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Abstract—Modern cloud platforms rely on containers in order
to deploy applications and allocate resources to them. Users of
Container-as-a-Service platforms interact with another layer of
abstraction, container orchestrators, to set resource allocations.
Regarding the CPU allocation, orchestrators can use one of two
strategies to apply the specified allocation: (1) the allocation
of cores, reserved for one application; or (2) the allocation of
quotas, which can be provided by any of the available processors.
However current orchestrators only use the quota strategy.

We benchmark both, demonstrating that the quota strategy
can show up to 68% of degradation in our experiments when
compared to the first strategy. We identify that this degradation
comes from violating what we call the What You See Is What You

Get (WYSIWYG) principle: a container’s view of its available
resources is wrong under the quota strategy.

We state that a better trade-off can be found in combining
these two strategies, and we design a hybrid resource allocation
algorithm that can be integrated into any container orchestrator.
Our evaluations show that it prevents resource management
problems that come from allocating cores, while canceling the
performance overhead associated with the quota allocation strat-
egy that violates the WYSIWYG principle.

Index Terms—container, container orchestrator, performance,
predictability, CPU allocation

I. INTRODUCTION

Cloud services are now established as an important part of

the expenses of many companies. Managing applications on

virtual machines (VMs) as imposed by the IaaS (Infrastructure

as a Service) [1] cloud model is a difficult task [2], [3]. The

user is the one that has to provide fault tolerance, scalability

on workload increase, etc.; even the deployment process

can be arduous. Thus many companies adhere to the PaaS

(Platform as a Service) model [4] where most of these tasks

are provided by the platform. To this end, PaaS providers

mainly rely on containers [5] (LXC [6], Docker [7]. . . ) and

orchestrators [8] (Swarm [9], Ansible [10], Kubernetes [11]. . . ).

Containers ease application packaging while orchestrators

automate both the deployment and the reconfiguration (fault

handling, scalability and more) for the entire application

lifetime. Such a PaaS is often referred to as Container as

a Service (CaaS). Examples of CaaS are Amazon Elastic

Container Service [12], Google Kubernetes Engine [13] or

Microsoft Azure Container Service [14].

Scope: performance predictability is the ability for an

application to always reach the same performance level under

the same workload. It has recently been highlighted as one of

the main issues in the cloud [15], [16]. Our work is focused on

performance predictability for CaaS. To enforce performance

predictability, the user who deploys containers assigns to each

of them a fixed amount of computation capacity. Computation

capacity allocation to a container is then generally implemented

by the orchestrator using two parameters: (1) request, which is

the minimum capacity to guarantee; and (2) limit, which is the

maximum capacity that the container can use. In the context

of a predictable CaaS, request equals limit.

Problem: there are two ways to enforce a computation

capacity to a container: CPU sets and CFS quota.1 The CPU

sets method restrains a container to a given set of CPU cores.

Regarding the CFS quota method, containers share all the

machine’s cores and the OS scheduler ensures that the total

CPU time used by each container is kept under its quota (seen

as an amount of CPU time). The CFS quota method is easier

to implement, because it relies solely on the OS scheduler

instead of managing sets of cores as in the CPU sets method.

This is why it is used by almost all orchestrators to enforce a

computation capacity to a container. The issue with CFS quota

is that it can shatter the predictability guarantee for some

types of applications. Indeed in practice, many applications

auto-configure themselves [17], [18] based on the perceived

available resources: they scan the system for resources, and

then determine their own settings. For instance, the number of

spawned worker processes depends on the number of cores.

Therefore, when deployed in a container placed under an

arbitrary computation resource limit with CFS quota, the

application’s view of the available resources is wrong: the

WYSIWYG principle is broken.

What You See Is What You Get. The WYSIWYG principle

states that whenever a containerized application probes its

environment, it obtains a faithful view of its available resources.

For example, in a container limited to 200% of CPU usage

— i.e. gets two cores worth of CPU time on each scheduling

period — and deployed on a 56 cores server, an application

will believe it may use 56 cores and will auto-configure itself

with 56 worker processes. As we demonstrate in this paper,

this misconfiguration results in both performance degradation

and unpredictability. For such types of applications, we see

that CPU sets is an appropriate method to enforce computation

capacity.

The violation of the WYSIWYG principle also affects other

resources, such as memory [19]. This paper focuses only on

the effect on CPU and proposes a solution specifically crafted

for this resource.

1Please refer to section II-B1 for a more thorough description.
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Contributions:

• an analysis and comparison of computation capacity

enforcement using CFS quota and CPU sets, based on

micro- and macro-benchmarks, at the performance and

resource management levels;

• an algorithm for orchestrators to manage both methods and

best use them; this algorithm is adapted to Kubernetes [11],

a widely used orchestrator;

• a discussion on how to determine the appropriate method

depending on the containerized application;

• an evaluation of our prototype.

Section II gives related background information. Section III

presents the motivations and an assessment of the problem.

Section IV describes the smart allocation algorithm and how it

can be integrated with Kubernetes. Section V shows evaluation

results. A review of the related work is given in section VI.

Finally we draw our conclusion in section VII.

II. BACKGROUND

In this section we give relevant background information on

the technologies of containers and orchestrators, as well as

their resource allocation systems.

A. Containers

Containers are the embodiment of Operating System-level

virtualization. They are isolated representations of the host

OS, at the level of different resources, and embed software to

which they show a reduced view of the host’s capabilities. For

instance, a container can provide an application with a different

filesystem hierarchy or a different process hierarchy, in such

a way that the first process in a container gets the program

identifier (PID) 1. It has access only to the network interfaces

(NICs) that are also inserted into the container. Moreover, a

process in a container may have lower memory limits, or PID

limits, or CPU usage quota, etc. For instance, when limiting

a process to a CPU set, the scheduler makes sure to only

schedule the process on the allocated CPUs. Container isolation

and limitation are implemented using namespaces and control

groups respectively, which are both mainstream Linux kernel

features. This paper studies container resource limitation, thus

we focus on control groups.

In this picture, container engines such as Docker [7] manage

processes along with their layers of isolation and their resource

limits. They may add facilities to instantiate containers: for

instance, building a special filesystem image to populate the

isolated filesystem of a container, or managing virtual NICs for

containers. Besides, orchestrators such as Kubernetes [11] are

container managers: they provide another layer of abstraction

to represent applications as an architecture of containers and

manage their life-cycle.

B. Computation capacity limitation

This paper studies computation capacity limitation applied

to containers in a CaaS. This is managed at two levels: (1) the

container engine (2) and the orchestrator. For illustration, we

consider Docker and Kubernetes, respectively.

1) Allocation at the container engine level: the container

engine allocates CPU resources by two means: CFS quota

or/and CPU set. Using the CFS quota mechanism, the con-

tainer is assigned an amount of CPU time that the host OS

scheduler — which for Linux is by default the Completely Fair

Scheduler [20] (CFS) — allocates to the container’s processes

on every scheduling period. With this allocation mechanism,

the container sees all cores present on the machine. As for

the CPU set mechanism, it limits the container to a given set

of cores, so it can only see those cores. It can also be used

to pin a container to specific NUMA nodes or specific cores

provided by Simultaneous multithreading (SMT).

As the reader can deduce, the CFS quota mechanism is

more flexible than CPU set in the perspective of resource

management. Indeed, it allows a fine-grained allocation in the

sense that a container can request a portion of a core capacity.

Moreover, CFS quota simplifies the work of top-level resource

managers such as orchestrators because most of the work is

done by the OS scheduler.

In addition, CPU shares can be used to set a minimal

resource allocation relatively to other containers. However we

do not use this feature (see below) because it is unpredictable

— a container may use more than its share if there are free

resources — and is not meant to allocate a definite amount of

resources — it is relative to the shares of other containers.

2) Allocation at the orchestrator level: Kubernetes (as about

any orchestrator) allows to statically specify the CPU needs

of a container in terms of requests and limits. As argued in

section I, these two parameters are equal in the context of a

performance predictable CaaS, which is our research scope.

Thus we ignore the requests part and its implementation that

uses the mechanism of CPU shares described above.

To enforce a container’s booked computation capacity, almost

all orchestrators rely on the CFS quota mechanism because it

is both easy to implement and perfect for efficient resource

utilization. Of particular interest is a beta feature of Kubernetes

to statically allocate CPUs to containers, that is to say allocate

CPU resources using CPU sets rather than CFS quota. We

describe in the following section how using CPU sets indeed

addresses the performance and predictability issue; but we also

argue why it cannot be used as-is because of its main inherent

drawback of only allocating whole CPU cores.

III. MOTIVATION AND PROBLEM ASSESSMENT

We show in this section that relying on CFS quota as current

orchestrators do, is not the best way of providing performance

predictability [15], [16] to all types of applications.

To this end, we compare the two mechanisms using

benchmarks: Stream [21] and the PARSEC [22] benchmark

suite. We also evaluate the in-memory analytics benchmark

from CloudSuite [23], [24], a real-world Apache Spark [25]

application that computes movie recommendations. The testbed

is a 12 non-HyperThreaded, NUMA Intel® Xeon® E5–2420

v2 cores Dell machine running ArchLinux (Linux 4.15.15) and

Docker 18.01-CE. However in order to avoid effects of the

NUMA architecture, we set the benchmarks to only run on the
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Figure 1: Distribution of Stream execution over 100 runs.
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Figure 2: In-memory analytics benchmark execution time,

normalized over its execution time under CFS QUOTA.

same NUMA node, i.e. on 6 cores. The computation capacity

allocated to the container under test is 350%, meaning that the

container is allowed to use the equivalent of the computational

power of 3.5 cores. The container under test is executed under

three separate setups:

• CFS QUOTA: the container has access to 6 cores, cor-

responding to the capacity of an entire NUMA node.

However, CFS QUOTA is used to limit its CPU shares to

350%. This is the common practice;

• CFS QUOTA + MANUAL CONF: same as above, with the

only difference that the application is manually configured

to spawn a maximum of 4 threads (i.e. the closest integer

number of threads greater than the allocation);

• CPU SET: CPU set is used to limit the container to 4

cores of the same NUMA node, and a CFS quota is also

applied to actually limit the container to 350%. No manual

configuration is applied.

Figure 1 shows the evaluation results for the Stream

benchmark; each of its 100 individual runs is represented,

to highlight the unpredictability issue. We can see that under

CFS QUOTA, the benchmark exhibits two performance levels,

illustrated by the hourglass-like shape of the points. This is

not the case when using the CPU set mechanism, where points

are mainly around the same performance level and are more

clustered. This unpredictability issue with CFS QUOTA stems

from the self-configuration feature of the evaluated benchmark

when it decides the number of threads to spawn based on

the number of cores (i.e. all the NUMA node’s cores with

CFS QUOTA). However, due to the use of CFS quota that the

application is not aware of, its actual computing capacity is

much lower. This mismatch, this violation of the WYSIWYG

principle, is devastating for such hardware-dependent appli-

cations. This analysis is confirmed by executions under the

CFS QUOTA + MANUAL CONF setup.
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Figure 3: PARSEC benchmarks execution times, normalized

over their respective execution time under CFS QUOTA.

Indeed we observed that this setup provides predictable

results, as shown in the center plot of fig. 1. These results are

similar to those obtained under the CPU SET setup, reported in

the last plot, which suggests that CPU set is a suitable solution

performance-wise. In addition to the unpredictability issue, we

also observed that CFS quota lowers the performance of the

tested applications in comparison with the two other setups:

Stream performs 31.8% better under CPU SET. Further, results

for CloudSuite’s in-memory analytics benchmark are reported

in fig. 2 (normalized median, 10% and 90% over 10 runs).

The computation resource limit is set on the Spark worker

container. For this example of a real application, the results

are similar: the CPU SET setup outperforms the CFS QUOTA

setup by 68%, and shows a better predictability.

Finally, results for the PARSEC benchmark suite are rep-

resented in fig. 3 (same data as for in-memory analytics).

Performance improvements under the CPU SET setup range

from 5.5% (FERRET) to 27.6% (DEDUP). Indeed, for a few

benchmarks the violation of the WYSIWYG principle does

not translate into a significant performance degradation.

Synthesis: a containerized application that performs auto-

configuration is misguided by the difference between the real

allocation, and the results of its scan of the system. This results

in over-threading, which is characterized by thread management

overhead, cache dirtying, etc. [26]–[30]. However, certain types

of applications are agnostic about the allocation mechanism;

some containers also embed background workloads like logging,

for which performance degradation is not as big an issue. For

such applications, it is better to use CFS quota in order to

benefit from its efficient resource utilization capabilities. Indeed,

CPU set has a coarse resource allocation granularity (a whole

core) and is therefore inefficient for achieving fractional CPU

limits. Furthermore, allocating sets of CPUs works against the

scheduler because it is more constrained in making scheduling

decisions: by definition, each container can only ever be

scheduled on its CPU set.

Backed by our experiments, we advocate for the use of the



CPU set method when applicable. The next section presents a

hybrid allocation solution which takes benefit of each allocation

mechanism as much as possible.

IV. HYBRID CPU LIMIT ENFORCEMENT

In this section, we present our solution to the WYSIWYG

compliance problem of the container engines and orchestrators.

A. Motivation

We identified that the problem comes from the fact that the

container lies to its application in the number of cores it can

use. Thus the straightforward solution is to fix this behavior.

While this is very possible, it requires to modify the host kernel

so when a process in a cgroup asks for the number of cores in

any manner, the kernel responds with the true value. This is

not a good solution in a cloud environment. Another solution

is to incorporate in the containerized application, a library that

can detect the true number of cores. This is undesirable, as the

philosophy behind containerization for the deployment is to

leave the application unchanged; inclusion of a library would

require a special compilation path for a container version.

Finally, the experiments in section III show that a correct

configuration is a solution. However, it requires a static

modification of the application configuration embedded into

the container. This static modification must be done for each

variation of resource allocation, defeating the purpose of generic

container images. Thus, setting a correct configuration to get

the expected performance level is not a practical solution.

We designed an orchestrator-level container scheduler, be-

cause it only requires modification of the higher level of

management (often a custom middleware developed by the

cloud provider) and is completely application-agnostic, while

fixing the problem for every affected application.

B. Resource allocation to containers

We propose a hybrid CPU limit enforcement strategy, relying

on the two enforcement mechanisms: CPU set and CFS quota.

From the analysis conducted in the previous section, we

organize containers in two categories: C1 includes containers

which are processor sensitive (i.e. that require adherence to

the WYSIWYG principle) and C2 gathers other containers.

1) Overview: our algorithm is based on managing the cores

of a server in three groups:

• P1: cores exclusively allocated to one C1 container, each

of them is included in exactly one container’s CPU set;

• P2: cores used to allocate a fraction of core to at least

one C1 container, they are included in many CPU sets;

• P3: cores shared between all C2 containers, they are

included in exactly one CPU set which is associated with

all C2 containers.

P3 acts as a pool of available cores. The principle is to give

a C1 container its own exclusive CPU set with the correct

number of cores from P3 (thus moving them to P1), e.g.

4 cores for an allocation of 350%. If the allocation is not a

whole number of cores, a core from P2 (or from P3 if needed,

moving it to P2) is used to provide the remaining allocation;

anyways, a CFS quota is used to schedule the usage of shared

P2 cores. As for C2 containers, they all share the same CPU set

made from P2 and P3 cores; again, their respective CFS quota

arbitrates CPU usage. Therefore, C1 containers are allocated

whole processors from P1 and may have fractional cores from

P2; and C2 containers are allocated cores from P2 and P3.

2) Implementation: the implemented algorithm is described

in alg. 1. It configures a container c with a CPU allocation r,

expressed in millicores (mCPU) as is done with Kubernetes. Its

goal is to allocate, as best as possible, a minimal set of cores

to each C1 container while avoiding core sharing between C1

containers.

Algorithm 1 Hybrid CPU limit allocation.

Require: host has enough CPU resources in total to allocate r to c
1: procedure ALLOCATE(c, r)
2: if host empty then
3: P1 ← {}; P2 ← {}; P3 ← {all cores}
4: end if
5: if c is type C2 then
6: SET_CPUSET(c, P2 ∪ P3)
7: else

8: whole ← floor(r/1000); frac ← r mod 1000
9: pc

1
← {min (whole, size(P3)) cores from P3}

10: P3 ← P3 \ pc1; P1 ← P1 ∪ pc
1

11: pc
2
← {}

12: if size(pc
1
) 6= whole then ⊲ missing whole cores

13: if frac = 0 then

14: abort allocation: cannot ensure WYSIWYG
15: else ⊲ can still ensure WYSIWYG (e.g. 150% on 2 cores)
16: rem ←

(

whole − size(pc
1
)
)

× 1000 + frac
17: pc

2
← CHOOSE_PROCS(P2, ceil(rem/1000), rem)

18: if pc
2
= {} then

19: abort allocation: cannot ensure WYSIWYG
20: end if

21: end if

22: else if frac 6= 0 then

23: pc
2
← CHOOSE_PROCS(P2, 1, frac)

24: if pc
2
= {} then

25: pc
2
← {1 core from P3}

26: if pc
2
= {} then

27: abort allocation: cannot ensure WYSIWYG
28: else
29: P3 ← P3 \ pc2; P2 ← P2 ∪ pc

2

30: end if
31: end if

32: end if

33: SET_CPUSET(c, pc
1
∪ pc

2
)

34: end if
35: SET_QUOTA(c, r)
36: end procedure

37: function CHOOSE_PROCS(s, n, r)
38: choose at most n CPUs from s to allocate r, returns {} if impossible
39: end function

3) Principle-hard and best-effort policies: this algorithm

enforces that sensitive containers (C1) are WYSIWYG, i.e.

only see a set of cores which corresponds to their allocated

CPU resources, thus preventing misconfigurations. We call

it “principle-hard”. Another sensible “best-effort” policy is

to accept allocating C1 containers even if they cannot be

WYSIWYG, because the node actually has enough resources

to host the container. Instead of aborting in multiple places, we

would allocate the necessary amount of CPU on more cores

from P2 by removing the limit n on CHOOSE_PROCS.



C. Container type determination

We propose to integrate container type identification in the

Continuous Integration (CI) [31] step of performance tuning.

This step usually involves determining the resource allocation

needed by the application to perform at the expected perfor-

mance level, under a characteristic workload. The application

is evaluated under workloads wi and with different resource

allocations rj . For each evaluation (w, r), we perform two sub-

evaluations where the CPU allocation is enforced by either CFS

quota or CPU set. The application is of type C1 (i.e. requires

the WYSIWYG principle) if its performance under CPU set is

better than under CFS quota in most evaluations. The evaluation

in section III shows that the performance gap between both

setups is significant when the application is sensitive, thus this

method is accurate. Furthermore, it can be easily integrated in

an existing CI process.

D. Integration in Kubernetes

Here we consider the Kubernetes resources allocator. In

Kubernetes, containers are logically organized in pods. All the

containers of a pod must be deployed on the same machine.

Kubernetes chooses a machine with enough available resources

to host all the pod’s containers and instantiates each container

ci with the specified amount of CPU resources ri on that

machine. As Kubernetes exclusively relies on CFS quota, each

container is constrained by its configured CPU quota, but it

can see all cores on its host if it probes the system.

The first integration level in Kubernetes is to replace its

node-level, quota-based allocation by the resource allocation

strategy described in section IV-B. The second integration

level is a modification of the Kubernetes orchestrator, more

precisely the service which chooses the machine where a

pod is deployed. The goal of the optimized orchestrator-level

allocation algorithm is to deploy C1 containers on machines so

that we maximize the number of processors allocated from P1,

and minimize the shared processor time in P2 — while taking

into account classic criteria such as resource availability. On

deployment, Kubernetes computes the list of machines that have

enough available resources to host the pod’s containers. Then

it simulates the execution of the hybrid allocation algorithm

(shown in alg. 1) to find the machine where allocations from

P1 are maximized, and shared CPU time from P2 is minimized.

When the best machine is found, the simulated allocation can

be reused to actually allocate the container.

E. Limits and improvements

The algorithm in its current state is a prototype, to show

that a hybrid solution exists and can address the issue of this

paper. It can nonetheless be improved.

The management of allocation fractions on P2 cores is a

complex problem. It is a bin-packing problem, that is well

known in cloud computing research because it has to be solved

when managing virtual resources, in order to host as many

VMs in a datacenter as possible [32]. However, the current

consensus for VM placement is to consolidate, i.e. to use as few

servers as possible to host VMs (and to maximize individual

server resource usage). Reaching this goal provides the best

power usage throughout the datacenter. This is not valid in our

case: we want to avoid colocation of fractional allocations.

The reason is that, as will be explained in section V, two C1

containers that share a core will see a performance improvement

that is less than expected. Anyway, the current implementation

in our algorithm uses a first-fit strategy, tweaked to prefer the

emptiest P2 cores.

Moreover, an important feature that must be taken into

account when talking about CPU allocation, is Non-Uniform

Memory Access (NUMA). Essentially, it means that not all

CPUs are equal for an application, and the placement of an

application’s threads and processes has a strong impact on its

performance. Our algorithm does not currently integrate this

constraint.

V. EVALUATIONS

In order to manage each application with the appropriate

resource allocation mechanism, our contribution is composed

of two modules: (1) the container type identification system,

and (2) the hybrid resource allocation system. The effectiveness

of the former is obvious because it relies on benchmarking,

as described in section IV-C. The set of experiments realized

in section III prove that benchmarking is efficient. The

experiments of section III also prove the effectiveness of the

CPU set allocation mechanism in canceling the performance

degradation induced by CFS quota. Therefore, this section

focuses on the evaluation of the hybrid resource allocation

algorithm described in section IV: we want to evaluate how

effective it is in providing correct CPU sets to C1, as well as

its overhead.

A. Experiment description

Remember that the goal of this system is to allocate, as

best as possible, a minimal set of cores to each C1 container

while avoiding core sharing between C1 containers. We also

want to minimize resource waste, that could lead to rejecting

containers for which the WYSIWYG principle could not be

guaranteed. It follows that we are interested in two metrics:

• s is the proportion of total CPU time across the datacenter

allocated to C1 containers and given on shared CPUs, i.e.

cores in more than one CPU set;

• r is the reject rate of C1 containers because we could not

guarantee the WYSIWYG principle (see section IV).

We evaluate both the principle-hard version, that rejects

container allocations if it cannot guarantee the WYSIWYG

principle, and the best-effort version that does not reject

containers unless it simply cannot allocate enough resources.2

Note on s: it is an important metric because CPU sharing

among C1 containers leads to performance degradation. For

instance, in a setup where two containers request 350% CPU,

each of them is assigned to a set of 4 CPUs under a quota of

350% (like in the CPU SET setup from section III), but the

sets may have one common core equally shared between both

2That is to say, with the best-effort version r = 0%.



containers. This resource sharing on one core leads to resource

and scheduling interference, and thus performance degradation

and unpredictability — which the user expects to avoid with a

CPU set. We evaluated that the Stream benchmark presented

in section III executes on average 1.7 times slower with a

core shared with another instance of itself, than without any

shared core. We do not expand on this interference because

it is a well-known problem, independently of our use of CPU

sets, especially for memory-intensive applications such as

Stream [33], [34]. Nonetheless, joined CPU sets are a better

alternative than CFS quota performance-wise: the benchmark

remains on average 12% faster. To summarize, this metric is

representative of the loss of resource flexibility inherent to

allocating CPU set and restricting the scheduler, as explained

in section III.

Moreover, our algorithm is two-fold (see section IV-D):

(1) the hybrid allocation at the machine level; and (2) the

optimized orchestrator scheduler that chooses a deployment

machine by simulating the allocation to find the best one. Thus

we also evaluate the impact of choosing the best deployment

machine at the orchestrator level, on s and r. We further check

the scalability of our algorithms with the proportion of C1

containers, i.e. the containers that need special handling.

Our evaluation is a simulation3 of allocations taken from the

Google cluster traces [35] composed of 12.5k machines and

lasting over about one month. Each container is given a certain

chance to be C1 (i.e. to require a CPU set) or C2, that we varied

through our experiments. We highlight the fact that Google’s

datacenter overcommits resources, which is not the case for

Kubernetes, and neither is it for our allocation system. It means

that the simulated datacenter is under a heavy load and cannot

allocate all the containers from the trace. Understand that r

only counts rejections due to a WYSIWYG principle violation,

and ignores rejections due to a direct lack of resources.

B. Results

1) Optimized orchestrator-level allocation algorithm: fig. 4

shows a comparison of s and r for the principle-hard node-

level allocation mode, with the optimized orchestrator-level

allocation algorithm and without it (i.e. the default scheduler).

s is stable for both cases between 10% and 90%: around 20.4%

with the optimized algorithm, and 21.8% without. Indeed,

the optimized algorithm has a beneficial impact on s, which

averages at reducing shared CPU time by about 1.4 points

(6.8%) for fractions of C1 containers between 10% and 90%.

The behavior above 90% is commented in a paragraph below.

As for r, both optimized and non-optimized versions

experience no container rejection due to impossible WYSIWYG

allocation between 10% and 60% of C1 containers. Starting

with 70%, the optimized broker increases the reject rate by

about 0.3 points (1.7%). This behavior is expected because the

optimized algorithm tries its best to avoid CPU sharing (i.e.

tries to reduce s), which leads to greater CPU fragmenting;

3Source code of the simulator can be found here: https://git.bacou.me/?p=
NestedVirt/KubernetesCPUSets.git.
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Figure 4: Efficiency of the optimized orchestrator-level alloca-

tion algorithm under principle-hard and best-effort node-level

allocation, depending on the fraction of allocated C1 containers.

with more fragmented CPUs, there are fewer whole cores

available for CPU sets (see section IV for the hybrid node-

level allocation algorithm). This effect is however very weak.

2) Best-effort node-level allocation algorithm: fig. 4a also

shows a comparison of s for the best-effort and principle-hard

node-level allocation modes (with the optimized orchestrator-

level allocation algorithm). Remember that by nature, r =
0% for the best-effort mode (r for principle-hard mode is

displayed in fig. 4b). Both allocation modes exhibit similar

results between 10% and 80% of C1 containers. For greater

fractions however, and in accordance with the increase of

reject rate for the principle-hard mode, the best-effort mode

allocates C1 containers with many shared CPU cores, leading

to a 33.9% increase of s. Given that the principle-hard mode

also shows null reject rate for C1 containers fraction under

60%, it is preferable to use the best-effort mode only when it

is mandatory not to reject container allocations under heavy

load.

With more than 90% C1 containers: values of s and r

when allocating containers almost exclusively with CPU sets

are very high with any setup (s = 31.3% and r = 83.5% with

optimized orchestrator-level allocation and principle-hard node-

level allocation). It shows why CPU set-only allocations is not

a viable solution, and CFS quota must still be preferred when



the container is C2. If all containers require a CPU set, then

the pool of cores available to C1 containers (see section IV)

is quickly consumed, which means the system has no whole

cores to allocate: it cannot guarantee the WYSIWYG principle,

and the reject rate is very high. Similarly, s also rises because

the only containers that can be allocated are forced to share

at least one core. In summary, the absence of C2 containers

leads to a starvation of whole cores on the nodes, which in

turn leads to generally bad allocations, and a lot of rejected

allocations. If non WYSIWYG allocations are allowed, as in

best-effort mode (i.e. when not rejecting C1 containers because

of the WYSIWYG principle), s shows an expected increase to

38.4%.

3) Scalability with the proportion of C1 containers: for a

C2 container, our algorithms do nothing more than the classic

allocator. However for a C1 container, i.e. that requires a CPU

set, the best case for the node-level allocation algorithm is to

find the correct number of cores from P3, which is an O(1)
operation. The worst case, where it has to find shared CPUs

from P2, is directly linked to the number of P2 cores on a node,

which can be bounded by c the number of cores on the node;

thus the worst case is an O(c) operation. So the node-level

algorithm scales well with the number of containers on a node.

However, a greater number of containers statistically means

an increased scarcity in P3 cores, which favors occurrences of

the worst case.

Results of scalability with the proportion of C1 containers for

the optimized orchestrator-level allocation algorithm, are shown

in fig. 5. We observe that the time needed to choose a node for

one container increases with the proportion of C1 containers.

It is because allocating a C1 container costs much more than a

C2 container: as explained above, while the latter only requires

normal orchestrator checks such as available resources, the

former also needs a node-level allocation simulation. As the

fraction of C1 increases, so does the average orchestrator-level

allocation time per container.

Also note how there is a vast increase after the 90%-mark.

It comes from the scarcity of P3 cores as explained above,

that leads to the node-level allocation algorithm often hitting

its worst case: almost every node-level allocation simulation

becomes O(c), with c the number of cores on a node.

Otherwise, the optimized orchestrator-level allocation algo-

rithm scales with the number of nodes n because it simulates

the node-level allocation on each node that can host the

container. However this can be largely mitigated by offloading

the simulation to each potential node: let each node simulate

its own allocation and then communicate the result back to the

orchestrator, that only has to compare the quality (WYSIWYG

principle-wise) of each simulation. Many virtualized datacenter

management frameworks [36] use a similar architecture by

offloading node monitoring to the nodes themselves. Moreover,

the node-level allocation algorithm for one container takes

about 40 µs, which is negligible in the face of the creation time

of a container that reaches hundreds of milliseconds [37]; so

offloading will greatly reduce the node selection time upon

container scheduling. Note that fig. 5 shows values from our
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Figure 5: Scaling of the optimized orchestrator-level allocation

algorithm with the fraction of allocated C1 containers.

prototype simulator that does not implement this offloading

optimization.

4) Summary: Our hybrid allocation algorithm is able to fix

the performance problem due to incorrect observed resources

for about 79.6% of the simulated containers with minimal

overhead on reject rate and container scheduling speed.

VI. RELATED WORK

Many papers have studied the performance benefits of con-

tainers when compared with virtual machines, showing that the

former fare better than the latter [37]–[39]. In particular, Felter

et al. [19] identified the lack of awareness of the resources limits

as an fundamental limitation to containerization. Chaufournier

et al. [37] also observed the difference of performance between

the CFS quota and CPU sets, without further studying the

phenomenon. Others compared both virtualization techniques

from the point of view of the power consumption [40], showing

no major difference. Finally, containers have been studied to

provide high availability [41] or to actually replace VMs in

PaaS [42].

There has been research on the resource management of

containers. Paraiso et al. [43] modeled containers to ease their

resource management. Hoenisch et al. [44] represented the

joined problem of VM and container scaling as an optimization

problem. Following this, Al-Dhuraibi et al. [45] proposed

ElasticDocker to provide containers with vertical scaling in a

fashion similar to VMs. Although it manages both the number

of vCPUs (where the host is a VM) and the CFS quota, it does

not investigate the effect of erroneous number of vCPUs. Both

these works can be integrated with our hybrid resource allocator

to help setting the resource limits. Baresi et al. [46] also

developed a solution for vertical autoscaling of the containers

and their VMs, and implemented a system of application-

specific hooks to solve the problem of dynamically scaling the

application with its container — thus addressing the problem

of observed resource discrepancy. Our solution is application-

agnostic, but handling dynamic scaling would require the ability

to notify the application that the amount of allocated resources

changed.



The problem of the discrepancy between a container’s

resources and the view of the containerized application has been

noticed by Oracle, which proposed a solution under the form of

a library [47] to abstract getting system resource information,

and that aims at being container-aware. The drawback is that

the application needs to be updated to use this library. Another

remarkable initiative from the industry is the recent container-

awareness of the Java Virtual Machine (JVM) [48]. Starting

with Java 10, the JVM auto-configures itself based solely on

memory and CPU configuration of its cgroup, which necessarily

reports the correct amount from inside a container.

Finally, our hybrid CPU allocation mechanism is akin to

vCPU pinning in the VM world. It has been shown [49] that

vCPU pinning can be beneficial for power consumption, per-

formance and in reducing resource interference. An advanced

hybrid allocation mechanism could benefit from the works in

this domain [50] to bring even better performance.

VII. CONCLUSION

Two mechanisms are available in Linux systems to enforce

a computation capacity limit to a container: CPU set and CFS

quota. Orchestrators such as Kubernetes generally rely on CFS

quota for its ease of use and flexibility. However, the drawback

of this approach is that all the machine’s cores are made

visible to each container independently of their allocated quota.

This is particularly annoying for applications that autoconfigure

according to the hardware environment they see (e.g. by

instantiating a number of threads accordingly). We have shown

that it may have a significant impact on performance and more

importantly, predictability.

We advocate for an increased but rational use of CPU sets

in addition to the CFS quota mechanism. To this end, we

introduced a hybrid CPU limit enforcement strategy which

relies on both mechanisms. The main principle is to detect for

each application whether it requires the WYSIWYG principle,

i.e. whether it is sensitive to the number of visible cores, and

to schedule sensitive application containers on a reduced set

of cores, thanks to the CPU set mechanism. We described how

this allocation strategy could be integrated in the Kubernetes

environment and evaluated it, showing that it can ensure

optimal performance for the greatest fraction of CPU time

while retaining some property of resource allocation flexibility.

Finally, the violation of the WYSIWYG principle affects

more resources than the CPU, including memory and network-

ing. Our work is focused on a solution tailored for the CPU

but all resources will need to be accounted for.
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