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Invariant embedding for graph classification

Alexis Galland * 1 Marc Lelarge * 1

Abstract
Learning on graphs requires a graph feature rep-
resentation able to discriminate among different
graphs while being amenable to fast computation.
The graph isomorphism problem tells us that no
fast representation of graphs is known if we re-
quire the representation to be both invariant to
nodes permutation and able to discriminate two
non-isomorphic graphs. Most graph representa-
tions explored so far require to be invariant. We
explore new graph representations by relaxing
this constraint. We present a generic embedding
of graphs relying on spectral graph theory called
Invariant Graph Embedding (IGE). We show that
for a large family of graphs, our embedding is
still invariant. To evaluate the quality and utility
of our IGE, we apply them to the graph classi-
fication problem and show that IGE reaches the
state-of-the-art on benchmark datasets.

1. Introduction
Many scientific fields study data with an underlying graph or
manifold structure such as social networks, sensor networks,
biomedical knowledge graphs. The need for new algorithms
and neural network architectures that can accommodate
these non-Euclidean structures is becoming increasingly
clear. In parallel, there is a growing interest in how we can
leverage insights from these domains to incorporate new
kinds of relational and non-Euclidean inductive biases into
deep learning. Recent years have seen a surge in research
on these problems, see the recent surveys (Goyal & Ferrara,
2018) and (Battaglia et al., 2018).

Graph classification is an important problem with practi-
cal applications in a diverse set of fields: bioinformatics,
chemoinformatics or social networks. To solve this problem,
one needs to compute graph features that help discriminate
between graphs of different classes.

*Equal contribution 1Team Dyogene, Inria, Paris, France. Cor-
respondence to: Alexis Galland <alexis.galland@gmail.com>,
Marc Lelarge <marc.lelarge@ens.fr>.

Presented at the ICML 2019 Workshop on Learning and Reasoning
with Graph-Structured Data Copyright 2019 by the author(s).

Methods to learn representations that encode structure in-
formation about the graph can be categorized to be graph-
kernel based or graph neural network (GNN) based. Inter-
estingly, in both cases, best perfoming methods are closely
related to the Weisfeiler-Lehman (WL) graph isomorphism
test (Weisfeiler & Lehman, 1968), see (Shervashidze et al.,
2011) for its connection with graph kernel and (Xu et al.,
2018) for its connection with GNN. The WL test iteratively
updates a given node’s feature vector by aggregating feature
vectors of its neighbors. (Babai et al., 1982) proposes an
alternative algorithm for the graph isomorphism problem
based on spectral graph theory. Our aim in this paper is
to demonstrate the relevance of ideas from spectral graph
theory (Spielman, 2007) to the graph representation learning
problem. We introduce a novel and powerful graph feature
representation called Invariant Graph Embedding (IGE). We
show that IGE is invariant for a large family of graphs and
also give intuition on why IGE has a great discrimminative
power by explicitly showing the steps in its construction
where some graph information is lost. We demonstrate the
excellent performances of our IGE on graph classification
tasks.

2. Related Work
Graph classification techniques can be grouped into differ-
ent categories. Graph kernel algorithms define a distance
between graphs in order to compute the similarity of two
graphs and classify them using this metric. Among these
techniques we list the graphlets kernel (Shervashidze et al.,
2009) that computes a list of subgraphs and counts the ap-
paritions of these subgraphs in each network of our dataset.
There exist algorithms that define different distances be-
tween graphs such as Random walk kernel (Gärtner et al.,
2003), shortest path kernels (Borgwardt & Kriegel, 2005),
Weisfeiler Lehman subtree kernel (Shervashidze et al., 2009)
or deep graph kernels (Yanardag & Vishwanathan, 2015).
Other articles are based on recent works in the field of sig-
nal processing and define convolutional neural networks on
graphs. Convolutions can be defined in many ways, with
Graph Fourier Transform and spectral methods (Defferrard
et al., 2016; Henaff et al., 2015; Hammond et al., 2011; Kipf
& Welling, 2016), or by defining aggregation processes on
the features of the neighboors of each nodes (Scarselli et al.,
2009; Atwood & Towsley, 2016; Niepert et al., 2016) and
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other compute graph features without training using a gener-
alization of scattering transform to graphs, initially defined
on images (Gama et al., 2018). A fundamental issue when
using neural networks defined on graphs is that they are
dependant on the number of nodes in the graph and thus
their use is not straigh-forward for a graph classification
task. A way to cope with this issue would be to add nodes
that are not linked to the graph to have a corpus of graphs
that are all of the same size. Another way is to define a
parametrization of the neural network that is independant
with the number of nodes of the graph (Bruna & Li, 2017).

3. Invariant graph embedding
3.1. Notations

We consider connected undirected graphs without self-loops,
G = (V,E), where V is the vertex set and E the edge set.
The size of the graph is the number of nodes and is denoted
by n = |V |. We denote by A its adjacency matrix. In the
absence of edge weights, this is a binary, symmetric matrix,
with Aij = 1 if and only if there is an edge between nodes
i and j. In the presence of edge weights, Aij is the weight
of the edge between nodes i and j, if any, and is equal to 0
otherwise. We will mostly deal with unweighted graphs but
our analysis carries over provided that all edge weights are
positive.

Let d = A1, where 1 is the n-dimensional vector of ones.
The components d(1), . . . , d(n) of the vector d are equal to
the actual degrees in the absence of edge weights and to the
total weights of incident edges otherwise. Let D = diag(d)
be the diagonal matrix of these generalized degrees. The
Laplacian matrix is defined by L = D − A. We will also
use the matrix P = D−1A which is the transistion matrix
for the random walk on the graph G.

Recall that two graphs G = (V,E) and H = (V, F ) are
isomorphic if there exists a permutation π of V such that
(a, b) ∈ E ⇔ (π(a), π(b)) ∈ F . We can express this
relation in terms of matrices associated with the graphs.

Every permutation may be realized by a permutation matrix.
For the permutation π, this is the matrix Π with entries given
by

Π(a, b) =

{
1 if π(a) = b,
0 otherwise.

For a vector x, we see that (Πx)(a) = x(π(a)). Let A be
the adjacency matrix ofG and let B be the adjacency matrix
of H . We see that G and H are isomorphic if and only if
there exists a permutation matrix Π such that ΠAΠT = B.
Note that the same relation can be written for the respective
Laplacians. In this case, we will write π(G) = H .

A graph embedding (or graph feature) is a function F map-

ping graphs to vectors in Rd, where d is called the dimension
of the embedding. A graph embedding is invariant if for any
two isomorphic graphs G and H , we have F(G) = F(H).

From an embedding of nodes, it is straightforward to create
a graph embedding. We need only to deal with the fact that
graphs can have different sizes. A very simple choice is
just to sum the nodes’ embeddings. Now, if the embedding
of nodes E is equivariant, this will produce an invariant
graph embedding F , but the invariance property would be
preserved if instead of the sum, we apply any symmetric
function as defined below.
Definition 1. A function f : Sn → Rm is symmetric
if for any permutation σ and any x ∈ Sn, we have
f(x(1), . . . , x(n)) = f(x(σ(1)), . . . , x(σ(n))).

This generic construction of graph embedding from
nodes’embeddings will be used repeatedly in the sequel.

3.2. Invariant embedding from eigenvalues

W define our first invariant embedding. Recall that the
Laplacian of a graph of size n is positive semi-definite with
eigenvalues λ1 = 0 < λ2 ≤ λ3 ≤ · · · ≤ λn. Note that
λ2 > 0 because we assumed that the graph is connected.
For a fixed k1, we define F1(G) = (λ2, . . . , λk1+1) if n ≥
k1 + 1 and if n ≤ k1, then F1(G) = (0, . . . , 0, λ2, . . . , λn)
where this last vector is completed by zeros to reach size k1.
Note that adding zeros ’on the left preserves the ordering
of the λi’s. It is clear that this embedding is invariant and
as noted in (de Lara & Pineau, 2018) it already has a good
discriminative power on real graphs. However, there are
still many pairs of graphs that are non-isomorphic but which
have the same eigenvalues and we will now improve our
embedding to deal with those.

3.3. Space embedding

We now construct an embedding capturing the property of
a random walk on the graph. Remember that P k

ij is the
probability for a random walk started in node i to be in node
j after k steps. If we have features F available on nodes
like atoms encoded in a one-hot vector for biochemical
datasets, we consider P kF = (xk1 , ..., x

k
n) which is, for

each node, the aggregation of the features of its k-hope
neighbors. Clearly P kF is an equivariant embedding of
nodes so that for any symmetric fucntion f : Rn → Rm,
f(xk(1), . . . , xk(n)) is an invariant feature of the graph. If
we don’t have features available on nodes, we use F =
(d1, ..., dn) the vector of node degrees.

We now specify the symmetric function f that we take: for
a graph of size n, we define

f(x1, . . . , xn) = hist(x1, . . . , xn; t), (1)

where hist is the histogram function and t is the number
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of bins of the histogram. Note that hist(.; t) is a sym-
metric function for any t and it characrerizes the multiset
{x1, . . . , xn}.

In summary, our second graph embedding F2(G) ∈ Rk2t2

is obtained by concatenating the features defined in (1) with
number of bins t2 and applied to the vector P kF for values
of k ∈ {1, . . . , k2} for a fixed parameter k2.

4. Spectral theory for graph embedding
So far, we constructed invariant graph embeddings, so that
two isomorphic graphs will produce exactly the same em-
beddings. We will now relax this constraint. In this section,
we define our spectral embedding and show that it is still in-
variant for graphs in which all eigenvalues have multiplicity
1.

4.1. Invariant graph theory

Recall that L = D − A is the Laplacian of the graph
and the spectral theorem yields L = UΛUT , where Λ =
diag(λ1, . . . , λn) is the diagonal matrix of eigenvalues of
L, with 0 = λ1 < λ2 ≤ · · · ≤ λn, and U = (u1, . . . , un)
is the matrix of corresponding eigenvectors, with UTU = I
and u1 = 1/

√
n.

We now define a classical spectral embedding for nodes. Let
X =

√
Λ+UT , where Λ+ = diag(0, 1/λ2, . . . , 1/λn) de-

notes the pseudo-inverse of Λ. The columns x(1), . . . , x(n)
of the matrix X define an embedding of the nodes in Rn,
each dimension corresponding to an eigenvector of the
Laplacian. Note that the first component of each vector
x(1), . . . , x(n) is equal to 0, reflecting the fact that the first
eigenvector u1 of L is not informative. Moreover since
Xu1 = 0, the centroid of the n vectors is the origin:

n∑
i=1

x(i) = 0. (2)

The Gram matix ofX is the pseudo-inverse of the Laplacian:

XTX = UΛ+UT = L+.

In particular, we can recover the Laplacian matrix by taking
the pseudo-inverse of XTX and hence the adjacency ma-
trix and the graph itself. In words, the graph is completly
encoded in the nodes’ embedding X , i.e. without any loss
of information.

We now give a random walk interpretation of this embed-
ding. We consider the random walk with transition rate
Aij from node i to node j: the walker stays at node i an
exponential time with parameter di, then moves from node
i to node j with probability Pij = Aij/di. This defines a
continuous-time Markov chain with generator matrix −L

and uniform stationary distribution. The sequence of nodes
visited forms a discrete-time Markov chain with transition
matrix P . Let Hij be the mean hitting time of node j from
node i. Observe that Hii = 0. The following results are
standard, see (Lovász et al., 1993), we follow the notations
in (Bonald et al., 2018): Hij = n(x(j)−x(i))Tx(j), hence
the mean commute time between nodes i and j is:

Cij = Hij +Hji = n‖x(i)− x(j)‖2.

Hence, the geometry of the nodes’embedding x(i) is related
to the geometry of the graph. Indeed, the matrix of commute
times characterizes the graph:
Proposition 1. We can reconstruct the adjacency matrix
from the matrix of commute times.

Proof. Since Cij/n = ‖x(i)‖2 − 2x(i)Tx(j) + ‖x(j)‖2,
we can recover the matrix XTX = L+ from C if we know
the ‖x(i)‖2’s. But thanks to (2), we have

∑
j Cij/n =

n‖x(i)‖2 +
∑

j ‖x(j)‖2 and
∑

ij Cij/n
2 = 2

∑
j ‖x(j)‖2,

hence the claim follows.

We should stress that also all the information about the
graph is contained in the relative geometry of the x(i)’s,
their intrinsic values also carries relevant information. Here,
we state Fiedler’s nodal domain theorem (Fiedler, 1975):
for any k ≥ 2, let Wk = {i ∈ V, xk(i) ≥ 0}. Then the
graph induced by G on Wk has at most k − 1 connected
components. Together with (2), this implies that for low
values of k, nodes i with non-negative entries xk(i) tends
to be well-connected.

4.2. From commute times to graph embedding

As shown by Proposition 1, the commute times contain all
the information about the graph. In order to incorporate
it to our embedding, we proceed in a very straightforward
manner. Instead of the euclidean distances ‖x(i)− x(j)‖2,
we compute the dot products x(i)Tx(j) for 1 ≤ i, j ≤ n.
Then, we ’flatten’ this matrix to obtain a vector of size n2

and pass this vector through an histogram.

Formally, our embedding is defined by:

F3(G) = hist((x(i)Tx(k))1≤i,k≤n; t3) ∈ Rt3 , (3)

which is clearly an invariant embedding of the graph. Note
that even if we can reconstruct the original graph from the
matrix (x(i)Tx(k))1≤i,k≤n, our embedding F3 defined in
(3) will not allow to reconstruct the graph.

5. Invariant graph embedding (IGE)
5.1. Handcrafted embeddings

So far, we defined three different graph embeddings:
F1(G) ∈ Rk1 defined in Section 3.2; F2(G) ∈ Rk2t2
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defined in Section 3.3 and F3(G) ∈ Rt3 defined in Sec-
tion 4.2. Our final graph embedding is the concatenation
of these embeddings for fixed parameters k1, k2 and t2, t3:
FIGE(G) = (F1(G),F2(G),F3(G)) which is a vector of
size k1 + t2k2 + t3, independent of the size of the graph.

All these embeddings are invariant graph embeddings. But
two graphs that are not identical can produce an identical
embedding FIGE . Finding the non-isomorphic graphs for
which our embedding is not discriminative is out of the
scope of this paper. In Section 6, we will assess the discrim-
inative power of our embedding on benchmark datasets for
graph classification.

6. Experiments and results
Datasets: We choose a wide variety of benchmark datasets
for graph classification to evaluate our model. The
datasets can be separated in two classes. 6 bioinformatics
datasets: NCI1, NCI109, PROTEINS, MUTAG, PTC,
D&D. And 5 social network datasets: REDDIT-BINARY
and REDDIT-MULTI, IMDB-BINARY and IMDB-MULTI
and COLLAB. In the 6 bioinformatics datasets, graphs
represent chemical compounds. Nodes are atoms and edges
represent connections between two atoms. The task is
to discriminate molecules active against a cancer from
those that are inactive against that same cancer. The social
network datasets are composed of ego-networks the labels
of the graphs are the nature of the entity from which we
have generated the ego-network. More details can be found
in (Yanardag & Vishwanathan, 2015).

Experimental setup: After having computed the features
for each graph, we use a Random Forest for the classifi-
cation. We compared the results with an SVM and we
got slightly better results with a random foretst. We per-
form cross-validation by splitting each datasets in 10 folds
and we use a grid search to fixe the parameters k1, k2, t2
and t3 respectively chosen from the sets {5, 10, 20, 50},
{1, 2, 3, 4, 5}, {5, 11, 21, 31} and {5, 11, 21, 31}. We re-
port the mean accuracy and the standard deviation over
the 10 folds. We compare our method with 3 state-of-art
algorithms: Family of Graph Spectral Distances (Verma
& Zhang, 2017), Diffusion CNNs (DCNN) (Atwood &
Towsley, 2016), Deep Graph Kernel (DGK) (Yanardag &
Vishwanathan, 2015). For those algorithms we use the same
setup as in (Verma & Zhang, 2017).

Results: From the results of Table 1 we can observe that
IGE outperforms the other algorithms on all biochemichal
datasets except for MUTAG dataset. We can note that
MUTAG is a very small dataset. Thus the standard deviation
is high because the size of the validation set is very small
(19 graphs) when we split the dataset in 10 folds. From

Table 2, IGE is challenging with all other algorithms on
social network datasets and outperforms FSGD on both
REDDIT datasets.

Dataset MUTAG PTC PROTEINS NCI1 NCI109 D&D

Max 28 109 620 111 111 5748

Avg 17.93 25.56 39.06 29.87 29.68 284.32

#Graphs 188 344 1113 4110 4127 1178

DCNN 66.51 55.79 65.22 63.10 60.67 -

DGK 86.17 59.88 71.69 64.40 67.14 72.95

FSGD 92.12 62.80 73.42 79.80 78.84 77.10

IGE
90.01 ±

6.6
64.54 ±

5.8
74.21 ±

3.1
81.46 ±

0.9
79.36 ±

1.0
78.86 ±

3.2

Table 1. Classification accuracy on bioinformatics datasets

Dataset IMDB-B IMDB-M REDDIT-B REDDIT-M COLLAB

Avg 19.77 13.00 429.63 508.52 74.49

#Graphs 1000 1500 2000 4999 5000

DGK 66.96 44.55 78.04 41.27 73.09

FSGD 73.62 52.41 86.50 47.76 80.02

IGE 74.10 ± 3.2 48.87 ± 2.1 89.12 ± 2.2 50.92 ± 2.4 78.95 ± 2.0

Table 2. Classification accuracy on social datasets

7. Conclusion
We presented a novel and simple method to handcraft invari-
ant features for a task of graph classification based on graph
spectral decomposition. We showed that these features were
relevant for a graph classification task because they are easy
to compute, invariant by node permutation and contain suf-
ficient information of the structure of the graph.
In our future work we plan to develop deeper architectures
based on these features and use the Invariant Graph Em-
bedding to initialize the neural network in order to achieve
better classification.
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