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Abstract

We use a multiscale approach to investigate the dynamics of fluctuations near

the critical point of sulfur hexafluoride (SF6) in microgravity. Rather than

increasing the fitting model’s complexity during the critical temperature cross-

ing, we used a different approach to finding the thermal diffusivity coefficient

(above critical temperature), which can then be distinguished from an effective

diffusion coefficient (below critical temperature). We first separate different

spatial scales from the original images using the Bidimensional Empirical Mode

Decomposition (BEMD) technique. The spatial scale represented by an Intrin-

sic Mode Function (IMF) image was analyzed using the Dynamic Differential

Method (DDM). The Intermediate Scattering Function (ISF) of each IMF was

used for computing the structure factor and the relaxation time of fluctuations.

We found that the first IMF returns over 90 % of the spatial and temporal

knowledge contained in the original image, providing thus thermal diffusivity
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coefficient above the critical temperature and effective diffusion coefficients be-

low the critical temperature very close in magnitude. The relaxation time asso-

ciated with the distinguishable structures observed in the second IMF could be

attributed to the fractal nature of fluctuations. and to light scattering at low

wavenumber during the stationary behavior and the transient evolution of the

critical fluid cell, which are not easy to detect in the original image. The third

order IMF presents no noticeable structure, and the associated relaxation time

is not physically significant.

Keywords: sulfur hexafluoride, microgravity, critical fluctuations, relaxation

time, diffusivity, effective diffusion coefficient
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1. Introduction

Dynamic Differential Microscopy (DDM) is an appealing experimental tech-

nique to extract the relaxation time of dynamical phenomena [1, 2, 3, 4]. It has

recently been applied to critical density fluctuations from light scattering im-

ages of systems approaching the liquid-gas critical point of pure fluids from the5

homogeneous domain [5]. In such experiments, the image processing performed

with the dynamic structure factor (DSF) algorithm produces results consistent

with the modern theory of critical phenomena. One prediction is that such sys-

tems are characterized by only one spatial scale of critical density fluctuations

related to their characteristic size, the critical correlation length, and a single10

critical relaxation time of density fluctuations [6, 7].

The recent extension of the classical theory of fluctuations to nonequilibrium

processes [8, 9] showed that the temporal relaxation of fluctuations could be di-

rectly obtained from fluctuation images. Such an approach led to experimental

advances in measuring thermal diffusivity coefficient and viscosity coefficient.15

The recent generalization of DDM to investigating the dynamics of nonequilib-

rium fluctuations was introduced by Cerbino and Vailati [1, 2, 3, 4]. DDM has

also been applied to investigating equilibrium fluctuations close to critical con-
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ditions in binary mixtures [10] and under nonequilibrium conditions in dense

colloids [11]. DDM method allows quantitative investigation of fluctuations20

in the fluid outside thermodynamic equilibrium, e.g., thermal, concentration,

or density gradients. DDM also allowed low wavenumber range investigation

where gravity dominates the dynamics of fluctuations, and new propagation

modes influences by viscosity and gravity were observed [7, 12]. The informa-

tion regarding the evolution and the scaling of the fluctuation relaxation time25

is contained in the Intermediate Scattering Function (ISF). For a pure fluid in

thermal equilibrium, the ISF is a Gaussian with width proportional to the dif-

fusion time. There are cases when ISF contains multiple time scales, and one

approach has been the fitting of ISF with multiscale exponentials to capture

each characteristic time separately [13, 14]. This approach allowed, for exam-30

ple, the separation of the thermal diffusivity coefficient from the mass diffusivity

[13].

However, when the experiments are performed within µK macroscopic fi-

nite time, and the finite size of the fluid observations can affect wavenumbers

whose time and length characteristics are substantially different. The effect of35

multiple temporal and spatial scales that governed the energy transfer between

probing photons and probed molecular systems is reflected in the existence of

multiple decay exponentials in the Intermediate Scattering Function (ISF) [13].

Therefore, the traditional approach to the multiscale analysis of the images is

by fitting the ISF with exponential functions with multiple characteristic times40

[13, 14].

Although there is always a tradeoff between parsimony and the goodness

of fit, here our goal was to both achieve low parsimony and good accurate

description of experimental data by separating the dominant spatial scale related

to critical density fluctuations with the characteristic size of the order of the45

correlation length from any other significantly different spatial scales. To achieve

this goal, we used the Bidimensional Empirical Mode Decomposition (BEMD)

algorithm for the multiscale separation of the original image in multiple Intrinsic

Mode Functions (IMFs) images. After obtaining the IMF images, we applied
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the DDM method to each IMF image set, as described in [5].50

In this paper, after the selected recalling of the main experimental setup

features in sections 2 and a brief description of optical features in section 3.1,

we focus the IMFs results in section 4. The first IMF for the shortest spatial

scale is related directly to the critical density fluctuations above Tc (section 4.1).

The second IMF with coarser structures can be linked (section 4.2) to the ini-55

tial stage of cluster formation and phase separation process (below Tc). The

relaxation time of fluctuations in the third-order IMF presents no noticeable

structure. Section 5 focuses on the possible mechanisms that could explain the

multiscale results. The concluding remarks in section 6 compare the results

of this multiscale analysis and the existing theoretical predictions for critical60

fluctuations. The two subsections of the Appendix briefly recall the main char-

acteristic features of the DDM technique (section 7.1) and the BEMD method

(section 7.2), with related references.

2. Experiments: setup aspects

Direct imaging of large density fluctuations near the liquid-gas critical point65

of SF6 in microgravity environment was performed with ALICE 2 facility [15]

on-board the MIR space station [16]. A cylindrical sample with an inner di-

ameter of 12 mm and a thickness of 4.34 mm was filled with electronic quality

SF6 corresponding to 99.98 % purity (from Alphagaz-Air Liquide). The fluid is

sandwiched between two sapphire windows with a 10 mm thickness each. The70

cell was housed inside a large sample cell unit made of electronic copper, the lat-

ter itself housed inside a removable thermostat device. The thermal controller

resolution was ±10 µK, and the stability was better than 40 µK h−1 [16]. The

fluid inside the cell was initially filled at the critical density with the scalar order

parameter M = (ρ− ρc)/ρ = (0.00± 0.02) %. For a complete description of the75

ALICE 2 facility and these microgravity experiments, see [15].

In this automated pioneering microgravity experiment, the SF6 sample was

initially homogenized at 1 K above its critical temperature. The temperature
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was steeply and slowly decreased in a series of successive, fast temperature

quenches with logarithmically decaying amplitudes. Each thermal quench was80

followed by long temperature relaxation periods with logarithmically increasing

durations, until crossing the critical temperature. The final decreasing tem-

perature timeline consisted of a series of 0.3 mK thermal quenches, with two

hours relaxation period, performed from a few milliKevins in the one-phase re-

gion above the critical temperature (see Fig. 1A). In addition to this automated85

temperature monitoring of the SCU, the fluid temperature was also measured

with three small thermistors placed inside the fluid sample volume cell, which

gave local fluid temperature status at two acquisition rates: 25 Hz and 2 kHz.

Hereafter we are only interested in the sample observation recorded during

the last, fast 0.3 mK thermal quench, which starts from the homogeneous domain90

above the critical temperature to finish into the two-phase region below critical

temperature [5, 17], as shown in the inset of Fig. 1A. The full description of

this last temperature quench was already presented elsewhere [5, 17]. The fluid

volume observation during the two hours of the relaxation period following the

final 0.3 mK temperature quench revealed unambiguous nonhomogeneous liquid95

and gas domains within the sample fluid image, which were due to the SF6

phase separation. This two-phase state was evidenced by comparing against

the homogeneous full image of the cell after the temperature relaxation period

of the previous 0.3 mK temperature quench. The critical temperature resulted

somewhere between the upper (UP, i.e., T > Tc) plateau and the lower (DOWN,100

i.e., T < Tc) one (Fig. 1), and its exact location was previously determined with

the histogram method in [17] and by using DDM in [5].
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Figure 1: Multiple 0.3 mK temperature quenches cooled down the supercritical fluid and

eventually stepped through the critical point (see the inset). (A) The last 0.3 mK temperature

quench that stepped through Tc has the temperature marked in Celsius degrees versus time

in seconds (measured from the beginning of the experiment). (B) ALICE 2 marks each frame

with a set of control numbers regarding the measured temperature, elapsed time, frame index,

etc. For example, the left middle set of numbers gives the time elapsed since the beginning of

the experiment: 80 h 15 min 53 s and 20/25 (there are 25 frames per second).

3. Experiments: Optical aspects and image processing

3.1. Optical aspects

The following description of the optical characteristics refers to the 30 years105

old technologies used in the ALICE 2 facility here recalled anticipating a possible

application of the BEMD method to the upgraded images which can be recorded

from the real-time monitoring of the current and future similar experiments

performed with the DECLIC and DECLIC-EVO instruments on-board of the

International Space Station (ISS) [18, 19, 20, 21, 22, 23, 24, 25].110

ALICE 2 has a modular optical design with a “source optical box” containing

the laser, different filters, and photodiodes, the “thermostat box” that includes

the sample cell unit, and a “collecting optical box” that contains the CCD and

additional photodiodes [16]. The complete optical scheme is detailed in [15],

and the optical performances are precisely analyzed for other experiments, such115

as turbidity measurements [16].

The fluid sample cell is visualized through light transmission normal to the

windows using LED illumination with a spectrum centered around 660 nm. A
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632.8 nm He-Ne laser with about 1 mW maximum power is also used for other

purposes (turbidity measurements). Laser stability after 1 h was estimated to120

be better than 0.3 %. ALICE 2 instrumentation works with a wide field of

view (10 × 10 mm2 object image) at 30 µm resolution and an additional mi-

croscope objective at 3.5 µm resolution. All images analyzed in this study were

obtained with the optical microscope, 3.5 µm resolution, that visualized a small

0.9 mm× 0.9 mm object image in the medium focal plane of the fluid layer,125

centered on the optical axis of the fluid sample and recorded at 25 frames per

second. Each image contained the selected recording time marker, e.g., 80 h

15 min 53 s and frame 20 of 25 (288953.80 s) for the image illustrated in Fig. 1B

corresponds to an image frame in the middle of the UP region. Instead of carry-

ing over all the time digits, the original images used in this study were ordered130

in two disconnected sets where time origin corresponds to the first image of the

first set. The UP image set contains 160 images recorded during the stationary

temperature plateau above the critical temperature (T > Tc). That corresponds

to a period covering the range 0-6.4 s, before the beginning of the temperature

quench (see Fig. 2). For the first 87 frames, the microscope focused on the135

sapphire windows (Fig. 2B). For the rest of the images, the focus plane was in

the middle of the cell (Fig. 2C). The second set, named DOWN, contains 500

images recorded in the final transient period of the temperature quench, where

the fluid temperature is just below the critical temperature (T < Tc). That

corresponds to a period covering the range 25.5 s to 44.6 s, which consists of the140

very early stage of the expected phase separation process (see Fig. 2). For all

DOWN images, the microscope focused in the middle of the cell.

Fig. 2 shows two original images (B, C), selected from the UP set (T > Tc)

and two original images (D, E) selected from the DOWN set (T < Tc), with

their corresponding position along the temperature timeline marked with B, C,145

D, and E in Fig. 2A. This figure illustrates the noticeable optical similarity of

the grey level structures both for UP and DOWN regions. The first two images

(panels B and C) reflect the contribution of the critical density fluctuations

above Tc, where the fluid is in its homogeneous, one-phase equilibrium state.
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Figure 2: An enlarged version of the thermal quench of 0.3 mK that steps through the critical

temperature (A). The first image on the UP plateau (B) is the time reference (the horizontal

axis in panel A). Fluctuation images taken on UP thermal plateau (B and C) show no phase

separation. Fluctuating images at the beginning (D) and end (E) of the region called DOWN

show that clusters start forming in this early stage of phase separation.

The other two images (panels D and E) are recorded during the early stage of150

the expected nucleation and growth of the two-phase domains below Tc (see

also [5]). The distinction is thus essential because the physics behind these two

phenomena is very different: one is stationary, and the other is transient.

For the subsequent image analysis, the recording time marker shown in

Fig. 1B, and all other tags, were eliminated by cropping the most extensive155

possible rectangular area of the image. Here, we have maximized the useable

image size cropped from the original image of 352×240 pixels2 by using 188×238

pixels2 (total 44744 pixels) instead of the 192×192 pixels2 (total 36864 pixels)

square images cropped out the original image in [5]. As a result, the image

analysis focused on a 0.66×0.83 mm2 central region of the fluid sample.160

For the Fourier spectra calculations, we should also distinguish between the

number of pixels of the CCD sensor Npixel and the number N of points of

the Fast Fourier Transform (FFT). The N -point FFT has a frequency domain

resolution of 2π
N∆x and covers the wavenumbers uniformly from the shortest qmin,

which corresponds to the largest spatial size of the image lCCD = Npixel ×∆x,165

to the largest possible wavenumber that corresponds to the smallest possible

resolved distance in the image, i.e., ∆x. The minimum possible wavenumber
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in a Fourier transform corresponds to the largest possible spatial dimension

of the image, i.e., qmin = 2π/w, where w is the smallest side of the image.

In our experiments, w = magnification × lCCD, where magnification is the170

magnification factor of the microscope (in our case, 0.882), and lCCD represents

the size of the image formed on the CCD sensor. With lCCD = Npixel× 3.5 µm

= 188 pixels × 3.5 µm = 0.658 mm, and magnification = 0.882 one obtains

qmin ≈ 108 cm−1. In the following, the dimensionless wavenumber is simply

q∗ = q/qmin.175

In this study, we increased the resolution of FFT from 256 points in [5] to

1024 points in this study. Since the linear size of images is over 128 but less than

256 pixels, we could use again (as in [5]) the 265 point FFT. Here, we used a

1024-point FFT to add more details to our construction of the structure factor

and its relaxation time. The reason is that we wanted a better, more accurate,180

estimate of the thermal diffusivity coefficient above Tc, before applying the same

approach in the case of an effective diffusion coefficient below Tc. The distinction

is essential because very near, but above Tc, there is a single component system

where thermal diffusion of the stationary density fluctuations is the dominant

phenomenon. Very close, but below Tc, the system is the heterogeneous site of185

nonequilibrium relaxation processes for which an effective diffusion coefficient

can be defined.

Due to its radial symmetry in the wavenumber space (qx, qy), only the ra-

dial average of the power spectrum versus the magnitude of the wavenumber

q =
√
x2
x + q2

y was considered. The results obtained for small wavenumbers190

are affected by significant errors because of the small azimuthal radius, which

determines a poor ensemble statistical average. Due to the larger cropped area

and the increased FFT resolution, the number of statistically independent sam-

ples at the maximum wavenumber increased from 400 in Ref. [5] to over 2000

in this study. Indeed, at large wavenumbers, the number of pixels that act as195

independent samples in a single ring of the azimuthal average of the power spec-

trum increases as πn, in which n is the number of the channel varying from 1

to N/
√

2.
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3.2. Image processing using Dynamic Differential Microscopy (DDM) technique

This section reviews the main points about the DDM method, especially200

its application in the image processing above Tc, as used in our previous work

[5]. From the Fourier spectra of successive differences between images taken

at a fixed delay time δt, it was possible to determine the structure factor of

critical density fluctuations and their relaxation time [7, 12, 26], which allowed

us to determine the thermal diffusivity coefficient [5, 17]. Theoretically, the205

structure factor S(q) of the critical density fluctuations in a homogeneous single-

component fluid near its critical temperature is expected to be a Lorentzian:

S(q) =
1

(1 + q2ξ2
+)
,

where ξ+ is the correlation length of the fluctuations above the critical tem-

perature (T > Tc), and q = 2π/l is the wavenumber with l being the linear

dimension of the fluctuating domains [27]. The typical relaxation time τ of210

critical fluctuations above Tc should obey Kawasaki [28] formula:

τ−1 ≈ Dq2, (1)

when ξ+q << 1 (hydrodynamic regime), where D is the thermal diffusivity

coefficient. On the other hand, for ξ+q >> 1 (critical regime), this relaxation

time should scale as:

τ−1 ≈ Aq3,

with A = constant [28, 29, 30].215

To confirm that the experiments were performed in the hydrodynamic regime,

we estimated the correlation length for each experimental temperature. The cor-

relation length is given by ξ = ξ+((T −Tc)/Tc)−ν , with ξ+ = 1.8× 10−10 m, Tc

= 318.733 K, and ν = 0.6304 [16, 31]. For the stationary temperature plateau

above Tc before the 0.3 mK temperature quench, the temperature distance to220

Tc was previously estimated to be 270 µK [5, 17]. The correlation length is then

ξ ≈ 10−4 cm.
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The following step needs to recall our previous estimation [5, 17] of the

characteristic size l of the observed fluctuating density domains, precisely based

on the relaxation time obtained from the DDM method and shown in Fig. 3.225

This experimental result was similar to part (b) of the theoretical Fig. 3 of

Ref. [5], which is described by the above theoretical Eq. 1. We also must

notice that the measured decreasing rate of the relaxation time at large values

of q was slightly greater than the theoretical slope of -2 suggested by Eq. 1, as

shown by the dashed line of slope -2.3 in Fig.4b of Ref. [5]. The location of the230

relaxation time peak defines the critical wavenumber qc. In this experiment,

ξ+q << 1 [5, 17], which means that the fluid was in the hydrodynamic regime.

Therefore, the relaxation time of the density fluctuations should obey Eq. 1 for

wavenumbers q > qc [28].

To capture the behavior of the relaxation time over a broader range of235

wavenumbers, on both sides of the critical wavenumber qc, we fitted the re-

laxation time of fluctuations with [6, 7]:

τ−1 = Dq2

(
1 +

(
qc
q

)4
)
, (2)

which reduces to Eq. 1 for large wavenumbers. When using Eq. 2, one can

extract both the diffusion coefficient D and the critical wavenumber qc. Such

results are exemplified in Fig. 3, where the continuous green curve corresponds240

to fitting the solid black square (image set B from Fig. 2), and the solid blue

line corresponds to fitting the solid red circles (image set C from Fig. 2). As

noted in Fig. 3, qc remains constant, within the limits of the experimental errors,

which means that the characteristic size of fluctuations is constant during the

UP plateau. The caveat of fitting the data with Eq. 2 over the entire range of245

wavenumbers is that at low wavenumbers, the values of τ(q) are scattered due

to poor data statistics (see Fig. 3). One could avoid such issues by only fitting

the data at large wavenumbers with the reduced formula given by Eq. 1. In

this case, the straight line with a slope of -2 (see the continuous white line in

Fig. 3) gives the diffusion coefficient D. In addition to the above direct fitting250

of the relaxation time data to Eq. 2, or the reduced Eq. 1, a quick estimate of
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the thermal diffusivity coefficient can also be obtained from the peak value of

the relaxation time shown in Fig. 3. Indeed, at the peak of the relaxation time

curve, (τ = τmax, q = qc) and Eq. 2 reduces to:

τmax =
1

Dq2
c

,

with D = 1
τmaxq2c

as a resulting value.255

As shown in [5], it was also possible to repeat a similar fitting procedure of

the relaxation time obtained from the DDM method applied to the DOWN set

of original images recorded below Tc, where the approximated correlation length

is ξ− = ξ+/2. However, it was essential to note that the resulting fitted values

of D correspond then to the ones of an effective diffusion coefficient related to260

the fluid physical behaviors that are undoubtedly nonstationary.
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Figure 3: Correlation time of fluctuations for the two representative images from the UP

region, i.e., images B (solid black squares) and C (solid red circles) from Fig. 2. The peak of

the correlation time τ determines the critical wavenumber qc. At low wavenumbers, the data

are significantly scattered due to poor statistics. The fitting curve from Eq. 2 is shown with a

continuous green line overlapped with the image set B (solid black squares). For wavenumbers

larger than qc, the log-log plot can be approximated with a straight line (see the white line

overlapped with the image set B) with a slope of -2 as predicted by Eq. 1.

4. Results

4.1. Main features of the image processing using the DDM method applied to

the UP set

The above applications of the DDM method were mainly based on the final265

determination of the relaxation time versus the scattered light’s wavenumber.

We note, however, that the experimental decay of the relaxation time is not

precisely matching the expected theoretical one, as shown in Eq. 2.
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Our experimental determination of time-dependent structure functions Cm(q, δt)

clearly shows that it saturates for a delay time δt below one second (see Fig. 4A).270

The time-dependent structure functions Cm(q, δt) shown in Fig. 4A described

how the spectral power changes with the delay time δt between images for a

fixed wavenumber q, and it is given by:

Cm(q, δt) = 2(S(q) ∗ T (q) ∗ (1−G(q, δt)) +B(q)), (3)

where S(q) is the structure factor of the fluctuations, T (q) is the transfer func-

tion of the optical setup, B(q) is a background contribution to structure factor,275

and G(q, δt) is the Intermediate Scattering Function (ISF). Unless the optical

transfer function T (q) is explicitly given, the DDM method can only determine

the product T (q) ∗ S(q), which we called ST (q). The corresponding Interme-

diate Scattering Function (ISF) of the image set C, shown in Fig. 4A has an

apparent linear decay (in linear-log axis) for the small delay time (below one280

second) and a slightly different decay exponent afterward (see Fig. 4B). The ex-

perimental structure factor ST (q) from the UP set of original images (Fig. 4C)

appears similar to the theoretical prediction of Fig. 3a in Ref. [5]. Similarly,

the experimental relaxation time of fluctuations τ shown in Fig. 4D follows the

theoretical prediction from [5]. As predicted theoretically, at large wavenumbers285

(200 ≤ q∗ ≤ 400), the relaxation time follows a power law, which is suggested

in the log-log plot shown in Fig. 4D by the straight lines with slopes of -2.15 ±
0.04 (continuous white line in Fig. 4D) and -1.91 ± 0.04 (black dashed line in

Fig. 4D) with adjusted R2 = 0.999 for each fitting. Based on the above theo-

retical description [5], it is also noticeable that the wavenumber dependence of290

ST (q) does not match the expected theoretical function over the entire range.

For example, at low wavenumbers, the experimental structure factor starts di-

verging, while the theoretical prediction shows an almost constant ST (q). As a

direct consequence, it seems possible to break this theoretical modeling intro-

ducing (at least) one more different temporal or spatial scale exponents.295
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Figure 4: The time-dependent structure functions Cm(q, δt) saturates after a relatively short

delay time δt between successive images (A). The saturation delay time is determined by

the relaxation time of fluctuations and depends on the wavenumber. The two representative

examples of the UP region correspond to images B and C shown in Fig. 2. (B) The linear-log

plot of the Intermediate Scattering Function (ISF) G(q, δt) of the image set C from panel A

shows that it may be possible to capture its shape with two decaying exponentials. The dashed

lines suggest the best fits with exponential functions across different regions of the delay time

δt. The inflection point, marked by the vertical dashed lines, depends on the wavenumber. (C)

The log-log plot of the structure factor ST (q) shows a power-law dependence with a slope of

approximately -2 for large wavenumbers, i.e., q∗ > 250, which corresponds to q = q ∗×qmin =

250 cm−1 × 108 cm−1 = 27 000 cm−1. At intermediate wavenumbers, ST (q) has no structure,

whereas it diverges at low wavenumbers due to poor statistics. (D) The relaxation time of

fluctuations τ shows a clear power-law dependence at large wavenumbers (200 ≤ q∗ ≤ 400)

with the slopes close to the theoretically predicted value of -2.

As we showed in [5], the theoretical structure factor is given by

S(q) =
S0

1 +
(
q
qc

)2 , (4)

15

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
where S0 is the structure factor value at very low (q → 0) wavenumbers, and qc

is the critical wavenumber. In the log-log plot, the theoretical S(q) looks almost

constant at low and intermediate wavenumbers and decays as a power-law with

a -2 exponent for large wavenumbers (see Fig.3a in [5]). The experimental data300

in Fig. 4C is similar to theoretical predictions form [5], i.e., at large wavenum-

bers, the power-law exponent is -2.45 ± 0.02 for image set B (continuous white

line overlapped with solid black squares in Fig. 4C) and -2.34 ± 0.02 for image

set C (black dashed line overlapping with the solid red circles). At intermediate

wavenumbers, the structure factor ST (q) is almost constant as predicted theo-305

retically, whereas, at very low wavenumbers, the experimental structure factor

diverges due to poor data statistics.

The saturation of time-dependent structure functions Cm(q, δt) shown in

Fig. 4A and the dependence of the structure factor on the wavenumber q provide

additional insight into the characteristic relaxation time of the critical density310

fluctuations in the homogeneous domain (also compare with Fig. 3 of [5]). In

such a theoretical framework of the critical phenomena, only a single charac-

teristic time can govern the exponentially critical decaying of the ISF G(~q, δt)

from Eq. 3, as follows:

G(~q, δt) = exp

(−δt
τ(q)

)
, (5)

When plotted in linear-log coordinates, the slope of Eq. 5 equals the inverse315

of the characteristic relaxation time of critical density fluctuations in the homo-

geneous domain (see Fig.4C). The experimental data show that the linear-log

plots of the ISFs appear to have two different linear regions, which suggest

that there may be two different relaxation times involved in the critical density

fluctuations. To elucidate this aspect, we used the BEMD decomposition to320

understand the shape of the ISF better.
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4.2. Comparison with the main features of image processing using the BEMD

algorithm applied to the UP set

The above observations reported in Figs. 3 and 4 suggest that fluid physics

could be better described by adding another time scale, which is different from325

the characteristic time of the critical density fluctuations. We now use the

BEMD algorithm to compute the new IMF image sets from the UP set of original

images. We only considered three IMFs plus the residual image, accounting

then for three spatial scales, i.e., two IMFs to capture the two times scales of

the ISF, plus one more IMF to make sure that the third IMF contains no useful330

information regarding the relaxation time of the critical density fluctuations.

An example of the first three images of the IMFs plus the image of the residue

is shown in Fig. 5. They contain all the local fluid structures from the finest

to coarsest since BEMD is a data-driven model algorithm that adjusts itself to

the characteristic spatial scale for each image. A brief review of the (B)EMD335

image decomposition method is presented in subsection 7.2 of the Appendix.

A B C D

Figure 5: The first three IMFs for the 100th image of the UP region are IMF1 (A), IMF2

(B), and IMF3 (C) with the residual image shown in panel D. Examples of original images

are in Fig. 2B and C. Above the critical temperature, the finest spatial scale IMF1 (A) shows

relatively small size fluctuations that correspond to the finest spatial scale of the fluctuations.

The coarse spatial scales (B and C) show long-range correlation patterns of fluctuations.

Usually, the residue (D) shows the amount of nonuniform illumination in the original image.

Therefore, we expect that the first mode associated with Fig. 5A corresponds

to the dominant critical correlation length scale of the critical density fluctu-

ations very close to the critical point. Conversely, any other unknown modes
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can be contained in the second IMF2 (Fig. 5b) and the third IMF3 (Fig. 5c).340

The residue shows the effect of the remaining nonuniform illumination of the

original image (Fig. 5d).

We have shown in subsection 4.1 that the time scale separation suggested by

the shape of the ISF of Fig. 4 results naturally from the data-driven multiscale

separation of the original images produced by the BEMD algorithm. Therefore,345

applying the DDM method to each IMF, a corresponding ISF is obtained, which

can then be described by a single exponential, as shown in Fig. 6 from the ISF

versus the lag time δt in linear-log diagrams. In Fig. 6, the first IMF contains

similar information regarding the single characteristic time (τ) of the critical

density fluctuations. Each ISF of Fig. 6 was fitted to a single exponential decay,350

and the resulting decay times are shown in Fig. 7 in a τ versus q log-log diagram

together with the relaxation time of fluctuations in the original image before

BEMD decomposition (solid squares). The four panels in Fig. 6 correspond to

the normalized wavenumbers shown in Fig. 4C, i.e. q∗ = 128, q∗ = 256, q∗ =

384, and q∗ = 512. While most ISFs can be fitted with a single exponent,355

for some wavenumbers, the original ISF seems to be better captured by two

exponents, such as in Fig. 6A and B. We also notice in Fig. 6 that the exponents

(slopes of log-linear straight lines) for the original images (slid squares) and

IMF1 (solid circles) are significantly closer to each other than to higher-order

IMFs. The slope of IMF3 (solid inverted triangles) and additionally, the spread360

of values for IMF3 (see Fig. 6) is significantly different from the reset of the

ISFs, which lead us to ignore it at this step of the analysis.
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Figure 6: For each ISF of the original images shown in Fig. 4C, the corresponding ISF of

the BEMD decomposition are given for different wavenumbers in q∗ = 128 (A), q∗ = 256 (B),

q∗ = 384 (C), and q∗ = 512 (D). The linear-log plot of the Intermediate Scattering Function

(ISF) versus the delay time δt shows that it could be fitted with two different exponents for

the original images, i.e., one for low delay times δt and a larger exponent for longer delays. At

large δt, the ISFs become scattered due to image de-correlation. This effect is exacerbated as

the wavenumber increases, i.e., as the spatial scale of fluctuations decreases, suggesting that

small fluctuations de-correlate over a smaller delay window.

In Fig. 7, we notice that the relaxation time of fluctuations in the original im-

ages (solid squares in Fig. 7) overlaps quite well with the relaxation time of fluc-

tuations in the first IMF (solid circles in Fig. 7), at least for large wavenumbers365

(over 6000 cm−1). Their apparent decay slopes at large wavenumbers are also

similar and slightly larger than -2. Noticeable differences between the original

data and IMF1 occur at low wavenumbers where the IMF1 is below the values of

the original data’s relaxation time but without distinction in the peak value and

its related qc value. IMF2 (solid upside triangles in Fig. 7), as IMF3 (solid upside370

triangles in Fig. 7), reveal any characteristic dynamics associated with notice-

able larger spatial structures, except that IMF2 presents a possible “bump” at

low wavenumbers (below 5000 cm−1). We notice from Fig. 7 of the UP region

that the correlation time of fluctuations in IMF3 is about (0.09± 0.02) s, rep-

resenting two video frames. This means that the large-scale structures seen in375

Fig. 5C are short-leaved, and they dissipate quickly. The structures correspond-

ing to IMF2 (see Fig. 5B) have a longer life span of (0.15± 0.03) s, representing

four video frames. Finally, the shot-scale structures seen in IMF1 (Fig. 5A)

have the longest life span of (0.23± 0.07) s, representing six video frames on

average. These values represent the “background” correlation time of fluctua-380

tions for the respective IMFs. Close to the critical wavenumber qc ≈ 8000 cm−1,
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the correlation time of fluctuations in IMF1 is longer than 10 frames. For such

large structures, such as those associated with IMF2 and IMF3 (Fig. 5 B and

C), to dissipate so quickly, they must have a relatively larger diffusion coeffi-

cient than small spatial scale and long-leaved structures from IMF1 (Fig. 5A).385

As a result, we can only observe the correlation time for the most persistent

fluctuations when the DDM is applied to the original images that contain all

three IMFs (plus the residual). The same is true for the DOWN region where

the “background” correlation times (0.14± 0.03) s for IMF2, and (0.22± 0.07) s

for IMF1, while the correlation time estimate for IMF3 was not reliable (see390

Fig. 10).

Furthermore, we also notice from Fig. 7 that the correlation time of fluc-

tuations in the original images is the sum of correlation times extracted from

individual IMFs:

τoriginal = τIMF1 + τIMF2 + τIMF3, (6)

and we conjecture that the relationship is valid for an arbitrary number of IMFs.395
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Figure 7: The relaxation time of fluctuations versus wavenumber for UP images starting

around the snapshots shown in Fig. 2. The first IMF (solid circles) captures more than 90%

of the shape of the relaxation time of fluctuations in the original image (solid squares). The

second IMF (solid upright triangles) has a hard-to-distinguish “bump” at low wavenumbers.

The third IMF has no structure (solid inverted triangles). As a result, the fluctuations can

be described by only two time scales: one for very fine fluctuations in IMF1 and a coarser

fluctuation in IMF2. The solid arches show the fitting curve given by Eq. 2 for the IMF1 and

IMF2 around the peak wavenumber qc.

4.3. Extension of the BEMD method to the DOWN set

In a similar use of the DDM method for the DOWN set of the original image,

we have also extended the application of the BEMD algorithm to compute the

three IMFs for this DOWN set. The results are presented in Figs. 8, 9, and 10

and are similar to the above Figs. 5, 6, and 7 for the UP set.400
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A B C D

Figure 8: The first three IMFs for the 400th image of the DOWN region are IMF1 (A), IMF2

(B), and IMF3 (C) with the residual image shown in panel D. Examples of original images

are in Fig. 2B and C. Above critical temperature (panels A-D), the finest spatial scale IMF1

(A) shows relatively small size fluctuations, which correspond to the finest spatial scale of

the fluctuations. The coarse spatial scales (B and C) show long-range correlation patterns of

fluctuations. Usually, the residue (D) shows the amount of nonuniform illumination in the

original image.
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Figure 9: The lin-log plot of the Intermediate Scattering Function (ISF) versus the delay time

δt for DOWN region shows that it could be possible to fit the ISF of the original images (solid

square) with two different exponents, i.e., one for low delay times δt and a larger exponent for

large delays. At large δt, the ISFs become scattered due to image de-correlation, although the

transition is smoother than for the UP region shown in Fig. 6. Additionally, the de-correlation

tends to occur around the same delay δt across different wavenumbers. For each ISF of the

original images shown with solid squares, the corresponding ISF of the BEMD decomposition

are given for different wavenumbers in q∗ = 128 (A), q∗ = 256 (B), q∗ = 384 (C), and q∗ = 512

(D).
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Figure 10: The relaxation time of fluctuations versus wavenumber for DOWN images starting

around the snapshots shown in Fig. 2. The first IMF (solid circles) captures more than 90%

of the shape of the relaxation time of fluctuations in the original image (solid squares). The

second IMF (solid upright triangles) has a hard-to-distinguish “bump” at low wavenumbers.

The third IMF has no structure (solid inverted triangles), which suggests that two time scales

can describe the fluctuations: one for very fine fluctuations in IMF1 and a coarser fluctuation

in IMF2. The solid arches show the fitting curve given by Eq. 2 for the IMF1 and IMF2

around the peak wavenumber qc. The error bars are only shown in Fig. 7 for data of the UP

region.

We need to make two notes regarding the data fitting shown in Fig. 10:

First, we found that qc slowly drifts towards smaller values [17], suggesting

that the characteristic length l of the fluctuating clusters increases and leads

to phase separation. Below Tc, the critical wavenumber qc corresponds to the

size of phase separating domains. Our previous analysis showed that qc slowly405

decreases over time almost linearly and that ξ+q << 1 [5, 17].

Second, as we notice from Fig. 10, the peak of IMF2 shifted to about
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3000 cm−1, a lower wavenumber than to the8000 cm−1 in IMF1. However, be-

cause the wavenumber contribution to diffusivity/diffusion coefficient is squared,

the above 2.7 times wavenumber decrease from IMF1 to IMF2 translates into a410

seven-fold increase of D. Additionally, there is a decrease in the relaxation time

between IMF1 and IMF2 by a factor of 2. As a result, the combined effect of si-

multaneous decreased peak relaxation time τmax and peak wavenumber qc is an

increase by about an order of magnitude of the diffusivity/diffusion coefficient

obtained from IMF2 compared to IMF1 (see Fig. 11).415

The “bump” at low wavenumbers for IMF2 is very hard to separate from

the background noise. Indeed, for IMF1 (see, for example, Fig. 10A), the back-

ground relaxation time at very large wavenumbers is about 0.207 ± 0.016 s while

the “bump” of IMF1 is at around 0.372 s. Even by subtracting three standard

deviations, the peak relaxation time decreases from 0.372 s to 0.324 s, which is420

still well above the background value of 0.207 s. In other words, the “bump” of

IMF1 is well-defined and statistically significant. However, for IMF2, the back-

ground (almost constant) value of the relaxation time at very large wavenumbers

is about 0.15 s ± 0.01 s while the “bump” of IMF2 is at around 0.18 s. In this

case, subtracting three standard deviations from the 0.18 s peak value of the425

relaxation time leaves us at the background noise level. While three standard

deviations above the background is a reasonable ground for fitting the relaxation

time of IMF2 data with Eq. 2, the errors on the diffusivity/diffusion coefficients

are systematically higher than for IMF1 (see Fig. 11).

24

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
Time (s)

D
 (

cm
   

/s
)

2

original

IMF1

IMF2

A1

DOWN

UP

10
-7

-8
10

0 10 20 30 40

cr
it

ic
a

l w
a

v
e

n
u

m
b

e
r 

( 
x

 1
0

0
0

 c
m

   
 ) B1

-1

4

6

8

10

Time (s)

0 10 20 30 40

0
.3

 m
K

A2

45.5938

45.5940

45.5942

T
e

m
p

e
ra

tu
re

 (
  
C

)
o

Time (s)

0 10 20 30 40

DOWN

UP

0
.3

 m
K

B2

45.5938

45.5940

45.5942
T
e

m
p

e
ra

tu
re

 (
  
C

)
o

Time (s)

0 10 20 30 40

Figure 11: Diffusivity (above Tc) and effective diffusion coefficient (below Tc) (A1) and

the critical wavenumber (B1) for the original images (solid square), IMF1 (solid circles), and

IMF2 (solid triangles). The diffusivity/effective diffusion coefficient obtained from the original

image is consistent with previous results [5]. The diffusivity/effective diffusion coefficient for

the finest fluctuations (solid circles in A) in the images is close to the values from the original

images (solid squares in A) as they dominate the density fluctuations. There is almost one

order of magnitude larger diffusivity/effective diffusion coefficient (solid triangles) associated

with the long-range correlated structures. The finest fluctuations in the system have the

largest critical wavenumber (solid circles in B), consistent with the fact that the wavenumber

is inversely proportional to the length scale of fluctuations. The origin of time is the crossing

of Tc, i.e., the negative time values refer to UP plateau (T > Tc), and positive time values

indicate DOWN plateau (T < Tc). The lower panels show the ideal temperature profile. The

UP and DOWN rectangles on the temperature profile corresponding to rectangles shown in

panels A1 and B1 (the actual temperature profile measured by thermistors inside the fluid is

shown in Fig. 3A.

5. Discussion430

Should there be any separate spatial scale IMF2 above Tc? We investigated

the possibility that the values shown in Fig. 11A as diffusion coefficients for

IMF2 (see the solid triangles) could be related to a viscosity mode. Previously
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studies on nonequilibrium systems under concentration and gravity gradients

[7, 12] used a more general relaxation time of fluctuations than Eq. 2:

τ =
1

Dq2

(
1 +

(
qc
q

)4
)−1

+
2

ηkinematicq2
,

where ηkinematic is the kinematic viscosity. Based on [32], we estimated the

value of the dynamic viscosity near the critical point (see Eq. 6.8 in [32]):

ηdynamic = η0(Q0ξ0)y/νε−y,

where η0 = (39.9± 0.4) µPa s, with (Q0ξ0)−y/ν = 1.30± 0.04 for SF6, and y =

0.04. For a temperature quench of T −Tc =0.3 mK and a critical temperature of

Tc =(318.769± 0.003) K, the reduced temperature ε = (T−Tc)/Tc = 9.411e−7

gives ηdynamic =5.347× 10−5 Pa s. The corresponding kinematic viscosity is

ηkinematic = ηdynamic/ρc= 7.324× 10−8 m2/s with ρc =(730± 7) kg/m3. Even435

if the critical temperature distance T − Tc is between 46 µKand270 µK as pre-

dicted in [17, 5], the kinematic viscosity would be in the range 7.895× 10−8 m2/s

to 7.355× 10−8 m2/s. These theoretically estimated values of the kinematic

viscosities are three orders of magnitude larger than the value of the diffusiv-

ity/diffusion coefficients shown in Fig. 11A for IMF2. Therefore, it is unlikely440

that IMF2 captured the viscosity mode.

A possible explanation of the presence of a second diffusion coefficient as-

sociated with IMF2 could be due to the fractal nature of fluctuations. Many

researchers acknowledged that “The traditional models for phase separation,

nucleation and growth, and spinodal decomposition, are thermodynamic mod-445

els. These models successfully describe the essential experimental observations

in most systems. There is reason to believe, however, that unique, possibly frac-

tal, patterns exist in the earliest stages of phase separation where kinetic growth

processes are active.” [33] Molecular dynamics simulations [34] reported cluster

formation in supercritical Lennard-Jones fluid theoretically explained based on450

percolation theory [35]. Above Tc, large clusters form as the density approaches

the critical density, following Fisher’s droplet model [36]. “The supercritical
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fluctuations show a large and fractal-like structure of the cluster, which has lit-

tle density dependence” [36]. The existence of a large spatial scale IMF2 above

critical temperature could be due to percolating transition loci[37, 38] and the455

more recent hypothesis of a supercritical mesophase [39, 40]. According to the

supercritical mesophase hypothesis, below Tc, there is a familiar mixing of liq-

uid-gas phases. Above Tc, “there is a mesophase confined within percolation loci

that bound the gas and liquid phases by higher-order discontinuities”[37, 38].

The multiscale analysis allows us to separate the two patterns in the relax-460

ation time of fluctuations and fit them separately with the simplest possible

model. Eq. 2 allowed us to extract information about diffusion at different spa-

tial scales. The critical wavenumber qc in Eq. 2 is roughly estimated by the

wavenumber at the peak of the relaxation time curves shown in Fig. 7. For

wavenumbers larger than the value qc of the critical wavenumber, the approx-465

imate fitting function from Eq. 2 becomes τ = 1/(Dq2), shown with a dashed

line and marked with a slope of -2 in Fig. 7. For smaller wavenumbers, the

relaxation time’s slope is +2 (see Fig. 7). The relaxation time error bars are

only shown for the UP region (see Fig. 7A) to avoid cluttering the second panel

where the large error bars for IMF3 would cover the data for IMF1, IMF2, and470

original images.

Because most of the information about the relaxation time of fluctuations

is contained in the first IMF1, it masks the contribution of the second IMF.

Without first breaking the images into IMFs by using the BEMD technique,

we would not have known that there are multiple modes in the original image.475

Finally, the relaxation time of the third IMF (see solid inverted triangles in Fig.

7) has no structure a ss all wavenumbers.

The diffusion coefficient of the original images (see solid squares in Fig. 8A1)

matches our previous results [5]. We show on the same plot both the diffusivity

for UP and the effective diffusion coefficient for DOWN results with the origin480

of time set at the first image of the UP region.

Two new findings are worth noting: (1) for temperatures approaching Tc

from above, the diffusivity coefficient has a decreasing trend, and (2) on the
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DOWN plateau below Tc, there is an increasing trend for the effective diffusion

coefficient. The effective diffusion coefficient remains approximately constant485

around (2.21± 0.08)× 10−8 cm2/s during the first 5 s of DOWN region and then

increases as (1.01± 0.30)× 10−8 + (1.71± 0.25)× 10−9 ×time. The diffusivity

(above Tc)/effective diffusion coefficient (below Tc) obtained by applying DDM

to the first IMF (see solid circles in Fig. 8) closely follows the diffusivity/effective

diffusion coefficient values obtained after applying DDM to the original set of490

images (solid square). At the same time, the diffusivity/effective diffusion coef-

ficient obtained by applying DDM to the IMF2 (see solid triangles in Fig. 8A1)

is significantly larger (by one order of magnitude) than that obtained from the

original images and is almost constant at around (4.28± 0.11)× 10−7 cm2/s.

For the first IMF (solid circles in Fig. 8B), the critical wavenumbers are495

smaller than those for the original image (solid squares in Fig. 8B1). This is

consistent with the relaxation time of the fluctuations plot shown in Fig. 7.

Indeed, the relaxation time of the shortest spatial scale of fluctuations, i.e.,

IMF1, peaks at larger wavenumbers compared to IMF2 (see Fig. 7). Since the

original image’s relaxation time combines the two relaxation times of IMF1 and500

IMF2, its peak is slightly shifted towards lower wavenumbers compared to the

peak of IMF1.

This shifting effect is shown in Fig. 8B1. At the same time, the fact that the

critical wavenumbers of the original image are not midway between the critical

wavenumbers corresponding to IMF1 and IMF2, respectively, suggests that they505

may contribute to the total relaxation time with different weights (as seen from

Fig. 7).

The diffusivity is made of two parts: a background contribution and a critical

part [5]. The most straightforward approach to computing critical contribution

is based on the Stokes-Einstein equation [41]:

Dc =
RkBT

6πηξ
,

where R is a universal constant close to unity, kB is Boltzmann’s constant, η is

fluid viscosity, and ξ = ξ+ε
−ν is the correlation length.
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Direct measurements of the viscosity of SF6 in the critical region are rel-510

atively scarce. One of the first studies done by Henry et al. [42] examined

viscosity data reported for other fluids near the critical point (xenon, CO, ar-

gon, krypton, nitrogen, oxygen, ethane, methane, and propane) and established

a relation for the corresponding states. Combining results from [42] with the

low-density SF6 viscosity data [43, 44] yields η(ρc, Tc) ≈ 3.47 × 10−5Pa · s515

[45, 46]. Wu and Webb [46] found that for a reduced temperature range of

1.22 × 10−4 ≤ ε ≤ 6.90 × 10−2, there is no critical anomaly in share vis-

cosity of SF6 and η = (425 + 14.5(Tc − T ) ± 15) × 10−7Pa × s. A recent

review of SF6 data by Guder and Wagnera [47] used the following critical

point values Tc =(318.7232± 0.0020) K, pc=(3.754 983± 0.000 200) MPa, and520

ρc =(742.3± 0.3) kg/m3 (see [48] for SF6 critical region data around 50 mK of

Tc).

Based on our previous results [5, 17] we know that the ξ+ = 1.8 × 10−10

m, ξ− = ξ+/2, the temperature of the DOWN region is about 47 µK below

Tc based on histogram method [17] and in the range of 15 µK to 42 µK based

on DDM method [5]. As a result, ξ = ξ−ε−ν =1.8 µm to 3.7 µm, which places

the critical part of the diffusion coefficient in the range Dc = 1.5× 10−8 cm2/s

to 3.0× 10−8 cm2/s. The agreement of the above crude estimation with our

experimental findings shown in Fig. 8 is very good compared to the original

and IMF1 data. More accurate estimates of the diffusion coefficient can be

obtained with more elaborated corrections derived in [49] and [32]. Table VII

of [32] summarizes known experimental data on SF6 diffusivity variation with

temperature differences ∆T = T − Tc in the range of 198.2 mK down to 1.4 mK

above Tc. We found that the log-log plot of the data (not shown) follows a linear

trend with

log10D = −0.167± 0.03 + (0.76± 0.02) ∗ log10∆T,

with a reduced χ2 = 0.025, a coefficient of determination R2 = 0.989, and an

adjusted R2 = 0.989. In our experiments, the temperature quench was 0.3 mK,

and the DOWN region was estimated between 47 µK [17] and about 15 µK to525
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42 µK [5] below Tc. As a result, extrapolating the above linear trend in log-

log coordinates from [32], the diffusion coefficient in our experiments should

be in the range 2.1× 10−8 cm2/s to 3.1× 10−8 cm2/s. Again, our experimental

findings concerning the effective diffusion coefficient shown in Fig. 8 based on

this BEMD-DDM technique are in the range consistent with other experiments530

when compared against the original and IMF1.

6. Concluding Remarks

Using the MIR space station’s microgravity conditions and the performing

thermal and optical environments of the ALICE 2 facility, we have observed

the SF6 critical density fluctuations data extremely close to Tc [15, 16]. We535

previously used the DDM method [5] with a single characteristic time (single

exponential) and fitted the ISF of the critical density fluctuations in the homo-

geneous domain (UP) above the critical point of SF6. The DDM method was

extended to the nonhomogeneous domain (DOWN), introducing an effective

diffusion coefficient whose physics appeared complex to understand due to the540

transient nature of the various possible thermal relaxation processes. A closer

inspection of the ISF for UP and DOWN regions shows that, although a single

exponential covers quite a wide range of delay times, it is not perfect, espe-

cially regarding the current theoretical description of the critical phenomena.

Therefore we used another tool, named the Bidimensional Empirical Mode De-545

composition (BEMD) algorithm, to separate the spatial scales of the physical

phenomena that can contribute to light scattering imaging. Although we used

the same dataset as in [5], there are fundamental differences in the approach to

time scale separation that emerged naturally from the spatial scale separation

with BEMD. The most exciting aspect consists of the clear identification at the550

first order of the IMF, of the unique relaxation time of the well-defined critical

density fluctuations that are unambiguously the dominant microscopic physics

in the UP region. Although the fundamental molecular mechanism that drives

fluctuations at all scales ultimately relies on the same microscopic interaction
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potentials among molecules, it does not preclude short spatial scale fluctua-555

tions from having a different relaxation time than the large critical scale of the

density fluctuations. Therefore, further dynamic investigations using the DDM

method at a higher-order IMFs concern only physics, which may have quite

large characteristic spatial scales.

Finally, as the BEMD algorithm is data-driven and fully unsupervised, we560

have here shown that its use is also suitable for the analysis of locally nonlinear

and nonstationary data, such as the one obtained from a quick thermal quench

that stepped through the critical temperature in our experiment. The BEMD

decomposes the spatial frequency components into a set of Intrinsic Mode Func-

tion (IMFs). The highest spatial frequency component of each spatial location565

is in the first IMF, and the second-highest spatial frequency component of each

spatial position is in the second IMF, etc. We found that the individual IMFs

are described by single-exponential ISF, which provided a natural temporal scale

separation. The main focus is on the first two IMFs: the first IMF for the short-

est spatial scale is related directly to critical point fluctuations. The second IMF570

reveals a coarser structure determined by the initial stage of cluster formation

and phase separation below Tc. The relaxation time of fluctuation in the orig-

inal image (see solid squares in Fig. 7) is captured accurately (more than 90%

cross-correlation) by the first IMF, i.e., the finest spatial scale of fluctuations.

This suggests that very close to the critical point, the shortest scale fluctuations575

dominate and the diffusivity (above Tc) or the effective diffusion coefficient (be-

low Tc), respectively, obtained from the relaxation time of fluctuations in the

original image is almost identical with that obtained from the first IMF. It is

worth mentioning that the spatial scale that corresponds to the first IMF is of

the order of magnitude of the correlation length, i.e., ξ+ ≈ 2µm (above Tc) and580

progressively decreases to ξ− = ξ+/2 (its value below Tc). The relaxation time

of fluctuations in the second IMF corresponds to the coarser image texture most

likely related to small clusters that start appearing below Tc. Indeed, the criti-

cal wavenumber of IMF2 is less than half of the IMF1 (compare solid triangles

(IMF2) against solid circles (IMF1) in Fig. 7). As a result, the characteristic585
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length of the fluctuations in IMF2 is at least twice the value of IMF1 without

any reasonable physical understanding.

A significant improvement in the accuracy of our fitting could be obtained

by increasing the resolution and the sampling time of data acquisition in future

microgravity experiments. While the current background relaxation time for590

IMF2 (measured at large wavenumbers) of 0.18 s is well above the 0.04 s delay

between successive frames, it is less than one frame distance from the 0.15 s

background relaxation time. A faster data acquisition would allow us a more

accurate estimation of the diffusivity/diffusion coefficients.

7. Appendix595

7.1. Brief review of Differential Dynamic Microscopy (DDM) method

Cerbino and Trappe [1] and Giavazzi et al. [50] revolutionized the DLS

technique by using an ordinary white-light microscope for the study of the

wavenumber-dependent dynamics of colloidal dispersions with their new Dif-

ferential Dynamic Microscopy (DDM) method. The method is described in

detail for near-field measurements in the seminal work of Cerbino and Vailati

[2]. The DDM uses differences between images separated by a fixed delay time

δt, called fluctuation images i(~r, δt), to extract information regarding the cor-

relation changes’ time scale. To this end, the power spectrum I(~q, δt) of the

fluctuation images i(~r, δt) maps the real space correlations among particles into

wavenumber space ~q (see [5] for the implementation details of the DDM al-

gorithms). Here q is related to the “length scale” λ of the correlation among

particles through q = 2π
λ . The power spectrum I(~q, δt) is related to the Inter-

mediate Scattering Function (ISF), G(~q, δt), of the system through [1, 50]:

I(~q, δt) = A(~q)(1−G(~q, δt)) +B(~q),

where A(~q) and B(~q) are determined by the static scattering properties of the

sample. The ISF, G(~q, δt), characterizes how quickly a structure is lost over

a length scale λ. Generally, G(~q, δt) monotonically decays to zero over time
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because of dissipative flows. It can be shown that in simple Newtonian fluids600

the ISF is a Gaussian, i.e. G(~q, δt) = e−
q2

4 <r
2(δt)> with the average displacement

< r2(δt) >= 4Dδt, where D is the diffusion coefficient.

The new method we proposed here is a data-driven multiscale DDM in the

sense that the spatial scales are naturally separated based on the image content.

To achieve this goal, we used the Empiric Mode Decomposition (EMD) to break605

the original image into different spatial scales called Intrinsic Mode Function

(IMF) and a residual quantity.

We can thus identify individual contributions of different relaxation times

of fluctuations at different scales. We focused mainly on the first two IMFs:

the first IMF for the shortest spatial scale is related directly to critical point610

fluctuations (above Tc), and the second IMF reveals a coarser structure that is

determined by the initial stage of cluster formation and phase separation (below

Tc).

7.2. Brief review of the Empirical Mode Decomposition (EMD) method

The definition of EMD and the related theory were proposed by Huang615

[51]. Among other advantages over traditional spectral analysis methods, such

as Fourier or wavelets, the EMD applies even to nonlinear and nonstationary

signals. At the same time, the resultant IMF features are linear and stationary

[52]. The EMD has been used, among other research areas, in earthquake

analysis [53, 54], structural diagnosis [55, 56], characterization of nonstationary620

biological processes [57], mechanical fault diagnosis [58, 59], and ocean waves

analysis [60]. The algorithm is as follows. The EMD is a data-driven and

adaptive approach to remove oscillations (IMFs) successively through repeated

subtraction of the baselines.

1. Let us designate the original signal x(t), with t > 0 as the original residual625

time series r0(t) = x(t) and set the iteration index for IMF to i = 1 (see

Fig. 12A1 continuous line).

2. Identify all the extrema in ri−1(t) and connect the sequential local maxima

maxi−1(t) (respective minima, mini−1(t)) using a cubic spline to derive
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the upper. In Fig. 12A1, the maxima envelope is shown with a dashed630

line and of minima with a dashed-dotted line.

3. Derive the baseline, mi−1(t), by averaging the upper and the lower en-

velopes (see Fig. 12B1 dashed line), namely:

mi−1(t) =
maxi−1(t) +mini−1(t)

2
.

4. Extract the temporary local oscillation hi(t) = ri−1(t) − mi−1(t) (see

Fig. 12C1 dashed line). The signal fluctuation hi(t) must represent a pure

“oscillation about the mean,” i.e., it must satisfy two conditions: (i) in the

whole data set, the number of extrema and the number of zero-crossings635

must either be equal or differ at most by one, and (ii) at any time, the

mean value of the envelope of the local maxima and the envelope of the

local minima must be zero. An oscillatory function that satisfies these two

conditions is called an Intrinsic Mode Function (IMF).

5. If the mean of hi(t) is not zero, repeat steps (2)-(4) on the temporary local640

oscillation by setting ri−1(t) = hi(t) and iterating until the mean of hi(t)

is zero. Then, hi(t) is treated as an IMF, noted as IMFi(t) (see dashed

line in Fig. 12C1).

6. Compute the new residue: ri(t) = ri−1(t)− IMFi(t) (see Fig. 12A2 con-

tinuous line).645

7. Increment the IMF index i and return to step (2) to generate series of

IMFs and a residue until the residual ri(t) is a constant, or a trend, or

has no more than three extrema (see Fig. 12B2-C2).
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Figure 12: The original signal (continuous line in A1) has a smooth upper envelope (dashed

line in A1) and lower envelope (dashed-dotted line in A1). The two envelopes from A1

determine the mean envelope in B1 (dashed line). By subtracting the mean envelope of B1

from the signal, one obtains the first IMF in C1 (dashed line). The difference between the

signal (continuous line in C1) and the first IMF (dashed line in C1) gives the first residue in

A2 (continuous line). The process depicted in panels A1-C1 is repeated with the signal shown

in A2 until one obtains the second IMF in C2. This one-dimensional signal was generated

from an analytic function to demonstrate the use of the EMD technique. The BEMD follows

the same steps, except the envelopes are two-dimensional surfaces.

The iterative sifting process of the EMD technique can be continued until

either the residue or the intrinsic mode becomes less than a predetermined

small number, or the residue becomes nonoscillatory. For a sifting process that

identifies n IMFs, the original signal is simply

x(t) =
n∑

i=1

IMFi + rn,

where rn represents the nonoscillatory trend of the signal. Usually, in the case of

bidimensional signals (images), the last residue represents the prevailing trend650

in images (background) due to nonuniform illumination and could be used to

correct the images.

Since its inception, many significant improvements to EMD have been made,

e.g., extra Gaussian noise was added to data in Ensemble Empirical Mode De-
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composition (EEMD) to alleviate the aliasing phenomenon [61]. Eliminating the655

residual noise introduced in EEMD was achieved recently by Complementary

Ensemble Empirical Mode Decomposition (CEEMD) theory [62]. The EMD

was expanded to Bidimensional Empirical Mode Decomposition (BEMD) [63]

and applied to remote sensing [64]. The BEMD is a data-driven method, and

it requires no pre-determined filter or wavelet functions [65]. The BEMD has660

also been applied to texture extraction and image filtering [66], finding the gold

mineral deposition [67] and tin-copper polymetallic ore fields [68] from gravity

anomalies captured by satellite images, image denoising [69, 70], content-based

image retrieval [71], and fusion of multispectral and remote sensing [72, 73].

There are various implementations of the BEMD method, depending on the665

surface interpolation algorithm used. For one-dimensional signals (time series),

one of the standards methods for connecting minima/maxima is cubic spline

interpolation, see, for example, the emd() standard Matlab function. For two-

dimensional signals (images), there are multiple possible ways of constructing

the interpolation surface that connects all minima (lower envelope) and maxima670

(upper envelope), respectively. To extract the two-dimensional IMFs during the

sifting process ones could use radial basis function [74] or multigrid beta-splines

[75] to construct the two-dimensional lower and upper envelopes, respectively.

Others treated multidimensional data as a collection of one-dimensional signals

[76]. According to such an approach, two-dimensional spatial data or images675

I(x, y) are a collection of one-dimensional series in both x- and y-directions. As

a result, each of the one-dimensional slices is decomposed with the EMD algo-

rithm by following the seven steps described above. Subsequently, the slice of

a similar scale is reconstructed to produce a two-dimensional pseudo-IMF-like

component [76].680
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