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Abstract—This paper presents a sparse Bayesian regularization
technique for image restoration in parallel magnetic resonance
imaging (pMRI). This technique is based on a hierarchical
Bayesian model that solves the inverse problem of pMRI re-
construction by promoting sparsity using a Bernoulli-Laplace
mixture prior. A Markov Chain Monte Carlo (MCMC) sampling
technique is used to numerically approximate the target posterior.
Our model allows handling complex-valued data. Promising
results obtained on synthetic data demonstrate the performance
of the proposed sparse Bayesian restoration model to provide
accurate estimation of the target images.

Index Terms—Sparse Bayesian model, MCMC, parallel MRI
restoration

I. INTRODUCTION

Parallel imaging [1] with several receiver coils having dif-

ferent spatial sensitivity profiles has been the major innovation

in magnetic resonance imaging (MRI) since the early 1990s.

It allows faster acquisition of MRI images and improves its

spatial and temporal resolutions. Thus, the principle of recon-

struction in parallel imaging consists in combining images of

several receiver coils in order to reconstruct a global image.

Consequently, SENSitivity Encoding (SENSE) [2] is the most

robust commonly used reconstruction technique in the clinical

routine compared to the other existing techniques [3].

In this study, we focus on the SENSE reconstruction tech-

nique operating in the spatial domain. Therefore, parallel MRI

reconstruction/restoration based on the SENSE technique is

considered as an ill-posed inverse problem [4]. In practice,

the reconstructed images by SENSE are often tainted by severe

artifacts caused by the lack of precision in the sensitivity maps

estimation, the presence high level of the observation noise and

especially the use of high reduction factors.

On one hand, the resolution of this inverse problem regu-

larized SENSE methods has made significant progress dur-

ing the last decade [4]–[7]. On the other hand, the use of

ℓ0 + ℓ1 regularization for sparse signal and image recovery

has generated research interest in order to resolve the ill-posed

inverse problem in diverse areas such as biomedical imaging

reconstruction. Therefore, the inject priors based on mixtures

of Bernoulli and Laplace distributions in the observation model

allow to use ℓ0 + ℓ1 norms regularization resulting in a valid

estimation for the sparsity of the desired image as illustrated

in the recent works [8]–[10]. The Bernoulli-Laplace (BL)

based models developed in a Bayesian framework allow the

regularization parameters/hyperparameters to be automatically

estimated based on the observe data.

In this paper, we develop a sparse Bayesian regularization

technique for the complex-valued pMRI reconstruction based

on ℓ0 + ℓ1 norm priors for the estimation of the target image

with sensitivity errors during the reconstruction process.

The rest of this paper is divided into five sections. Section II

introduces the problem formulation of the parallel MRI re-

construction. Section III details the proposed Bayesian sparse

technique for pMRI restoration. Section IV shows the adopted

inference scheme. Section V dresses an experimental valida-

tion on a complex-valued synthetic dataset. Finally, Section VI

presents conclusions and some perspectives.

II. PROBLEM FORMULATION

The linear observation model of parallel MRI [5] in the

image domain at each spatial position x based on the SENSE

method is modeled as

d(x) = S(x)ρ(x) + n(x), (1)

where d represents the observation signal, ρ is the target image

to be estimated, S represent the sensitivity maps matrix and

n is the additive Gaussian observation noise.

For this case of inverse problem, the sensitivity maps operator

S is ill-conditioned. However, the pMRI reconstruction is

considered an ill-posed inverse problem. The main objective

of our work is to accurately estimate the desired image ρ from

the observation d with the presence of errors in the sensitivity

maps.

The following section presents the sparse Bayesian model

applied for regularized SENSE reconstruction while taking

into account the sensitivity maps errors. Note that, the pMRI

data are complex-values, and d, ρ and S are assumed to be

realizations of random variables.

III. HIERARCHICAL BAYESIAN MODEL

A. Likelihood

The acquisition noise in pMRI is assumed to be complex-

valued, additive and Gaussian. From this assumption, and

based on the observation model (1), the likelihood function

can be written as follows:

f(d|ρ, σ2
n) =

∏

x

exp
(

−‖d(x)− S(x)ρ(x)‖2Ψ−1

)

(2π)M/2|Ψ|1/2
, (2)



where M represent the number of pixels and Ψ−1 is the noise

covariance matrix. For the sake of simplicity, we can assume

that Ψ = σ2
nI , where I is the identity matrix.

B. Prior distributions

We detail here the prior distributions retained for the un-

known parameter vector θ =
{

σ2
n,ρ

}

to be estimated.

1) Prior distribution for σ2
n:

We use a conjugate non-informative prior distribution to

guarantee the positivity for the noise variance. Specifically,

an inverse-Gamma distribution with hyperparameters α and β

is used

f(σ2
n|α, β) = IG(σ

2
n|α, β) =

βα

Γ(α)

(

σ2
n

)−1−α
exp

(

−
β

σ2
n

)

,

(3)

where Γ(.) is the gamma function. In order to guarantee a

non-informative prior, the hyperparameters α and β are fixed

by 10−3.

2) Prior for ρ:

In order to promote the sparsity of the target image in the

original domain, we propose to use a Bernoulli-Laplace (BL)

mixture distribution. Since the processed data is complex-

valued, a BL model for the real and imaginary parts is used

separately. Assuming that every coefficient ρi(i = 1, ..., N)
can be expressed as ρi = ai + jbi (N denotes the number

of pixels in the target image ρ and j2 = −1) where ai and

bi denote the real and imaginary parts of ρi, respectively, and

assuming that the real and imaginary parts are independent,

the used prior can be expressed as:

f(ρi|ω, λ) = f(ai|ω, λ)f(bi|ω, λ)

=

[

(1− ω) δ(ai) + ω
1

2λ
exp

(

−
|ai|

λ

)]

×

[

(1− ω) δ(bi) + ω
1

2λ
exp

(

−
|bi|

λ

)]

, (4)

where δ(.) denotes Dirac delta function. As regards ω,

it denotes a weight belonging to [0, 1] that indicates the

rate of non-zero coefficients. The hyperparameter λ assesses

the sparsity level of the non-zero coefficients of both the

real and imaginary parts. It is worth noticing that different

hyperparameters could also be considered for each part.

In addition, we assume that the random variables ρi are

independent and squeeze out the BL prior of the target image

ρ as following :

f(ρ|ω, λ) =
N
∏

i=1

f(ρi|ω, λ). (5)

C. Hyperprior distributions

Our hierarchical model is build upon two layers. The second

level of hierarchy involves the hyperprior distributions for

the unknown hyperparameter vector denoted by Φ = {ω, λ}.
This subsection defines the hyperprior choice for these two

hyperparameters.

1) Hyperprior for ω:

For this hyperparameter, a uniform distribution on [0, 1] is

adopted:

f(ω) = U[0,1] (ω) . (6)

Such a distribution helps keeping a non-informative prior.

However, it is worth noticing that a more informative version

could be considered if further informations about the non-zero

coefficients rate in the target signal.

2) Hyperprior for λ:

We use a conjugate Inverse-gamma distribution IG(λ|κ, ϑ) for

the hyperparameter λ, where κ and ϑ has been set to 10−1 in

order to keep a non-informative prior:

IG(λ|κ, ϑ) =
ϑκ

Γ(κ)
λ−1−κ exp

(

−
ϑ

λ

)

. (7)

IV. BAYESIAN INFERENCE SCHEME

Based on the hierarchical Bayesian model detailed in Sec-

tion III, we use a maximum a posterior (MAP) strategy to

derive estimators for the model parameters and hyperparam-

eters. According to the Bayes’ theorem, the joint posterior

distribution of {θ,Φ} is proportional to the combination of

the likelihood and the priors distributions, and can be written

as:

f (θ,Φ|d) ∝ f (d|θ) f (θ|Φ) f (Φ|α, β, κ, ϑ) (8)

∝ f(d|ρ, σ2
n)f(ρ|ω, λ)f(σ

2
n|α, β)

× f(ω)f(λ|κ, ϑ).

Using the distributions adopted in the previous section, the

above posterior has the following form:

f (θ,Φ|d) ∝

∏

x

exp
(

−‖d(x)− S(x)ρ(x)‖2Ψ−1

)

(2π)M/2|Ψ|1/2

×
N
∏

i=1

[(

(1− ω)δ(ai) + ω
1

2λ
exp(−

|ai|

λ
)

)

×

(

(1− ω)δ(bi) + ω
1

2λ
exp(−

|bi|

λ
)

)]

× U (ω)×
ϑκ

Γ(κ)
(λ)

−1−κ
exp

(

−
ϑ

λ

)

. (9)

The high complexity of this joint posterior do not allow

deriving closed-form expressions of the target estimators.

Hence, we use an MCMC technique to numerically

approximate the target posterior. Specifically, we use a

Gibbs sampler [11] which proceeds by sequential sampling

according to the conditional distributions detailed below.

The proposed algorithm is executed repeatedly until estab-

lishing the convergence in order to provide a correct estimation

for σ2
n, ω, λ and ρ. It worth to note, in our experience, we

need 60 runs with 30 burn-in runs of our algorithm to ensure

convergence.



Algorithm 1: Gibbs Sampler algorithm for Sparse pMRI

Reconstruction.

Initialize ρ(0) ;

repeat

Sample σ2
n from f(σ2

n|d,ρ, α, β).
Sample ω from f(ω|ρ).
Sample λ from f(λ|ρ, κ, ϑ).
for i = 1 . . . N do

Sample ai from f(ai|d, ρ̃i, σ
2
n, ω, λ).

Sample bi from f(bi|d, ρ̃i, σ
2
n, ω, λ).

end

until convergence;

A. Sampling from f(σ2
n|d,ρ, α, β)

The conditional posterior distribution of σ2
n gives an

Inverse-gamma distribution defined as:

σ2
n|d,ρ, α, β ∼ IG

(

α+
M

2
, β +

‖d− Sρ‖22
2

)

, (10)

where ‖.‖ denotes the Euclidean norm. This conditional pos-

terior distribution is easy to sample.

B. Sampling λ from f(λ|ρ, κ, ϑ)

The conditional posterior distribution of λ is the following:

λ|ρ, κ, ϑ ∼ IG (κ+ ‖ρ‖0 , ϑ+ ‖ρ‖1) . (11)

where ‖.‖0 and ‖.‖1 refer to the ℓ0 pseudo-norm and the ℓ1
norm, respectively. This conditional posterior distributions is

easy to sample.

C. Sampling from f(ω|ρ)

The calculation of the posterior conditional distribution of

ω gives the following beta distribution :

ω|ρ ∼ B (1 + ‖ρ‖0 , 1 +M − ‖ρ‖0) . (12)

This conditional posterior distribution is easy to sample.

D. Sampling from f(ρ|d, σ2
n, ω, λ)

Note that, the real and imaginary parts of ρi are sampled

separately. The associated conditional posteriors are given

respectively by:

f(ai|d, ρ̃i, σ
2
n, ω, λ) = ωa

1,iδ(ai) + ωa
2,iN

+
(

µ+
a,i, σ

2
i

)

+ ωa
3,iN

− (

µ−a,i, σ
2
i

)

, (13)

and

f(bi|d, ρ̃i, σ
2
n, ω, λ) = ωb

1,iδ(bi) + ωb
2,iN

+
(

µ+
b,i, σ

2
i

)

+ ωb
3,iN

−
(

µ−b,i, σ
2
i

)

, (14)

where N+ (resp. N−) denote the truncated Gaussian

distribution on R
+ (resp. R−).

The target image ρ decompose onto the orthonormal basis

B = {e1, ..., eN} such that ρ = ρ̃i+ρiei where ρ̃i is obtained

by setting the ith element of ρ to 0 and vi = d − Sρ̃i and

si = Sei.

The weights
(

ωa
l,i

)

1≤l≤3
used in (13) are determined as

ωa
l,i =

ua
l,i

3
∑

l=1

ua
l,i

, (15)

where

ua
1,i = 1− ω,

ua
2,i =

ω
4λ2 exp

(

(µ+

a,i)
2

2σ2
i

)

√

2πσ2
iC

(

µ+
a,i, σ

2
i

)

,

ua
3,i =

ω
4λ2 exp

(

(µ−a,i)
2

2σ2
i

)

√

2πσ2
iC

(

−µ−a,i, σ
2
i

)

,

and

σ2
i =

σ2
n

‖si‖22
,

µ+
a,i = σ2

i

(

Real(vT
i si)

σ2
n

− 1
λ

)

,

µ−a,i = σ2
i

(

Real(vT
i si)

σ2
n

+ 1
λ

)

,

C
(

µ, σ2
)

=
√

σ2π
2

(

1 + erf
(

µ√
2σ2

))

.

Similar expressions are obtained for
(

ωb
l,i

)

1≤l≤3
.

V. EXPERIMENTAL VALIDATION

To demonstrate the efficiency of the proposed sparse

Bayesian reconstruction model, we apply our algorithm to

synthetic data of two different brain slices of size 256× 256.

We simulate poor acquisition conditions by using L = 8
receiver coils and a reduction factor R = 4. Moreover, we

simulate errors in the estimation of the coil sensitivity maps

by adding a Gaussian white noise with a variance equal to

the value 0.001. After simulating the acquisition process, a

complex Gaussian noise with variance σ2
n = 4 is added to

each simulated MRI data.

The ground truth images are illustrated in Fig. 1(a). Based on

the simulated data, the reconstructed images using the SENSE

method are illustrated in Fig. 1(b).

Fig. 1(c) illustrates the reconstructed slices using our proposed

method. It is worth noticing that 60 iterations were necessary

to reach the convergence, which took us about 11 minutes with

Matlab version R2016a implementation (Processor Intel core

i7- 7500U, up to 3.5GHz, RAM 8GB).

For the sake of comparison, results using a Tikhonov regular-

ization [12] and a Bayesian ℓ2 regularization [7] are provided.

The reconstructed slices are displayed in Figs. 1(d) and 1(e),

respectively.

From a visual point of view, we can easily notice that our

sparse model gives a less noisy images compared to the other

methods used for comparison. Moreover, it is clear that the

used sparsity promoting prior (the BL model) helps retrieving

images with low smoothing lever in comparison to the other

methods.

As regards quantitative evaluation, Tab. I provides comparisons

based on the signal to noise ratio and the structural similarity



criteria [13]. It is clear that the proposed method gives the less

noisy images that are closer to the ground truth. These results

are in a total agreement with the visual evaluation performed

based on the reconstructed images.

TABLE I
SNR AND SSIM VALUES FOR THE TWO RECONSTRUCTED SLICES.

Slice 1 Slice 2

SNR (dB) SSIM SNR (dB) SSIM

SENSE 19.27 0.80 18.49 0.79

Prop. model 28.85 0.95 27.15 0.94

Tikhonov 21.31 0.90 20.48 0.89

Bay. ℓ2 reg. 26.58 0.94 25.20 0.93

VI. CONCLUSION

In this paper, we present a new sparse Bayesian regulariza-

tion technique for parallel MRI restoration using a Bernoulli-

Laplace mixture prior that accounts for complex-valued data.

The proposed model has been validated on a synthetic dataset.

The obtained results show the good performance of our model

for the processing of complex pMRI data. Our future work

will focus on the validation of the proposed method on real

data with more slices and acquisition configurations (number

of coils, reduction factor,...).
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(a) Reference (b) SENSE (c) Prop. model (d) Tikhonov (e) Bayesian ℓ2 reg.

Fig. 1. Processed MRI slices: Reference slices (a), Reconstructed slices using SENSE (b), the proposed model (c), Tikhonov regularization (d), and the
Bayesian ℓ2 regularization algorithm (e).




