N

HAL

open science

Nested Virtualization Without the Nest

Mathieu Bacou, Grégoire Todeschi, Alain Tchana, Daniel Hagimont

» To cite this version:

Mathieu Bacou, Grégoire Todeschi, Alain Tchana, Daniel Hagimont. Nested Virtualization Without
the Nest. 48th International Conference on Parallel Processing (ICPP 2019), Aug 2019, Kyoto, Japan.

pp.1-10. hal-02047732

HAL Id: hal-02947732
https://hal.science/hal-02947732

Submitted on 24 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02947732
https://hal.archives-ouvertes.fr

OATAQO

Open Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

This is an author’s version published in:
http://oatao.univ-toulouse.fr/26401

Official URL
https://doi.org/10.1145/3337821.3337840

To cite this version: Bacou, Mathieu and Todeschi, Grégoire
and Tchana, Alain and Hagimont, Daniel Nested Virtualization
Without the Nest. (2019) In: 48th International Conference on
Parallel Processing (ICPP 2019), 5 August 2019 - 8 August 2019
(Kyoto, Japan).

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr
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ABSTRACT

With the increasing popularity of containers, managing them
on top of virtual machines becomes a common practice, called
nested virtualization. This paper presents BrFusion and
Hostlo, two solutions that address each of two networking
issues of nested virtualization: network virtualization dupli-
cation and virtual machine-bounded pod deployments. The
first issue lengthens network packet paths while the second
issue leads to resource fragmentation. For instance, in respect
with the first issue, we measured a throughput degradation
of about 68% and a latency increase of about 31% in compar-
ison with a single networking layer. We prototype BrFusion
and Hostlo in Linux KVM/QEMU, Docker and Kubernetes
systems. The evaluation results show that BrFusion leads to
the same performance as a single-layer virtualization deploy-
ment. Concerning Hostlo, the results show that more than
11% of cloud clients see their cloud utilization cost reduced
by down to 40%.

KEYWORDS

virtualization, nested virtualization, container, network, or-
chestrator

1 INTRODUCTION

Virtualization is now well established as the base layer for
cloud services. Virtual machines (VMs) present to the cloud
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user a customizable environment in the form of a complete
operating system (OS). This customization is a burden to the
user, who only wishes to quickly deploy his applications. Thus
containerization — lightweight OS-level virtualization, such
as Docker [25] — has emerged as the easier way to deploy and
manage applications. First, building container images is easier
than building VM images. Second, with containerization the
host kernel has some knowledge about what is running inside
a container, whereas VMs are seen as black boxes. This
capability facilitates the configuration and deployment of
complex applications, composed of several micro-services
made of logically coupled containers, via a micro-service
manager — an orchestrator, such as Kubernetes [16]. In the
rest of the document we use the term pod, from Kubernetes’s
jargon, to refer to a micro-service.

Despite the popularity of the Container-as-a-Service (CaaS)
model, we observe that the current practice is to deploy
containers inside VMs, and thus VMs remain at a central
position in cloud platforms. This virtualization stack is called
nested virtualization, and it exists because of the two follow-
ing main reasons.

Security. It is well known that containers are less secure than
VMs [18, 19, 33] and offer worse resource isolation. On a
cloud platform that hosts applications from different tenants,
applications are isolated among each other using VMs while
the components of one application are isolated using contain-
ers. This practice is very popular in the new cloud model of
Function-as-a-Service [37] (FaaS) such as AWS Lambda: func-
tions run inside containers, which in turn run in VMs [38].
Derivative clouds. The infrastructure of the cloud platform
may be solely based on VMs, so that users are forced to create
VMs before deploying containers. This practice is common in
community clouds where the incentive to follow new trends
is weaker, and administrative inertia weighs on technologi-
cal updates. As an example, Atos Integration! is building
a cloud platform for the European Space Agency (ESA) to
exploit satellite imagery. This platform will be deployed on
a third-party European VM-based laaS cloud, while its us-
age is based on containers to facilitate the deployment and
management of the clients” applications.

This paper identifies two issues in the current nested vir-
tualization design.

Network virtualization duplication: host OS to VMs, and VM
to containers. Both network virtualization layers use the same
software components (e.g., bridge) to achieve virtual routing,
thus duplicating the network path. We observed a throughput

1A world-wide IT services company.



degradation of 68% and a latency increase of 31% in compar-
ison with a single networking layer. In this paper we present
BrFusion, a nested network virtualization design which leads
to the same performance as a single-layer virtualization sys-
tem. To this end, BrFusion fuses the two virtualization layers
by allowing containers inside a VM to directly use the host-
layer networking stack.

VM-bounded deployments: a pod which is composed of sev-
eral containers cannot be spread over several VMs, leading to
resource fragmentation. This issue comes from the fact that
container-level network virtualization is achieved per-VM,
and specific technologies are required to seamlessly connect
two containers across different VMs. These network overlays
severely degrade inter-container communications [34, 42],
while not actually achieving a transparent link between two
containers of the same pod. Thus orchestrators only imple-
ment single-VM pod deployments [4]: containers belonging to
the same pod must be deployed inside the same VM. This pa-
per presents HostLo, a cross-VM nested virtualization design
which allows cross-VM pod deployments.

Solving both issues can be seen as removing the nest from
the nested virtualization, from the client’s point of view. We
seek to make the pod orchestrator the main actor of the
datacenter, by allowing it to communicate its orders to the
virtual machine manager (VMM).

In summary, we make the following contributions:

an analysis of nested virtualization effects on network-
ing performance and resource usage;

e BrFusion, a de-duplicated networking stack that fuses
both levels of network virtualization, improving net-
work performance;

HostLo, a network virtualization solution to enable
cross-VM pod deployments;

e an implementation of BrFusion and HostLo in popular
systems (Linux, KVM, Docker and Kubernetes).

a thorough evaluation of our prototype in terms of
performance, resource/money saving and overhead.

The evaluation results show that BrFusion leads to almost
the same performance as a deployment with a single virtual-
ization layer. In addition, it reduces CPU consumption inside
the VM, thus improving the performance of concurrent CPU
intensive containers. Finally, BrFusion incurs no overhead.
About HostLo, simulations with Google cluster traces [29]
show that it reduces the total number of VMs bought by
a cloud user. We measured up to 40% of money saving per
user. Concerning its overhead, HostLo reduces by 6.1 times
and increases by 2.1 times request throughput and latency
respectively, in worst cases. We show however that realistic
scenarios do not suffer from this overhead. We compared
HostLo with Docker Overlay [13]. Hostlo performs better
than Docker Overlay, with up to 30% higher throughput and
92% lower latency.

The rest of the paper is structured as follows. Section 2
presents the motivations. Sections 3 and 4 present the contri-
butions. Section 5 presents the evaluation results, as well as
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(a) Nested networking. (b) Pod networking issues for the adapter pattern.

Figure 1: Nested network virtualization: illustration and is-
sues location.

a discussion about our contributions. Section 6 presents the
related work. Section 7 concludes the paper.

2 NESTED VIRTUALIZATION: PROBLEM
STATEMENT AND ASSESSMENT

In this paper we are interested in stacking containers inside
VMs, which is the most popular nested virtualization practice.
Although nested virtualization brings a lot of advantages (see
section 1), its current design includes several issues that are
discussed in this section.

The network, as a resource that can be virtualized, is very
different from other resources such as CPU or memory. The
difference comes from the fact that the network is actually
two resources itself: (1) networking software and hardware
such as protocol stacks, packet queues and physical ports; and
(2) network identity, most commonly Ethernet MAC and IP
addresses. Mutualizing the networking software and hardware
facilities requires solving similar problems as mutualizing
CPU or memory: how to arbitrate usage, how to isolate
resources owned by each entity, etc.

However mutualizing a network identity is a very special
case, which requires special operations that are specific to the
technicalities of the network. For instance, in order to provide
networking to its containers, Docker relies first on a bridge
to mutualize the Ethernet MAC address of the physical NIC;
and then Docker uses Network Address Translation (NAT)
in order to forward packets to and from its bridge and the
host’s interface at the IP level. The setup with a bridge and
NAT is the most common setup when using Docker as well
as deploying VMs. This setup comes with two main issues
for nested virtualization:

(1) duplicate network virtualization;
(2) VM-local network virtualization.
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Figure 2: Network performance under nested and single-level
(no container) virtualization. Excerpt from fig. 4.

These issues target different parts of a pod’s network, as
illustrated in fig. 1b. However, addressing them participates
in the same global objective of abstracting the VM layer from
the orchestrator’s point of view — and thus from the client’s
point of view. We develop on these issues below.

Duplicate network virtualization. The network is virtual-
ized twice: first at the host level, for the VMs; and second at
the VM level, for the containers. This is illustrated in fig. la.
This doubles the length of the packet reception and emission
paths between the container and outside the virtual machine.
Furthermore, both layers of network virtualization are man-
aged by separate software solutions that do not communicate
(respectively the VMM and the pod orchestrator), preventing
any optimization of the data path.

A packet sent from the containerized application takes
the following route (a received packet takes the same path
in reverse): (1) the packet is placed on the pod’s internal
interface and crosses the pod’s boundary; (2) it is received
on the bridge in the VM; its destination is not any other
interface on the bridge so it is not switched, but rather
managed by NAT rules in the next step; (3) it is routed
following NAT rules set up by the orchestrator using for
instance iptables, and reaches the VM’s NIC; (4) the packet
reaches the host’s bridge; (5) it is routed following NAT rules
set up by the VMM, or the packet is switched by the bridge,
to the physical NIC.

Figure 2 shows the impact of this design on the micro-
benchmark Netperf. The server side runs in the nested virtu-
alization context (a container in a VM) while Netperf client
runs directly on the host physical machine, listening on a
virtual interface NAT-ed to the host’s bridge. We can observe
a throughput degradation of 68% and a latency increase of
31% with 1280B messages compared to single-level virtualiza-
tion (where Netperf server runs directly inside the VM). The
solution we describe in this paper aims for the performance
goal of single-level virtualization in the context of nested vir-
tualization.

Constraint of VM boundary on network virtualization. At
the VM level, the network is virtualized independently in
each VM. It becomes a problem when we consider pod de-
ployments, as all the containers in a pod must communicate
with each other via a pod-private virtual network interface

provided by Kubernetes, which by nature is local to the node
that hosts the pod, i.e. the VM. VM-local networking pre-
vents cross-VM pod deployments, which is a major loss for
overall datacenter resource usage as well as for costs for the
users, because it increases resource fragmentation. For in-
stance, with Amazon AWS VM sizes [1], if your pod needs
6 vCPUs and 24GiB of memory, you must use a mb.2xlarge
instance for $0.448/h because the entire pod must fit in the
VM; however a mb.large and a mb.xlarge instances total up
for 6 vCPUs and 24GiB for $0.336/h total. Thus enabling
cross-VM pod deployments can save significant money and
resources. This paper strives to achieve cross-VM pod de-
ployment with acceptable degradation to the performance.

3 BRFUSION: NETWORK
VIRTUALIZATION DE-DUPLICATION

In this section, we present BrFusion, a solution to the problem
of network virtualization duplication in a nested virtualized
environment.

3.1 Overview

Given that the host’s NIC is already multiplexed between
VMs via the host-level bridge (see fig. 1), we propose that
the existence of a bridge in a VM comes from the false need
of multiplexing the VM’s NIC. Our solution revolves around
the principle of giving each pod its own NIC.

Upon spawning the pod, a new NIC is provisioned by the
VMM for the target VM. This interface is exclusive to the
pod, so it can be directly inserted into the pod’s network
namespace, without the intermediary of NAT, a bridge and
another vNIC in the VM to cross the namespace boundary.
The new NIC is managed by the VMM that plugs it into a
bridge on the host. Depending on the policy, it can be the
common bridge used by all VMs on the host, or a tenant-
specific bridge. In any case, the configuration is exactly the
same as the current situation — i.e. it includes NAT, at the
host level.

Given that the orchestrator is already a datacenter-global
entity with local agents running inside each VM, the interac-
tion between it and the VMM is very simple:

(1) the orchestrator asks the VMM for a new NIC to be
added to the VM chosen during the scheduling phase,
and optionally specifies the host-level networking do-
main (i.e. the bridge) that owns the new NIC;

(2) the VMM adds the new NIC to the VM and configures
it accordingly;

(3) the VMM sends the orchestrator some sort of identifier
of the new NIC so that its VM agent can use it (such
as the MAC address);

(4) the orchestrator, via its VM agent, configures the NIC
inside the VM and uses it for the scheduled pod.

3.2 Implementation

We prototyped BrFusion in QEMU/KVM environment. When
QEMU creates a VM, it also provides a side-channel man-
agement interface [11]. It is easy to have it create a UNIX
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terface for cross-VM pod scheduling. Hostlo interface B being
above Hostlo interface A carries no meaning.

socket to which the VMM can connect. One of the many
management actions the VMM can execute, is to add or re-
move NICs to and from the VM. The behavior is exactly the
same as if the interface was provisioned at the start of the
VM, and any modern OS is capable of detecting and using
such hot-plugged devices.

Extending the Kubernetes orchestrator to ask the VMM
for a new NIC when scheduling a pod is easily done with a
Container Network Interface [3] plugin. CNI plugins follow a
standard specification and are used to provide new networking
models to Kubernetes.

4 HOSTLO: CROSS-VM POD DEPLOYMENT

In this section, we present Hostlo to enable cross-VM pod
deployment in a nested virtualized environment.

4.1 Overview

Enabling efficient cross-VM intra-pod communication will
remove the constraint of whole-pod allocation.

Intra-pod communication is achieved via a localhost inter-
face reserved to the pod. This interface is provided by the
VM that hosts the pod, which is why cross-VM pod deploy-
ments is currently impossible. The localhost interface is a
virtual loopback networking device: simply put, it sends back
any packet it receives, just as if the same cable was plugged
both in the egress port and in the ingress port. Although an
IP address is used to send and to receive packets on it, it
functions at the link layer, manipulating Ethernet frames.

Our solution, shown in fig. 3, is to create on the host, a
special loopback interface that can be multiplexed between
several VMs. In each VM, an endpoint of this interface is
used exclusively by the fraction of the pod that is placed
there, as its localhost interface. This localhost interface is

used by pods in VMs but backed by the host, thus the name
host localhost (Hostlo).

In our solution, upon spawning the pod, if the placement
decision involves more than one VM — the capability that
we bring — the orchestrator needs to interact with the VMM:

(1) the orchestrator asks the VMM for a new Hostlo for
the pod, and tells it to add that new interface to the
VMs targeted for pod deployment;

(2) the VMM creates the new Hostlo, and multiplexes it
between the specified VMs (i.e. inserts it as a new NIC
in the VMs);

(3) the VMM sends the orchestrator some sort of identifier
of the new NICs in the VMs so that its VM agent can
use it (e.g. the MAC address);

(4) the orchestrator, via its VM agent, configures the NIC
(i.e. the Hostlo endpoint) inside the VM and uses it for
the scheduled pod.

4.2 TImplementation

We prototyped Hostlo in QEMU/KVM environment. The
orchestrator has no impact, because only the VMM does the
hard work (provisioning a new Hostlo interface), although
some integration similar to BrFusion is needed (see the end
of the section).

The description of intra-pod communication given above
guided the conception of our solution: a virtual interface that
sends back any packets it receives, at the Ethernet frame level.
This calls for the usage of TAP interfaces [12], that are exactly
this: virtual network interfaces, provided by the Linux kernel,
that accept Ethernet frames like a normal network device on
one end, and that read and write Ethernet frames from and
to a file descriptor. TAP devices are already used by QEMU
as a backend for virtualized network devices.

Hostlo uses a TAP device, modified to act as a loopback
interface, and that can be multiplexed among multiple VMs
(which is not originally possible). We implemented? a modi-
fied TAP device driver in the host kernel so that:

e it provides at least one RX/TX queue for each VM
that is served;

e it sends back any received Ethernet frame to all of its
queues.

When QEMU is asked to provision a new Hostlo interface,
it creates a new TAP device in loopback mode, and creates
and add one RX/TX queue of it to each VM that needs
it. Creating and managing the TAP device is easily done
by calling ioctls on a devfs interface provided by the host
kernel. Adding the Hostlo endpoints to the VMs is achieved
in the same way as for BrFusion (see section 3), via QEMU’s
side-channel management interface.

Similarly to BrFusion in section 3.2, Kubernetes is ex-
tended with a CNI plugin in order to communicate with the
VMM to create a new Hostlo interface that is used as the
localhost interface of the new pod.

2Linux hostlo implementation: https://git.bacou.me/linux-vtap.
3QEMU hostlo implementation: https://git.bacou.me/qemu-hostlo.



4.3 Integration with other resources

Beside networking, containers in a pod also share volumes
and can communicate by shared memory [4]. This means that
enabling cross-VM pod deployment requires more than an
efficient cross-VM localhost interface like Hostlo. However the
issues of shared volumes and of shared memory are already
addressed by previous works, as argued below.

4.3.1 Volumes. A volume, which is a limited section of the
host’s file system, can be mounted into a pod and shared
among all its containers. It is used for data persistence beyond
the life duration of the pod. All containers expect to be able
to mount the volumes of the pod into their own file system.

Ultimately, reading from and writing to the volume is
handled by the OS of the node where the pod is deployed.
However in our context of disaggregated pod, more than one
OS are involved. The OSes of the nodes do not expect to
share the volume’s file system with another OS, which would
create inconsistencies due to in-memory file system states
and guest caches. Thus solving the problem of cross-VM pod
deployment from the point of view of volumes is not as simple
as mounting the same file system in each VM that hosts a
part of the pod.

Jujjuri et al. [20] designed a para-virtualized file system
in QEMU/KVM called VirtFS. Based on VirtlO, it allows
among other things, to mount the same file system into
multiple guests. It is then a simple matter of synchronizing
the orchestrator and the VMM to adequately mount the
VirtFS into the VMs, and then the virtual volume into the
parts of the pod.

4.3.2  Shared memory. For efficient intra-pod communication,
the developer of a pod might want to use shared memory,
where different containers share the same region of the node’s
memory to exchange data following a specific protocol. Mem-
ory sharing has been an important issue since VMs were
used [30]. As long as it is solved at the VM level in a man-
ner that is transparent to the processes, it is also solved at
the pod level because memory management is not fundamen-
tally changed by using pods.* Ren et al. [30] established an
extensive survey of all techniques for cross-VM memory shar-
ing; the best-suited solution for our context is MemPipe [41],
which provides cross-VM shared memory on KVM at the
transport layer, i.e. in a manner that is transparent to the
containerized applications.

5 EVALUATIONS

This section presents the evaluation results of BrFusion and
Hostlo. For each solution, we evaluate the gain it provides as
well as the potential overhead that the solution could incur.
Recall that we are interested in both application performance
and resource/money saving. We measure the former on real
hardware while the latter is simulated on real data center
traces.

4Per-process virtual memory has been a fundamental concept to all
modern OSes since before the concepts of containers or pods.

5.1 Setup

Environment. The machine used for real experiments is a
Dell server with the following characteristics: 12 CPUs made
available by two Intel® Xeon® E5-2420 v2 running at 2.20GHz
(fixed under the PERFORMANCE governor) with HyperThread
disabled. All VMs are provisioned with 5 vCPUs and 4GB
of memory using QEMU with KVM, and run Arch Linux,
kernel 4.19.9. Docker CE 18.09.0 is the container engine. All
network interfaces in the VMs are based on virtio[31], and
use Vhost[39] in their backend.

Benchmarks. To evaluate the performance gain and the
overhead of our solutions, we use both micro- and macro-
benchmarks. The micro-benchmark is Netperf [9]. We use
Netperf’s UDP_RR and TCP_STREAM benchmarking modes for
latency and throughput evaluations respectively. UDP_RR mea-
sures request /response time by sending synchronous transac-
tions, one at a time; while TCP_STREAM sends as much data as
possible for a specified duration (20s). We measure the perfor-
mance over different message sizes. The performance metrics,
generated by Netperf client, are average request latency and
average throughput. Concerning macro-benchmarks, we use
three that are based on popular applications: Memcached,
a key-value store; NGINX, a web server; and Kafka, a data
streaming framework. Table 1 details the performance met-
rics and how the loads are generated.

Methodology. To evaluate the gain of BrFusion, we compare
it with two solutions: (1) NAT: the default nested network
virtualization solution; and (2) NoCont: no nested virtualiza-
tion, which means that the application runs natively inside
the VM, with no containerization. NoCont is the baseline,
and represents the performance target of BrFusion. For each
solution, we place the benchmark server in a VM, and the
client runs on different CPUs of the physical host. It is linked
to the host’s bridge and to the VM via NAT. Beside network
performance, we also evaluate how using BrFusion affects
the VM and application CPU usage. We show the breakdown
of CPU usage between: software work (noted usr); kernel
work (noted sys), excluding interrupts handling; kernel serv-
ing software interrupts (noted soft); and host’s CPU time
given to a guest VM (noted guest). Finally, we evaluate the
potential impact of BrFusion by comparing the boot time
of containers with the vanilla nested virtualization solution
(NAT).

About Hostlo, we evaluate its gain by comparing the cost
of VMs used to host the pods of clients using Kubernetes
(which only schedules whole pods on VMs) with Hostlo (with
its capability to schedule a pod across multiple VMs). The
simulation methodology is detailed in section 5.3. Concerning
Hostlo overhead on application network performance, we
compare it with: (1) NAT: see above; (2) Overlay: Docker’s
network overlay solution, which is the only currently viable
approach for cross-node pod deployment; and (3) SameNode:
all the containers of a pod run inside the same VM and they
communicate via the pod’s localhost interface. SameNode



Table 1: Macro-benchmarks: parameters and metrics.

Application Benchmark

Parameters

Metrics

Memcached [6] memtier benchmark [7]

4 threads, 50 con./threads, SET:GET=1:10

Responses/s, latency

NGINX [10] wrk2 [14] 2 threads, 100 con. total, 10k req./s on 1kB file Latency

Kafka [2] kafka-producer-perf-test.sh 120000 msg/s, 100B messages, batch size 8192B  Latency
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Figure 4: BrFusion performance gain using micro-benchmark.
Bars are standard deviation of latency during the run.

is the comparison baseline. We also evaluate the potential
overhead on CPU usage.

The next two sections show the evaluation results of each
solution. We begin by evaluating the gain, and then we check
the potential overheads. Recall that BrFusion’s gain is mainly
network performance, with a positive impact on CPU usage,
while its overhead could be visible on container boot time.
As for Hostlo, it aims at saving resources/money while its
potential overhead could affect application performance.

5.2 BrFusion

5.2.1 Performance gain: micro-benchmark. Figure 4 presents
the performance evaluation results. For both throughput and
latency, BrFusion shows performance similar to NoCont, ef-
fectively removing the overhead of nested virtualization on
networking. For instance, with 1280B packets BrFusion’s
throughput is 2.1 times greater than NAT’s and the average
latency is 18.4% lower. BrFusion is also within 3.5% of No-
Cont’s performance. Finally, BrFusion’s scales like NoCont
with message sizes, while NAT scales more slowly and even
stagnates between 1024B and 1028B.

5.2.2  Performance gain: macro-benchmarks. Evaluation se-
tups are the same as above, with Netperf server replaced
with the application and Netperf client replaced with the
benchmarking tool. Figure 5 presents the results.

First for Kafka, BrFusion improves average request latency
by 11.8% over NAT, which is 13.1% higher than NoCont. It
also reduces the standard deviation, which is 5.9% of the
average latency for BrFusion and 6.6% for NAT, compared
to 4.9% for NoCont.

Second for NGINX, BrFusion improves on average request
latency by 30.1% over NAT, but this is 120.3% slower than
NoCont. Note that for both BrFusion and NAT, the standard
deviation for the latency is about two times the average
latency, while it is only 47% of the average for NoCont.
Thus we attribute the main part of the performance overhead

Figure 5: Kafka and NGINX results: latency. Bars are stan-
dard deviation of average latency across ten runs.

to the software itself rather than to the networking layer.
BrFusion only removes the overhead of the latter.

5.2.3 CPU gain. By removing a layer of network virtualiza-
tion inside the VM, BrFusion reduces the amount of CPU
time used by the VM to perform network operations on be-
half of containers it hosts. This results in CPU time freed
for other applications on the VM. Thus we evaluated the
amount of CPU time saved by BrFusion inside the VM.

Figures 6 and 7 present the measured breakdown of CPU
usage for macro-benchmarks executions. For Kafka, BrFu-
sion’s and NAT’s CPU usages for the VM are both about
9.6% higher than NoCont’s (fig. 6b). However the CPU usage
of Kafka inside the VM shows that BrFusion reduces the
CPU time spent serving software interrupts by 67.0% com-
pared NAT (total reduction of 4.7%). Indeed, NAT rules® are
applied on packets via hooks executed by software interrupts,
and BrFusion simply removes the execution of these hooks.
Similar observations of higher magnitude can be done for
NGINX in fig. 7.

5.2.4 Overhead: container boot time. BrFusion provisions a
new virtual NIC when creating a container (see section 3).
This could harm the start up time of the container. We
define the container start up time as the duration between
ordering Docker to create the container, and the container
sending a message through a TCP socket. We based our
measurements on the Time Stamp Counter (TSC) [36]: we
hacked QEMU to pass the physical TSC to the VM without
any change, so the TSC acts as an absolute clock across
the virtual boundary. This experiment was run 100 times.
Start up times of containers with Docker NAT and BrFusion,
are reported in fig. 8. Figure 8a shows that 75% of the
measured start up times are slightly better with BrFusion
than with Docker NAT. Figure 8b presents statistical figures;

SImplemented via Netfilter [8] in the Linux kernel.
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Figure 6: Kafka results: CPU usage breakdown of the VM,
and of the Kafka broker inside the VM. guest CPU time is
time dedicated to the vCPUs of the VM.
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Figure 7: NGINX results: CPU usage breakdown of the VM,
and of the NGINX server inside the VM. guest CPU time is
time dedicated to the vCPUs of the VM.
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Figure 8: Container start up time evaluation: comparison of

BrFusion with Docker NAT.

for instance, minimum start up time is about 5.2% better
with BrFusion. The bottom line is that BrFusion does not
slow down container creation time, and thus has no overhead.

5.3 Hostlo

We evaluate Hostlo’s gain in cost savings by simulation,® and
its performance and CPU overheads on a real machine.

5.3.1 Cost saving. Recall that Hostlo enables spreading a
pod’s containers across several VMs on the same physical

SSimulation code: https://git.bacou.me/hostlo-sim.

Table 2: AWS EC2 VM m5 models used to simulate Hostlo
money savings.

Model vCPU  Memory vCPU (rel.) Memory (rel.) Price
large 2 8 GiB 0.0208 0.0208  $0.112/h
xlarge 4 16 GiB 0.0417 0.0417 $0.224/h
2xlarge 8 32 GiB 0.0833 0.0833  $0.448/h
4xlarge 16 64 GiB 0.1667 0.1667  $0.896/h
12xlarge 48 192 GiB 0.5 0.5 $2.688/h
24xlarge 96 384 GiB 1 1 $5.376/h

machine, thus reducing resource fragmentation. To evaluate
the savings, we use Google Traces [29] to simulate per-user
how much it costs to host the user’s pods on VMs. Cost sav-
ings come from requiring fewer and smaller VMs to host a
user’s pod, thus it equates to resource savings. VM spec-
ifications and prices are taken from Amazon AWS EC2’s
on-demand m5 models [1], and are reproduced in table 2.
Resource specifications are values relative to the resources of
the biggest model of VMs, 24xlarge, similarly to resources
given in Google traces.
We compare Hostlo with Kubernetes using these steps:

(1) for each user, we begin with no VM and no pod;

(2) a user’s pods are scheduled offline, biggest first;”

(3) a first scheduling is calculated by Kubernetes’s:

(a) try to schedule the whole pod on the already bought
VM that best fits (see below), otherwise

(b) buy a new VM to host the whole pod, of the size
that best fits (see below).

(4) for Hostlo, we improve this scheduling by moving con-
tainers to the VMs that have the most wasted resources,
smallest containers first, in the hope of eliminating
the waste and reducing the number of needed VMs or
shrinking the sizes of VMs — thus reducing costs.

When trying to schedule a pod, the algorithm chooses the
best fitting VM according to Kubernetes’s "most requested”
policy [5]: among the VMs that have enough resources to
host the pod, the best one is the one that currently has the
most requested resources. ® Simply put, this is a grouping
strategy. When buying a new VM to host the pod, the best
VM is determined as the cheapest one that can host the pod.

Although the described algorithm is rather crude, it al-
lows to estimate fairly the money savings brought by Hostlo
when compared to a classic pod scheduling. The simulation
demonstrates satisfactory results, shown in fig. 9.

It shows the frequency of relative cost savings among 492
users in the Google traces. Hostlo reduces costs for about
11.4% of the clients, among which 66.7% show a costs reduc-
tion of more than 5%. The maximum relative cost savings are
about 40%; the maximum cost save is about 237$/h, which
represents a 35% reduction.

Below we evaluate Hostlo’s overheads. Although Hostlo
brings benefits in terms of cost saving, it incurs two types
of overhead. First, by spreading containers of the same pod
"The "size” of a pod is defined as the sum of its CPU and memory
request.

8The most requested VM is determined by the average of CPU and
memory relative requests made by pods on the VM.
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Figure 9: Money savings with Host localhost: frequency of
per-user savings relative to Kubernetes.

across VMs, Hostlo lengthens the communication path be-
tween them. Recall that without Hostlo, a pod’s containers
communicate through the pod’s localhost interface. Second,
and for the same reason as the first, Hostlo increases the
host’s CPU usage. As it is implemented a kernel module
of the host, this added load may be seen in the ”sys” CPU
usage category, i.e. improperly attributed to the host system
rather than to guest VMs. We evaluate this overhead using
both micro- and macro-benchmarks.

5.3.2  Overhead: micro-benchmark. Performance results are
reported in fig. 10. When analyzing Hostlo performances,
keep in mind that its purpose is container-to-container com-
munication. This is typically comprised of small messages
such as even notifications for logging and monitoring, and
latency is of prime importance.

First about throughput, Hostlo scales with message sizes
as well as NAT and Overlay, although the two latter show
unexpected performance peaks for a few message sizes. As ex-
pected however, no solution reaches the performance level of
SameNode. With a messages size of 1024B, Hostlo’s through-
put is 17.9% higher than NAT’s, 27% lower than Over-
lay’s, and 5.3 times lower than SameNode’s. Despite av-
erage throughput performance, Hostlo shows great latency
results. Its latency remains stable across all message sizes,
like SameNode; Hostlo’s latency is about twice SameNode’s
latency. As for NAT and Overlay, their latencies vary greatly
and in unexpected manners. For a messages size of 1024B,
Hostlo’s latency is 87.3% lower than Nat’s, and 89.8% lower
than Overlay’s. The standard deviation of Hostlo’s latency
is also rather low, about 27.9% of the average latency, while
it is 20.5% for SameNode’s latency. NAT and Overlay show
standard deviations on latency between 25.8% and 95.4%.

5.3.3 Overhead: macro-benchmarks. We report performance
results of Memcached and NGINX in figs. 11 to 13. For
Memcached, Hostlo unexpectedly reaches the throughput
and latency levels of SameNode. This is linked to SameNode
showing extreme variability in its latencies in fig. 12. To the
opposite, queries over Hostlo report stable latency. As for
NGINX, Hostlo shows 49.4% higher latency than SameNode,
but performs much better than NAT and Overlay. We ob-
serve very high standard deviation of the latency for all four
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Figure 10: Hostlo overhead on network performance.
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Figure 11: Memcached results: throughput and latency.
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Figure 13: NGINX results: latency for 10k req/s on a 1kB file.

solutions. It is 3 times the average for Hostlo, and 1.6 times
the average for SameNode.

5.3.4 Overhead: CPU usage. The extra CPU usage gener-
ated by Hostlo has been measured for macro-benchmarks
(presented above). The results are shown in figs. 14 and 15.
First for Memcached, compared to SameNode, the main in-
crease due to Hostlo is the kernel CPU usage of the client
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Figure 14: Memcached results: CPU usage breakdown. Left:
sum of CPU usage of the benchmark and the Memcached
server in their respective VMs. Right: sum of the CPU usage
of the VMs. For SameNode, there is only one VM. guest CPU
time is time dedicated to the vCPUs of the VMs.

and the server, which is 46.7% more (fig. 14a). Total CPU us-
age of the client and the server increases by 53.2%. From the
host, the CPU time given to the guests is increased by 89.8%,
although it is important to note that by nature, the SameN-
ode setup features only one VM, whereas Hostlo, NAT and
Overlay include two VMs, which necessarily increases guest
CPU usage. We can also observe that with Hostlo, some CPU
time (1.68 core) is used by the host kernel on behalf of the
VMs, notice however that around the same amount is also
observed with NAT and Overlay. We conclude that this CPU
time comes from the host kernel handling packets transiting
through the guest’s virtual interfaces and that are emulated
with Vhost. Indeed, the latter is a host kernel component
used by KVM to improve guest I/O by emulating it in the
host kernel instead of letting QEMU manages a virtio device.
It follows that the CPU usage of Hostlo’s host kernel module
is correctly attributed to the guest VMs. Second for NGINX,
the CPU increases of Hostlo compared to SameNode is much
smaller: client and server CPU usage increases by 17.1%, and
guest CPU usage increases by 36.9%. The same observations
as for Memcached can otherwise be made.

Note that the CPU time consumed by the host on behalf of
VMs due to Hostlo could be charged to the latter using [35],
thus eliminating the overhead evaluated in this section.

6 RELATED WORK

Nested virtualization. Nested virtualization, as VMs-in-
VMs, is used in derivative clouds [28], where the issue of
network virtualization arose and overlay networks were devel-
oped. When containers, also known as OS-level virtualization,
appeared, they replaced VMs at the nested layer. However,
there has been work to bring VMs to the level of nimbleness
of containers [23], that would resolve the issues that warrant
using nested virtualization in the first place.

Virtualized networking optimization. Networking perfor-
mance for containers has been investigated [17, 34]. In par-
ticular, Suo et al. [34] observed a drastic performance drop
due to nested network virtualization.
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Figure 15: NGINX results: CPU usage breakdown. Left: sum
of CPU usage of the benchmark and the NGINX server in
their respective VMs. Right: sum of the CPU usage of the
VMs. For SameNode, there is only one VM. guest CPU time
is time dedicated to the vCPUs of the VMs.

Network virtualization is most often based on bridges [24],
even with overlay networking, but they can be replaced by
hardware switching using macvlan [15]. This is totally com-
patible with BrFusion, where the VM’s bridge disappears
and the interface inserted into the VM for the pod comes
from the hardware switch created with macvlan on the phys-
ical host. However macvlan is not actually used by cloud
providers because it requires them to change their core net-
work routing, and to manage IP addresses allocation of con-
tainers [42]. Although better switching technologies can be
used, such as macvlan or Open vSwitch [27], this does not
solve the actual issues of duplicate network virtualization
and VM-local networking for pods.

Container networking. Many other works improved con-
tainer networking. Kim et al. [21] worked on virtual RDMA
networking, while Zhuo et al. [42] developed kernel support
for overlay networking. Overlay networking at the application
level was also proposed by Subhraveti et al. [32]. These three
solutions simplify and optimize overlay networking but they
do not solve network virtualization duplication. Nakamura
et al. [26] propose socket grafting, which bypasses container
network stacks by grafting sockets in containers onto sockets
in host network stacks, with proper access control. While it
eliminates a network virtualization layer as BrFusion does, it
requires to modify the applications or to trap syscalls. Also,
all of these works do not take into account nested virtualiza-
tion: they only optimize container-to-node communication,
whereas BrFusion is about removing container-to-node com-
munication at the transport level, so a container is directly
linked to the virtualized network on the physical host.

Inter-VM communication. Optimizing communication be-
tween VMs has seen some work. One system has been pro-
posed by Zhang et al. [40], combining shared-memory from
Nahanni [22] for local VMs with SR-IOV over Infiniband for
guests on different hosts, however it is only usable for MPI
workloads. Like many other works, it requires to adapt the
application, while Hostlo is a transport-level solution that
requires no change to the containerized workload. Zhang and



Liu [41] developed MemPipe that works below the IP level
to deliver packets to co-resident VMs via shared memory.
While it does not require any modification to the applications,
there is no concept of isolation: it simply analyzes packets to
determine which VM is to be notified when transmitted data
is ready. Leveraging this solution to transparently replace a
pod’s localhost interface would also be a challenge.

7 CONCLUSION

We proposed in this paper BrFusion and Hostlo, two solutions
to two issues of nested virtualization: network virtualization
duplication, and VM-bounded pod deployments. We proto-
type them in Docker, Linux KVM/QEMU and Kubernetes
systems. The evaluation results show that our solutions out-
performs state-of-the-art solutions with acceptable overhead.

We think that nested virtualization is useful in its own
right, but some work it still needed to overcome its perfor-
mance and management disadvantages. We believe that the
way forward for nested virtualization is to clearly put the
orchestrator as the only manager of the datacenter, and to
integrate the VMM as a tool for the orchestrator.
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