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Lane level context and hidden space characterization
for autonomous driving

Corentin Sanchez1, Philippe Xu1, Alexandre Armand2, Philippe Bonnifait1

Abstract— For an autonomous vehicle, situation understand-
ing is a key capability towards safe and comfortable decision-
making and navigation. Information is in general provided by
multiple sources. Prior information about the road topology and
traffic laws can be given by a High Definition (HD) map while
the perception system provides the description of the space
and of road entities evolving in the vehicle surroundings. In
complex situations such as those encountered in urban areas,
the road user behaviors are governed by strong interactions
with the others, and with the road network. In such situations,
reliable situation understanding is therefore mandatory to avoid
inappropriate decisions. Nevertheless, situation understanding
is a complex task that requires access to a consistent and
non-misleading representation of the vehicle surroundings. This
paper proposes a formalism (an interaction lane grid) which
allows to represent, with different levels of abstraction, the
navigable and interacting spaces which must be considered for
safe navigation. A top-down approach is chosen to assess and
characterize the relevant information of the situation. On a high
level of abstraction, the identification of the areas of interest
where the vehicle should pay attention is depicted. On a lower
level, it enables to characterize the spatial information in a
unified representation and to infer additional information in
occluded areas by reasoning with dynamic objects.

I. INTRODUCTION

An autonomous vehicle senses its surrounding environ-
ment through its sensors and continuously takes decisions.
Level 3 autonomous driving systems are able to handle very
structured and clear situations like highways. However, there
is still a lack for operating in urban situations where the
decision-making has to be performed in much more complex
situations. Several processes are involved before taking the
final decision. The data provided by perception sensors such
as LiDARs or cameras is processed by perception algorithms
in order to supply information about the surroundings. Then,
the situation must be understood so that the decision-making
can plan the maneuver to adopt. The work presented in
this article focuses on the lane level situation modeling for
autonomous driving. In figure 1, the gray module defines the
working area in which this work takes place.

The notions of scene and situation defined in [1] are bases
for describing the driving situation context. The selection
process, or “prioritization” as described in [2], enables to
infer the most relevant information. There is a need to
analyze a situation by aggregating all available information
from different sources, i.e., perception, map, localization.
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Fig. 1: Place of Context Modeling in a simplified architecture.

Situation understanding implies to have a representation
which provides non-misleading information for decision-
making. Further, it also allows to reason by predicting the
evolution of the elements of the environment. Depending on
the situation, e.g., a roundabout or a pedestrian crossing, the
areas of interest where the vehicle has to pay attention are
different. These areas must be identified all along the journey.
Relevant road users that are in interaction or may interact
with the vehicle should be identified while others can be
ignored.

A list of agents can be supplied by the perception system
as in [3], [4] in the form of object maps. However, in case
of missed detections, absence of object does not mean that
the space is free as there may be a lack of visibility. This
can lead the vehicle to an inconsistent situation interpretation.
Another approach is to discretize the environment with grids.
Each cell can supply information like occupancy which can
be used by the decision-making to plan the best trajectory
[5]. Evidential grids have the advantage to distinguish a cell
that has not been observed, i.e., missing information, from a
cell that is conflicting between occupied and non-occupied
states [6]. However, classification and prediction of dynamic
occupied cells is more complicated, grids are less suited to
manage dynamic road users. The current trend is to use
a prior map with several layers like a geometric layer, a
topological layer and a semantic layer (see [7]) which can
be used jointly with the detected objects as in [8] or with
the free space characterized by an occupancy grid [9].

The environment representation is therefore a key point
to understand the situation and to infer knowledge. Missing
information comes from occlusions [10], [11], [12], [13] but
also from limited range of the vehicle field of view [14].
Depending on the situation encountered and areas of interest,
this will not have the same impact.

This paper aims at defining a lane level grid representation
based on areas of interest. We propose a spatial representa-
tion that handles occlusions and infers additional knowledge
in hidden areas to facilitate safe decision-making. Indeed,
some hidden parts do not present any danger to the ego-
vehicle. We therefore propose a formalism that allows to
characterize and manipulate them in real-time. These are our



main contributions. Section III and IV depict the selection
of these areas and the classification process. Finally, some
case studies are presented.

II. RELATED WORK

Decisions operated by the autonomous vehicle are taken
at different levels of abstraction. Early with [15], the notion
of abstraction levels is presented and reused in several
architectures, especially for the decision-making [8]. The
Operational Level concerns dense information updated at a
high rate and is reactive to events that occur close in time and
space, e.g., the local trajectory planned with its related speed
profile. The upper level is the tactical level that corresponds
to bigger events which happen in a longer time horizon like
maneuvers [16]. The most abstracted layer is the Strategic
level. The mission planer plans a global trajectory over a
larger horizon of time and space.

Each level of abstraction contributes to the representation
of the situation and enables reasoning. In several architec-
tures, all processes that refer to situation understanding or
context modeling notions are not defined in a unified point of
view. In [17], the scene modeling and situation modeling are
separated whereas in [18] they rather stand in the perception
module. The notion of a separated world model module is
used as well [19], [20], [21]. The purpose of such a module
is to provide a representation of the situation of the vehicle,
with prediction and analysis to the decision-making.

The representation of information can be done either in a
continuous or discrete manner. In [22], the Local Dynamic
Map structures all the objects and features of the world. A
map is also used and as in [7], a metrical layer of information
is stored. The notion of a Parametric Free Space [23] gives
information on the free space and its contour, i.e., obstacle
boundary or unknown boundary. When the representation is
discrete, the use of grids is popular [9], [13].

As presented before, there is a need to combine these
representations, as it is presented in [18], [8] architectures.
Occlusions in specific situations need to be addressed and
may need objects representation. Several decision-making
approaches enable to take into account occluded areas.
POMDP are used for handling occlusions for static obstacles
[24] as well as dynamic ones [12], [11]. The authors in
[13] uses several layers of information: a dynamic grid,
an object list and a map of unobservable regions to assess
likely collisions. Some articles handle directly polygons of
occluded areas [25], in some cases the centerline is used [12]
and in other cases the segment border is used [14].

When hidden areas appear, one needs to assess whether all
of them are relevant for a safe decision making. The notion of
areas of interest will be presented as there is a need to iden-
tify where relevant information is missing. As demonstrated
in [10], the term “Social perception” is defined in order to
infer information in occluded zones from the behavior of
road users. In specific situations, additional information is
inferred. A method patented [26] shows the mechanism to
determine a visibility distance by intersecting the path of
a vehicle from a map with the dynamic field of view. This

example shows a characterization of the following path of the
vehicle by two states: the free space that is of interest and
the hidden one. The Responsibility Sensitive Safety (RSS)
model presented in [27], also highlights the spatial safety
requirement with objects representation. The concept of a
safety distance is introduced for several situations.

Several works need a spatial representation handling oc-
clusions and objects for tasks like decision-making [11], risk
analysis [28] or safety evaluation [13]. In [14], reachable sets
are used for predicting the path and intention of a potential
vehicle that could be hidden in an occluded area. Particle
filters are also used in order to determine the plausibility
of a hidden vehicle [25]. Then, as presented in [16], a
global method for motion planning could use non-misleading
information provided by such a context modeling module.

In this paper, the different levels of abstraction of the
information allows to identify the relevant parts of the
situation that the autonomous vehicle encounters. Then an
analysis of the areas of interest is presented. Additional
information that can be inferred from occluded zones and
from objects are integrated in a unified representation.

III. INTERACTING LANE GRID

The three levels of abstraction provide a hierarchy of
levels in which several processes take place. Each level has
a specific type of task to achieve in a world model module.

A. Strategic level of abstraction (high level)

This level has the duty to compute and infer high-level
information. At this level the mission planning process
provides the intended path of the autonomous vehicle on
a topological representation of the map. From this intended
path, one can define all the driving lanes that may interact
with the car during its cruise. Two types of interacting lanes
are differentiated. The primary order lanes are directly in
interaction, i.e., shares a common driving space, with the ego
vehicle intended path. These lanes are the ones for which
the vehicle needs to have information, typically whether
they are occupied by another road user, for decision-making.
The second order encompasses lanes that have an indirect
interaction with the autonomous vehicle, in the sense that
they have a direct interaction (i.e., primary order) with the
primary order lanes of the ego vehicle itself. The vehicle does
not necessarily need information about the second order lanes
to drive, but they are able to provide additional information
about the primary ones.

In this paper, we consider fours types of interactions
that widely cover common driving situations: lane keeping,
changing, merging and crossing interactions. In table I the
interacting paths are defined based on the topological layer
of the road. In lane keeping, the followed lane belongs to the
primary order area of interest. The changing lanes belong to
the secondary order, as they are the primary order lanes of
the lane changing interaction type.

A similar approach can also be considered towards vul-
nerable road users. A map with the cycle paths, sidewalks or



TABLE I: Lanes of interest (road users specific) represented in gray are based on the longitudinal importance order of the lateral interaction type. The
autonomous vehicle planned path is represented in blue. For visibility issues the secondary order shows the lanes of interest corresponding to one lane of
the primary order (surrounded in black)

Interaction type vs
Lane keeping Lane Changing Lane Merging Lane Crossing

Lanes importance

Primary order

Secondary order

pedestrian crossing would enable to define additional types
of interaction. These cases are out of the scope of this work.

B. Tactical level of abstraction (intermediate level)
At the tactical level, the autonomous vehicle has to convert

the topological information provided at the strategic level
into a metrical representation. Moreover, the vehicle has to
focus on areas of interest that are in its vicinity in terms of
time and distance.

Using a metrical HD map, the spatial areas of a lane can be
extracted as a 2D polyline, i.e., a sequence of line segments,
representing the center of the lane along with a width. The
advantage of coding the center of a lane compared to coding
only the lane borders, e.g., with Lanelets [7], is that it is
straightforward to discretize in the longitudinal direction.
By defining a threshold in terms of interacting distance, we
prune geometrically the interacting lanes and construct a spa-
tial Area Of Interest (AOI). The AOI is therefore composed
of the primary AOI(1) and the secondary one AOI(2), all
the space outside of the AOI = AOI(1) ∪AOI(2), denoted
as AOI , is considered out of interest as there will be no
interaction with the ego vehicle.

The next step is to characterize the AOI using perception
information from exteroceptive sensors such as cameras or
LiDAR.The sensor setup of the vehicle can be characterized
beforehand in order to determine its physical perception
range. Prior to the perception itself, it is possible to define
the spatial Field Of View (FOV ) of the vehicle. Its com-
plementary FOV , corresponds to regions where the vehicle
has no means to perceive anything using its own embedded
sensors.

For decision-making at the tactical level, we propose to
use a lane level grid representation that discretizes the lanes
within AOI along their longitudinal direction.

C. Operational level of abstraction (low level)
The lowest level of abstraction corresponds to a represen-

tation at the sensor level. The space characterization is clas-
sically done using grids [13] or parametric free space [23].

The frame of discernment Ω, i.e., the space state, is then
decomposed into three categories: free (F ), occupied (O)
and unknown (U ).

So far, the frame Ω has been decomposed in three different
ways:

Ω = AOI ∪AOI = FOV ∪ FOV = F ∪O ∪ U (1)

By crossing these three breakdowns, we obtain the space
depicted in figure 2a. One can see that the free and oc-
cupied sets are necessarily inside the FOV . Conversely,
the unknown set U = F ∪O has non-empty intersection
with the FOV . Therefore, we will distinguish the hidden
set H = U ∩ FOV , that represents the space within the
FOV of the sensors but cannot be characterized because of
occlusions, from the rest of unknown space U ∩ FOV that
are out of reach from the sensors range. As we are only
interested in the space inside the AOI , the remaining sets of
interests becomes:

F ∗ = F ∩AOI (2)
O∗ = O ∩AOI (3)
H∗ = H ∩AOI = U ∩ FOV ∩AOI (4)
U∗ = U ∩ FOV ∩AOI (5)

These four sets F , O, H , U ∩ FOV are represented in
figure 2a by the colors green, brown, red and gray, respec-
tively. The subsets of interest [ ]

∗are represented in filled
color whereas their complement is hatched.

IV. INTERACTING OBJECTS

Static objects have an impact on the decision-making
process. They are typically well represented in occupancy
grids. At the opposite, dynamic objects (e.g., other road
users) interact with the surrounding environment. More com-
plex information can be inferred from their presence. The
detected objects that are outside of the AOI are discarded.
On figure 2b, an entity defined as a dynamic object is denoted
E and gives information about the occupied O and hidden H
space states. Its complementary E is all but dynamic objects.



(a) (b)

Fig. 2: Set diagram of an area of interest. Colors show the characterization
of the area of interest from section III-C for figure 2a and from section IV
for figure 2b.

A. Safety area

When driving, the space in front of the vehicle needs to
be obstacle-free for obvious safety reason. This space is
defined by a safety distance that is an increasing function
of the vehicle velocity. The faster a vehicle is driving the
more space needs to be kept as free in front of it. This
safety distance encompasses the driver’s reaction time, the
minimum braking distance and safety regulations.

Therefore, when a vehicle is detected and its speed esti-
mated, a safety area at its front denoted S is defined. In the
case where this safety area is visible and characterized as free
(as it should be) or occupied (it means that the theoretical
safety distance is not respected), then the safety property can
be ignored as it is less informative than the free or occupied
knowledge. The safety property is therefore only useful to
further characterize an unknown area which could be either
hidden or out of the FOV . Its corresponding set of interest
is:

S∗ = S ∩AOI (6)

This set is represented in yellow in figure 2b.

B. Protected area

One important aspect of the interaction between road users
is that they impose physical constraints among each other.
Once a vehicle occupies a given space of the road, no other
road users can cross this space without causing an accident.

In our case study, we propose to use objects belonging
to the second order AOI(2) to further characterize the first
order AOI(1). Because the lanes in AOI(2) have a direct
interaction, e.g., crossing, with the ones in AOI(1), a vehicle
in AOI(2) may obstruct the circulation in AOI(1). This will
happen when a vehicle belongs to AOI(2) and occupies a
spatial space that also belongs to a lane in AOI(1). All
the space behind this vehicle along the lane in AOI(1)is
protected in the sense that no other road users can go through
the obstacle. This protected area is denoted P .

Like the safety case, the protected property is only relevant
within the unknown category and can be modeled by the
following set of interest:

P ∗ = P ∩AOI (7)

This set is represented in purple in figure 2b.

TABLE II: Characterization sets table of areas of interest

FOV FOV

Free Occupied
Hidden

Unknown

AOI F∗ O∗ H∗ S∗: Safety U∗

P∗: Protected

Table II depicts only the classification of the AOI . As
areas of interest are linked to the ego-vehicle main path,
their representation can also be seen as a graph of successive
states whose edges are represented by a distance to the ego-
vehicle state. A whole cell can be classified as been occupied
regardless of the object size. Indeed, the distance to this
occupied state and the area of interest which it belongs will
be supplied to the decision-making.

This characterization process brings information and en-
ables to structure the environment understanding. It should
be noticed that if additional information characterization can
be refined, the model is able to extend the process to integrate
potentially new sets of information.

For clarity, in the rest of the paper, everything outside of
the AOI (dashed set in figure 2) will be ignored and the
notation [ ]

∗ will be omitted.

V. CASE STUDIES

To illustrate the concepts introduced in the previous sec-
tions, let us consider the two case studies pictured in figure 3
and figure 4. The ego vehicle is represented by the blue car
which follows the dotted intend path. The set of all colored
lanes constitutes the AOI as defined in table I, these lanes
are discretized in cells along their longitudinal direction. The
light blue circle depicts the FOV of the ego vehicle. The
orange cars are other road users.

A. T-intersection

The first situation is at a T-intersection as shown in
figure 3. The ego-vehicle intends to turn right and has to give
way to the vehicles coming from the left merging lane. The
two red cars on the adjacent left lane do not interact with the
ego vehicle but cross the merging lane and cause occlusions.
This example represents a situation where the ego-vehicle
should be able to take a decision even under occlusion at a
give-way intersection.

In this situation, the ego-vehicle has two primary order
interacting lanes: a lane keeping one, i.e., the right-turn lane,
and a lane merging one, i.e., the lane coming from the left.
The adjacent left lane of the ego vehicle is a secondary order
interacting lane as it crosses one of the primary ones. The
set of all these lanes are then pruned down to a distance
horizon of interest to constitute the AOI . One can note that
the second order lane is pruned very early as it becomes
out of interest. Within the visible area the free cells (F ) are
shown in green. The cells occupied by the red cars are in
brown (O). The black cells are unknown (U ) as they are out
of the FOV . The red cells are also unknown but, as they
are inside the FOV and not observed because of occlusions



Fig. 3: T-intersection. Areas of interest are modeled and characterized: Free
(green), Occupied (brown), Out of range (black), Hidden (red), Protected
(purple)

caused by obstacles, they are categorized as hidden (H). Last,
the purple cells highlight the protected (P ) area. Like U and
H , P is not observed, but its space is physically obstructed
by the presence of other road users. It should be noted that
the protected area may reach outside of the FOV .

B. Overtaking

Let us consider a second situation where the ego vehicle
intends to overtake a vehicle positioned on its right side
as pictured in figure 4. As explained in section IV-A, a
safety area is defined in front of every detected object by
using its estimated speed. It is assumed here that vehicles
constantly keep safe inter-distance with other vehicles so they
can safely perform emergency braking to avoid collision in
case of dangerous situations. It means that it is likely that the
immediate space in front of any vehicle is free. In figure 4a
the orange vehicle on the right is stopped. In this case, there
is no safety space, therefore the unknown area in front of
it is characterized as hidden (red). In figure 4b, the same
vehicle is moving, therefore a portion of the space in front
of it is safe (orange). Note that for the car on the left side of
the ego vehicle, the safe property of the cells in front of it
(orange rectangle) is ignored as the cells have already been
classified as free, which is more informative.

C. Experimental setup and implementation

The methodology presented in the previous sections has
been implemented on a Renault ZOE experimental vehicle of
the Heudiasyc laboratory. Experiments have been conducted
in the city of Compiègne, France, where an HD map has been
constructed. The lanes in the map are represented by their
center as a polyline with their nodes being geo-referenced
with centimeter accuracy. The borders of each lane are also
encoded. The graph structure behind the map is used at both
the topological and metrical levels. It enables to compute
the ego vehicle intended path as well as all the primary and
secondary order interacting lanes. For the computation of the
AOI , we set a longitudinal distance of interest of 100m and
an arbitrary cell discretization step of 1m.

A NovAtel SPAN-CPT solution, combining an IMU and
GNSS with RTK corrections, was used to have an accurate
localization of the ego-vehicle. A Velodyne VLP32-C LiDAR
was used for the environment perception. This sensor has a
360◦ field of view with a theoretical range of 100 meters. A

(a) (b)

Fig. 4: Straight road with only lane change situations. Areas of interest are
modeled and characterized : Free (green), Occupied (brown), Hidden (red),
Safety zone (orange). On figure 4a, the right side vehicle is stopped . On
figure 4b the right side vehicle has a constant speed.

simple geometric ground fitting and clustering algorithm was
used to measure the free space and object surrounding the
ego vehicle [29]. For the computation of the safety space,
an emergency braking model with a deceleration of a =
−6 m ·s−2 is used. The safety distance associated to a vehicle
driving at a speed V is computed as dsafe = −V 2/(2a).

The ego-vehicle and paths of interest are extracted recur-
sively from the HD map as they can be preprocessed thanks
to the topological layer. Areas of interest are represented
by polygons using the center line with its width. The
ROS middle-ware was used for the implementation and the
Shapely Python library was used for the geometric operations
between areas of interest and the free space polygons. The
difference characterizes the hidden space. Figure 5 shows the
results from real data in a round about scenario.

D. Discussions
Figure 5 shows the result from real data in a roundabout

scenario at a given time.
The hypothesis made in our experiments can easily be

extended to more complex assumptions. The interaction
distance of the AOI can be set dynamically depending on the
ego vehicle dynamic state. The AOI cell discretization step
can also be set dynamically instead of a constant. The further
we are, the more the step increases. The free space can be
replaced by a more reliable occupancy grid that integrates
information over time and more sophisticated perception
algorithms, e.g., deep learning-based, can be used of object
detection and tracking. Extension to include vulnerable road
users can also be done based on the same principles.

It is important to note that the illustrations shown for the
two case studies are instantaneous representation of the world
at a given time. For the T-intersection case, the decision of
the ego vehicle to enter in the intersection relies on the fact
that the protected area remains protected during the whole
duration of the insertion maneuver. Our representation space
should therefore also be used for prediction purposes where
the predicted positions of the tracked objects are used instead.

VI. CONCLUSION

In this work, an intermediate lane level information rep-
resentation approach has been proposed with an interacting



Fig. 5: Rviz display of real data using ROS. The ego-vehicle is displayed
in blue. The figure on the top left shows the free-space polygon (Green),
operational level. The figure on the top right illustrates the AOI (blue :
lane keeping, red: lane merging), tactical level. The figure on the bottom
left depicts the path (as a graph) of the ego-vehicle (blue) and its primary
order interacting paths (red). The figure on the bottom right shows final
representation. In this scenario, only the hidden space is shown characterized
(black) thanks to the free-space polygon.

lane grid. Interacting lanes are extracted from the map and
define the interactions encountered by the autonomous vehi-
cle. These interacting areas enable the autonomous vehicle to
focus on relevant space parts and to look for the correspond-
ing potential interactions. This lane level grid is discretized
and each cell is classified from most informative state:
free, occupied, protected, safety zone, to less informative:
hidden, out of field of view. This process for the cell grid
classification has been depicted. We build information on
space representation from spatial perception (as grids) and
from objects. This information representation is provided for
decision-making at the maneuver planner level.

In future work, objects detection, tracking and behavior
prediction will be implemented in order to improve cells
classification and situation predictions will be explored.

REFERENCES

[1] S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer, “Defin-
ing and Substantiating the Terms Scene, Situation, and Scenario for
Automated Driving,” in IEEE International Conference on Intelligent
Transportation Systems, Sept. 2015, pp. 982–988.

[2] K. Refaat, K. Ding, N. Ponomareva, and S. Ross, “Agent Prioritization
for Autonomous Navigation,” arXiv:1909.08792 [cs], Sept. 2019.

[3] C. Hubmann, J. Schulz, M. Becker, D. Althoff, and C. Stiller, “Auto-
mated Driving in Uncertain Environments: Planning With Interaction
and Uncertain Maneuver Prediction,” IEEE Transactions on Intelligent
Vehicles, vol. 3, no. 1, pp. 5–17, Mar. 2018.

[4] S. Noh, “Decision-Making Framework for Autonomous Driving at
Road Intersections: Safeguarding Against Collision, Overly Con-
servative Behavior, and Violation Vehicles,” IEEE Transactions on
Industrial Electronics, vol. 66, no. 4, pp. 3275–3286, Apr. 2019.

[5] C. Laugier, “Situation Awareness & Decision-making for Autonomous
Driving,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems(IROS), Nov. 2019, pp. 1–25.

[6] J. Moras, V. Cherfaoui, and P. Bonnifait, “Moving Objects Detection
by Conflict Analysis in Evidential Grids,” in IEEE Intelligent Vehicles
Symposium (IV), June 2011, pp. 1122–1127.

[7] F. Poggenhans, J. Pauls, J. Janosovits, S. Orf, M. Naumann, F. Kuhnt,
and M. Mayr, “Lanelet2: A high-definition map framework for the
future of automated driving,” in 21st International Conference on
Intelligent Transportation Systems (ITSC), Nov. 2018, pp. 1672–1679.

[8] S. Ulbrich, T. Nothdurft, M. Maurer, and P. Hecker, “Graph-based
context representation, environment modeling and information aggre-
gation for automated driving,” in IEEE Intelligent Vehicles Symposium
(IV), June 2014, pp. 541–547.

[9] H. Mouhagir, V. Cherfaoui, R. Talj, F. Aioun, and F. Guillemard,
“Using evidential occupancy grid for vehicle trajectory planning
under uncertainty with tentacles,” in IEEEInternational Conference
on Intelligent Transportation Systems (ITSC), Oct. 2017, pp. 1–7.

[10] L. Sun, W. Zhan, C. Chan, and M. Tomizuka, “Behavior Planning of
Autonomous Cars with Social Perception,” in IEEE Intelligent Vehicles
Symposium (IV), June 2019, pp. 207–213.

[11] P. Schorner, L. Tottel, J. Doll, and J. Zollner, “Predictive Trajectory
Planning in Situations with Hidden Road Users Using Partially Ob-
servable Markov Decision Processes,” in IEEE Intelligent Vehicles
Symposium (IV), June 2019, pp. 2299–2306.

[12] C. Hubmann, N. Quetschlich, J. Schulz, J. Bernhard, D. Althoff, and
C. Stiller, “A POMDP Maneuver Planner For Occlusions in Urban
Scenarios,” in IEEE Intelligent Vehicles Symposium (IV), June 2019,
pp. 2172–2179.

[13] S. Hoermann, F. Kunz, D. Nuss, S. Renter, and K. Dietmayer, “En-
tering crossroads with blind corners. A safe strategy for autonomous
vehicles,” in IEEE Intelligent Vehicles Symposium, June 2017, pp. 727–
732.

[14] P. Orzechowski, A. Meyer, and M. Lauer, “Tackling Occlusions
& Limited Sensor Range with Set-based Safety Verification,” 2018
21st International Conference on Intelligent Transportation Systems
(ITSC), pp. 1729–1736, Nov. 2018.

[15] J. Michon, “A Critical View of Driver Behavior Models: What Do We
Know, What Should We Do?” in Human Behavior and Traffic Safety.
Springer US, 1985, pp. 485–524.

[16] C. Hubmann, M. Aeberhard, and C. Stiller, “A generic driving
strategy for urban environments,” in IEEEInternational Conference on
Intelligent Transportation Systems (ITSC), Nov. 2016, pp. 1010–1016.

[17] S. Ulbrich, A. Reschka, J. Rieken, S. Ernst, G. Bagschik, F. Dierkes,
M. Nolte, and M. Maurer, “Towards a Functional System Architecture
for Automated Vehicles,” arXiv:1703.08557 [cs], Mar. 2017.

[18] O. Tas, F. Kuhnt, J. Zollner, and C. Stiller, “Functional system
architectures towards fully automated driving,” in IEEE Intelligent
Vehicles Symposium (IV), June 2016, pp. 304–309.

[19] J. S. Albus, “4D/RCS: A reference model architecture for intelligent
unmanned ground vehicles,” in AeroSense, July 2002, pp. 303–310.
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