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Operation M odes and Self-motions of a 2-RUU
Parallel Manipulator

Latifah Nurahmi, S¢phane Carl Philippe Wenger

Institut de Recherche en Communications et Cybigoe de Nantes, France,
e-mails:{latifah.nurahmi,stephane.caro,philippe.wenp@irccyn.ec-nantes.fr

Abstract. This paper deals with the characterization of the operatiodes of the 2-RUU parallel
manipulator with an algebraic approach, namely the Studynkatie mapping of the Euclidean
group SE(3). The manipulator is described by a set of eight constraint espstind the primary
decomposition reveals that the mechanism has three operatiogsnifite singularity conditions
are obtained by deriving the determinant of the Jacobian matrilke constraint equations with
respect to the Study parameters. It is shown that there exist amguhfigurations in which the
2-RUU manipulator may switch from one operation mode to anotiperation mode. All the
singular configurations are mapped onto the joint space ancearaggrically interpreted. Finally,
the mechanism may switch from the 1st 8oflies mode to the 2nd Séhflies mode through the
additional mode that contains self-motions.

Key words. Schbnflies motion, operation mode, Study parameters, 2-RUU manguiself-
motion.

1 Introduction

Lower-mobility parallel manipulators are suitable for widange of applications
that require fewer than six degree-of-freedom end-efferiotion 6-dof), for ex-
ample Schinflies Motion Generators (SMGs). The SMGs are manipulatdrish
can exhibit three independent translations and one puationtabout an axis of
fixed direction, for example the 2-RUU parallel manipulafbhis mechanism is
composed of two RUU limbs in which two joints are actuatedadntelimb.

By using an algebraic description of the manipulator andthely parametriza-
tion based on [3], [5], the operation modes of the 2-RUU malaijr are discussed
in more details in this paper. The constraint equationsrafially derived. Then the
primary decomposition is computed over the set of condtegjnations to reveal the
existence of three operations modes. The singularitiesxamined by deriving the
determinant of the Jacobian matrix of the constraint equoativith respect to the
Study parameters. It is shown that the mechanism is ableatogehfrom one mode
to another mode by passing through the configurations tHahfge¢o both modes.
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The singularity conditions are mapped onto the joint spgeentually, the changes
of operation modes for the 2-RUU parallel manipulator dtesitated.
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Fig. 2: The axes of R-
joints from top view.

Fig. 1: The 2-RUU parallel manipulator.

2 Manipulator architecture

The 2-RUU parallel manipulator shown in Fig.1, is composkd base, a moving
platform, and two identical limbs. Each limb is composed wé fievolute joints
such that the second and the third ones, as well as the fodttharfifth ones, are
built with intersecting and perpendicular axes. Thus threyagsimilated to U-joint.

The first revolute joint is attached to the base and is adauét® rotation angle
is defined byfy; (i = 1,2). The axes of the first, the second, and the fifth joints are
directed alongz-axis. The second axis and the fifth axis are denoted;landn;

(i = 1,2), respectively. The second revolute joint is also acthiated its rotation
angle is defined by (i = 1,2), in Fig. 2.

The axes of the third and the forth joints are parallel. The akthe third joint is
denoted bys (i = 1,2) and it changes instantaneously as a functiof,pés shown
in Fig. 2, i.e.:s = [0,c09 6% ),sin(65),0]" (i = 1,2).

The fixed frameXy is located at the center of the base. The first revolute jdint o
thei-th limb is located at poin&; with distancea from the origin of>y. The first
U-joint is denoted by poinB; with distancd from pointA;. Link A;B; always moves
in a plane normal te;. Hence the coordinates of poimds andB; expressed in the
fixed frame2j are:

rQ =1[1,a0,0" r
1
rg, =[1—-a00" r

%1 =[1,1 cog611) +a,l an(911),0]1 )
B, = |11 cog612) —a,l sin(612),0]

The moving frame; is located at the center of the moving platform. The moving
platform is connected to the limbs by two U-joints, of whittetintersection point
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of the revolute joint axes is denoted 6y The length of the moving platform from
the origin of>; to pointC; is defined byb. The length of linkB;C; is defined byr.
The coordinates of poir@t; expressed in the moving frang are:

re, =[1,b,0,07 re, =[1,-b,0,0" )

3 Constraint equations

In this section, the constraint equations are derived wisosations illustrate the
possible poses of the moving platform (coordinate frafapwith respect to>y.
To obtain the coordinates of poin® and vector:; expressed 2y, the Study
parametrization of a spatial Euclidean transformatiorrim& based on [1] is used.

The parametersg, X1, X2, X3, Yo, Y1, Y2, Y3, Which appear in matri#, are called
Study parameters. They are useful in the representatiorspétial Euclidean dis-
placement and they should satisfy g+ x2 + x5 +x3 # 0. This condition will be
used in the following computations to simplify the algebrakpressions. First of
all, the half-tangent substitutions fé; (i, j = 1,2) are performed to remove the
trigonometric functions:

2 2t2

1-—t5 . i L.
cos(aj):ﬁtg_7 sm(G.j):ﬁ'{[_z, ij=12 ©)
1] 1]

6ij . . :
wheretjj = tan(i). The coordinates of poin and vectors; expressed itxp are
obtained by:
re=Mrg , n’=Mnl | i=12 4)
As the coordinates of all points are given in terms of Studwapeeters and the
design parameters, the constraint equations can be otbtajyrexamining the design
of the RUU limb. The link connecting poin®; andC; is coplanar to the vectors
vi andn. Accordingly, the scalar triple product of vectorg (—rg), vi andnf
vanishes, namely:
(rg—rg)" (vixnf)=0 , =12 ()
After computing the corresponding scalar triple productl Emoving the com-
mon denominators, the following constraint equations coute

01 : (atfy — btZ — 1t2) +a—b+1)xoxq + 2lt11Xo%e — (22, + 2)XoYo + 2lt11XsX1 +
(—atfy — bt +1t2 —a—b—)xgxz + (—2tZ; — 2)ysx3 =0

02 : (at?, — bty + 1t2,+a—b—1)xox1 — 2lt12%X2 + (2625 + 2)Xoyo — 2lt12X1X3+
(—at?, — bt?, — 1t2, —a— b+ 1)xoxg + (247, + 2)Xzy3 = O

(6)
To derive the constraint equations corresponding to thddingthr of link B;C;,
the distance equation can be formulated|4g2 — rg, )||* =r®. As a consequence,
the following two equations are obtained:
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03 (a%t?; — 2abt?; — 2alt?; + b2, + 2blt?;, +12t2) — rt?, + a® — 2ab+ 2al + b?—
20l 412 — r?)x3 — 8blty1xoxz + (4at?; — 4btd — 4lt?) + da— 4b+4l)xoy1 + ...
04 : (a2t2, — 2abt?, 4 2alt?, + b’tZ, — 2blt?, + 1%t2, — r’t?, + a® — 2ab— 2al + b?+
2bl +12 — r?)x3 4 8bltyoxoxs + (—4atd, + 4bt2, — Alt2, — da+ 4b+ 4 )xoy1 + ...
()
To derive the constraint equations corresponding to theation of the second
joint of each limb, the scalar product of vec((ngi — rgi) and vectors is expressed
as:(rg —rg)"s = 0. Hence, the following constraint equations are obtained:

05 : (—atfyty + btfyty +1t4t3; + atf; — atg; — btfy + bty — It +4Altaator — t5+
a— b+ 1)x§ — 4btyy (71 + 1)Xoxs — 2(t3; — 1) (t; + 1)Xoy1 + 4tz (tf; + 1)XoYa...
U6 © (Atfots, — bt2ot2, + Itit5, — até, + atg, + btf, — btg, — 1t + Altyotrr — It5,—

a+ b+ 1)x3 + 4btoa(t2, + 1)xoxa — 2(t2, — 1) (12 + 1)Xoy1 + 4toa(t2 + 1)Xoyo. .
(8)
For detail expressions of equatiogs g4,09s,06, the reader may refer to [6]. All
solutions have to be within the Study quadric, igg.: XoYo + X1Y1 + X2Y2 + X3y3 = 0.
To exclude the exceptional generatoxs £ x; = Xo = x3 = 0), the normalization
equation is addedys : X5+ X2 + x5+ x5 — 1= 0.

4 Operation modes

The design parameters are assigneal-a®,b=1,1 =1,r = 2. The set of eight con-
straint equations is written as a polynomial ideal with &bles{xg, X1, X2, X3, Yo, Y1,
y2,y3} over the coefficient rin@[t11,t12, t21,t22], defined as:# = (g1, 02,093, 94, 05,
e, 97,0s). At this point, the following ideal is examined? = (g1,02,97).

The primary decomposition is computed and it turns out thatitleal # is
decomposed into three components g5:= ﬂ?zl i, with the results of primary
decomposition:

J1=(X0,%3,X1y1 + X2Y2)

P2 =(X1,X2,X0Yo + X3Y3) %)

I3 ={(1t2,+ 22, + L)xoxg + (—thtiz +taatd, +ti1 — tio)XoXa..)
For complete results of the primary decomposition, the eeaday refer to [6].
Accordingly, the 2-RUU manipulator under study has threerafion modes. The
computation of the Hilbert dimension of ideg; with ty1,t12,t21,t22 treated as vari-

ables shows thatim(_#) = 4 (i = 1..3). To complete the analysis, the remaining
equations are added by writing:

’%/i: /iu<g3,g4795796,98>7 i=1.3 (10)

It follows that the 2-RUU manipulator halsdof Each systeny# corresponds to a
specific operation mode that will be discussed in the folfmyvi
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4.1 Systemy#;: 1st Sclonflies mode

In this operation mode, the moving platform is reversed alouaxis parallel to
thexy-plane by 180 degrees from the home position [2]. The camaiiy = 0, X3 =
0,x1y1 + X2y2 = 0 are valid for all poses and are substituted into the transition
matrixM, as:

1 0 0
2(xayo —X2Y3) X2 — X5 2x1x O
M1 = | 2(xqy3+X2Y0) X2 —X2+%3 0 (11)
o2 0 0o -1
X1

From the transformation matrix it can be seen that the méeipuhas3-dof trans-
lational motions, which are parametrized Yayy»,ys and1-dof rotational motion,
which is parametrized by, X, in connection withx? 4-x3 — 1 = 0 [4].

4.2 System>: 2nd Sclbnflies mode

In this operation mode, the conditio = 0,x2 = 0, XgYo + X3y3 = O are valid for all
poses. The transformation matrix in this operation mode is:

1 0 0
—2(Xoy1 — Xay2) X§— X5 —2XoX3 0
M2 = —2(xOy22 +Xay1) 2Xox3 X5—x5 0 (12)
Xo

From this transformation matrix, it can be seen that the maator has3-dof trans-
lational motions, which are parametrized Yayy»,y3 and1-dof rotational motion,
which is parametrized by, X3 in connection withd +x3 — 1 = 0 [4].

4.3 Systemy3: Third mode

In this operation mode, the moving platform is no longer palr#o the base. The
variablesxs, yo,y1 can be solved linearly from idea)’s. Accordingly, the 2-RUU
parallel manipulator will perform two translational mati& which are parametrized
by variablesy,,ys and two rotational motions, which are parametrized by ‘e
X0, X1, X2 in connection with normalization equatigg.

Under this operation mode, the joint angtes andt,, can be computed from
Eq.(8). It turns out that no matter the value of the first atetdgoint ¢11,t12) in each

limb, these equations vanish for two real solutions, narfielps; = o and (2.)

to1 = too. As a consequence, in this operation mode, the IBKS (i = 1,2) from
both limbs are always parallel to the same plane and thesaies 1,2) from both
limbs are always parallel too.
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5 Singularity Conditionsand Operation Mode Changing

The 2-RUU manipulator reaches a singularity condition witrendeterminant of its
Jacobian matrix vanishes. The Jacobian matrix is the mat@aX first order partial
derivatives of the eight constraint equations with respettie eight Study parame-
ters. Since the 2-RUU manipulator has more than one oparataxle, the singular
configurations can be classified into two different types,the configurations that
belong to a single operation mode and the singularity cordigpns that belong to
more than one operation mode. The common configurationsblahg to more
than one operation mode allow the 2-RUU manipulator to $switom one mode
to another mode. However, the 1st 8oflies mode and the 2nd Satflies mode
do not have configurations in common, singex;, Xz, X3 can never vanish simul-
taneously. It means that the 2-RUU manipulator cannot sviitam the Schinflies
mode into the reversed Sahflies mode directly.

To change from the 1st S@hflies mode into the 2nd reversed 8oflies mode,
the mechanism should pass through the third mode, namelgrsy%s, as shown
in Fig. 3. There exist some configurations in which the meigmrcan change from
the 1st Schinflies mode to the third mode and these configurations beltmgoth
modes. Noticeably, these configurations are also singolaigurations since they
lie in the intersection of two operation modes.

5.1 1st Sclinflies Mode (#7) «— Third Mode (#3)

For the 1st Schnflies mode, the determinant of Jacobian maSix det(J;) =0
(for complete results ofiet(J; ), the reader may refer to [6]) has four factors. The
first factor isy, = 0, when the moving platform is coplanar to the base, the mecha
nism is always in a singular configuration. The second fagiomws the singularity
configurations that lie in the intersection witép. However, this factor is neglected
since systems?; and._#, do not have configurations in common.

The inspection of the third factor yields the singularitpfigurations that belong
to the 1st Scbnflies mode’#; and the third mode#s. The third factor is added to
the system’;. Then, all Study parameters are eliminated. The eliminafields
two polynomials of degree eight and degree ningirti o, t21,t20, respectively. The
factorization splits both polynomials into four factorsfaows:

f1 1 (tartaa + 1) (ta1 — top) (t1o + t11) (34t — 2ty gty o + 8t + 3)

2 242 2 (13)
fo 1 (toatoo+ 1) (tor —to2) (t1o + 1) (3tistr, — 2aati2+ 8t + 3)

. . . 1
Polynomialsfy, f vanish simultaneously when: (1) = — o and (2.)t21 =too.

It means that when the second IiB|C; (i = 1, 2) from both limbs are parallel to the
same plane and the moving platform is twisted about an ax&lpkto thexy-plane
by 180 degrees, the 2-RUU manipulator is in the interseafahe 1st Schnflies
mode and the third mode.
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Eventually, the last factor of the determinant of JacobiatrimS; : det(J;) =0
is analysed. This factor is added to the systethand all Study parameters are
eliminated. Due to the heavy elimination process, the jairgles are assigned as
t11 = 1,t12 = 0,121 = —1 and the result of elimination is a univariate polynomial of
degree 12 ittp.

5.2 2nd Scldnflies Mode (#5) «+— Third Mode (#3)

For the 2nd Scbinflies mode, the determinant of Jacobian ma®ix det(J,) =0
(for complete results ofiet(J,), the reader may refer to [6]) has four factors too.
The first factor isy; = 0 in which the moving platform is coplanar to the base,
hence the mechanism is always in a singular configuratioa.sélcond factor gives
the condition in which the mechanism is in the intersectibsystems’#; and 75.
As explained in Section 5.1, this factor is removed.

The analysis of the third factor yields the singularity cgafations that belong
to the 2nd Schinflies mode’#, and the third mode#s. The third factor is added to
the system#5. Then all Study parameters are eliminated and yields:

f1 0 (taatoo + 1) (tor — to2) (tao + ta1) (3215, — 2taatio + 8t5, + 3)
fo 1 (toatop+ 1) (t21 —t22) (t%z +1) (3tflt:%2 — 2t11t1o+ 8tfz +3)
Notably, the elimination results have the same mathematiqaressions as in

(14)

. . 1
Eq.(13) and it leads to the same solutions, namelyt{i> 0 and (2.)ty1 = too.

It means that when the second liBIC; (i = 1,2) from both limbs are parallel to the
same plane and the moving platform is parallel to the base24RUU manipulator
is in the intersection of the 2nd Sahflies mode and the third mode.

Finally, the last factor of the determinant of Jacobian ma® : det(J;) =0
is analysed. Due to the heavy elimination process, the gigtes are assigned as
t11=1,t12 = 0,t23 = —1 and the result of elimination is also a univariate polyraimi
of degree 12 irt5.

6 Self-motionsin System 73

The determinant of the Jacobian matrix is computed in theerys#s, which con-
sists of five constraint equations over five variables. Héne&x 5 Jacobian matrix
can be obtained. The determinant of this Jacobian m&4rixiet(J3) = O (for com-
plete results oflet(J3), the reader may refer to [6]) consists of 10 factors, two of
them are(toitoo + 1) and(tp1 — too). It can be seen from Section 4.3 that these fac-
tors are the necessary conditions for the manipulator ta beei system#3z, namely

1 . L
At =— - and (2.)to1 = too. It means that every configuration in the systedf
22

amounts to a self-motion. Furthermore, the image of thesttian configurations
in the joint space from Eq.(13), is contained3n: det(J3) = 0. As a consequence,
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the transition between systen# and._#> occurs through the third systepd; that
contains self-motions. These transition configuratioeslarstrated in Figs. 3a-3e.

7 Conclusions

In this paper, the method of algebraic geometry was apptietiaracterize the type
of operation modes of the 2-RUU parallel manipulator. Theo$e@ight constraint
equations are derived and the primary decomposition is abedp It is shown that
the 2-RUU parallel manipulator has three operation modestiaa interpretation
of each operation mode was given. The singularity conditieere computed and
represented in the joint space. It turns out that the meshaig able to switch
from the 1st Scbinflies mode to the 2nd Sahflies mode or vice versa, by passing
through the third mode that contains self-motions.

(d) Transition Pose (e) 1st Scbnflies mode

Fig. 3: Transition from the 2nd Séhflies mode to the 1st Sohflies mode via the
third mode.
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