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Abstract

Purpose: Phase-contrast (PC) MRI allows to encode the motion of tissue in the magnetization’s
phase. Yet, it remains a challenge to obtain high fidelity motion images due aliasing in the phase
for high encoding efficiencies. Therefore, we propose an optimal multiple motion encoding method
(OMME) and exemplify it in Magnetic Resonance Elastography (MRE) data.
Theory: OMME is formulated as a non-convex least-squares problem for the motion using an ar-
bitrary number of phase-contrast measurements with different motion encoding gradients (MEGs).
The mathematical properties of OMME are proved in terms of standard deviation and dynamic
range of the motion’s estimate for arbitrary MEGs combination which are confirmed using synthet-
ically generated data.
Methods: OMME’s performance is assessed on MRE data from in vivo human brain experiments
and compared to dual encoding strategies. The unwrapped images are further used to reconstruct
stiffness maps and compared to the ones obtained using conventional phase unwrapping methods.
Results: OMME allowed to successfully combine several MRE phase images with different MEGs.
OMME outperforms dual encoding strategies in either motion-to-noise ratio (MNR) or number of
successfully reconstructed voxels with good noise stability. This lead to stiffness maps with greater
resolution of details than obtained with conventional unwrapping methods.
Conclusion: The proposed OMME method allows for a flexible and noise robust increase in the
dynamic range and thus provides wrap-free PC images with high MNR. In MRE, the method may
be especially suitable when high resolution images with high MNR are needed.

∗Corresponding author: c.a.bertoglio@rug.nl
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1 Introduction

Phase-contrast Magnetic Resonance Imaging (PC-MRI) is a well-established method for measuring
flow velocities [1, 2, 3] or tissue displacements due to harmonic excitation as used in Magnetic Res-
onance Elastography (MRE) [4, 5, 6, 7, 8, 9, 10]. MRE is used for the non-invasive characterization
of the mechanical properties of a specific tissue or organ of interest and has been used for many
different applications in pre-clinical animal [11, 12, 13] and in vivo human studies (e.g. cardiac
[14, 15], muscle [16, 17], abdomen [18, 19, 20, 21] and brain [22, 23, 24, 25, 26, 27]).
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Motion is encoded in the phase of the complex transverse magnetization proportional to the
encoding efficiency of the motion encoding gradient (MEG). Yet, the phase can only be measured
in the half-open interval [−π, π) and phase wraps (abrupt jumps of 2πk, with k ∈ Z) occur if
the encoded phase exceeds those limits. Consequently, for a given encoding efficiency, there is a
fixed amplitude range or dynamic range, where motion can be acquired without phase wraps. In
other words, if the encoding efficiency is too large and therefore the true motion amplitude exceeds
the dynamic range, phase wraps occur. Unfortunately, selecting a large dynamic range leads to
poor quality images since – for a given signal-to-noise-ratio (SNR) in the magnitude image – the
“motion-to-noise-ratio” (MNR) is proportional to the dynamic range.

For those reasons, it is a common practice to use low dynamic ranges and then to remove the
wraps afterwards. There are usually two type of approaches.

First, unwrapping algorithms have been developed by assuming that the motion field is smooth
in space, see e.g. [28, 29] and references therein. Nevertheless, they cannot recover the true
underlying motion and eventually fail when the aliased regions are highly heterogeneous, subject
to noise or include nested wraps (i.e. when |k| > 1). In such cases, the unwrapped phase appears
to be distorted and obstructs further data processing steps which leads to artifacts in the estimates
of tissue properties [10]. For instance, the simple 2π-unwrapping Flynn [30] algorithm is inherently
two-dimensional and fails to unwrap noisy complex wraps when no well-defined enclosed region
exists. The true motion cannot be recovered because arbitrary 2π-offsets are added. Gradient
based algorithms [31] only yield the derivative of the phase and amplify noise. Laplacian based
unwrapping algorithms [32] remove the constant and linear terms from the data and induce spatial
smoothing, altering the resulting phase where important details may be lost.

Second, voxelwise motion reconstructions using dual-encoding strategies have been proposed
in PC-MRI which are based on unwrapping low dynamic-range data by exploiting high-dynamic
range data [33, 34, 35, 36]. In other words, measurements with a reduced dynamic range (hence,
improved MNR) are unwrapped using a measurement with a larger dynamic range. Those methods
are performed at each voxel independently and therefore they do not assume or enforce smoothness
of the motion-encoded phase field. This allows the reconstruction of the correct motion images,
but, at the cost of additional measurements. However, dual-encoding also fails in the presence of
noise when the MEG amplitudes do not differ largely.

Hence, the aim of this work is threefold.
Firstly, we analyze dual motion-encoding strategies showing that dual-encoding methods are

limited to low noise phase images.
Therefore, we then develop a mathematical framework for multiple motion encoding, henceforth

termed Optimal Multiple Motion Encoding (OMME) as an extension of optimal dual-encoding re-
ported in [35]. We show that OMME outperforms dual-encoding in terms of unwrapping’s robust-
ness to noise.

Finally, we propose a MRE scan protocol for OMME and test it on in vivo brain data. We
first confirm that OMME provides either a more noise robust unwrapping with similar MNR or
improved MNR with similar noise robustness compared to dual-encoding strategies. Moreover
overcoming the limitations of unwrapping algorithms not only increases MNR but also allows to
recover more detailed stiffness maps than using standard unwrapping methods of the highest MEG
image for generating wrap-free phase images.
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2 Theory

In this section, we first introduce the notation and the mathematical model of phase and motion,
including theoretical statistical analysis of dual encoding methods. Then, we introduce OMME
and derive its statistical properties.

2.1 Single motion encoding

For a given MEG “G”, the model of measured phase can be written in the form

ϕG(u) = δuG + u
π

dG
+ επ (1)

with the following notation:

• u denotes the motion of the media (quantity of interest) in the direction of the MEG,

• dG is the “dynamic range” of motion encoding, which depends on the MEG’s amplitude,
duration, shape and assumption on the motion,

• δuG is the spatially varying background phase, which in general depends on gradient imper-
fections of spin-echo sequences, the MEG (e.g by eddy currents and Maxwell effects) and the
motion since imaging gradients also encode motion (time dependent).

• ε is a zero mean Gaussian random variable representing the measurement noise in the phase.
Its variance depends on the SNR of the magnitude measurements.

The background phase can further be modelled as follows:

δuG = ϕ0 + δG +m(u) (2)

with the following notation:

• ϕ0 is the time constant (static) background phase of the imaging gradients due to gradient
imperfections and concomitant fields

• δG is a time constant MEG-dependent phase induced e.g by eddy currents and Maxwell effects

• m(u) is the motion-dependent phase encoded by the imaging gradients

In order to separate the unwanted background phase from the desired dynamic (time dependent)
contributions of the MEG, it is necessary to perform a series of acquisitions with and without
applied vibrations and MEGs. In Flow MRI, the measurement of δuG is the common practice (i.e.
four points 4D Flow). In MRE, we will show in the methods section that δuG can be measured
considerably faster compared to ϕG(u).

We define as single encoding the situation where u estimated from a measurement of the back-
ground phase δuG and the full phase ϕG(u), for a single MEG G.

Given measurements of ϕG(u) and δuG with noise realizations εu and εδ, respectively, the single-
encoding estimation uG is given by:

uG = (ϕG(u)− δuG)
dG
π
− (εu − εδ)dG (3)
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For the sake of generality, we will assume different distributions for εu and εδ, i.e. εu ∼ N (0, σ2ϕ),
εδ ∼ N (0, C2

δσ
2
ϕ) and Cov(εu, εδ) = 0, i.e. they are independent random variables. Consequently,

u ∼ N (utrue, (1 + C2
δ )d2Gσ

2
ϕ), with utrue the true motion.

Therefore, for a fixed value of σϕ, dG should be chosen as small as possible in order to minimize
Var(uG). However, phase can be measured only within the interval [−π, π). Hence, if dG < |utrue|
(if σϕ = 0) then uG wraps by a multiple of 2dG. Aliasing can also occur even if dG > |utrue| in the
presence of noise ε 6= 0.

For a given dynamic range dG, a possible approach to reduce Var(uG) is to average more
measurements, say nG times. Then:

uG ∼ N (utrue, (1 + C2
δ )d2Gσ

2
ϕn
−1
G ). (4)

From this relation it is clear that decreasing dG is more effective than increasing the number of
measurements n, since Var(uG) decreases with d2G/nG.

2.2 Dual motion encoding

2.2.1 Phase-contrast from two MEGs

The basic idea of dual motion encoding approaches is to include additional measurements with a
reduced value of dG (e.g., larger MEGs) while keeping the dynamic range of the motion-sensitive
phase image large.

We assume now that we measure phases with two different MEGs amplitudes G1 < G2 = G1/β.
Without loss of generality, we assume 0 < β < 1, obtaining dynamic ranges d1 and d2 = βd1,
respectively. This results in four measured phases ϕ1, δ

u
1 , ϕ2, δ

u
2 . We assume that these values

already include the additive noise as indicated above.
From the four phase measurements, four motion images can then be estimated:

u1 =
ϕ1 − δu1

π
d1 , u2 =

ϕ2 − δu2
π

d2 (5)

ups =
ϕ1 + ϕ2 − δu1 − δu2

π
dps , upc =

ϕ2 − ϕ1 + δu1 − δu2
π

dpc (6)

with dps = (d−11 + d−12 )−1 , dpc = (d−12 − d
−1
1 )−1. Notice that

dpc = d1
β

1− β
≥ d1 > d2 = βd1 > dps = d1

β

1 + β
.

and thus we call dpc = deff as the effective dynamic range of the dual encoding method.

Defining α = Cσϕd1, with C =
√

(1 + C2
δ ), the variances of the different motion estimators

satisfy:
Var(u1) = C2σ2ϕd

2
1 = α2 , Var(u2) = C2σ2ϕd

2
2 = α2β2

Var(upc) = 2C2σ2ϕd
2
pc = α2 2β2

(1− β)2
= α2 β2(

1− β√
2

)2 , Var(ups) = 2C2σ2ϕd
2
ps = α2 2β2

(1 + β)2
= α2 β2(

1 + β√
2

)2 ,

and therefore
Var(upc) > Var(u1) > Var(u2) > Var(ups).
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2.2.2 Classical dual encoding unwrapping

Dual encoding reconstructions aim to unwrap a motion reconstructed with low dynamic range using
a motion reconstructed with a high dynamic range as follows [33]:

uuw = ulow + 2dlowN.I.

(
uhigh − ulow

2dlow

)
(7)

with N.I. the nearest integer operator. This leads to Var(uuw) = Var(ulow) when the unwrapping
is successful. This method will be denoted in as standard dual encoding. To choose ulow and
uhigh we apply the following reasoning. Firstly, we select ulow = u2 since it possess a higher
dynamic range than ups (e.g. dpc = 3/2dps for β = 1/2) only with a slightly higher variance (e.g.
Var(u2)/Var(ups) = 1.125 for β = 1/2). Secondly, we select

uhigh =

{
u1 β ∈ {1/2, 1}
upc elsewise

since upc has the desired effective range deff ≥ d1, but for β = 1/2 it holds d1 = deff and
Var(u1) < Var(upc), and for β = 1 upc is not defined and d1 = deff .

Remark 1 Note that a dual encoding approach presented in [36] – with both MEGs chosen with
different polarity, i.e. differing by a factor −k, 0 < k < 1– is equivalent to the one defined
above. Indeed, it can be shown that for a fixed deff its lowest dynamic range corresponds to dpc =
(1 − k)/(1 + k)deff . Then, the lowest dynamic range is d2 = deff (1 − β). This leads to both
approaches be equivalent if β = 1 + (k − 1)/(k + 1). In [36], it was for instance taken k = 0.777
hence equivalent to a β = 0.875.

2.2.3 Optimal dual encoding unwrapping

In [35], a new method for unwrapping two motion-encoded images was introduced, Optimal dual
venc (ODV). The method is based on the formulation of the phase contrast problem as the mini-
mization of cost functional. For the single motion encoding case, the cost functional has the form:

Ji(u) = 1− cos

(
ϕi − δui −

πu

di

)
= 1− cos

(
π

di
(ui − u)

)
which comes from a least squares approximation for the angle by measuring the components of a
vector.

It is easy to see that the period of Ji(u) is 2di, and therefore local minimum among with smallest
value (in absolute terms) ui + 2kidi, ki ∈ Z, corresponds to the the single encoding phase-contrast
motion.

For the dual encoding case, the problem shifts from finding the local minima of Ji(u) to find
the global minima of

Jdual(u) = J1(u) + J2(u) = 2− cos

(
π

d1
(u1 − u)

)
− cos

(
π

d2
(u2 − u)

)
.

It was proven in [35] that utrue is a global minimum of Jdual. Unwrapping is produced by the
fact deff is the minimal value such that Jdual(u) = Jdual(u + deff ) when d1/d2 ∈ Q. The latter
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is an additional contribution of the present work as corollary of the proof for multiple encoding in
Appendix A.1.

Another contribution of this work is the computation of the variance of the ODV estimate u∗
leads to

Var(u∗) =
Var(u2)

1 + β2
< Var(u2)

The computation is detailed in Appendix A.2 for the more general case of multiple encoding.

2.2.4 Limitations of dual encoding

From the previous sections, one may think that by choosing d1 and d2 close enough, deff →∞, and
therefore d1, d2 could be chosen arbitrarily small to minimize Var(u1),Var(u2). However, we will
show here, since noise affects the unwrapping performance of the methods, dual-encoding strategies
have limitations which become more important the closer d1 and d2 are.

Figure 1 presents the previous findings in a graphical way. There, we show the standard devi-
ations of the estimators (i.e. the square root of the variances) versus the effective dynamic ranges
for various values of β. Each sub-figure was generated for a given value of β ∈ {1, 1/2, 2/3, 3/4}
and σφ = {0.01, 0.05}, by the following procedure:

• Ground truth values are set as: utrue = 1 and δu1 = δu2 = 0.9π.

• For a fixed value of deff and β, d1, d2 are computed.

• Measurements of motion encoded phases ϕ1, ϕ2 were generated using Equation (1), the ground
truth values of the parameters defined above and adding Gaussian noise with standard devi-
ation σϕ. Measurements were wrapped to the interval [−π, π].

• δu1 , δu2 are perturbed adding Gaussian noise with standard deviation σϕ.

• Then u1, u2 were computed with Equation (5). Phase differences were wrapped to the interval
[−π, π].

• uuw with Equation (7) and u∗ with the algorithm detailed in Equation (8).

• Similarly ueff was generated being the single motion phase contrast estimate with dG = deff
is computed for comparison.

• The standard deviation of such estimates considering the 5000 realizations is computed.

• The curves are drawn by repeating this procedure in the interval deff ∈ [1, . . . , 4].

The quality of the results depends on both values of β and σϕ. For small values of σϕ, the
empirical and theoretical standard deviations match, but the empirical deviates from the theoretical
one when deff → |utrue|, as expected, due to the aliasing. In this low noise scenario, the maximum
gain with respect to the case of repeating the same measurements (i.e. β = 1) is when β = 3/4
since for a fixed deff , d1 = deff/3 and d2 = deff/4.

However, the reconstruction with β = 3/4 becomes unstable when increasing σϕ. The most
robust variant with respect to noise for both standard and optimal methods appears to be β = 1/2,
where d1 = deff and d2 = deff/2. In case of the optimal method, this can be explained by the fact
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(a) β = 1/2, σϕ = 0.01 (b) β = 1/2, σϕ = 0.05

(c) β = 2/3, σϕ = 0.01 (d) β = 2/3, σϕ = 0.05

(e) β = 3/4, σϕ = 0.01 (f) β = 3/4, σϕ = 0.05

Figure 1: Standard deviations v/s effective dynamic range for single and dual encodings for β =
{1/2, 2/3, 3/4} (from top to bottom) and σϕ = {0.01, 0.05} (from left to right). Continuous lines
represent the empirical ones (i.e. computed from the numerical experiments) and dashed lines the
theoretical ones derived before.
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that the local minima of both J1 and J2 cost functionals have maximal distance. For β = 3/4, this
distance is much smaller, see details in [35].

In particular for β = 1/2, between both methods, the optimal dual encoding appears to be
more robust with respect to noise, especially when deff → |utrue|, and slightly better than the
standard dual encoding approach when deff > |utrue| due to (11). The possible explanation is
that unwrapping and noise compensation are done simultaneously, and therefore, a more robust
unwrapping method results. For other values of β, it appears that the standard dual approach
performs better in terms of robustness when deff → |utrue|.

2.3 Optimal multiple motion encoding (OMME)

Due to the limitations outlined in the previous section, we now propose a systematic method to
include arbitrary number of measurements to robustly extend the dynamic range while keeping the
motion’s noise level low, and also robust to increases of σϕ. Therefore, such strategy can be of
great utility when high quality images are needed e.g. at high spatial resolutions.

The optimal dual encoding formulation allows a straightforward extension to multiple MEGs,
i.e.

JN (u) =

N∑
j=1

(
1− cos

(
π

dj
(uj − u)

))
The multiple motion encoding reconstruction u∗ is then the global minimum of smallest magnitude
within [−deff , deff ], with deff the dynamic range of OMME. From the proof in Appendix A, JN
has periodicity equal to the least common multiplier of 2d1 = · · · = 2dN when dj = d1(a/b)

j−1, a <
b ∈ N, being then deff = aN−1d1 half of that periodicity.

The variance of u∗, is given by

Var(u∗) = Var(uN )
1− β2

1− β2N
< Var(uN ),

see detailed computation in Appendix A.2. For instance for the case of β = 1/2 – which is the
most robust as it was shown above – the reductions are for N = 2, 3, 4√

Var(u∗) = 0.89
√

Var(u2),
√

Var(u∗) = 0.87
√

Var(u3),
√

Var(u∗) = 0.86
√

Var(u4),

respectively. Therefore, the gain in noise reduction with respect to the lowest dynamic range is
only slightly reduced. At the same time, the computational complexity of the an exhaustive search
of the global minimum of JN (u) increases considerably with N , since the the interval [−deff , deff ]
needs to be sampled according to dN . Therefore, we propose here to just use JN (u) to guide the
unwrapping of uN , i.e. to find u∗ by solving:

k∗ = arg min
k∈Z

JN (uN + 2dNk), subject to − deff ≤ uN + 2dNk ≤ deff (8)

and then to set u∗ = uN + 2dNk∗. This leads to Var(u∗) = Var(uN ). For image datasets as used
in this work, e.g. for N = 3 solving Problem (8) is about 9 times faster than an exhaustive global
minimum search of JN (u).

Figure 2 shows the results OMME using a number of measurement combinations. We use
β = 1/2 since as we saw this was the most robust approach with respect to noise for dual-encoding.
It can appreciated that where dual-encoding fail σϕ = 0.05, multiple encoding appears to be robust.
When further increasing the noise σϕ, multiple encoding decrease its robustness as it is exemplified
for σϕ = 0.1.
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Figure 2: Standard deviation v/s effective dynamic range for the OMME reconstruction for β = 1/2
with N = 1, 2, 3, 4, 5 for σφ = 0.05 (left, as the worst case in the previous Figure 1) and σφ = 0.1
(right). The continuous lines represent the empirical results (i.e. the one computed from the
numerical experiments) and the dashed lines the theoretical results.

3 Methods

3.1 Subjects

In vivo MRE was performed in eight healthy men without a history of neurological diseases
(mean age ± SD: 36 ± 9 years). The study was approved by the ethics committee of Charite-
Universitaetsmedizin Berlin in accordance with the Ethical Principles for Medical Research Involv-
ing Human Subjects of the World Medical Association Declaration of Helsinki. Every participant
gave written informed consent.

3.2 OMME-MRE experimental setup

All experiments were performed in a 3T MRI scanner (Siemens Magnetom Lumina, Erlangen,
Germany). In order to separate the different contributions to the background phase as indicated
in Equations (1) and (2), four scans were consecutively acquired in each subject as summarized in
Table 1.

Phase contribution Vibration MEG Time steps Directions Scan time [norm]

1. ϕG(u) on on 8 3 1
2. ϕ0 off off 1 1 1/24
3. ϕ0 + δG off on 1 3 1/8
4. ϕ0 +m(u) on off 8 1 1/3

Table 1: Measurement strategy for determining different phase contributions and for the dual-
encoding and OMME reconstructions.

Measurements with harmonic vibrations sampled eight phase offsets equally spaced over a vibra-
tion period using pressurized air drivers as described elsewhere [37]. The vibrations were induced
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with a forerun of 2 s before MRE data acquisition was started in order to establish a steady state of
time-harmonic oscillations throughout the brain. Measurements with active MEGs were conducted
for three spatial directions along head-feet, left-right and anterior-posterior consecutively and were
repeated for each single MEG amplitude. The amplitude of the harmonic vibrations was tuned to
avoid signal voids due to intra-voxel phase dispersion for the highest MEG amplitude and to not
show any phase wraps for the MEG amplitude of 8 mT/m.

For one subject the measurement without vibration was repeated with opposite MEG polarity
to investigate the influence of MEG polarity on the induced static background phase.

3.3 OMME-MRE sequence

Single frequency MRE using a single-shot, spin-echo echo-planar imaging (EPI) sequence was per-
formed for harmonic vibrations at 31.25 Hz. 17 axial slices with a slice gap of 200 % were recorded
GRAPPA parallel acquisition [38] with acceleration factor of 2. Slice positioning was automatically
done using the scanner build-in auto align function based on the localizer scan (head-brain). Fur-
ther imaging parameters were: field of view 202 x 202 mm2, voxel size 1.6 x 1.6 x 1.6 mm3, echo
time (TE) of 74 msec and repetition time (TR) of 2500 msec. Three components of the wavefield
in orthogonal directions were acquired with first order flow-compensated MEGs of varying ampli-
tude (32, 24, 16, 8, 4, 2 mT/m) and a fixed frequency of 34 Hz with slew rate of 125 mT/m/ms.
The corresponding encoding efficiencies were 7, 9, 13, 26, 52, 104 and 149 µm/rad. The encoding
efficiency of the imaging gradients was 149 µm/rad. Each time the MEG amplitude was changed,
one preparation scan was performed to reduce transient effects of eddy-currents.

Acquisition time for a set of 3D MRE data was approximately 6:55 min ( 70s per MEG ampli-
tude, vibration on and MEG on). Additional acquisition time for the individual background phase
contributions was 3:07 min.

3.4 Motion correction and segmentation

Complex MR images were corrected for stochastic head motion in the range of ± 2 mm using SPM12
[39]. Moreover measurements without vibration were registered to corresponding measurements
with vibration, since deflated actuators results in a vertical displacement of axial slices in the order
of 1-2 mm with respect to the inflated actuators during vibration. Automatic segmentation of white
matter (WM) and gray matter (GM) based on averaged MRE magnitude images was done using
SPM12. The tissue probability maps were thresholded at 0.8 for WM and 0.9 for GM to generate
logical tissue-associated voxel masks. The GM threshold was higher to reduce boundary artifacts
at cortical GM-fluid boundaries (see Figure 3).

3.5 Reconstruction of phase contributions

The individual phase contributions in Equation (2) were recovered by a number of subtractions.
ϕ0 (measurement 2, see Table 1) was subtracted from measurement 3 to determine the static
MEG-dependent phase δG. Subtraction of measurement 3 (ϕ0) and measurement 4 gave the motion-
dependent phase encoded by the imaging gradients m(u). The static background phase components
ϕ0 and δG were smoothed using a Gaussian filter with 1 mm standard deviation in order to reduce
noise enhancement by further subtraction of these components. This was justified since both static
phases show low spatial variations within the brain. Finally we subtracted the individual phase
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contributions from measurement 1 to determine the tissue displacement encoded by the MEG only
(1).

3.6 Displacement reconstruction

Single encoding phase contrast images were computed for each MEG using Equation (3) (assuming
no noise). The background phase was obtained as detailed in Section 3.5. Dual and tri-encoding
phase images were computed using the OMME formula (8). Dual encoding phase images were
computed using the combinations of two single encoding images, namely 32 and 24 mT/m, 24 and
16 mT/m, 16 and 8 mT/m. In addition, OMME was used to combine three phase images acquired
with MEG amplitudes of 32, 16 and 8 mT/m.

As shown in the theory section all these combinations exhibit the same dynamic range dG given
by the lowest encoding amplitude of 8 mT/m, which had no more phase wraps. Notice that due
to the inclusion of m(u) in the background phase for all MEGs, the phase difference measurements
are not i.i.d. as assumed in the noise analysis. However, recall that Equation (8) is used for the
reconstruction and therefore the unwrapped image does not result in the combination of phase
differences anymore. Therefore, the measurements not being i.i.d. does not affect the variance of
the reconstruction.

We determined the number of wrongly reconstructed voxel inside WM and GM tissue for each
combination of MEG amplitudes in order to assess the noise sensitivity of the different combination
possibilities in vivo as it was simulated before (see Figure 1). We defined the single phase-contrast
image with a MEG of 8 mT/m as our ground truth and calculated the voxel wise difference to
the multiple MEG phase reconstructions. Based on the noise level in the image and the maximum
encoded displacement, a threshold of 0.1 rad phase difference was used to identify wrongly recon-
structed voxel in WM and GM. Relative error rates were determined by dividing the number of
wrongly reconstructed voxels by the total number of voxels included in the GM and WM masks in
all slices, timesteps and encoding directions.

To further investigate the noise sensitivity of the displacement reconstruction, we added complex
Gaussian noise with a standard deviation of 15% of the mean absolute encoded phase in WM and
GM to the single PC images and repeated the evaluations.

Furthermore wrapped single motion encoding phase contrast images for the highest MEG of
32 mT/m were unwrapped using Laplacian and Flynn based unwrapping algorithms. We chose to
compare our proposed method with Flynn and Laplacian based unwrapping to include two common
but different approaches which are publicity available at https://bioqic-apps.charite.de. We
compared the different unwrapping approaches in terms of MNR as described further below and in
terms of the visual quality of the reconstructed elastograms as outlined in the next section.

3.7 Shear wave speed reconstruction

Wrap-free phase images from unwrapping algorithms and from dual and multiple encoding methods
were used for reconstruction of shear wave speed (SWS) maps based on phase-gradient wavenumber
recovery to avoid noise amplification by the Laplacian operator which is inevitable in direct inversion
techniques [40, 41]. SWS is related to tissue stiffness and will be termed as such in the following.
The principle of wavenumber (k-) based multi-component, elasto-visco (k-MDEV) inversion was
originally introduced for liver MRE and is outlined in [42].
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It is important to note that each reconstructed voxel of the elastograms resulted from 24 indi-
vidual voxels of the phase images (8 timesteps and three encoding directions). If only one voxel in
the phase images is wrongly reconstructed, the resulting elastogram voxel is corrupted. Therefore
we analysed additionally the wrongly reconstructed voxels with respect to the elastograms for the
comparison of different multiple encoding approaches. To calculate relative error rates we divided
again the number of wrongly reconstructed voxels by the number of all included voxels. In contrast
to the phase images, the number was not multiplied by the amount of timesteps and encoding
directions.

k-MDEV inversion was adapted to the resolution of brain MRE as outlined in [43]. Compared to
k-MDEV proposed for abdominal organs [42], smoothing the phase images prior to the unwrapping
was omitted since this would have influenced the MNR estimations. Moreover, the linear radial
filter in the spatial frequency domain was replaced by a radial bandpass Butterworth filter of third
order with highpass threshold of 15 1/m and lowpass threshold of 250 1/m.

3.8 Noise reduction by adding back imaging gradient’s phase

In the OMME context, the subtraction of m(u) is needed for the correct phase contrast when
including several gradient strengths. However, it is a common practice to assume that the phase
contribution m(u) is small with respect to the contribution of the wave motion for the largest MEG
(i.e. smallest dynamic range dN ). In such cases adding back the phase contribution of the imaging
gradient’s to the OMME reconstruction allows theoretically for a reduction factor 1/

√
2 ≈ 0.7 in

the standard deviation of the noise of the displacement field.
Therefore, the displacements obtained with OMME are postprocessed by the following operation

u∗ → u∗ +
m(u)

π
dN

This effect is compared quantitatively in terms of MNR as outlined in the next section and quali-
tatively on the resulting elastograms in Figure 6. All other results, elastograms and wave fields are
without re-added m(u).

3.9 Noise analysis and statistical tests

Signal power and MNR of the phase images are important parameters for the subsequent post-
processing and final SWS reconstruction. According to our theory, OMME promises wrap-free
phase images with MNR corresponding to the highest MEG used for OMME phase recovery. To
calculate MNR for experimental data (unwrapped and unsmoothed phase images) we used the
blind noise estimation method from [44] as outlined and previously applied to MRE data in [45].
Noise estimation in the wavelet domain is expected to be well suited for wave images [46, 47].
We estimated MNR from the dual-tree wavelet transformation of the displacement images with the
median absolute deviation of the finest band of wavelet coefficients [44]. The estimated signal power
was derived from the L2-norm. Signal and noise levels were estimated from automatically segmented
WM and GM regions (see Figure 3) for all slices and components and averaged afterwards.

To test for significant differences in the number of reconstruction failures using OMME and dual
encoding strategies, a linear mixed-effects model with varying intercept was employed. Error rates
were used as dependent variables and the different methods as independent variables. Participants
were assigned as random effect. To test for significant differences in the MNR of unwrapped phase
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images using OMME, Laplacian and Flynn unwrapping, a linear mixed-effects model with varying
intercept was employed. MNR was used as dependent variables and the different methods as
independent variables. Participants were assigned as random effect. All P-values were calculated
using Tukey’s post hoc test with Bonferroni correction for multiple comparisons. All statistical
analysis was done in R (version 4.0.2). Unless otherwise stated, errors are given as standard
deviation (SD). P-values below 0.05 were considered statistically significant.

4 Results

4.1 Phase images

Figure 3 shows the encoded phase of the complex MR signal, with the different contributions
modeled by Equations (1) and (2) derived from the measurements listed in Table 1. One central
slice of the anterior-posterior encoding direction is displayed for one representative subject. The
third column shows the static background phase induced by toggled MEGs. For reference the
MRE mean magnitude and masks for WM and GM are given. Table 2 summarizes the encoding
efficiency for the different MEG amplitudes and the imaging gradients. Group mean absolute
displacement for all encoding directions averaged over WM tissue in rad is given. The encoded
phase u π

dG
increased with increasing MEG amplitude and phase wraps occurred from 16 mT/m on.

The static background phase induced by the MEG δG decreased with amplitude until no difference
compared to the background phase induced by the imaging gradients ϕ0 was visible. Toggling
the MEG resulted in a different background phase which is clearly visible for MEG amplitudes.
The displacement encoded by the imaging gradients m(u) was small compared to the displacement
encoded by the larger MEGs, although this estimate depends on the applied vibration frequency
and is likely higher for higher frequencies.

MEG amplitude
in mT/m

Encoding efficiency
in µm/rad

Encoded displacement
in rad: mean (sd)

32 7 3.59 (1.24)
24 9 2.75 (0.97)
16 13 1.87 (0.65)
8 26 0.98 (0.33)
4 52 0.55 (0.15)
2 104 0.36 (0.06)

Imaging gradients 149 0.27 (0.05)

Table 2: Encoding efficiency and mean absolute encoded displacement as group averages for differ-
ent MEG amplitudes and the imaging gradients.

4.2 Dual and multiple encoding unwrapping

Figure 4 shows the different phase reconstructions for different MEG combinations with the same
dynamic range of the MEG with 8 mT/m amplitude for one representative slice. In addition
reconstructed elastograms of SWS are displayed. At the top, results are given for the original data,
which is the phase encoded by the MEG only. Results with added noise are shown at the bottom.

14



Figure 3: Measured phase ϕG(u) of the complex MR signal in one representative slice, encoding
direction (anterior-posterior) and subject for different MEG ampltiudes ranging from 32 mT/m to 2
mT/m. The separated phase contributions correspond to the model ϕG(u) = ϕ0 +δG+m(u)+u π

dG
with u π

dG
being the motion u encoded by the MEG with dynamic range dG and the background

phase due to the static phase of the imaging gradients ϕ0, the static MEG-dependent phase δG
and the motion-dependent phase encoded by the imaging gradients m(u). Additionally the static-
background phase δ−G for toggled MEG polarity is shown. MRE mean magnitude image and masks
for white matter (WM) and gray matter (GM) are given as reference. The color scale of the phase
images was adapted at each figure for better visualization.
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OMME with three MEGs (32, 16, 8 mT/m) was compared to dual encoding strategies using 32
and 24 mT/m, 24 and 16 mT/m, 16 and 8 mT/m. It is well visible that dual encoding with 32
and 24 mT/m performed worst in terms of reconstruction failures, which subsequently corrupted
the reconstructed elastogram. Despite no apparent reconstruction failures in the selected slice, also
the other approaches showed defects in the final elastograms, which resulted from reconstruction
failures on other timesteps or components. Moreover encoding approaches using higher MEGs
showed less noise in the reconstructed phase image. Adding noise to the complex data before
reconstruction increased the number of reconstruction failures and noise of the combined image in
all approaches. Consequently more corrupted voxels were visible in the final elastogram.

Table 3 summarizes the findings as relative error rates for the phase images (3a) and for the
elastograms (3b) compared to the total amount of voxels (mean ± SD: 43, 639± 3, 114) inside the
GM and WM mask for each subject. Incorporating all timesteps and encoding directions resulted
in a total 1,047,336 voxel which could possibly fail to be reconstructed properly. In addition MNR
of reconstructed phase images is tabled (3c). All numbers are given as group average and standard
deviations in brackets.

In general, only little reconstruction failure (< 1%) was observed in comparison to all possible
voxels in the phase images. Only the dual encoding including 32 mT/m with 15% added noise
showed failures above 4%. However, due to the combinatorial nature of SWS reconstruction which
combines up to 24 phase images to one SWS image, the error rates become substantial for the
elastograms. The relative differences between the reconstruction approaches were conserved. For
the original data, dual encoding with 32 and 24 mT/m performs significantly worse (3.9 ± 3.4%)
than OMME (0.4 ± 0.4%, p = 0.001). There was no statistical difference to the other two dual
encoding strategies (p > 0.99). Nonetheless the MNR scales with the highest MEG amplitude
used, such that approaches with 32 mT/m had a MNR of 17± 3 dB, 24 mT/m gave 15± 3 dB and
16 mT/m gave 12±3 dB. Adding noise to the original data inflated error rates in all approaches
which became larger than 40% for the noise sensitive dual encoding approach with 32 and 24
mT/m. With increased noise, OMME (1.5±0.9%) also outperforms the dual encoding with 24 and
16 mT/m (6.9± 1.3%) and showed significantly less reconstruction failures (p = 0.03). Needless to
say, that MNR is reduced when noise is added and MNR differences between the approaches were
conserved.

4.3 Comparison to other unwrapping methods

Figure 5 shows representative results for the SWS maps reconstructed from wrap-free phase images.
The unwrapping was either performed using OMME utilizing phase images from MEG amplitude of
32, 16 and 8 mT/m or by Laplacian and Flynn unwrapping algorithms applied to the PC image of
32 mT/m MEG amplitude. Anatomical reference images are based on T2 weighted MRE magnitude
images. Red arrows indicate areas where OMME based SWS reconstruction visually outperforms
the other two approaches. Overall the noise outside the brain was largely reduced using OMME
and tissue/air interfaces were sharper. Especially the transition between the skull and the brain
tissue was properly reconstructed, while the unwrapping methods smoothed that region which lead
to spurious stiffness values and reduced contrast.

In the first subject, it was especially difficult to demarcate the tissue/air boundary in the area of
the left superior temporal sulcus using SWS reconstruction based on Laplacian and Flynn unwrap-
ping. Only OMME allowed a good boundary detection. A similar effect was visible at the lingula
gyrus where the space between the two hemispheres was only preserved properly with OMME. For
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Figure 4: Different phase reconstructions with the same dynamic range using multiple motion
encoding measurements. Here OMME with three MEGs (32, 16, 8 mT/m) is compared to dual
encoding using 32 and 24 mT/m, 24 and 16 mT/m, 16 and 8 mT/m. The bottom row shows the
same reconstructions with added Gaussian noise with a standard deviation of 15% of the mean
absolute encoded phase in WM.

17



OMME
32, 16, 8 mT/m

Dual
32, 24 mT/m

Dual
24, 16 mT/m

Dual
16, 8 mT/m)

Phase images
Original data 0.06 (0.04) 0.26 (0.18) 0.07 (0.04) 0.06 (0.04)
Added 15% noise 0.2 (0.09) 4.11 (0.89) 0.79 (0.2) 0.2 (0.08)

Elastograms
Original data 0.4 (0.4) 3.9 (3.4) 0.4 (0.3) 0.4 (0.4)
Added 15% noise 1.5 (0.9) 40.8 (9.9) 6.9 (1.3) 1.4 (0.5)

MNR
Original data 17.2 (3) 17 (3) 15.1 (3.1) 12.4 (2.8)
Added 15% noise 9.8 (2.2) 10.1 (1.5) 9.1 (1.4) 5.1 (1.8)
Added m(u) 18.8 (2.2) 18.6 (1.5) 16.8 (1.4) 13.7 (1.8)

Table 3: Number of wrongly reconstructed voxels in % in phase images and elastograms and MNR
for OMME using three MEGs and different dual encoding strategies. Group mean values were
averaged over WM and GM and tabled as group mean (sd). All combinations exhibit the same
dynamic range dG with different noise sensitivities to the input image noise σϕ and different noise
levels of the reconstructed phase images (MNR). In addition results with added Gaussian noise (15
% of the mean absolute encoded phase in WM) and added m(u) are given.

subject two, the central part of the right lateral ventrical showed spurious SWS values for Laplacian
and Flynn unwrapping probably due to tissue/fluid boundary artifacts which were enhanced by
the algorithms. OMME based reconstruction showed higher level of details by fully recovering the
boundaries between brain tissue and either ventricles or gyri. In the magnitude image of subject
three susceptibility artifacts are present. However, OMME based SWS reconstruction showed a
good agreement with the anatomical reference and correctly reconstructs SWS values associated
with tissue voxels in the area of the temporal pole. In contrast, Laplacian based SWS maps are
heavily corrupted and no reference to the anatomical image is present. Flynn performs better but
still with heterogeneous SWS values. Similar observations are visible in a more cranial area of the
temporal pole in subject four. Heterogeneous and noisy SWS values make the demarcation of the
temporal pole difficult for Laplacian and Flynn unwrapping SWS reconstructions.

The MNR analysis based on wrap-free phase images with a MEG amplitude of 32 mT/m
revealed for Laplacian unwrapping a group mean MNR of 15.9± 2.7 dB and for Flynn unwrapping
15.6± 2.4 dB. Both results are significantly lower than the MNR for OMME based unwrapping as
listed in table 3 (p = 0.02).

4.4 Noise reduction by adding back imaging gradient’s phase

Table 3 (last row) shows the MNR of the OMME results postprocessed as described in Section 3.8,
where an improvement with respect to the original OMME result can be appreciated in all cases.

Figure 6 compares the elastograms in a few volunteers in terms for the original OMME and the
postprocessed one. The reduction of the noise is again evident.
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Figure 5: SWS maps based on wrap-free phase images using OMME (32, 16, 8 mT/m), Laplacian
unwrapping and Flynn unwrapping for selected slices in four subjects. The anatomical reference
image from T2 weighted MRE magnitude is included. Red arrows indicate areas where OMME
shows more details and greater contrast in the SWS map.
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Figure 6: SWS maps based on wrap-free phase images using OMME (32, 16, 8 mT/m), without
(mid column) and with (right column) postprocessing for selected slices in three subjects. The
anatomical reference image from T2 weighted MRE magnitude is included.
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5 Discussion

We have developed, theoretically analyzed and assessed in numerical and human brain data a
new method for combining an arbitrary number of motion-encoded PC-MRI images, the Optimal
Multiple Motion Encoding method (OMME).

We compared the proposed method with dual-encoding strategies and common phase unwrap-
ping algorithms in terms of unwrapping success, MNR and quality of subsequently reconstructed
SWS maps. To the best of the author’s knowledge, this is the first reported method for combining
a larger number of motion encoded images obtained from different MEGs.

For a fixed effective dynamic range of the encoded motion, OMME presents a superior perfor-
mance with respect to noise compared to standard dual encoding unwrapping. This was assessed
analytically and confirmed numerically in a “single voxel” experiment. The analysis on the in vivo
data with respect to reconstruction failures and MNR confirm these findings. Additionally it was
shown that inverting the MEG polarity affects the induced background phase of the MEG which is
not critical for our proposed method, but it should be considered in classical PC approaches where
a phase-difference image is calculated to remove contaminant phase information.

It was shown that unwrapping is most robust to noise when N images are combined which were
measured in the dynamic ranges d1, . . . , dN such that di = 2−i+1d1. This simplifies the acquisition
protocol allowing the scanner operator to select the largest MEG and the number of measurements
N only, as it is usually done when the MEG is kept fixed.

The OMME was compared against standard unwrapping methods (Laplacian and Flynn). Re-
markably, OMME allows to improve the SWS maps by reducing the noise in the wave images
without spatial smoothing as Laplace unwrapping does and without unwrapping failure as it may
occur with Flynn unwrapping predominantly at boundaries. This showed that details can be pre-
served which are otherwise smoothed (out) by standard unwrapping methods. This can be relevant
for higher resolution MRE in a variety of applications including tumor detection or characterization
of lesion in multiple sclerosis (MS) [48]. Moreover, we showed that standard unwrapping methods
smear boundaries between fluid filled spaces and brain tissue. This not only affects cortical ar-
eas of the brain and their tissue/air boundaries but also interfaces between tissue and fluid filled
ventricles. The importance of proper reconstruction of stiffness estimates for cortical areas has
recently been addresses by Lilay et al. [49]. If tissue mechanical properties are altered at those
boundaries, e.g. as a result of impaired CSF-brain barriers in MS [50] OMME based wrap-free
MRE phase images could be sensitive to those alterations. Also other interfaces between tumor
and healthy tissue could potentially be better resolved. Further, the increased dynamic range of
OMME with good MNR properties could be utilized when high frequency vibrations induce heavy
wraps near the source and are quickly damped towards small deflection amplitudes inside the tis-
sue under investigation. The potential of OMME for higher frequency MRE needs to be further
investigated. Without heavy wraps, Laplacian and Flynn unwrapping methods performed similar,
which underlines that OMME might be very suitable for high MNR applications.

The postprocessing introduced in Section 3.8 allows for an improvement in the SWS image
quality at no additional scan time and at negligible computational cost. Since this assumes large
MEG encoding efficiencies compared with those of the imaging gradients, the applicability should
be investigated with respect to each specific scanning protocol.

As a limitation of OMME, examination times are increased by additional measurements for
multiple MEGs. Each applied MEG increases the total scan time by the acquisition time of one
measurement. Moreover, the background phase (i.e. MEGs on and vibration off) needs to be
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measured, which still is required at one time step only for all encoding directions, adding another
1/(number of timesteps) * acquisition time. Nevertheless, the time investment pays off when phase
wraps can be avoided and maps are generated that are more detailed than standard methods.
Even resolving wraps only partly supports unwrapping algorithms and permits higher encoding
efficiencies than standard MRE towards measurement of damped waves without corrupting high
amplitude regions.

OMME can be also applied to to other PC-MRI methods like e.g. flow MRI. In that case the
dynamic range will be the venc parameter. However, some careful noise analysis may be needed
when the then phase that does not depend on the motion is measured only once, as it is the
case in 4D Flow, since then the phase differences for each venc will be correlated. This might be
investigated in a future work.

6 Conclusion

In this study, we proposed an optimal multiple motion encoding (OMME) method which is suit-
able for motion sensitive PC-MRI. A detailed theoretical analysis was provided to derive optimal
combinations of motion encoding gradients. We applied novel OMME to MRE measurements of
in vivo human brain acquisitions. It was shown that OMME outperforms dual encoding strategies
and allows to recover more tissue details due to its increased MNR ratio within a high dynamic
range leading to SWS maps which preserve important details such as discontinuities in the stiff-
ness. Especially for applications of high resolution MRE wrap-free images with proper MNR – as
provided by OMME – are desired.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

H.H. and I.S. acknowledge the funding from the German Research Foundation (GRK 2260 BIOQIC,
SFB1340 Matrix in Vision, Sa901/17-2) and from the European Union’s Horizon 2020 Program (ID
668039, EU FORCE Imaging the Force of Cancer). C.B. acknowledges the funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 852544 - CardioZoom). A.O. acknowledge the funding of Conicyt
Basal Program PFB-03, Fondecyt 1151512 and Fondap CR2-1511009. A.O and S.U. acknowledge
funding from ANID Millennium Science Initiative Program – NCN17–129. H.C. acknowledges to
Conicyt Basal Program AFB and 170001.

22



A Theoretical and practical aspects of OMME

A.1 Effective dynamic range

Here we prove that the effective dynamic range in OMME, corresponding to the smallest period of
the cost function

JN (u) =
N∑
j=1

(
1− cos

(
π

dj
(uj − u)

))
,

is the least common multiplier of 2d1, . . . , 2dN , i.e. deff = d1a
N−1, under the assumption that

dj = (a/b)j−1d1, with a < b ∈ N.
We proceed as it is usual for these problems: find the smallest possible value T > 0 such that

JN (u) = JN (u+ T ), i.e.:

N∑
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)
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)
+ sin
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)
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. (9)

Due to the fact that

cos

(
π
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(uj − u)

)
= cos

(
π

dj
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)
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π
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)
+ sin

(
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)
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)
,

Equation (9) becomes

N∑
j=1

[
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(
π

dj
u

)(
cos

(
π

dj
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)
− cos

(
π

dj
uj

))

+ sin
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π
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u

)(
sin

(
π
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(uj + T )

)
− sin

(
π

dj
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))]
= 0.

Note now, that the functions cos (πu/dj) and sin (πu/dj) are linearly independent in R for all values
of j. Indeed, using the change of variable x = πu/d1/a

N−1 the problem reduces to show that the
following functions are linearly independent:

cos
(
xbj−1aN−j

)
, sin

(
xbj−1aN−j

)
, j = 1, . . . , N,

which is true since aN−1 < aN−2b < · · · < bN−1. Therefore, we obtain that the following relations
need to be satisfied:
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)
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)
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)
= 0
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or using complex variable

exp i
π

dj
(uj + T ) = exp i

π

dj
uj .

This leads to T = {2kjdj}∀kj . Since this has to hold for all j = 1, . . . , N simultaneously, it proves
that the smallest period T is the least common multiplier of 2d1, . . . , 2dN . This lead to the period
being T = 2d1a

N−1.

A.2 Noise analysis

In the optimal dual encoding method, the unwrapped displacement corresponds to the global
minimum with smallest magnitude, which we will denote u∗. Therefore, due to the 2deff -periodicity,
aliasing will occur when deff ≤ |utrue|. Notice that in opposite than the standard dual encoding
for β 6= 1/2 we do not need upc for unwrapping: both u1 and u2 can be aliased, still resulting in an
unwrapped u∗.

In [35], no theoretical noise analysis was performed, which will be shown here. First, we need
an expression u∗, which can be obtained from the fact that the global minimum is also a local
minimum, i.e. J ′dual(u∗) = 0. Indeed

J ′dual(u∗) = − π
d1

sin

(
π

d1
(u1 − u∗)

)
− π

d2
sin

(
π

d2
(u2 − u∗)

)
= − π

d1
sin

(
π

d1
(u1 + 2k1d1 − u∗)

)
− π

d2
sin

(
π

d2
(u2 + 2k2d2 − u∗)

)
for all k1, k2 ∈ Z. Notice that u∗ ≈ u1 + 2k1d1 ≈ u2 + 2k2d2 for some fixed k1, k2 in case of small
measurement noise in the phase (and equal if no noise is present). Hence, we can approximate the
sin-terms by its arguments leading to:
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(
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)−1 (
u1d
−2
1 + u2d

−2
2 + 2

(
k1d
−1
1 + k2d

−1
2

))
. (10)

Since assume all that measurements are statistically independent (and therefore u1 and u2), the
variance of u∗ has the form

Var(u∗) =
(
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)−2 (
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−4
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−4
2

)
(11)

=
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)
=
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1 + β2
< Var(u2). (12)

Thus, an improved estimate in terms of variance is obtained.
Analogously to the dual encoding case, the optimum can be found to approximately be
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with variance
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If we consider the case dN = djβ
N−j for j = 1, . . . , N , we obtain:

Var(u∗) = Var(uN )β−2N

 N∑
j=1

β−2j

−1 = Var(uN )
1− β2

1− β2N
= Var(u1)β

2(N−1) 1− β2

1− β2N
.

Note the exponential reduction of the standard deviation with respect to the number of measure-
ments, instead of the linear reduction obtained by averaging equal dynamic range data (i.e. β = 1).
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