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Abstract—A novel design method for PID controller with
optimal parameters is proposed based on the Improved Non-
dominated Sorting Genetic Algorithm II(NSGA-II). The design
of PID controller is formulated as multi-objective optimization
problem where the integral of time multiplied by absolute error
and integral of the square of the error (ISE), are optimized
simultaneously. By testing two control systems, the proposed
method has been able to produce a good performance control.

Index Terms—NSGA-II; PID controller; Laplace crossover;
Pareto front

I. I NTRODUCTION

Most real control problems are characterized by several
objectives, often contradicting, that must be satisfied simul-
taneously. For example, the engineers are often faced with
design problems, where a controller is needed that provide a
small overshoot, fast response and economical control action.
Since the 1980’s several Multi-objective Genetic (Algorithms
MOGAs) have been proposed and applied in Multi-objective
optimization problems [1, 2, 3, 4, 5, 6]. These algorithms are
mainly classified in two approaches: (1) aggregative approach
which consists to transform the Multi-objective optimization
problem into a single objective optimization problem. (2)
non aggregative approach which solves the Multi-objective
optimization problem, based on Pareto’s principle. The ag-
gregative approach is relatively simple but on other hand many
design iterations are required to obtain the set of trade-off
(Pareto front), leading to a prohibitive number of evaluations.
For this reason, non aggregative approach is often used as
solving method of Multi-objective optimization problems and
generates a Pareto set in a single run.
In this work we use the improved non-dominated sorting
genetic algorithm (NSGA-II), which is one of the most pow-
erful non aggregative multi-objective techniques, and able to
locate the Pareto front in complex reach space. The design
of PID controller is considered here and it formulated as
multi-objective optimization problem where the integral of
time multiplied by absolute error and integral of the square of
the error (ISE), are optimized simultaneously. This controller
type is still the one most widely use in industrial control.
However the optimal tuning of its three parameters is not
an easy task, especially if several performance indices are

simultaneously considered. Genetic algorithms (GA) are well
suited for searching in large objective space.
The remainder of the paper is organized as follows: Sec-
tion 2 describes the PID design problem. Section 3 gives a
brief overviews of multi-objective optimization problem and
NSGA-II algorithm. Section 4 presents a design method based
on NSGA-II. Section 5 gives simulation results and Section 6
presents some conclusions.

II. PROBLEM FORMULATION

PID (proportional integral derivative) control is one of the
earlier control strategies. The control-loop system is illustrated
in Fig. 1, where it can be seen that in a PID controller, the
error signale(t) is used to generate the proportional, integral,
and derivative actions, with the resulting signals weighted and
summed to form the control signalu(t) applied to the plan
model. A mathematical description of the PID controller is

Fig. 1. A typical PID control structure

u(t) = Kpe(t) + Ki

∫ t

0

e(τ)dτ + Kd
de(t)
dt

(1)

whereKp, Ki andKd are the parameters of PID controller.
Formally, a ”performance index” is defined as a quantitative

measure to depict the system performance. To a PID control
system, there are often four indices to depict the system
performance: Integral of the Square of the Error (ISE), Integral
of the Absolute magnitude of the Error (IAE), Integral of Time
multiplied by Absolute Error (ITAE) and Integral of Time
multiplied by the Square Error (ITSE). ITAE provides the best
selectivity of the performance indices [7] and it is commonly
referred to as a good criterion in designing PID controllers [8,



9].
In this work, two different objectives are considered, the
first objective is the ITAE performance index and the second
objective is the ISE. Whereas minimizing the first objective
will provide good reference tracking and better disturbance
rejection, minimizing the second reduces the rise time. The
mathematical descriptions of these objectives are given by:

Ob1 = ITAE =
∫ Ts

0

t|e(t)|dt (2)

Ob2 = ISE =
∫ Ts

0

e(t)2dt (3)

where thet is the time, the error signale(t) is the difference
between reference input signalr(t) and controlled variable
y(t) andTs is the simulation time.

III. D ESCRIPTION OFMULTI -OBJECTIVE OPTIMIZATION

PROBLEM AND NSGA-II

IV. M ULTI -OBJECTIVE OPTIMIZATION PROBLEM

Without loss of generality, we consider here a multi-
objective minimization problem which can be formulated as: Minimize (F (X) = (f1(X), f2(X), ..., fn(X)))

s.t gi(X) ≤ 0 (i = 1, 2, . . . , k)
hi(X) = 0 (i = 1, 2, . . . , l)

(4)
where (f1(X),f2(X), ..., fn(X)) are then different objective
functions to be minimized,X = (x1, x2, ..., xr) is the r-
dimensional decision space,gi(X) are thek inequality con-
straints,hi(X) are thel equality constraints.
The objectives in the multi-objective optimization problems
are often conflict each other, so it does not exist an absolutely
optimal solution to optimize all objectives in same time, but
can just get a set of satisfactory solutions i.e. Pareto solutions,
which describe the trade-off among contradicted objectives.
For a multi-objective minimization problem mentioned above,
any two solutionsX1 andX2 can have one of two possibilities-
one covers or dominates the other or none dominates the other.
We say that the solutionX1 dominatesX2, if the following
two conditions are satisfied:{

∀i ∈ {1, 2, ..., n} : fi(X1) ≤ fi(X2)
∃j ∈ {1, 2, ..., n} : fj(X1) < fj(X2)

(5)

If X1 dominates solutionX2, X1 is called the nondominated
solution. The solutions that are nondominated within the entire
search space are denoted as Pareto-optimal and constitute the
Pareto-optimal front.
The goal of a multi-objective optimization algorithm is not
only to guide the search towards the Pareto-optimal front,
but, also to maintain population diversity in the set of the
nondominated solutions.

A. GENERAL PRINCIPLE OF NSGA-II

The genetic algorithm, used in this paper, is an adaptation
of a general structure of multi-objective genetic algorithms,
called NSGA-II (non-dominated sorting genetic algorithm
II) proposed by Deb [4].This algorithm provides excellent
results compared to others proposed multi-objective genetic
algorithms such as its first version [10]. In this section, we
present the general principle of NSGA-II, using the same
notations adopted in [4]. Then we specify its components, for
our problem, in Section 4. NSGA-II algorithm uses an elitist
approach which can significantly speed up the performance
of GA [11], a sorting procedure, based on a fast algorithm
and a comparison operator based on calculus of a crowding
distance instead a sharing function [12] which has been
proved to be problematic (depends largely on the chosen
sigma value). The general principle of NSGA-II is presented

Fig. 2. NSGA-II procedure

in Fig. 1: at each generationt, a parent populationPt of
size N and an offspring populationQt of the same size are
merged for forming a populationRt (Pt ∪ Qt) , of size2N .
Then, the populationRt is partitioned into a number of sets
called frontsF , which are constructed iteratively. FrontF1

consists of the non-dominated solutions fromRt . F2 consists
of non-dominated solution from the set (Rt - F1) and so
on. In general,Fi consists of the non-dominated solutions
from the set (Rt -( F1 ∪ F2 ∪ ... ∪ Fi−1) ). Deb et al.
have proposed a fast partitioned algorithm called fast non-
dominated sorting algorithm. Once all fronts are identified, a
new parent populationPt+1 of size N is formed by adding
the fronts toPt+1 in order ( front oneF1 followed by front
two and so on) as long as the size ofPt+1 do not exceed
N individuals. If the number of individuals present inPt+1

is lower thanN , a crowding procedure is applied to the first
front Fi not included inPt+1. The aim of this procedure is
to insert theN − Pt+1 best individuals which miss to fill all
population Rt . For each solutioni in Fi a crowding distance
di is calculated based on each objectiveObk . The frontFi is
sorted according to objective function valueObk in ascending



order of magnitude. The first and the last individuals of the
front are assigned infinity as their distance with respect to
Obk. For all other intermediate individuals are assigned a
distance value equal to the absolute normalized difference
in the objective function values of two adjacent solutions.
This calculation is repeated for other objective functions. The
overall crowding distance for each solutioni is calculated as
the sum of individual distance values corresponding to each
objective function. The individuals with the highest crowding
distance values are added toPt+1 until Pt+1 =N . Once the
individuals appertaining to the populationPt+1 are identified,
a new populationQt+1 of size N is created by selection,
crossover and mutation using individuals of the population
Pt+1. It is important to note that with NSGA-II, the selection
procedure is based on a crowded-comparison operator defined
as follows: to select an individual, two solutions are chosen
randomly and uniformly fromPt+1 and that of smaller number
of front irank is preserved. If both solutions belong to the same
front, one separates them by calculating the crowding distance
for each solution and the solution with the higher distance is
preferred. The NSGA-II operation will repeat the procedure
until the stopping criteria is satisfied.

V. DESIGN OFPID CONTROLLER BY NSGA-II

A detailed method of the NSGA-II learning algorithm for
the PID is introduced in this section.
The proposed NSGA-II has been implemented using real-
coded genetic algorithm (RCGA). Each coefficient of the PID
is encoded by two real variables{p1, p2} using the exponential
form K = p110p2 . This allows the NSGA-II to search a
wide range of values, with a small change of the exponential
variable. So the chromosome uses strings of length6.
In this study the Laplace crossover operator, recently proposed
in [13] for RCGA, has been employed. This operator provides
a good results and outperforms other crossover operators such
as heuristic crossover [14].
Using LX, two offspringsY 1 = (y(1)

1 , y
(1)
2 , ..., y

(1)
6 ) Y 2 =

(y(2)
1 , y

(2)
2 , ..., y

(2)
6 ) and are generated from a pair of parents

X1 = (x(1)
1 , x

(1)
2 , ..., x

(1)
6 ) X2 = (x(2)

1 , x
(2)
2 , ..., x

(2)
6 ) in the

following way.
First, a uniformly distributed random numberu ∈ [0, 1]

is generated. Then, a random numberβ is generated which
follows the Laplace distribution by simply inverting the dis-
tribution function of Laplace distribution as follows:

β =
{

a− b loge(u) if u ≤ 1
2

a + b loge(u) if u > 1
2

(6)

The offsprings are given by the equations

y
(1)
i = x

(1)
i + β|x(1)

i − x
(2)
i | (7)

y
(2)
i = x

(2)
i + β|x(1)

i − x
(2)
i | (8)

A real value mutation is designed [15,16,17] for the real-
string. Here we use the non-uniform mutation [15] which is
one of the most widely used mutation operators in RCGA. So,
at the tth generation, a parameterxi of the chromosomeX

will be transformed to other parameterx
′

i with a probability
Pm as follows:

x
′

i =
{

xi + ∆(t, xu
i − xi) if r ≤ 1

2
xi −∆(t, xi − xl

i) otherwise (9)

where r is a uniformly distributed random number between
0 and 1. xl

i and xu
i are lower and upper bounds ofxi,

respectively. The function∆(t, y) given below takes value in
the interval[0, y].

∆(t, y) = y(1− u(1− t
T )b

) (10)

where u is a uniformly distributed random number in the
interval [0, 1], T is the maximum number of generations and
b is a parameter, determining the strength of the mutation
operator. In the initial generations nonuniform mutation tends
to search the space uniformly and in the later generations it
tends to search the space locally, i.e. closer to its descendants
[15].

VI. SIMULATION EXPERIMENTS AND RESULTS

In order to examine the effectiveness of our approach, two
typical control systems as used in [18,19] were tested. The
transfer functions of the plants (Plant A and Plant B) in the
two control systems are given as follows:GA(s) = (2/s(s +
1.4) + 2), GB(s) = 2/((s + 1)(s + 2)).
Fig. 3 shows the closed-loop step responses of the two plants
without a PID controller.

Fig. 3. Step reponses

The performance of the PID is evaluated based on the unit
step responses and we used the ITAE (eq. 2) and ISE (eq. 3)
criterions as objective functions.
In order to acquire better performance, several parameters of
NSGA-II should be set appropriately. In this work, the used
parameters are summarized as follows:

• crossover probabilityPc = 0.85;
• mutation probabilityPm = 0.01;
• population sizepop−size = 40;
• number of generationsT = 100;



Fig. 4 and Fig. 5 show the distribution of the two objectives
corresponding to chromosomes of initial population for both
plants A and B respectively.

Fig. 4. Initial population (Plant A)

Fig. 5. Initial population (Plant B)

The values of two objectives are relatively important and
we have only two nondominated solutions in the case of Plant
A and three nondominated solutions in the case of plant B.
This is due to initialization step that creates chromosomes
in randomly way. The PID’s parameters and two objective
functions (ITAE and ISE) corresponding to the nondomi-
nated solutions of each study case (Plant A and Plant B) were
summarized in table 1. Using these PID controller parameters,

TABLE I
SUMMARY OF SIMULATION RESULTS RELATED TO NONDOMINATED

SOLUTIONS OF INITIAL POPULATION

Plant Ke Ki Kd ITAE ISE
5.8349 1.4745 0.8294 1.5088 0.2978

A 15.1942 0.0388 3.8185 3.0540 0.2403
5.8349 1.4745 0.8294 1.0775 0.3101

B 6.1750 1.4180 0.1845 1.5487 0.2902
15.1942 0.0388 3.8185 3.0771 0.2603

the unit step responses of each study case were obtained as
shown in Fig.6 and Fig. 7.

Fig. 6. Unit step response of Plant A

Fig. 7. Unit step response of Plant B

From generation to generation, the values ofOb1 andOb2

are significantly improved.
Fig. 8 and Fig. 9 represent the distribution of obtained chro-
mosomes at the end of optimization process related to the
Plant A and Plant B respectively. It is important to note the
simultaneous improvement of objectivesITEA andISE.
The Table 2 gives PID’s parameters and two objective func-
tions corresponding to some solutions (four solutions) in the
Pareto Front of each study case. Using these PID controller
parameters, the unit step responses of each study case were
obtained as shown in Fig.10 and Fig. 11.

Observing the values of the two objectives in Table 2 and
the unit responses in figures 10 and 11, we can find that the
PID controller has good unit step responses in each study case.
Therefore, we can conclude that the NSGA-II algorithm is able



Fig. 8. Final population (Plant A)

Fig. 9. Final population (Plant B)

TABLE II
SUMMARY OF SIMULATION RESULTS RELATED TO SOME SOLUTIONS IN

PARETO FRONT

Plant Ke Ki Kd ITAE ISE
19.9759 3.9966 4.4507 0.0578 0.1758

A 19.9269 3.9950 4.0031 0.1074 0.1698
19.9934 3.9737 2.5517 0.3514 0.1575
19.9931 3.9845 2.4766 0.3623 0.1574
19.9066 3.9833 3.5269 0.0598 0.1744

B 19.9453 3.9871 3.1740 0.1141 0.1693
19.9759 3.9908 1.7540 0.3474 0.1576
19.9759 3.9896 1.9285 0.3178 0.1580

to find the optimal parameters of PID controller that provide
a good performance control.

VII. C ONCLUSION

A method to design a PID controller has been proposed. All
the parameters of PID (Kp, Ki andKd) are optimally adjusted
using a NSGA-II.
Two systems are used as test problems to analyze the per-
formance of the proposed method. The effectiveness of the
approach is well justified through simulation results. We have
a good performance control for each system.

Fig. 10. Unit step response of Plant A

Fig. 11. Unit step response of Plant B
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