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Abstract—A novel design method for PID controller with simultaneously considered. Genetic algorithms (GA) are well
optimal parameters is proposed based on the Improved Non- suited for searching in large objective space.
dominated Sorting Genetic Algorithm II(NSGA-II). The design  The remainder of the paper is organized as follows: Sec-
of PID controller is formulated as multi-objective optimization . . . . .
problem where the integral of time multiplied by absolute error t|qn 2 des‘?”bes the P!D 9'93'9” proplgm. _Sectlon 3 gives a
and integra| of the square of the error (|SE)‘ are Optimized brlef overviews Of multI-ObJectlve Opt|m|zat|0n problem and
simultaneously. By testing two control systems, the proposed NSGA-II algorithm. Section 4 presents a design method based

method has been able to produce a good performance control. on NSGA-II. Section 5 gives simulation results and Section 6
Index Terms—NSGA-II; PID controller; Laplace crossover; presents some conclusions.
Pareto front

[I. PROBLEM FORMULATION

PID (proportional integral derivative) control is one of the
Most real control problems are characterized by sevegarlier control strategies. The control-loop system is illustrated
objectives, often contradicting, that must be satisfied simi Fig. 1, where it can be seen that in a PID controller, the
taneously. For example, the engineers are often faced wetor signale(t) is used to generate the proportional, integral,
design problems, where a controller is needed that providéxad derivative actions, with the resulting signals weighted and
small overshoot, fast response and economical control actiSsimmed to form the control signal(t) applied to the plan
Since the 1980’s several Multi-objective Genetic (Algorithmgiodel. A mathematical description of the PID controller is
MOGASs) have been proposed and applied in Multi-objective
optimization problems [1, 2, 3, 4, 5, 6]. These algorithms are PID controller
mainly classified in two approaches: (1) aggregative approach : :
which consists to transform the Multi-objective optimization
problem into a single objective optimization problem. (2)
non aggregative approach which solves the Multi-objective
optimization problem, based on Pareto’s principle. The ag-
gregative approach is relatively simple but on other hand many
design iterations are required to obtain the set of trade-off
(Pareto front), leading to a prohibitive number of evaluations. Fig. 1. A typical PID control structure
For this reason, non aggregative approach is often used as
solving method of Multi-objective optimization problems and + de(t)
generates a Pareto set in a single run. u(t) = Kpe(t) + KZ/ e(r)dr + K4 1)
In this work we use the improved non-dominated sorting 0 dt
genetic algorithm (NSGA-II), which is one of the most powwhere K, K; and K, are the parameters of PID controller.
erful non aggregative multi-objective techniques, and able toFormally, a "performance index” is defined as a quantitative
locate the Pareto front in complex reach space. The desigeasure to depict the system performance. To a PID control
of PID controller is considered here and it formulated as/stem, there are often four indices to depict the system
multi-objective optimization problem where the integral operformance: Integral of the Square of the Error (ISE), Integral
time multiplied by absolute error and integral of the square of the Absolute magnitude of the Error (IAE), Integral of Time
the error (ISE), are optimized simultaneously. This controllenultiplied by Absolute Error (ITAE) and Integral of Time
type is still the one most widely use in industrial controlmultiplied by the Square Error (ITSE). ITAE provides the best
However the optimal tuning of its three parameters is ngelectivity of the performance indices [7] and it is commonly
an easy task, especially if several performance indices aederred to as a good criterion in designing PID controllers [8,

I. INTRODUCTION
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9]. A. GENERAL PRINCIPLE OF NSGA-II

In this work, two different objectives are considered, the The genetic algorithm, used in this paper, is an adaptation
first objective is the ITAE performance index and the secong} 4 general structure of multi-objective genetic algorithms,
objective is the ISE. Whereas minimizing the first objectivgzjled NSGA-Il (non-dominated sorting genetic algorithm
will provide good reference tracking and better disturbangg proposed by Deb [4].This algorithm provides excellent
rejection, minimizing the second reduces the rise time. Thggits compared to others proposed multi-objective genetic
mathematical descriptions of these objectives are given by:algorithms such as its first version [10]. In this section, we
T, present the general principle of NSGA-II, using the same
Ob, = ITAE = / tle(t)|dt (2) notations adopted in [4]. Then we specify its components, for
0 our problem, in Section 4. NSGA-II algorithm uses an elitist
. approach which can significantly speed up the performance
Oby = ISE :/ e(t)2dt A3) of GA [11], a.sortmg procedure, based on a fast aIgonthm
0 and a comparison operator based on calculus of a crowding
distance instead a sharing function [12] which has been
proved to be problematic (depends largely on the chosen
sigma value). The general principle of NSGA-II is presented

where thet is the time, the error signal(t) is the difference
between reference input signalt) and controlled variable
y(t) and Ty is the simulation time.

Non-dominated Sorting

I11. DESCRIPTION OFMULTI-OBJECTIVE OPTIMIZATION F, -F1
PROBLEM AND NSGA-II I—I Crowding cw
distance PO tion
[V. MULTI-OBJECTIVE OPTIMIZATION PROBLEM = sorting i WJ‘” [
Without loss of generality, we consider here a multi F3 ’”
objective minimization problem which can be formulated ag ™| BRI .
t+1
Minimize (F(X) = (f1(X), fa(X), ..., fu(X))) Rejected
s.t 9:(X)<0(i=1,2,...,k) Q ] individuals
hi(X)=006(=1,2,...,1)
. . (4) :l Rejected Fronts
where (f1(X),f2(X), ..., fn(X)) are then different objective
functions to be minimizedX = (x1,s,...,7,) is the r- R R

dimensional decision space;(X) are thek inequality con- -«
straints,h;(X) are thel equality constraints.
The objectives in the multi-objective optimization problems

are often conflict each other, so it does not exist an absolutgly rig. 1: at each generationy a parent populatiorP, of
optimal solution to optimize all objectives in same time, bujze N and an offspring populatior), of the same size are
can just get a set of satisfactory solutions i.e. Pareto solutiofgerged for forming a populatio®; (P, U Q,) , of size2N.
which describe the trade-off among contradicted objectivefyen, the populatior, is partitioned into a number of sets
For a multi-objective minimization problem mentioned abovygied fronts ', which are constructed iteratively. Froit
any two solutionsX; andX can have one of two possibilities-consists of the non-dominated solutions frétn. F, consists
one covers or dominates the other or none dominates the oternon-dominated solution from the set (Rt - F1) and so

We say that the solutiok; dominatesX., if the following  on. |n general,F; consists of the non-dominated solutions

Fig. 2. NSGA-Il procedure

two conditions are satisfied: from the set (R, -( 1 U F2 U ... U F;_;) ). Deb et al.
Vie{1,2,..,n}: fi(X1) < fi(Xa) have proposed a fast partitioned algorithm called fast non-
i ) 9t . 7 —_ K3 5 . . . . . g
{ Fe{l,2,..n}: f(X1) < f;(X2) (5)  dominated sorting algorithm. Once all fronts are identified, a

new parent populatioP;,, of size N is formed by adding
If X; dominates solutiorXs, X is called the nondominatedthe fronts toP;,; in order ( front oneF; followed by front
solution. The solutions that are nondominated within the entireo and so on) as long as the size Bf,; do not exceed
search space are denoted as Pareto-optimal and constituteNhimdividuals. If the number of individuals present i
Pareto-optimal front. is lower thanN, a crowding procedure is applied to the first
The goal of a multi-objective optimization algorithm is nofront F; not included inP;,;. The aim of this procedure is
only to guide the search towards the Pareto-optimal frong insert theN — P,,; best individuals which miss to fill all
but, also to maintain population diversity in the set of thpopulation Rt . For each solutianin F; a crowding distance
nondominated solutions. d; is calculated based on each objectivg, . The frontF; is

sorted according to objective function valG¥;, in ascending



order of magnitude. The first and the last individuals of theill be transformed to other paramete'{ with a probability

front are assigned infinity as their distance with respect @, as follows:

Oby. For all other intermediate individuals are assigned a . 1
: . ; / x; + Atz — x;) ifr <3

distance value equal to the absolute normalized difference T; = v ! 2 9)

) L . . : d x; — At x; — ) otherwise

in the objective function values of two adjacent solutions. ¢

This calculation is repeated for other objective functions. Thgherer is a uniformly distributed random number between

overall crowding distance for each solutions calculated as 0 and 1.x! and z* are lower and upper bounds af;,

the sum of individual distance values corresponding to eagéspectively. The functior(¢,y) given below takes value in

objective function. The individuals with the highest crowdinghe interval|0, y).

distance values are added K., until P,,; =N. Once the .

individuals appertaining to the populatidf.,; are identified, Alt,y) =y(1 —ul=7)) (10)

a new populationQ;,; of size N is created by selection, . . - .

crossover and mutation using individuals of the populatio\?{hereu is a uniformly distributed random number in the

P, ;1. It is important to note that with NSGA-II, the selection'nt.erval [0,1], T is the maximum number of generations and

procedure is based on a crowded-comparison operator defi g 2 parametgr,' .determlnln.g the strength of the'mutanon
erator. In the initial generations nonuniform mutation tends

as follows: to select an individual, two solutions are chost h th » | d in the lat i it
randomly and uniformly fronP;, ; and that of smaller number 0 searc € Space uniformly and in the fater generations |
tends to search the space locally, i.e. closer to its descendants

of fronti,..,x is preserved. If both solutions belong to the sa
front, one separates them by calculating the crowding dista é]'
for each solution and the solution with the higher distance is

. . V1. SIMULATION EXPERIMENTS AND RESULTS
preferred. The NSGA-II operation will repeat the procedure

until the stopping criteria is satisfied. In order to examine the effectiveness of our approach, two
typical control systems as used in [18,19] were tested. The
V. DESIGN OFPID CONTROLLER BY NSGA-II transfer functions of the plants (Plant A and Plant B) in the
A detailed method of the NSGA-II learning algorithm fortwo control systems are given as followS: (s) = (2/s(s +
the PID is introduced in this section. 1.4)+2),Gg(s) =2/((s+ 1)(s+2)).

The proposed NSGA-Il has been implemented using re&lig. 3 shows the closed-loop step responses of the two plants
coded genetic algorithm (RCGA). Each coefficient of the PIwvithout a PID controller.
is encoded by two real variablég;, p2} using the exponential

form K = p;10P2. This allows the NSGA-Il to search a : : : : : : : : :
wide range of values, with a small change of the exponential I A SR S A
variable. So the chromosome uses strings of |e@gth 0.8 -+ Db Dl D
In this study the Laplace crossover operator, recently proposed L0 .. 0 PantA....o i
in [13] for RCGA, has been employed. This operator provides | /N g 0Ll
a good results and outperforms other crossover operators such 5 SN A
as heuristic crossover [14]. S0 TR e
Using LX, two offspringSYl — (ygl),yél)’“_’yél)) Y2 = 04k f AAAAA AAAAA AAAAA “ AAAAA AAAAAA
WPy, y8?) and are generated from a pair of parents  od. . ff oG]
Xt = (:ﬂgl),w?),...,xém) x2 = (228, 2 in the ook L]
following way. T
First, a uniformly distributed random number € [0, 1] 7 AR SR A A A A S AR A A
is generated. Then, a random numlgeis generated which P S —
follows the Laplace distribution by simply inverting the dis- Time (secs)
tribution function of Laplace distribution as follows: .
Fig. 3. Step reponses
ﬂ{ a —blog, (u) %fugé ©6) - -
a+blog,(u) ifu> 3 The performance of the PID is evaluated based on the unit
The offsprings are given by the equations step responses and we used the ITAE (eg. 2) and ISE (eq. 3)
" " @ @ criterions as objective functions.
y, =, + Pl — (7) In order to acquire better performance, several parameters of
yz(Q) _ x§2) N ﬁ|x,(;1) B x§2)| ®) NSGA-II should be set appropriately. In this work, the used

parameters are summarized as follows:

A real value mutation is designed [15,16,17] for the real- « crossover probability?. = 0.85;
string. Here we use the non-uniform mutation [15] which is « mutation probability?,, = 0.01;
one of the most widely used mutation operators in RCGA. So,. population sizepop_size = 40;
at thet*® generation, a parametes, of the chromosomeX « number of generations = 100;



Fig. 4 and Fig. 5 show the distribution of the two objectivethe unit step responses of each study case were obtained as
corresponding to chromosomes of initial population for botshown in Fig.6 and Fig. 7.
plants A and B respectively.
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The values of two objectives are relatively important and Fig. 7. Unit step response of Plant B

we have only two nondominated solutions in the case of Plant
A and three nondominated solutions in the case of plant B.From generation to generation, the valuesiah and Ob,
This is due to initialization step that creates chromosoma&e significantly improved.
in random'y Way_ The PID’s parameters and two ObJect|\/E|g 8 and F|g 9 represent the distribution of obtained chro-
functions (TAE and ISE) corresponding to the nondomi-mosomes at the end of optimization process related to the
nated solutions of each study case (Plant A and Plant B) wét@nt A and Plant B respectively. It is important to note the
summarized in table 1. Using these PID controller paramete$gnultaneous improvement of objective§ EA and ISE.

The Table 2 gives PID’s parameters and two objective func-

TABLE | tions corresponding to some solutions (four solutions) in the
SUMMARY OF SIMULATION RESULTS RELATED TO NONDOMINATED :
SOLUTIONS OF INITIAL POPULATION Pareto Front of eac_:h study case. Using these PID controller
parameters, the unit step responses of each study case were
Plant | K. K, K, | ITAE | ISE obtained as shown in Fig.10 and Fig. 11.
0.8349 | 1.4745] 0.8294| 15088 | 0.2978 Observing the values of the two objectives in Table 2 and
A [ 15.1942| 0.0388 | 3.8185 | 3.0540 | 0.2403 ) - i
58349 | 14745 | 0.8294 | 1.0775 | 0.3101 the unit responses in figures 10 and 11, we can find that the
B 6.1750 | 1.4180| 0.1845| 1.5487 | 0.2902 PID controller has good unit step responses in each study case.
15.1942] 0.0388 | 3.8185] 3.0771 [ 0.2603 Therefore, we can conclude that the NSGA-II algorithm is able
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TABLE I

SUMMARY OF SIMULATION RESULTS RELATED TO SOME SOLUTIONS IN

PARETO FRONT

Plant K K; Kg ITAE ISE

19.9759 | 3.9966 | 4.4507 | 0.0578 | 0.1758

A 19.9269 | 3.9950 | 4.0031 | 0.1074 | 0.1698

19.9934 | 3.9737 | 2.5517 | 0.3514 0:1575

19.9931 | 3.9845 | 2.4766 | 0.3623 | 0.1574

19.9066 | 3.9833 | 3.5269 | 0.0598 | 0.1744

B 10.9453 | 3.9871 [ 3.1740 | 0.1141 | 0.1693

19.9759 | 3.9908 | 1.7540 | 0.3474 | 0.1576

19.9759 | 3.9896 | 1.9285 | 0.3178 | 0.1580

Output

Time (secs)

Fig. 10. Unit step response of Plant A

Qutput

Time (secs)

Fig. 11. Unit step response of Plant B
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