢ valid

Γ, x : K,Γ′ ⊢ valid

Γ, x : K,Γ′ ⊢ x : K
Γ1,Γ3 ⊢ valid Γ1,Γ2 ⊢ valid

Γ1,Γ2,Γ3 ⊢ valid
(wkn)

(where FV(Γ2) ∩ FV(Γ3) = 6).

General equality rules

Γ ⊢ K kind

Γ ⊢ K = K

Γ ⊢ K = K ′

Γ ⊢ K ′ = K

Γ ⊢ K = K ′ Γ ⊢ K ′ = K ′′

Γ ⊢ K = K ′′

Γ ⊢M : K

Γ ⊢M = M : K

Γ ⊢M = M ′ : K

Γ ⊢M ′ = M : K

Γ ⊢M = M ′ : K Γ ⊢M ′ = M ′′ : K

Γ ⊢M = M ′′ : K

The kind type

Γ ⊢ valid

Γ ⊢ Type kind

Γ ⊢ A : Type

Γ ⊢ El(A) kind

Γ ⊢ A = B : Type

Γ ⊢ El(A) = El(B)

Dependent product (kinds and terms)

Γ, x : K ⊢ K ′ kind

Γ ⊢ (x : K)K ′ kind

Γ, x : K1 ⊢ K ′
1 = K ′

2 Γ ⊢ K1 = K2

Γ ⊢ (x : K1)K
′
1 = (x : K2)K

′
2

Γ, x : K ⊢M : K ′

Γ ⊢ [x : K]M : (x : K)K ′

Γ, x : K1 ⊢M1 = M2 : K Γ ⊢ K1 = K2

Γ ⊢ [x : K1]M1 = [x : K2]M2 : (x : K1)K

Γ ⊢ N : (x : K)K ′ Γ ⊢M : K

Γ ⊢ (NM) : [M/x]K ′

Γ ⊢ N = N ′ : (x : K)K ′ Γ ⊢M = M ′ : K

Γ ⊢ (NM) = (N ′M ′) : [M/x]K ′

Γ, x : K ⊢M ′ : K ′ Γ ⊢M : K

Γ ⊢ ([x : K]M ′)M = [M/x]M ′ : [M/x]K ′

Γ ⊢ N : (x : K)K ′ x 6∈ FV(Γ)

Γ ⊢ [x : K](Nx) = N : (x : K)K ′

Remark 2.19. Among the rules for dependent products, the first two treat the dependent

product introduction, the next two the abstraction, the two after them the application and

the last two represent the βη-rules for equality. We have omitted such structural rules as

substitution and retyping (replacement of a kind in the context by an equal kind).

In Luo et al. (2013) and Soloviev and Luo (2002), the list of rules included in the

definition of LF was larger and contained all these rules. In fact, there were seven

substitution rules due to different forms of judgements in LF. For illustration, let us give

just one:

Γ, x : K,Γ′ ⊢ k′ : K ′ Γ ⊢ k : K

Γ, [k/x]Γ′ ⊢ [k/x]k′ : [k/x]K ′
.



It was shown there that all structural rules (including wkn) can be eliminated and every

deduction can be reduced to a canonical form without structural rules. Another (more

common) way to put it is that all structural rules are admissible.

The LF described above is meant to be a ‘core’ system used to specify other type

theories. The usual way to do that is via extensions of the language of LF with new

constants and asserting appropriate computation rules.

Example 2.20. (Luo (1994), Section 9.2.1) The internal second-order logic (SOL) is

introduced by declaring the following constants:

⊢ Prop : Type ⊢ Prf : El(Prop) → Type

⊢ ∀ : (A : Type)((El(A) → Prop)→ Prop)

IA : (A : Type)(P : El(A)→ Prop)((x : El(A))Prf(P (x))→ Prf(∀AP ))

E∀ : (A : Type)(P : El(A) → Prop)(R : Prf(∀AP ) → Prop)

((g : (x : El(A))Prf(P (x)))Prf(R(IAAPg))) → (z : Prf(∀AP ))Prf(R(z))

and asserting the following computation rule:

E∀APRf(IAAPg) = f(g) : Prf(R(IAAPg))

In this approach, the constants declared in LF may be seen as an encoding or represent-

ation of the axioms and rules of another language and reflect their intended semantics.

For example, the constant Prf represents the rule with one premise. The premise is a

proposition (an element of the type Prop) and the result of its application is the type of its

proofs. As to ∀, ∀AP represents the universal proposition that corresponds to the family

of propositions indexed by the elements of El(A) via P : El(A) → Prop (a particular case

of such a P would be more familiar correspondence x ∈ A 7→ B(x)). IA and EA represent

certain forms of ∀ − intro and ∀ − elim. The role of computation rules is similar to that

of conversions in λ-calculus or equalities between derivations, etc.

Example 2.21. Here is an example of a deduction in LF with constant Prop (‘polymorphic

identity’ parameterized by A : Type applied to the constant Prop is equal to the identity

of Prop):

⊢ valid

⊢ Type kind

A : Type ⊢ valid

A : Type ⊢ A : Type

A : Type ⊢ El(A) kind

A : Type, x : El(A) ⊢ valid

A : Type, x : El(A) ⊢ x : El(A)

A : Type ⊢ [x : El(A)]x : El(A)→ El(A) ⊢ Prop : Type

⊢ ([A : Type]([x : El(A)]x))Prop = [x : El(Prop)]x : El(Prop)→ El(Prop)

The following lemmas are proved by induction on the length of canonical derivation

(the formulations are taken from Soloviev (2015)).



Lemma 2.22. (Strengthening.) Let Γ,Γ′,Γ′′ ⊢ J be any judgement derivable in LF. If the

variables from Γ′ do not occur into Γ′′ and J , then Γ,Γ′′ ⊢ J is derivable.

Since in LF types (kinds) of variables may depend on terms (other variables), the

variables cannot any more be freely permuted.

Let us consider the list of variables with kinds, x1÷k : K1÷k . Let xi ⊳ xj denotes that

xi occurs in the kind Kj of xj . The same applies to prefixes like (x1÷k : K1÷k)K and

[x1÷k : K1÷k]K .

Let x1÷k : K1÷k be part of a valid context (respectively (x1÷k : K1÷k)K , [x1÷k : K1÷k]K

be part of a derivable kind or term). In this case, the relation ⊳ generates a partial order

on indexes 1, . . . , k which we shall denote by ⊳∗.

Lemma 2.23. Consider the judgements

Γ, x1÷n : K1÷n,Γ
′ ⊢ valid,

Γ ⊢ (x1÷n : K1÷n)K0 kind,

Γ ⊢ [x1÷n : K1÷n]P : (x1÷n : K1÷n)K0

in LF. For any permutation σ that respects the order ⊳∗,

Γ, xσ1
: Kσ(1)÷σ(n) : Kσ(1)÷σ(n),Γ

′ ⊢ valid,

Γ ⊢ (xσ(1)÷σ(n) : Kσ(1)÷σ(n))K0 kind,

Γ ⊢ [xσ(1)÷σ(n) : Kσ(1)÷σ(n)]P : (xσ(1)÷σ(n) : Kσ(1)÷σ(n))K0

are derivable in LF.

Besides standard equality rules, equality in LF is defined by the rules for dependent

products, among them the rules that correspond to β- and η-conversions. This permits to

define conversions in a more familiar way. The following proposition holds†:

Proposition 2.24.

1. Let J be an LF-judgement (of any of the five forms described above) and v an

occurrence of an expression either of the form ([x : K]M)N or of the form [x : K](Mx)

with x not free in M. Let J ′ be obtained by replacement of v by the occurrence of

[N/x]M or M, respectively. If J is derivable in LF, then J ′ is derivable. (This is a form

of ‘subject reduction’ property for β and η reduction.)

2. Let J be of the form Γ ⊢ K kind or Γ ⊢ M : K , respectively, and v belong to K

(respectively, to M). Let K ′, respectively, M ′ be obtained from K (M) as above. If J

is derivable, then Γ ⊢ K = K ′, respectively, Γ ⊢M = M ′ : K is derivable.

A proof may be obtained by induction on canonical derivations that uses the properties

of pre-supposed judgements mentioned above.

† It is a corrected version of an auxiliary proposition from Soloviev (2015) (Proposition 2.3). The formulation

there contained a trivial error, and the proofs of main results do not require significant changes after the

formulation is corrected.



Essentially, this proposition says that the βη-reducibility of the well-formed expressions

in LF may be described in terms similar to other known systems of λ-calculus.

We shall use the fact that LF is SN and CR with respect to β- and η-reductions. As

a reference, let us cite the thesis (Goguen 1994), and another more recent thesis (Marie-

Magdeleine 2009). In these works, the so-called typed operational semantics was applied

to prove SN and CR for a powerful extension of LF called UTT (Unified Type Theory).

Now the SN and CR of the ‘core’ LF is an easy consequence.

Thus, the equality of the (well-typed) terms in LF may be defined by the condition that

their normal forms coincide.

Remark 2.25. An LF-term in nf has in general the form [x1÷n : K1÷n].zM1÷m, where

M1÷m are normal and Mm is different from xn (z may coincide with one of x).

3. Retractions, isomorphisms and automorphisms of types

The isomorphisms of simple types are studied for over 30 years, cf. Soloviev (1983), Bruce

and Longo (1985) and Bruce et al. (1992). Later, the studies were extended, to include

isomorphism of types in other systems of type theory: linear (Soloviev 1993; Dosen and

Petric 1997; Balat and Di Cosmo 1999), with second-order types (Di Cosmo 1995), with

empty and sum types (Fiore et al. 2006), with intersection and sum types (Coppo et al.

2017) and dependent types (Delahaye 1999; Soloviev 2015). Retractions were considered

as well, together with isomorphisms or separately. See, for example, Bruce and Longo

(1985), Stirling (2013) and Coppo et al. (2016) ‡.

3.1. A general view

Let us outline how to define the notion of isomorphism of types in a very abstract way.

Let us have some deductive system that has types (denoted A,B, C . . .) and terms

(denoted M,N . . .). Many systems of type theory use contexts, i.e., the lists of type

declarations for free variables, usually written as Γ = x1÷n : A1÷n. (In LF, it is said ‘kinds’

instead of ‘types’ because the word ‘types’ is reserved for terms of the kind Type.)

Let some context Γ be fixed. Assume that

— for any types A, B the set of ‘morphisms’ [A,B]Γ is defined;

— for any types A,B, C and terms M ∈ [A,B]Γ and N ∈ [B,C]Γ, the term N ◦M : [A,C]Γ
called composition is defined.

— For any type C , there exists a distinguished term idC ∈ [C,C]Γ called identity.

— Some equivalence relation ≈ is defined on terms such that w.r.t. ≈ the composition is

associative and the usual properties of identity are respected. (In fact these conditions

may be slightly weakened: the composition needs to be defined only for terms from

[A,B]Γ, [B,A]Γ, [A,A]Γ, [B,B]Γ.)

‡ The last work contains an extensive bibliography.



We do not require that the structure of category would be defined on the whole calculus

(mostly not to go into complex matters related to contextual categories, etc.), though the

conditions above define obviously some categorical structure for a fixed context Γ.

Based on these data, we can define the notions of retraction, isomorphism and auto-

morphism.

Definition 3.1. Type A is called a retract of type B if there are terms M ∈ [A,B]Γ and

N : [B,A]Γ such that N ◦M ≈ idA. The term M in this case is called coretraction and the

term N retraction.

Definition 3.2. Types A and B are called isomorphic if there are terms M : [A,B]Γ and

N : [B,A]Γ such that N ◦M ≈ idA and M ◦N ≈ idB . The terms N and M themselves are

called (mutually inverse) isomorphisms.

This definition implies obviously the uniqueness (up to ≈) of the inverse isomorphism

to a given isomorphism M. The inverse is denoted usually by M−1.

Definition 3.3. The isomorphisms N ∈ [A,A]Γ are called automorphisms of A.

— In ordinary simply typed λ-calculus with βη-equivalence as ≈, the set [A,B]Γ may

be, for example, the set of all well-typed terms of type A → B in context Γ, with

idC = λx : C.x and N ◦M = λx : A.N(Mx).

— When retractions are studied, it is common to consider terms with contexts (Stirling

2013). No complete description of retractions represented by closed terms only (even

in simply typed case) is known. An example of a retraction/coretraction pair that

requires context is

λx : A.λy : B.x : A→ B → A

u : B ⊢ λz : B → A.zu : (B → A)→ A

Due to β-reductions, u disappears from the composite term that is equivalent to idA,

but the context Γ = u : B is necessary if we want the composition to be defined.

— In many cases, the sets [A,B] that contain only closed terms (and do not depend on

context) may be considered. For example, in simply typed λ-calculus (with or without

pairing), all isomorphisms in normal form are closed terms. See, e.g., Di Cosmo

(1995).

— In second-order λ-calculus, the context that contains free type variables occurring in

A and B may be needed but it is enough to consider the terms that do not contain

free term variables ( cf. Di Cosmo (1995), ch. 1 and 5).

— In dependent types systems, one must admit arbitrary contexts, because A and B

may contain free variables, and there is no neat separation between different sorts of

variables (types may depend on terms) (Delahaye 1999; Soloviev 2015).

— In the case of LF, we define [K,K ′]Γ as the set of derivable judgements Γ ⊢M : K →
K ′. Here, K,K ′ are the βη-normal forms of K and K ′. The composition and id are

defined as usual. (There are two main reasons to consider normal forms and take →
instead of dependent product. First, it is easy to show that if K ′ truly depends on x : K

(i.e., x occurs in K ′), then the term M : (x : K)K ′ cannot be two-side invertible. Second,



if we consider βη-normal forms of K and K ′, they may not contain some free variables

that are present in K and K ′: for example, take y : Type ⊢ (x : El(y))El(([z : El(y)]y)x).

The normal form of (x : El(y))El(([z : El(y)]y)x) is (x : El(y))El(y) =def El(y) → El(y).

In principle, the normal forms may be well-formed in a more narrow context Γ0. Still,

the isomorphism of K and K ′ may not hold in Γ0 because the context Γ is necessary

to prove the equality of kinds to their normal forms.)

— In some systems of type theory, there is no arrow type A→ B. The set [A,B]Γ in this

case may be defined as the set of terms of type B in the context Γ, y : A. Composition

of s ∈ [A,B]Γ and t ∈ [B,C]Γ can be defined using substitution: M ◦ N = [N/y]M,

and identity as idA ≡ y : A (cf. Soloviev (1983) and Di Cosmo (1995)).

If the types A and B are isomorphic (usually it will be clear with respect to which calculus

and equivalence relation on terms), we shall write A ∼ B.

3.2. Erasure and invertibility

A useful tool in the study of isomorphisms of types is erasure. We shall define erasure for

λ1βη, λ2βη and ‘core’ LF. In other cases, the erasure-based technique may require some

δ-rules to be added to the definition of the equality in the untyped λ-calculus, but not

in the above-mentioned cases. In case of λ2βη, we shall consider the untyped λ-calculus

extended by the constants → and ∀ but without δ-rules. The definition below also takes

into account the differences in notation concerning standard definitions of λ1βη, λ2βη

and LF.

Definition 3.4. (Cf. Di Cosmo (1995), p.48.) Let us consider λ1βη, λ2βη and ‘core’ LF. Let

M be a typed λ-term, i.e., Γ ⊢M : A in one of these systems.

The erasure e(M) is defined as follows:

— Case of λ1βη: e(x) ≡ x; e(λx : A.N) ≡ λx.e(N); e(M1M2) ≡ e(M1)e(M2). One may say

merely that all type labels of variables are erased.

— Case of LF (we consider M being part of Γ ⊢M : K): e(x) ≡ x; e([x : K]N) ≡ λx.e(N);

e(M1M2) ≡ e(M1)e(M2).

— Case of λ2βη. Here, we define first e(B) for types, because types may occur not only

as labels of variables. The untyped λ-calculus will contain now two sorts of variables:

x, y, z, . . . and X,Y , Z . . . (inside the calculus, they are treated in exactly the same way,

and introduced only to trace the origin of these variables) and is extended by two

constants, K∀ and K→, without any supplementary δ-rules for equality.

– Let B be a type. We define e(X) ≡ X, e(B1 → B2) ≡ K→(e(B1)e(B2)), e(∀X.B0) ≡
K∀(λX.e(B0))

§.

§ The abstraction λ is introduced in e(∀X.A) to respect binding. This definition is inspired by the definition of

erasure for second-order types in Bruce and Longo (1985). However, we modified the definition of e(A→ B).

Bruce and Longo used e(A → B) ≡ K→e(A)e(B) but with their definition erasure may create redexes, for

example, e(∀X.(Y → X)) ≡ K∀(λX.K→Y X). With our definition, e(A) is normal for any type A. In fact, when

one is interested only in the relationship with f.h.p.’s, there are many other possibilities to define e(A → B)

in such a way that no redexes are created, for example, as K→(K−A)(K+B).



– Let M be a term. Now, e(x) ≡ x, e(λx : A.N) ≡ λx.e(N), e(λX.N) ≡ λX.e(N),

e(NB) ≡ e(N)e(B), e(M1M2) ≡ e(M1)e(M2).

Remark 3.5. The erasures of the axioms and rules for equality of λ1βη and of λ2βη are

the axioms and rules of untyped λ-calculus, cf. for example, Di Cosmo (1995), Remark

1.9.4. The same is true for equality of terms in LF (when we consider erasure in LF, the

equality of kinds is not concerned). For any type B in λ2βη, e(B) is in nf; λ under ∀ can

not be used in a βη-reduction, the only case when the term e(B) has a head variable is

B ≡ X.

Lemma 3.6. Let Γ ⊢ M : K in λ1βη, λ2βη, or in LF. Then M and e(M) have normal

forms nf(M) and nf(e(M)) (unique, as explained above) and

M −→ nf(M)

↓ ↓
e(M) −→ nf(e(M)) ≡ e(nf(M))

where horizontal arrows denote arbitrary reduction sequences that end by the correspond-

ing normal forms, and vertical arrows denote erasure.

Let Γ ⊢ N : K in the same calculus. If M =1 N (in λ1βη), M =2 N (in λ2βη),

respectively, Γ ⊢M = N : K in LF, then e(M) = e(N) in untyped λ-calculus.

Proof. The existence of nf(e(M)) follows from the fact that any typable term in the

untyped λ-calculus has an nf and this nf is unique. The rest is an immediate consequence

of Remark 3.5.⋄

Theorem 3.7. Let ⊢M : A→ B and ⊢ N : B → A be well-formed terms in λ1βη. If M and

N are mutually inverse isomorphisms, then e(M) and e(N) are mutually inverse f.h.p.’s.

In particular, for any isomorphism M, the erasure e(M) is an f.h.p.

Proof. It follows from e(MN) ≡ (e(M)e(N)) and our remark 3.5. Cf. also Di Cosmo

(1995), Theorem 1.9.5.⋄

To take into account type variables in λ2βη, let us define the notion of the f.h.p. for

λ2βη (2-f.h.p.) Our definition is a slightly modified version of definition 1.9.6 in Di Cosmo

(1995). (Di Cosmo did not use type labels with variables inside second-order terms, but

we think this does not agree with the notation used for other typed λ-calculi in this paper,

and creates presentational difficulties when substitution is concerned.)

Definition 3.8. A term M of untyped λ-calculus with two sorts of variables and constants

∀ and → as in definition 3.4, is a 2-f.h.p. iff

— M = λx.x, or

— M = λz.λvσ(1)÷σ(n).zM1÷n for some permutation σ : n→ n, and

– if λvi = λxi, then λxi.Mi is a 2-f.h.p.;

– if λvi = λXi, then Mi ≡ Xi

for all 1 6 i 6 n.

The next theorems may be proved in the same way as Theorem 3.7.



Theorem 3.9. (Cf. Di Cosmo (1995), Theorem 1.9.7, and Bruce and Longo (1985), Lemma

2.4 and Theorem 2.5.) Let ⊢ M : A → B and ⊢ N : B → A be well-formed terms in

λ2βη. If M and N are mutually inverse isomorphisms, then e(M) and e(N) are βη-equal

to mutually inverse 2-f.h.p.’s. In particular, for any isomorphism M, the erasure e(M) is

βη-equal to a 2-f.h.p.

Theorem 3.10. If Γ ⊢ M : K → K ′ and Γ ⊢ N : K ′ → K are mutually inverse

isomorphisms in LF, then their erasures are mutually inverse f.h.p.’s. In particular, for any

isomorphism Γ ⊢M : K → K ′, the erasure e(M) is an f.h.p.

Remark 3.11. The Theorems 3.7, 3.9 and 3.10 may be strengthened. In particular, the

opposite implications may be proved (if e(M) is an f.h.p., then M is an isomorphism

etc.) A proof for λ2βη may be found in Bruce and Longo (1985) and Di Cosmo (1995);

however, our definition of the λ2βη and 2-f.h.p. is slightly different, and by some reason,

Di Cosmo does not prove this in case of λ1βη, so we provide the proofs of our own in

the next subsection. In fact we need a more detailed analysis of the structure of typed

isomorphisms to be used in the proofs of the main results.

The case of LF is much more complex, and a detailed analysis of typed terms is required

because too much information about kinds is lost after erasure. We give a proof outline

of a similar strengthening (Theorem 3.25) with the purpose to use it in the future study

of automorphisms in LF and to show the ‘inner work’ of the erasure technique in case of

dependent type systems.

Let us note that Lemma 3.24 that precedes this theorem would be sufficient to prove

the Theorem 5.6 in this paper (about automorphisms in LF), but it would be strange to

leave out a more fundamental result.

3.3. Structure of typed isomorphisms

The fact that the erasure produces invertible terms when applied to typed isomorphisms

permits us to establish that the isomorphism terms themselves must have similar structure.

Let us consider some lemmas about more fine aspects of this structure. Afterwards, in

3.4, some examples will be given.

Let A be a type in λ1βη. Since this calculus does not contain the constant T and its only

type constructor is →, A is either a type variable or may be written (without ambiguity)

in the form A1 → . . . An → p where p is a type variable and A1, . . . , An are types of similar

form.

The depth d(A) of the formula A is defined by d(p) = 0, d(A1 → . . . An → p) =

max16i6nd(Ai) + 1.

An equivalent definition would be to define d(A→ B) = max(d(A) + 1, d(B)).

The definition of d(A) may be updated for types in λ2βη: d(∀X.A) =def d(X → A).

Next, lemma is closely related to some propositions and lemmas of Di Cosmo (1995)

(Lemma 4.2.8, Propositions 4.3.1 and 4.3.3). However, we give a more direct proof based

on the properties of f.h.p.’s.



Lemma 3.12. Let ⊢ M : A → A′ be an isomorphism in λ1βη. Let A ≡ A1 → A2 →
. . . An → p. Then there is a permutation σ : n→ n such that

— A′ ≡ A′σ(1) → A′σ(2) → . . . A′σ(n) → p, where Ai ∼ A′i (1 6 i 6 n);

— M =1 λz : A.λxσ(1)÷σ(n) : A′σ(1)÷σ(n).zM1÷n, where M1÷n are normal terms;

— the permutation σ and the terms M1, . . . ,Mn are uniquely determined by M;

— if ⊢M ′ : A′ → A is the inverse isomorphism, then in a similar way

M ′ =1 λz
′ : A′.λx′1÷n : A1÷n.z

′M ′
σ(1)÷σ(n);

— the terms λxi : Ai.M
′
i : Ai → A′i and λxi : A′i.Mi : A′i → Ai are mutually inverse

isomorphisms (1 6 i 6 n).

Proof. We consider the terms first.

We may assume that M is normal. Notice that its erasure e(M) is then normal as well

by Lemma 3.6. By Theorem 3.7, e(M) is an f.h.p.

Thus, M has to be of the form λz : A.λxσ0(1)÷σ0(m) : A′σ0(1)÷σ0(m).zM1÷m because e(M) is

λz.λxσ0(1)÷σ0(m).ze(M1÷m).

The type of z is A ≡ A1 → A2 → . . . An → p. The types of M1÷m must match A1, A2 . . .,

thus m 6 n. The permutation σ0 : m → m is uniquely determined by the condition that

λxi.e(Mi) is an f.h.p. More precisely, xσ0(i) has to be the head variable of exactly one of

the terms e(M1), . . . , e(Mm) and this determines σ0.

If m = n, the first three statements are immediate. Otherwise A may be written as

A1 → . . .→ Am → (Am+1 → . . .→ An → p).

Now the required structure is obtained by n− m unique η-expansions and

M =1 λz : A.λxσ(1)÷σ(m) : A′σ(1)÷σ(m).λxm+1÷n : Am+1÷n.zM1÷mxm+1÷n

where σ(i) = σ0(i), 1 6 i 6 m and σ(i) = i, m < i 6 n, Mm+1 ≡ xm+1, . . . ,Mn ≡ xn. In

particular, the type of zM1÷n is p.

The same analysis applies to the inverse term ⊢M ′ : A′ → A that should have a similar

structure (with an obvious change of indexes). Notice, that up to this point, all statements

about the structure of M, respectively, M ′, were derived from the assumption that the

corresponding erasures are f.h.p.’s.

To prove the last statement, we consider the composition of M ′ and M. The result has

to be equal to identity. We use the fact that, since the erasures are f.h.p.’s, the variable

xi occurs only as the head variable of M ′
i , respectively, the variable x′i occurs only as the

head variable of M ′
i (1 6 i 6 m). For m < i 6 n, these terms already are identities.

The statement about types is an immediate consequence of these facts. ⋄

Theorem 3.13. Let ⊢ M : A → B and ⊢ N : B → A in λ1βη. If the erasure e(M) is an

f.h.p., then M is an isomorphism. Moreover, M can be reconstructed up to =1 from the

type A → B and the term e(M). If e(M) and e(N) are mutually inverse f.h.p.’s., then M

and N are mutually inverse isomorphisms.

Proof. We may assume that A ≡ A1 → A2 → . . . An → p and M,N, e(M), e(N) are

normal. Proof of the first implication proceeds by induction on the size of e(M).



Base case. If e(M) ≡ λx.x, then M ≡ λx : A.x.

Inductive step. As in the proof of lemma 3.12, if e(M) is an f.h.p. different from identity,

it has to be of the form λz.λxσ0(1)÷σ0(m).ze(M1÷m), where λxi.e(Mi) have to be f.h.p.’s as

well (σ0 : m → m, 1 6 m 6 n). It implies that M ≡ λz : A.λxσ0(1)÷σ0(m) : A′σ0(1)÷σ0(m).zM1÷m,

the terms Mi are of types A′i → Ai, the variables xi are their head variables, and since

e(λxi : Ai.Mi) ≡ λxi.e(Mi) are f.h.p.’s by I.H. the terms λxi : A′i.Mi are isomorphisms.

Moreover, they can be reconstructed because we know the types A′i → Ai. They must

have inverse isomorphisms of types Ai → A′i that by Lemma 3.12 may be written in the

form λx′i : Ai.M
′
i . Direct computation shows that the terms M and M ′ ≡ λz : A.λx1÷m :

A′1÷m.zM
′
σ0(1)÷σ0(m) are mutually inverse.

Now, if we consider ⊢ M : A → B and ⊢ N : B → A, such that e(M) and e(N) are

mutually inverse f.h.p.’s, then e(MN) = e(M)e(N) = λz.z. Thus, MN =1 λz : A.z. Similar

reasoning works for NM. Because the (two-side) inverse is uniquely determined, N is

equal to M ′ constructed above. ⋄

One may notice that the second implication is proved very easily. In fact more important

is the possibility to reconstruct an isomorphism from its erasure and type A→ A′, and it

goes together with the first implication.

With some modification, similar results hold for λ2βη.

The types in λ2βη have in general the following form:

(∗) ∀X1÷i1−1(Ai1 → ∀Xi1+1÷i2−1(Ai2 → . . . ∀Xin−1+1÷in−1(Ain → ∀Xin+1÷m.X) . . .)),

where 1 6 i1 6 . . . 6 in 6 m. Each quantifier prefix may be empty (notationally, the usual

convention that concerns indexes is applied). The types Ak (1 6 k 6 n) have a similar

structure. Below, we assume that there are no two bound variables with the same name

and the names of all free variables are different from the names of bound variables. It

means, in particular, that

(**) For any type variable Y and occurrence of a ∀Y (in types) or of a λY (in terms)

there is no occurrence of Y out of the scope of this ∀Y (respectively, λY ).

Lemma 3.14. Let ⊢M : A→ A′ be an isomorphism in λ2βη. Let A be as above. There is

a permutation σ : m→ m such that

— M =2 λz : A.λvσ(1)÷σ(m).zP1÷m, where

– vik ≡ xik : A′ik (1 6 k 6 n);

– vj ≡ Xj , when 1 6 j 6 m, j /∈ {i1, . . . , in};

– Pi1÷in are normal terms of λ2βη;

– Pj ≡ Xj , when 1 6 j 6 m, j /∈ {i1, . . . , in};

– the permutation σ and the expressions P1, . . . , Pm are uniquely determined by M;

— if j1, . . . , jn are the elements of the set σ−1({i1, . . . , in}) ordered by <, then A′ is

∀Xσ(1)÷σ(j1−1)(A
′
σ(j1)

→ . . . ∀Xσ(jn−1+1)÷σ(jn−1)(Aσ(jn) → ∀Xσ(jn+1)÷σ(m).X) . . .);

— if ⊢M ′ : A′ → A is the inverse isomorphism, then in a similar way



– M ′ =2 λz
′ : A′.λu′1÷m.z

′P ′σ(1)÷σ(m), where u′i1 ≡ x′i1 : Ai1 , . . . , u
′
in
≡ x′in : Ain and u′j ≡ Xj ,

when 1 6 j 6 m, j /∈ {i1, . . . , in};

– P ′i1÷in are normal terms of λ2βη and P ′j ≡ Xj , j /∈ {i1, . . . , in};

– for any k, 1 6 k 6 n, λxik : Aik .P
′
ik

: Aik → A′ik and λxik : A′ik .Pik : A′i → Ai are

mutually inverse isomorphisms.

Proof. The term e(M) is a 2-f.h.p by Theorem 3.9. We may assume that M and e(M)

are normal, and proceed as in Lemma 3.12 (including η-expansions). The main difference

is due to the fact that now we have two sorts of variables, and need to take into account

two possible cases, but it does not create any particular difficulties. The condition (∗∗)
will be respected if we respect the variable convention when α-conversion is applied. ⋄

This lemma is illustrated by Example 3.27 below.

Theorem 3.15. Let ⊢ M : A → B and ⊢ N : B → A in λ2βη. If the erasure e(M) is a

2-f.h.p., then M is an isomorphism. Moreover, M can be reconstructed up to =2 from the

type A→ B and the term e(M). If e(M) and e(N) are mutually inverse 2-f.h.p.’s., then M

and N are mutually inverse isomorphisms.

Proof. We may assume that

A ≡ ∀X1÷i1−1(Ai1 → ∀Xi1+1÷i2−1(Ai2 → . . . ∀Xin−1+1÷in−1(Ain → ∀Xin+1÷m.X) . . .)),

where 1 6 i1 6 . . . 6 in 6 m and M,N, e(M), e(N) are normal.

Again, to prove the first implication, we proceed by induction on the size of e(M).

Base case. If e(M) ≡ λx.x, then M ≡ λx : A.x. The case e(M) ≡ λX.X is excluded (it is

not a 2-f.h.p.).

Inductive step. If e(M) is an f.h.p. different from identity, it has to be of the form

λz.λvσ0(1)÷σ0(l).ze(P1÷l), where σ0 : l → l, 1 6 l 6 m and λvi.e(Pi) is a 2-f.h.p. for i ∈
{i1, . . . , in} and Pi is Xi otherwise.

It implies that M ≡ λz : A.λxσ0(1)÷σ0(l) : A′σ0(1)÷σ0(l)
.zP1÷l , for i ∈ {i1, . . . , in} the terms Pi

are of types A′i → Ai, the variables xi are their head variables, and since e(λxi : Ai.Pi) ≡
λxi.e(Pi) are 2-f.h.p.’s by I.H., the terms λxi : A′i.Pi are isomorphisms. Moreover, their types

are known. So they can be reconstructed from λxi.e(Pi) and type A′i → Ai.

They must have inverse isomorphisms of types Ai → A′i that by Lemma 3.12 may be

written in the form λx′i : Ai.P
′
i . The remaining Pi and P ′i are the appropriate type variables

not affected by erasure.

Direct computation shows that the terms M ′ ≡ λz : A.λv′1÷l .zP
′
σ0(1)÷σ0(l)

and M are

mutually inverse.

Now, if we consider ⊢ M : A → B and ⊢ N : B → A, such that e(M) and e(N)

are mutually inverse 2-f.h.p.’s, then e(MN) = e(M)e(N) = λz.z. Thus, MN =2 λz : A.z.

Similar reasoning works for NM. Because the (two-side) inverse is uniquely determined,

N is equal to M ′ constructed above. ⋄

The main subtlety in case of LF concerns the typing of Mj , while the somewhat artificial

difference between term and type variables inherited from the standard formulation of

λ2βη disappears.



The kinds in LF have in general the form (x1÷n : K1÷n)K0, where K0 is either of the

form El(A) or the constant Type.

Lemma 3.16. (Lemma 8 of Soloviev (2015).) Let Γ ⊢ El(A) kind and Γ ⊢ El(B) kind. Then,

Γ ⊢ El(A) ∼ El(B) iff Γ ⊢ El(A) = El(B). The isomorphism between El(A) and El(B) is

identity in the sense that it is unique up to the equality in LF and is represented by the

term [x : El(A).x] which is well typed in the context Γ:

Γ ⊢ [x : El(A)]x : (El(A))El(B).

Lemma 3.17. Let Γ ⊢M : K → K ′ be an isomorphism in LF. Let (x1 : K1) . . . (xn : Kn)K0

with K0 either of the form El(A) or the constant Type. Then there is the unique permutation

σ : n → n such that K ′ ≡ K ′
σ(1) → K ′

σ(2) → . . . K ′
σ(n) → K ′

0 with K ′
0 of the form El(A′) or

Type, respectively, and

M = [z : K].[xσ(1)÷σ(n) : K ′
σ(1)÷σ(n)].zM1÷n

where the erasures e([xi : K ′
i ].Mi) are f.h.p.’s.

Proof. The proof proceeds along the same lines as the proof of Lemma 3.12. ⋄

Remark 3.18. There are some notable differences between Lemmas 3.17, 3.12 and 3.14:

— Since we did not establish anything yet about types and contexts of Mi, we do not

assert that [xi : K ′
i ].Mi are isomorphisms.

— As above, to have a match between the number of premises Ki and the number

of terms Mi some η-expansions may be used. In difference from previous cases, the

kinds of variables added by η-expansions are not necessarily Km+1, . . . , Kn because

M1, . . . ,Mm may be substituted into kinds (see example 3.30 below).

— However, the LF-kinds may be used to model the types of λ2βη. The dependent

product over (X : Type) may be used to represent ∀X, and → may be represented by

→ defined in LF (‘dummy’ product). It is possible to use this representation to obtain

another proof of Lemma 3.14.

In Section 2.4, the relations ⊳ and ⊳∗ were introduced (⊳ reflects the dependency between

variables and ⊳∗ is its ‘image’ on natural numbers).

Lemma 3.19. (Lemma 19 of Soloviev (2015).) Let us consider Γ ⊢M : K → K ′, Γ ⊢M ′ :

K ′ → K such that

— e(M) and e(M ′) are mutually inverse f.h.p.’s,

— Γ ⊢M : K → K ′, Γ ⊢M ′ : K ′ → K are derivable in LF,

— M ≡ [z : (x1÷n : K1÷n)K0][x
′
σ(1)÷σ(n) : K ′

σ(1)÷σ(n)](zM1÷n) (Mi has xi as its head variable),

— M ′ ≡ [z′ : (x′σ(1)÷σ(n) : K ′
σ(1)÷σ(n))K

′
0][x1÷n : K1÷n](z

′M ′
σ(1)÷σ(n)) (M ′

i has x′i as its head

variable).

Then, xi ⊳ xj iff x′i ⊳ x
′
j .

Corollary 3.20. The partial order ⊳∗ generated by ⊳ on x1, . . . , xn coincides with ⊳∗
generated by ⊳ on x′1, . . . , x

′
n.



Lemma 3.21. (Lemma 21 of Soloviev (2015).) Let M ≡ [x′σ(1)÷σ(n) : K ′
σ(1)÷σ(n)].zM1÷n as

above. Then x′i, the head variable of Mi, does not occur in Mj , j < i. Similar result holds

for M ′.

Remark 3.22. This is stronger than a similar fact about occurrences into kinds mentioned

before.

The next lemma permits to separate the ‘permutation of the premises’ and the isomorph-

isms between these premises.

Let Γ ⊢ M : K → K ′, Γ ⊢ M ′ : K ′ → K , where K ≡ (x1÷n : K1÷n)K0, K
′ ≡ (x′σ(1)÷σ(n) :

K ′
σ(1)÷σ(n))K

′
0 and e(M), e(M ′) be mutually inverse f.h.p.’s. We assume that the structure of

M and M ′ is as established in the previous lemmas, i.e.

M ≡ [z : (x1÷n : K1÷n)K0][x
′
σ(1)÷σ(n) : K ′

σ(1)÷σ(n)](zM1÷n),

M ′ ≡ [z′ : (x′σ(1)÷σ(n) : K ′
σ(1)÷σ(n))K

′
0][x1÷n : K1÷n](z

′M ′
σ(1)÷σ(n)).

Let y1, . . . , yn be fresh variables,

Q1 ≡ K ′
1, Q2 ≡ [y1/x

′
1]K

′
2, ..., Qn ≡ [yn−1÷1/x

′
n−1÷1]K

′
n, Q0 ≡ [yn−1÷1/x

′
n−1÷1]K

′
0.

Notice that

Q ≡ (y1÷n : Q1÷n)Q0 =α (x′1÷n : K1÷n)K
′
0,

(yσ(1)÷σ(n) : Qσ(1)÷σ(n))Q0 =α (x′σ(1)÷σ(n) : K ′
σ(1)÷σ(n))K

′
0 ≡ K ′.

Let

Pσ ≡ [u : (y1÷n : Q1÷n)Q0][x
′
σ(1)÷σ(n) : K ′

σ(1)÷σ(n)](ux
′
1÷n)

and

P−1
σ ≡ [v : (xσ(1)÷σ(n) : K ′

σ(1)÷σ(n))K
′
0][y1÷n : Q1÷n](vyσ(1)÷σ(n)).

Consider also

N ≡ [z : (x1÷n : K1÷n)K0][x
′
1÷n : K ′

1÷n](zM1÷n)

and

N ′ ≡ [z′ : (x′1÷n : K ′
1÷n)K

′
0][x1÷n : K1÷n](z

′M ′
1÷n).

Next lemma is a more fine-grained formulation of Lemma 22 of Soloviev (2015).

Lemma 3.23. Under the assumptions above (in particular, that Γ ⊢ M : K → K ′, Γ ⊢
M ′ : K ′ → K),

— Γ ⊢ Pσ : Q → K ′, Γ ⊢ P−1
σ : K ′ → Q, Γ ⊢ N : K → Q, Γ ⊢ N ′ : Q → K are derivable

in LF;

— Pσ and P−1
σ are mutually inverse isomorphisms;

— Γ ⊢M = Pσ ◦N : K → K ′ and Γ ⊢ P−1
σ ◦M = N : K → Q;

— Γ ⊢M ′ ◦ Pσ = N ′ : Q→ K and Γ ⊢M ′ = N ′ ◦ P−1
σ : K ′ → K;

— Γ ⊢M ′ ◦M = M ′ ◦ (Pσ ◦N) = (M ′ ◦ Pσ) ◦N = N ′ ◦N : K → K;

— e(N) and e(N ′) are mutually inverse f.h.p.’s iff e(M) and e(M ′) are;

— M and M ′ are mutually inverse isomorphisms iff N and N ′ are.



Proof. By computation. In the typed cases using Lemma 2.23 to guarantee derivab-

ility and Lemmas 3.17, 3.19 and 3.21 to show that there is no ‘bad’ occurrences of

variables. ⋄

Let us consider now N and N ′ of this lemma. Assume that they are mutually inverse

isomorphisms, i.e., N ′ ◦N reduces to identity [z : K]z (and similar thing for N ◦N ′).

Via two standard β-reductions, we obtain

(∗) N ′ ◦N = [z : K][x1÷n : K1÷n]([x
′
1÷n : K ′

1÷n](zM1÷n)M
′
1÷n).

Before we continue with reductions, let us see what can be established about contexts and

kinding of M1÷n and M ′
1÷n.

To make the notation more compact, let us introduce some abbreviations. Let 1 6 j 6 n.

Let µ1, µ′1 denote the empty substitution and µj , µ′j (j > 1) denote the substitution

[Mj−1÷1/xj−1÷1], [M ′
j−1÷1/x

′
j−1÷1], respectively. (Recall that the head variable of Mj is x′j ,

and the head variable of M ′
j is xj so the substitutions in the lists do not interact.) Let

Ξ1, respectively, Ξ′1, denote the empty list, and for j > 1 denote the list x1÷j−1 : K1÷j−1

(respectively, x′1÷j−1 : K ′
1÷j−1).

Consider now the kinds of M1, . . . ,Mn and M ′
1, . . . ,M

′
n. A straightforward use of

properties of LF-derivations gives us (1 6 j 6 n)

(1) Γ, z : K,Ξ′j , x
′
j : K ′

j ⊢Mj : µj Kj) and (1′) Γ, z′ : K ′,Ξj , xj : Kj ⊢M ′
j : µ′j K

′
j ,

respectively.

Using Corollaries 3.20, 3.21 and then Lemma 2.22 (strengthening), we can make the

contexts considerably smaller:

(2) Γ,Ξ′j , x
′
j : K ′

j ⊢Mj : µj Kj , (2′) Γ,Ξj , xj : Kj ⊢M ′
j : µ′j K

′
j .

Of course, from these we can immediately pass to

(3) Γ,Ξ′j ⊢ [x′j : K ′
j]Mj : K ′

j → µj Kj (3′) Γ,Ξj ⊢ [xj : Kj]M
′
j : Kj → µ′j K

′
j .

As we know, xj does not occur into K ′
j and M ′

j , and x′j does not occur into Kj and Mj ,

so we have indeed the arrows and not the dependent products at the right.

Of course, if the terms M and M ′ are mutually inverse, then the terms of each pair must

somewhat cancel each other. On the first glance, it seems to pose a problem since only the

terms [x′1 : K ′
1]M1 and [x1 : K1]M

′
1 (case of j = 1) can be immediately composed, and all

other pairs have different contexts. However, if we compute accurately the composition

of M and M ′, we see that the problem dissolves because the mutual invertibility of terms

for lesser values of j will make possible other compositions.

Let us consider the following series of typing judgements (1 6 j 6 n):

(4) Γ,Ξj ⊢ [x′j : µ′j K
′
j](µ

′
j Mj) : µ′j K

′
j → µ′j(µjKj), (4

′) Γ,Ξj ⊢ [xj : Kj]M
′
j : Kj → µ′j K

′
j;

(5.Γ,Ξ′j ⊢ [xj : µj Kj](µj M
′
j) : µj Kj → µj(µ

′
jK

′
j), 5

′.Γ,Ξ′j ⊢ [x′j : K ′
j]Mj : K ′

j → µj Kj .

Notice that in each series the judgements have the same context.



Lemma 3.24. If Γ ⊢ M : K → K ′,Γ ⊢ M ′ : K ′ → K are mutually inverse isomorphisms

in LF, then all the judgements of the series (4), (4′) and (5), (5′) are derivable. Moreover,

the jth judgements in (4), (4′) and (5), (5′) represent mutually inverse isomorphisms.

Proof. The judgements in (4′) and (5′) already belong to (3) and (3′) and so are

derivable. For the rest, we use a ‘truncated’ induction on j (up to j = n). In case j = 1,

the substitutions µ and µ′ are empty and the derivability is already known. The mutual

invertibility follows from the mutual invertibility of M and M ′.

To show derivability of (4) and (5) for greater values of j, we take the judgements from

(3) and (2′), and proceed using wkn and substitution rules of LF (see Remark 2.19). That

is, j − 1 applications of substitution and wkn are needed. They are performed one after

another using the following schema (we display only the first step).

Γ,Ξ′j ⊢ [x′j : K ′
j]Mj : K ′

j → µj Kj

Γ, x1 : K1,Ξ
′
j ⊢ [x′j : K ′

j]Mj : K ′
j → µj Kj Γ, x1 : K1 ⊢M ′

1 : K ′
1

Γ, x1 : K1, x
′
2÷j−1 : [M ′

1/x
′
1]K

′
2÷j−1 ⊢ [M ′

1/x
′
1]([x

′
j : K ′

j]Mj : K ′
j → µj Kj)

.

After that, we proceed up to xj−1. That is, we add x2 : K2, . . . , xj−1 : Kj−1 by wkn and

substitute M ′
2, . . . ,M

′
j−1 for x′2, . . . , x

′
j−1 (in this order). Each term is substituted to all kinds

and terms to the right, so for each substitution the kinds are adequate. The lemmas about

the restrictions of variable occurrences cited above guarantee that there is no substitutions

in the ‘wrong’ places.

As to the mutual invertibility, the induction on j is used to show that µ′j(µjKj) =

Kj and µj(µ
′
j K

′
j) = K ′

j because by induction all the previous terms are mutually

inverse isomorphisms (in the corresponding contexts). The mutual invertibility of [x′j :

µ′j K
′
j](µ

′
j Mj) and [xj : Kj]M

′
j , and [xj : µj Kj](µj M

′
j) and [x′j : K ′

j]Mj follow then from

the mutual invertibility of M and M ′. ⋄

Theorem 3.25. Let the judgements Γ ⊢ M : K → K ′, and Γ ⊢ M ′ : K ′ → K be derivable

in LF. If the erasure e(M) is a f.h.p., then M is an isomorphism. Moreover, M can

be reconstructed up to LF-equality from the kind K → K ′ and the term e(M). If the

erasures e(M) and e(M ′) are mutually inverse f.h.p.s, then M and M ′ are mutually inverse

isomorphisms in LF.

Proof. (An outline.) We assume that

K ≡ (x1÷n : K1÷n)K0, K
′ ≡ (x′σ(1)÷σ(n) : K ′

σ(1)÷σ(n))K
′
0

where K0, K
′
0 are either of the form El(A) or the constant Type. From the structure of the

f.h.p., we derive that M has to be of the form

M ≡ [z : (x1÷n : K1÷n)K0][x
′
σ(1)÷σ(n) : K ′

σ(1)÷σ(n)](zM1÷n).

Moreover, since σ can be found from e(M) we may use Lemma 3.23 and consider without

loss of generality only the case when σ is trivial:

M ≡ [z : (x1÷n : K1÷n)K0][x
′
1÷n : K ′

1÷n](zM1÷n).

The proof of the first implication may proceed by double induction, on the depth of the

Bohm tree of the f.h.p., and on j. So we show first that [x1 : K ′
1]M1 is an isomorphism,



and reconstruct it from λx1.e(M1). This permits us to find the kind of [x2 : K ′
2]M2 as in

Lemma 3.24. We proceed with the induction on the second parameter up to n. The depth

of the trees of erasures e([xi : K ′
i ]Mi) ≡ λxi.e(Mi) is bound by the depth of the tree of e(M).

The second implication is as easy as in Theorems 3.13 and 3.15.⋄

3.4. Examples

Example 3.26. In the calculus λ1βη, an isomorphism between A→ B → C and B → A→
C is given by the term λz : A → B → C.λy : B.λx : A.zxy. If B ≡ A, it becomes an

automorphism (different from identity).

Example 3.27. Let A ≡ ∀X1÷3.A4 → A5 → X2, where X1, X2, X3 /∈ FV(A4) ∪ FV(A5). Let

A′ ≡ ∀X3.(A
′
5 → ∀X1.(A

′
4 → ∀X2.X2)). In the notation of Lemma 3.14, i1 = 4, i2 = 5,

σ(1) = 3, σ(2) = 5, σ(3) = 1, σ(4) = 4, σ(5) = 2, j1 = 2, j2 = 4. If A ∼ A′, then an

isomorphism M : A→ A′ may be written as

λz : A.λX3.λx5 : A′5.λX1.λx4 : A′4.λX2.zX1÷3M4M5

where λx4 : A′4.M4 : A′4 → A4 and λx5 : A′5.M5 : A′5 → A5 are some isomorphisms.

Example 3.28. Consider the following diagram (it is not supposed to be commutative):

∀X1.∀X2.(X1 → X2 → ∀X.X)

M2

��

id

M1

// ∀X2.∀X1.(X2 → X1 → ∀X.X)

M ′
2

��
∀X2.∀X1.(X1 → X2 → ∀X.X)

M−1
2

OO

id

M ′
1

// ∀X1.∀X2.(X2 → X1 → ∀X.X)

M ′−1
2

OO

Notice that the types at the both sides of each horizontal arrow are α-equal, this permits

to write id there. There exist, though, the isomorphisms different from id:

— M1 = λz : ∀X1.∀X2.(X1 → X2 → ∀X.X).λX2.λX1.λx2 : X2.λx1 : X1.zX1X2x1x2.

— M ′
1 = λz : ∀X2.∀X1.(X1 → X2 → ∀X.X).λX1.λX2.λx2 : X2.λx1 : X1.zX2X1x1x2.

— M2 = λz : ∀X1.∀X2.(X1 → X2 → ∀X.X).λX2.λX1.zX1X2.

— M−1
2 = λz : ∀X2.∀X1.(X1 → X2 → ∀X.X).λX1.λX2.zX2X1.

— M ′
2 = λz : ∀X2.∀X1.(X2 → X1 → ∀X.X).λX1.λX2.zX2X1.

— M−1
2 = λz : ∀X1.∀X2.(X2 → X1 → ∀X.X).λX2.λX1.zX1X2.

All these terms are normal and different from identity, M1 and M ′
1 are automorphisms

because the corresponding types are α-equal. Each is inverse to itself. M2 =α M
′
2, M

−1
2 =α

M ′−1
2 , M−1

2 is the inverse of M2. One may check also that in this example there are no

isomorphisms except those listed above and their compositions. This can be verified even

without Theorem 3.9, because one can analyse exhaustively the possible normal forms of

the λ-terms of the appropriate types.

Example 3.29. The kind (X1 : Type)(X2 : Type)(El(X1) → El(X2) → Type) and the kind

(X2 : Type)(X1 : Type)(El(X2) → El(X1) → Type) are isomorphic. The analysis of possible

isomorphisms gives the result similar to example 3.28.



With less trivial dependencies, the structure of isomorphisms becomes more complex.

Example 3.30. Let Γ ⊢ (x : K1)K kind be derivable in LF. Let K1 ∼ K2 in Γ, and

Γ ⊢ M : K1 → K2, Γ ⊢ M ′ : K2 → K1 be mutually inverse isomorphisms. Then

(x : K1)K ∼ (x′ : K2)[(M
′x′)/x]K . The isomorphism from the first to the second kind is

given by

Γ ⊢ [z : (x : K1)K][x′ : K2](z(M
′x′)) : (x : K1)K → (x′ : K2)[(M

′x′)/x]K,

and its inverse by

Γ ⊢ [z : (x′ : K2)[(M
′x′)/x]K][x : K1](z(Mx)) : (x′ : K2)[(M

′x′)/x]K → (x : K1)K.

If we compose these isomorphisms, M and M ′ will ‘cancel’ each other everywhere (inside

K as well). Notice that we cannot merely replace K1 by K2 (without substitution of M ′

into K) because the kinds inside K will not match any more. Thus, the ‘local’ rewrite

techniques cannot be used directly to verify whether K ∼ K ′ in difference from the type

theories considered in Di Cosmo (1995).

3.5. The groupoid structure

Sometimes groupoids are defined merely as categories where each arrow is invertible,

sometimes the ‘smallness’ condition is added (Brown et al. 2011). We use this notion only

when groupoids are small (even finite), except a very abstract introduction below.

Let K be a category. For A ∈ Ob(K) let Kiso(A) denotes the subcategory of K

that contains all A′ ∈ Ob(K) such that A ∼ A′. Its morphisms are the isomorphisms

f : A′ → A′′, where A′ ∼ A ∼ A′′. The category Kiso(A) obviously is a groupoid. The graph

of Kiso(A) is a connected component of the graph of K .

Let AutK (A) denote the group of automorphisms of A, i.e., isomorphisms A → A. We

usually will consider left composition as group multiplication, fg = f ◦ g. The group

AutK (A) may be seen as a category with one object. It is a full subcategory of Kiso(A).

Sometimes we will need the right composition as well. Formally, we may take the

opposite category Kop and K
op
iso(A), AutKop(A). On the notational side, we shall use; for

the right composition, i.e., f; g = g ◦ f, where ◦ is the composition in K . When there is

no ambiguity, we shall omit the index K and write Aut(A) and Autop(A).

Lemma 3.31. Let A,A′ ∈ Ob(K) be isomorphic. Then (a) Kiso(A) = Kiso(A
′) and (b)

the groups AutK (A) and AutK (A′), respectively, AutKop(A),AutKop (A′), are isomorphic as

groups.

Proof. (a) Obvious. (b) If f : A → A′ and f−1 : A′ → A are any mutually inverse

isomorphisms, then the isomorphism of groups of automorphisms is defined by the

conjugacy with f and f−1. ⋄

Lemma 3.32. Let f : A→ A′ be an isomorphism in K , any other isomorphism g : A→ A′

may be uniquely represented as g = f ◦ h = h; f and g = h′ ◦ f = f; h′, where h : A →
A, h′ : A′ → A′.



Proof. We may take h = f−1 ◦ g = g; f−1 and h′ = g ◦ f−1 = f−1; g.⋄

The following theorem is formulated in full generality, but it will be used only in the

situations when no foundational questions (like the use of the axiom of choice) will arise.

Theorem 3.33. For each pair B,C ∈ Ob(Kiso(A)), a distinguished isomorphism fBC may

be selected in such a way that every diagram of distinguished isomorphisms commutes.

The result obviously holds also for the isomorphisms in K
op
iso(A).

Proof. Let us fix an isomorphism fAD : A → D for each D ∈ Ob(Kiso(A)), define

fDA = f−1
AD and fBC = fAC ◦ f−1

AB when B,C are different from A. The proof for K
op
iso(A) is

similar. ⋄

Remark 3.34. In terms of Luo et al. (2013), it means that these distinguished isomorphisms

form a coherent system of basic coercions and may be used to define coercive subtyping

extensions of the corresponding type theories.

4. Automorphisms of types in λ1βηπ∗

In this section, we follow very closely the book (Di Cosmo 1995). The main difference is

that the results of Di Cosmo (1995) establish only the link between the existence of an

isomorphism and the existence of a derivation in a certain formal theory.

For example, the theorems in Di Cosmo (1995) about soundness and completeness of the

theory of isomorphism of types state that two types A,B are isomorphic according to the

definition based on existence of mutually inverse terms ⊢M : A→ B and ⊢M−1 : B → A

if and only if they are equal in a certain theory based on the rewrite rules, such as swap:

A→ B → C = B → A→ C.

In the difference from Di Cosmo, we are interested in the algebraic structure of the set

of isomorphisms and its subset that consists of automorphisms, and the existence of an

isomorphism does not permit to describe this algebraic structure as a whole.

As we already noticed, the calculus λ1βηπ∗ may be seen as a (free) cartesian closed

category (cf. Di Cosmo (1995), p.102). Its objects are types, and morphisms A → B are

the equivalence classes of λ-terms of the type A → B w.r.t. the equivalence based on the

βη-reduction described above.

The calculus λ1βη may be seen as its subcategory.

Lemma 4.1. Let A,B be types of λ1βη (i.e., they do not contain ∧ and T ), and ⊢ M :

A→ B be term of λ1βηπ∗. Then the normal form of M belongs to λ1βη.

Proof. This lemma is a combination of Lemmas 4.2.2 and 4.2.6 of

Di Cosmo (1995).⋄

4.1. Automorphisms in λ1βη

In this subsection, all types belong to λ1βη and the groups Aut(A),Autop(A) are considered

w.r.t. the category K = λ1βη. For any group G, Gop will denote the same group with



reverse multiplication; of course, (Gop)op = G. One may notice also that G and Gop are

isomorphic (with g 7→ g−1 as an isomorphism).

The necessary notions of the theory of groups, such as wreath product, may be found

in Hall (1959), see also Pólya (1937), Harari (1969) and White (1984).

The following theorem is central for this section. Let Σm denotes the symmetric group

of m elements, and Σm| ≀ G the wreath product of Σm and G.

Theorem 4.2. The groups Aut(A) (and Autop(A)) are, up to group isomorphisms, exactly

the groups that that belong to the class W of finite groups defined inductively as follows:

a. {1} ∈W .

b. If G,H ∈W , then G×H ∈W .

c. If G ∈W and m > 2, then Σm| ≀ G.

Proof. Let A be a type of λ1βη. Let us prove by induction on d(A) that the group Aut(A)

is isomorphic to a group G ∈ W . (It follows immediately that Autop(A) is isomorphic to

G as well.)

Base case: d(A) = 0, A ≡ p. This case is obvious.

Inductive step. Let d(A) = n + 1, A ≡ A1 → . . . An → p. Let M : A → A be

an automorphism. By Lemma 3.12, we may assume that M ≡ λz : A.λxσ(1)÷σ(n) :

Aσ(1)÷σ(n).zM1÷n. The types should match, thus we may also assume that (i) Aσ(i) ≡ Ai, and

(ii) the terms λxi : Ai.Mi have Ai → Ai as types and are automorphisms as well.

Since the automorphism groups of isomorphic types are isomorphic, we may assume

without loss of generality that the isomorphic types among A1, . . . , An are in fact identical,

and are placed (using swap) in such a way that

A1 ≡ . . . ≡ Ai1 � Ai1+1 ≡ . . . ≡ Ai1+i2 � . . . � Ai1+...+ik−1+1 ≡ . . . ≡ Ai1+...+ik

where i1 + . . .+ ik = n. The relation 6∼ means that the types are not isomorphic. Given the

isomorphisms for A′is, an isomorphism between an arbitrary type A1 → . . . An → p and a

type that satisfies these assumptions can be in fact written explicitly.

Let G1 = Aut(A1), G2 = Aut(Ai1+1),. . . , Gk = Aut(Ai1+...+ik−1+1), the G
op
1 , . . . , G

op
k the

same groups with reverse multiplication and Σm denote the symmetric group acting on m

elements. By inductive hypothesis, the groups G1, . . . , Gk and G
op
1 , . . . , G

op
k are isomorphic

to some groups that belong to the class W .

Remark 4.3. To proceed correctly with induction, we need to consider both the groups with

left and right compositions as group operations, because → (as a functor) is contravariant

on the first argument.

The wreath products Hj = Σij | ≀ Gj are defined in a usual way. That is, their elements

are pairs (σ, (R1, . . . , Rij )), and the product of two elements in Hj

(σ, (R1, . . . , Rij ))(ρ, (S1, . . . , Sij )) =def (σρ, (Rρ(1) ◦ S1, . . . , Rρ(ij ) ◦ Sij )).

We define also H ′
j = Σij | ≀ G

op
j . Notice that if ij = 1, then Hj = Gj , H

′
j = G

op
j .

The cartesian product H = H1 × . . . × Hk (respectively, H ′ = H ′
1 × . . . × H ′

k) consists

of k-tuples of pairs with componentwise multiplication described above. To lighten the



notation, we shall use a different representation for H and H ′ (strictly speaking, it

is connected with the representation that uses k-tuples by an obvious isomorphism).

Namely, instead of the k-tuple

((σ1, (R
1
1 , . . . , R

1
i1
)), . . . , (σk , (R

k
1 , . . . , R

k
ik
)),

we shall take (σ, (R1, . . . , Rn)), where n = i1+ . . .+ik , σ = σ1+ . . .+σk and R1 = R1
1 , . . . , Ri1 =

R1
i1
, Ri1+1 = R2

1 , . . . , Ri1+i2 = R2
i2
, . . . , Ri1+...+ik−1+1 = Rk

1 , . . . , Rn = Rk
ik
. Since the direct sum of

permutations acts independently on each ‘cluster,’ the multiplication can be defined in the

same way as for wreath product above, that is

(σ, (R1, . . . , Rn))(ρ, (S1, . . . , Sn)) = (σρ, (Rρ(1) ◦ S1, . . . , Rρ(n) ◦ Sn))

(with ; instead of ◦ in case of H ′).

Let M and N be automorphisms of A. As explained in the beginning of the proof, we

may assume that M : A→ A and N : A→ A have the form:

M ≡ λz : A.λxσ(1)÷σ(n) : A1÷n.zM1÷n,

N ≡ λz : A.λxρ(1)÷ρ(n) : A1÷n.zN1÷n.

Let us consider the compositions M;N = N ◦M ≡ λz : A.(N(Mz)) and M ◦ N ≡ λz :

A.(M(Nz)).

To shorten the notation, we omit the types A1÷n, A. From M;N = N ◦ M by two

β-reductions, we obtain

λz.λxρ(1)÷ρ(n).(λxσ(1)÷σ(n).zM1÷n)N1÷n.

Now by β-reductions corresponding to λxσ(1)÷σ(n), we get

λz.λxρ(1)÷ρ(n).z([Nσ−1(1)/x1]M1) . . . ([Nσ−1(n)/xn]Mn).

The terms Mi, Nσ−1(i) contain only one free variable. In the term Nσ−1(i) and, as consequence,

in the result of substitution, it is the variable xσ−1(i).

If we rename the variables by α-conversion: xi 7→ xσ(i), the result will be

λz.λxσ(ρ(1))÷σ(ρ(n)).z([[x1/xσ−1(1)]Nσ−1(1)/x1]M1)...([[xn/xσ−1(n)]Nσ−1(n)/xn]Mn).

We notice also that the term λxσ−1(i).[Nσ−1(i)/xi]Mi is β-equal (by β-reduction from right

to left) to

λxσ−1(i).(λxi.Mi((λxσ−1(i).Nσ−1(i))xσ−1(i))

and this by definition is the composition

(λxσ−1(i).Nσ−1(i)); (λxi.Mi) = (λxi.Mi) ◦ (λxσ−1(i).Nσ−1(i)).

In both cases, λxσ−1(i).Nσ−1(i) =α λxi.[xi/xσ−1(i)]Nσ−1(i).

Remark 4.4. According to this analysis, the inverse

M−1 = λz.λxσ−1(1)÷σ−1(n).zM
′
1÷n,

where λxi.M
′
i = (λxσ(i).Mσ(i))

−1 (1 6 i 6 n).



Remark 4.5. For both automorphisms M and N, the permutations σ and ρ act inde-

pendently on the indexes of each ‘cluster’ of identical premises, and so may be uniquely

represented as σ1 + ... + σk and ρ1 + . . . + ρk with σ1, ρ1 ∈ Σi1 , . . . , σk , ρk ∈ Σik .

Let us consider ; as a group multiplication on A → A. We define the isomorphism

θ : Aut(A) → H as follows. For

M ≡ λz : A.λxσ(1)÷σ(n) : A1÷n.zM1÷n,

we define

θ(M) = (σ, (R1, . . . , Rn)),

where Ri = λxσ(i).Mσ(i) (1 6 i 6 n).

It is obvious that θ preserves the group unit. It is a bijection since the groups Gj are

the corresponding automorphism groups.

The inverse (σ−1, (R−1
σ−1(1), . . . , R

−1
σ−1(n))) coincides with θ(M−1) (see Remark 4.4).

Let us verify that it respects multiplication. Let

θ(M) = ((σ, (R1
1 , . . . , Rn)) and θ(N) = ((ρ, (S1, . . . , Sn)).

The permutation that corresponds to M;N is σρ, and under σρ the ‘clusters’ remain

invariant. Here, Ri are as above, and Si = λxρ(i).Nρ(i) (1 6 i 6 n). In H

θ(M)θ(N) = ((σ, (R1, . . . , Rn))((ρ, (S1, . . . , Sn)) =

(σρ, (Rρ(1) ◦ S1, . . . , Rρ1(n) ◦ Sn)) =

(σρ, ((λxσ(ρ(1)).Mσ(ρ(1))) ◦ (λxρ(1).Nρ(1)), . . . , (λxσ(ρ(n)).Mσ(ρ(n))) ◦ (λxρ(n).Nρ(n)))) =

(σρ, ((λxσ(ρ(1)).Mσ(ρ(1))) ◦ (λxσ−1(σ(ρ(1))).Nσ−1(σ(ρ(1)))), . . . ,

(λxσ(ρ(1)).Mσ(ρ(1))) ◦ (λxσ−1(σ(ρ(n))).Nσ−1(σ(ρ(n)))))) = θ(M;N)

Consider now ◦ as group multiplication in A→ A. The isomorphism θ′ : Autop(A) → H ′

is defined by θ′(M) = (σ−1, (λx1.M1, . . . , λxn.Mn)) for M : A→ A as above.

It is easily seen that θ′ preserves unit and inverse, and is bijective. As to the

multiplication, we have

(θ′(N))(θ′(M)) = (ρ−1, (λx1.N1, . . . , λxn.Nn))(σ
−1, (λx1.M1, . . . , λxn.Mn)) =

(ρ−1σ−1, ((λxσ−1(1).Nσ−1(1); λx1.M1), . . . , (λxσ−1(n).Nσ−1(n); λxn.Mn))) =

((σρ)−1, (λxσ−1(1).[Nσ−1(1)/x1]M1, . . . , λxσ−1(n).[Nσ−1(n)/xn]Mn)) = θ′(N ◦M).

Let us consider now some G ∈ W . The type A such that G is isomorphic to Aut(A)

is constructed by induction on the process of construction of G. Let us notice that the

group Aut(B) is isomorphic to Aut(A) if B is obtained from A by renaming of variables,

and the same for Autop.

Base case (a) G = {1}. We may take A ≡ p.

Inductive step.

(b) Let G = G1 × G2, and Gi be isomorphic to Aut(Ai) (i = 1, 2). Without loss of

generality, we may assume that A1, A2 have no common type variables. The group

Aut(A1 → A2 → p) with p fresh will be isomorphic to G
op
1 ×G

op
2 , and thus to G1×G2. We

may take also Aut((A1 → p1) → (A2 → p2) → p) with p1, p2, p fresh.



(c) Let G = Σm| ≀ G0. By induction, there exists A0 such that Aut(A0) is isomorphic to

G0. If we take A ≡ A0 → . . . A0 → p (m identical premises, p fresh), the group Aut(A) will

be isomorphic to Σm| ≀ G
op
0 and (because G0 is isomorphic to G

op
0 ) to Σm| ≀ G0 as well, we

may also take (A0 → p0)→ . . . (A0 → p0) → p as A (with p0 and p fresh). ⋄
There is a well-known result that the groups of automorphisms of finite trees are exactly

the groups of the class W , see Babai (1995), p. 1457, Proposition 1.15. (In fact, as notices

Babai, this result was first obtained by Jordan in XIX century.)

As a consequence, we obtain the next corollary:

Corollary 4.6. The class of groups Aut(A) (considered up to group isomorphisms) where

A are types of λ1βη coincides with the class of automorphisms of finite trees.

4.2. Reduction of the λ1βηπ∗-case to the case of λ1βη

In this subsection, the types belong to λ1βηπ∗ and the groups Aut(A),Autop(A) are

considered w.r.t. the category K = λ1βηπ∗. As we shall see, it will not change the class of

groups representable as the automorphism groups of types.

Definition 4.7. (Cf. Di Cosmo (1995), p. 104.) A type B in λ1βηπ∗ is in type normal form

(abbreviated t− nf) if B is either T or B ≡ B1 × . . .× Bn where each Bi does not contain

× or T .

Remark 4.8. Notice that every type in λ1βη is in t− nf.

Di Cosmo considered the type-reduction relation R1 generated by

A× (B × C) > (A× B)× C; (A× B)→ C > A→ (B → C);

A→ (B × C) > (A→ B)× (A→ C); A× T > A; T × A > A;

A→ T > T ; T → A > A.

It transforms every type into another isomorphic type.

Proposition 4.9. (Di Cosmo (1995), proposition 4.1.2.) Each type in λ1βηπ∗ has a unique

normal form in R1.

(This normal form may be called the t− nf of A.)

Lemma 4.10. Let B be the t− nf of A→ p. Then B does not contain × and T , and thus

belongs to λ1βη.

Proof. By induction on the length of a reduction sequence. ⋄

Lemma 4.11. Let A be any type in λ1βηπ∗. The group Aut(A) is isomorphic as group to

Autop(A→ p) where p is a type variable that does not occur in A (respectively, Autop(A)

is isomorphic to Aut(A→ p)).

Proof. Let M : A→ A be a closed term representing an automorphism of A in λ1βηπ∗.
Let us define φ(M) ≡ λy : A → p.λx : A.y(Mx) ≡ [M/z](λy : A → p.λx : A.y(zx)). This



transformation preserves identity and reverses the order of composition. For example,

λz : A→ p.(λy : A→ p.λx : A.y(Mx))(λy : A→ p.λx : A.y(M−1x))z) =1,

λz : A→ p.(λy : A→ p.λx : A.y(Mx))(λx : A.(z(M−1x))) =1,

λz : A→ p.(λx : A.(λx : A.z(M−1x))(Mx)) =1,

λz : A→ p.(λx : A.z(M−1(Mx))) =1 λz : A→ p.(λx : A.zx) =1 idA→p.

Let us show that φ is bijective.

Let M 6=1 M
′. It implies Mx 6=1 M

′x. Notice that at least one is not equal to idA. If both

are different from idA, then the (unique) normal forms nf(Mx) and nf(M ′x) are different

from x, and the (unique) nf(λy : A → p.λx : A.y(Mx)) ≡ λy : A → p.λx : A.y(nf(Mx)) is

different from nf(λy : A→ p.λx : A.y(M′x)) ≡ λy : A→ p.λx : A.y(nf(M ′x)).

If one is equal to idA, say M ′ =1 λx : A.x, then nf(λy : A → p.λx : A.y(Mx)) ≡ λy :

A → p.λx : A.y(nf(Mx)) is different from nf(λy : A → p.λx : A.y(M ′x)) =1 λy : A →
p.λx : A.yx =1 λy : A→ p.y.

Thus, φ is injective. Let us show that it is bijective.

Consider any automorphism M : (A → p) → A → p. The results that concern erasure

and f.h.p.s are not directly applicable to the calculus with pairing, such as λ1βηπ∗, but

the proof below is based on the same kind of ideas.

Without loss of generality, we may assume that the closed term M is normal. By

normality, it has to be of the form λy1÷n : A1÷n.yM1÷k . The inverse automorphism should

have a similar form.

Since the type is (A → p) → A → p, the λ-prefix is either λy1 : A → p or λy1 : A →
p.λy2 : A. The structure of these types and the absence of free variables imply that in the

first case y must coincide with y1 and the term

λy1 : A→ p.y1 =1 λy1 : A→ p.λy2 : A.y1y2 =1,

λy1 : A→ p.λy2 : A.y1((λx : A.x)y2) ≡ φ(idA).

By the same reasons, in the second case, y still has to coincide with y1, and y2 be of the

type A; the term (normal) now must have the structure λy1 : A → p.λy2 : A.y1M1 with

M1 normal and different from y2. The type of M1 has to be A.

The analysis of the structure of M−1 shows that it has to have similar structure. In the

second case, it has to be λy′1 : A→ p.λy′2 : A.y′1M
′
1. Since the composition of M and M−1

must give idA→p, we easily derive that λy1 : A.M1 and λy′1 : A.M ′
1 are mutually inverse

automorphisms, and φ(M1) = M, φ(M ′
1) = M−1. ⋄

As a consequence, we have

Theorem 4.12. The groups Aut(A) (and Autop(A)) where A are types of λ1βηπ∗ are, up

to group isomorphisms, exactly the groups that may be obtained from symmetric groups

by the operations of cartesian product and wreath product. This class coincides with the

class of automorphism groups of finite trees.

Remark 4.13. One may notice that the calculus λ1βη (the term system as well) may

be seen also as the −֒֓-fragment of the Intuitionistic Multiplicative Linear Logic



(Soloviev 1993), and our Theorem 4.2 and Corollary 4.6 will hold there. Theorem 4.12

will probably hold for full IMLL instead of λ1βηπ∗ but reduction techniques need to be

modified because of the absence of the isomorphism A→ (B ⊗ C) > (A→ B)⊗ (A→ C)

and more complex relationship between term systems.

5. Automorphisms of higher order types

In this section, we will show that any finite group may be represented by the group of

automorphisms of (a) second-order types and (b) dependent products.

The role of a ‘bridge’ between algebra and type theory will be played by the groups of

automorphisms of graphs. It is well known since the works of Frucht (1938, 1949) that

finite groups can be represented by automorphism groups of finite graphs (not coloured).

Below, an older but more straightforward approach is taken: Our construction is based

on the construction of the Cayley-coloured digraph. We will

— construct a type for each Cayley-coloured digraph,

— for each automorphism of this digraph construct a λ-term that represents an auto-

morphism of that type,

— and show that the correspondence is a group isomorphism.

If G is a group with elements g1, . . . , gn (we shall assume that g1 is the group unit) and

S = {s1, . . . , sm} ⊂ {g1, . . . , gn} some set of its (distinct, non-trivial) generators, then the

Cayley graph G for S is a directed graph CS (G) where the directed edges are assigned

colours. The nodes of CS (G) are the elements of {1, . . . , n}. To the generators are associated

different colours c1, . . . , cm. There is an edge from i to j coloured ck iff gi · sk = gj .

If H is a digraph on {1, . . . , n}, digraph automorphisms of H are defined by permutations

θ of 1, . . . , n that respect directed adjacences, i.e., (i, j) is a directed edge in H iff (θ(i), θ(j))

is also a directed edge. The group under composition of digraph automorphisms of H is

denoted Aut(H).

If H is edge-coloured, then θ ∈ Aut(H) is colour-preserving if the colour of (θ(i), θ(j))

is the same as the colour of (i, j) for all edges (i, j) of H .

The automorphisms that preserve colour form a subgroup of Aut(H).

Theorem 5.1. (See, for example, White (1984), Theorems 4–8.) The subgroup of colour-

preserving automorphisms of Aut(CS (G)) is isomorphic to G. The isomorphism of G and

this subgroup may be defined by g 7→ θg where the permutation θg of the set {1, . . . , n} is

defined by left multiplication, θg(i) = j ⇐⇒ ggi = gj .

Remark 5.2. Obviously, θg1
= id, θg−1 = θ−1

g and θg′g = θg′θg .

Below, we shall denote by σk the permutation of the set {1, . . . , n} defined by the right

multiplication of {g1, . . . , gn} by the generator sk , i.e., σk(i) = j iff gisk = gj .

We shall built types such that their groups of type automorphisms are isomorphic to

groups of automorphisms of Cayley-coloured graphs.



5.1. Second-order λ-calculus

Let some finite group G with elements |G| = {g1, . . . , gn} and generators S = {s1, . . . , sm} be

given. We shall construct the closed type TS (G) in λ2βη such that the group Aut(TS (G))

is isomorphic (as a group) to G.

Remark 5.3. Since Di Cosmo (1995) established that every isomorphism M : A → A′ in

λ2βηπ∗, where A,A′ belong to λ2βη is equal to an isomorphism in λ2βη, our construction

automatically gives a similar result for λ2βηπ∗.

Let us consider the types C−1 ≡ Y → Y , C−2 ≡ C−1 → Y , . . . , C−m ≡ C−m−1 → Y and

C1 ≡ ∀Y .C−1 , . . . , Cm ≡ ∀Y .C−m (d(Ci) = i).

Lemma 5.4. Let X1, . . . , Xn be distinct type variables. The types (Xi → Xj) → Ck and

(Xi′ → Xj ′ ) → Ck′ are isomorphic iff i = i′, j = j ′, k = k′, and in this case the only

automorphism is identity.

Proof. We use Lemma 3.14 for the structure of isomorphism terms.

First, we show by induction on min(k, k′) that if k 6= k′, then C−k � C−k′ and Ck � Ck′ ,

and the only automorphism of C−k or Ck is identity. As a trivial exercise, we show also

that (Xi → Xj) ∼ (Xi′ → Xj ′ ) iff i = i′ and k = k′ and in this case the only automorphism

is identity as well.

If i = i′, j = j ′ and k = k′, we notice that by the same lemma any automorphism of

(Xi → Xj) → Ck will use an automorphism of (Xi → Xj) and of C−k , and conclude that

the only automorphism is identity. ⋄

The type TS (G) is defined as follows. We use n type variables X1, . . . , Xn to represent

g1, . . . , gn, and the types C1, . . . , Cm to represent ‘colours.’

For each directed edge (i, j) of the Cayley-coloured graph CS (G) where gisk = gj , that

is j = σk(i), we take the type Tik = (Xi → Xj) → Ck .

We define

TS (G) ≡ ∀X1÷n.T11 → . . . T1m → T21 → . . . T2m → . . . Tn1 → . . . Tnm → ∀Y .Y .

Theorem 5.5. (Main.) The group of automorphisms of the type TS (G) is isomorphic to

the group of automorphisms of CS (G) and thus isomorphic to G.

Proof. Let us consider an automorphism θg of CS (G) that preserves colour. To define

the term Mθg : TS (G) → TS (G), we proceed as follows. (Below, we do not always rename

variables related to different binders because it makes easier to follow the proof ‘globally.’)

— First, we notice that the type

T ′
S (G) ≡ ∀Xθg(1)÷θg(n).Tθg(1)1 → . . . Tθg(1)m → Tθg(2)1 → ...Tθg(2)m → . . .

Tθg(n)1 → . . . Tθg(n)m → ∀Y .Y .

is α-equal to

TS (G) ≡ ∀X1÷n.T11 → . . . T1m → T21 → . . . T2m → . . . Tn1 → . . . Tnm → ∀Y .Y .



Indeed, we may apply the α-conversion where the renaming is defined by the inverse

permutation θ−1
g :

Xθg(1) 7→ X1, . . . , Xθg(n) 7→ Xn.

— We consider the following term of type TS (G)→ T ′
S (G) :

λz : TS (G).λXθg(1)÷θg(n).

λxθg(1)1÷θg(1)m : Tθg(1)1÷θg(1)m . . . λxθg(n)1÷θg(n)m : Tθg(n)1÷θg(n)m.

zX1÷nx11÷1m . . . xn1÷nm.

— It is an isomorphism, with the inverse given explicitly by

λz : T ′
S (G).λXθ−1

g (1)÷θ−1
g (n).

λxθ−1
g (1)1÷θ−1

g (1)m : Tθ−1
g (1)1÷θ−1

g (1)m . . . λxθ−1
g (n)1÷θ−1

g (n)m : Tθ−1
g (n)1÷θ−1

g (n)m.

zX1÷nx11÷1m . . . xn1÷nm.

(it can be verified by direct computation).

— It is α-equivalent to the term

Mθg ≡ λz : TS (G).λX1÷n.λx11÷1m : T11÷1m . . . λxn1÷nm : Tn1÷nm.

zXθ−1(1)÷θ−1(n)x(θ−1
g (1)1÷(θ−1

g (1))m . . . x(θ−1
g (n))1÷(θ−1

g (n))m).

The fact that θg 7→Mθg defines a group homomorphism CS (G)→ Aut(TS (G) is verified

now by direct computation (using β, η and α).

The map θg 7→ Mθg is injective because all terms Mθg , g 6= g1, are normal (since

multiplication by g has no fixpoints) and different from each other and not identity. The

term Mθg1
= idTS (G).

The last point we need to verify is that the type TS (G) does not have automorphisms

that are not of the form Mθg , hence the map we have defined is surjective.

We do it in several steps.

Let M be some term of type TS (G)→ T ′.

i. If M is an automorphism, T ′ has to be α-equal to TS (G). What are the immediate

consequences?

— First of all, T ′ ≡ ∀Xθ(1)÷θ(n).(T
′
ρ(11) → . . . → T ′

ρ(nm) → ∀Y .Y ), where ρ is some

permutation of pairs 11, . . . , nm. The place and length of the ∀-prefix cannot change.

Also, for each i, k, it should be possible to obtain the type Tik from T ′
ρ(ik) by a renaming

of variables.

— It implies that ρ must respect ‘colours’ Ck , because variable renamings cannot change

the size of (the number of variable occurrences in) Ck . Thus, T ′
ρ(ik) ≡ (Xi′ → Xj ′ )→ Ck ,

i′, j ′ ∈ {1, . . . , n}.
— The permutation θ in the ∀-prefix determines the unique renaming that may transform

T ′ into TS (G): It has to be θ−1, Xθ(i) 7→ Xi because the prefix has to become ∀X1÷n.

— Moreover, it implies that T ′
ρ(ik) ≡ (Xθ(i) → Xθ(σk(i))) → Ck , else it will not become Tik

after renaming.



ii. As a next step, we shall take into account that an automorphism is an isomorphism.

By Lemma 3.14, we may assume that

M ≡ λz : TS (G).λXθ(1)÷θ(n).λxρ(11)÷ρ(nm) : T ′
ρ(11)÷ρ(nm).zX1÷nM11÷nm,

where the terms λxik : T ′
ik .Mik are isomorphisms.

Let ρ(i′k′) = ik. By (i), T ′
ρ(i′k′) ≡ (Xθ(i′) → Xθ(σk(i′)))→ Ck . By Lemma 5.4, an isomorphism

between T ′
ρ(i′k′) and Tik exists only when T ′

ρ(i′k′) ≡ Tik . If it exists, it must be identity, i.e.,

Mik ≡ xik .

If Xθ(i′) ≡ Xi then i = θ−1(i′) and T ′
ik ≡ (Xi → Xθ(σk(θ−1(i)))) → Ck .

To complete the proof, we need to show that if θ(σk(θ
−1(i))) = σk(i) for all 1 6 i 6 n

then the permutation θ defines a colour-preserving automorphism of the graph CS (G).

We have already shown that θ must respect colours. It means that there is no directed

edge (i, j) in CS (G) of colour ck such that (θ(i), θ(j)) is an edge of another colour ck′ .

Thus, if θ does not define a colour-preserving automorphism of CS (G), then it does not

define an automorphism at all. In other words, there is a colour ck and an edge (i0, j0)

of this colour such that (θ(i0), θ(j0)) is not an edge, i.e., θ does not respect the adjacence

relation of CS (G).

By definition of CS (G), the pair (i0, j0) may be written as (i0, σk(i0)) and its image as

(θ(i0), θ(σk(i0))). Let i0 = θ−1(i), then (i, θ(σk(θ
−1(i)))) is not an edge of CS (G) while (i, σk(i))

is. However, as we established above, if M is an automorphism of TS (G), then the equality

σk(i) = θ(σk(θ
−1(i))) holds for all 1 6 i 6 n. ⋄

5.2. Dependent products

The construction described above for the second-order types may be applied with a slight

modification to the dependent products.

The group G and the graph CS (G) are as above.

Recall that K → K ′ in LF means (x : K)K ′, where x /∈ FV(K ′) (it is not really a

dependent product).

First, we define the kinds

C1 ≡ Type→ Type, C2 ≡ C1 → Type, . . . , Cm ≡ Cm−1 → Type.

They are well formed in empty context and represent colours.

Then we take the variables X1÷n : Type that will represent the elements of G and define

the kinds Kik ≡ (El(Xi)→ El(Xσk(i))) → Ck .

That is, Xi : Type, Xσk(i) : Type ⊢ Kik kind.

Instead of TS (G), the kind KS (G) (well formed in empty context) may be considered:

(X1÷n : Type)(K11 → . . . Knm → Type).

Theorem 5.6. The group of automorphisms of the kind KS (G) is isomorphic to the group

of automorphisms of the graph CS (G) and thus isomorphic to G.

Its proof follows the same schema as the proof of Theorem 5.5. Instead of Lemmas 3.14,

3.24 is used repeatedly. The formulation (and proof) of the latter is much more complex,



but only simple instances are really needed because in KS (G) there is only one ‘level of

dependency’ over X1÷n, and these variables are all of kind Type. (As a consequence, there

will be no substitution of non-trivial isomorphism terms into kinds.)

6. Conclusion

To the author’s knowledge, this paper is the first study of automorphisms of types.

Theorems 5.5 and 5.6 show that automorphisms of types in higher order and dependent

type systems are sufficient to represent arbitrary finite groups. Automorphisms in simply

typed calculi λ1βηπ∗ and λ1βη represent the groups of automorphisms of finite trees

(Theorem 4.12). The fact that the presence of surjective pairing and terminal object does

not change the class of representable groups is to some extent a surprise.

Automorphisms of types may be seen as a special kind of isomorphisms. Di Cosmo

in his book (Di Cosmo 1995) (chapter 7 on related works and future perspectives)

considered as principal applications of isomorphisms of types the library searches based

on types as keys, equational matching and unification of types, dynamic composition of

software components (based on matches performed modulo isomorphism), representation

optimization. Since 1995, when the book was published, the studies of isomorphisms

advanced essentially along these lines, see, e.g., Barthe (2005), Clairambault (2012),

Delahaye (1999), Fiore (2004) and Fiore et al. (2006).

The groupoid structure described in Section 3.5 points to the applications related to

coercive subtyping (Soloviev and Luo 2002; Luo et al. 2013).

Automorphisms do not change types, but change their elements, and this points towards

applications of another kind. It seems that they may be especially of interest in a

cryptographic context.

From a theoretical point of view, the main interest of automorphisms of types seems

to be in the fact that they are able to represent complex algebraic structures, such as

arbitrary finite groups. We already mentioned that it may be significant for foundational

programs, that use isomorphism of types.

As to the future work, an obvious direction would be to extend this study to other

systems of type theory. For example, it would be of interest to study the properties of

automorphisms in the extensions of the systems considered above, such as the system with

empty (or intersection) and sum types.

Theorems 4.2 and 4.12 permit to compute the group Aut(A) algorithmically. It would

be of interest to obtain similar algorithmic description for any type A in λ2βη, λ2βηπ∗ or

kind K in LF. We would like to investigate the possibilities to represent infinite groups in

type theory. Representation of other algebraic structures (semigroups, monoids, rings and

modules) may also be in the agenda.
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