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Abstract

Purpose: To propose an optimal multiple motion encoding method (OMME) for phase-contrast
MRI with application to Magnetic Resonance Elastography (MRE) for unwrapping motion images.
Theory: OMME is formulated as a least-squares problem for the motion using an arbitrary number
of phase-contrast measurements with different motion encoding gradients (MEG). The mathemat-
ical properties of OMME are proved in terms of standard deviation and dynamic range of the
motion’s estimate.
Methods: OMME’s performance is assessed on MRE data from heparin phantom experiments
and from in vivo human brain experiments for the most robust MEG combination obtained by the
theory. The unwrapped wave images are further used to reconstruct shear wave speed (SWS) maps
and compared to the ones obtained using conventional phase unwrapping methods.
Results: OMME allowed to successfully combine three and four MRE wave images with different
dynamic ranges in the phantom and volunteer data, respectively. This leads to improved motion-
to-noise ratio (MNR) in the measured waves and therefore to SWS maps with greater resolution of
details than obtained with conventional unwrapping methods.
Conclusion: The proposed OMME method allows for effective increase in the dynamic range of
phase-contrast images with respect to the number of MEGs while maintaining the MNR of the
image with the lowest dynamic range. The method may be especially suitable for applications
where high resolution MRE images with high MNR are needed.

∗Equally contributing authors
†Corresponding author: c.a.bertogliorug.nl
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1 Introduction

Phase-contrast Magnetic Resonance Imaging (PC-MRI) is a well-established method for measuring
flow velocities [24] or tissue displacements due to harmonic excitation as used in Magnetic Resonance
Elastography (MRE) [9, 15, 14, 23, 11, 17, 8, 5, 10].

Motion is encoded in the phase of the complex transverse magnetization proportional to the
encoding efficiency of the motion encoding gradient (MEG). However, the phase can only be mea-
sured in the half-open interval [−π, π) and phase wraps (abrupt jumps of ±2π) occur if the encoded
phase exceeds those limits. Consequently, for a given encoding efficiency, there is a fixed ampli-
tude range or dynamic range, where motion can be acquired without phase wraps. If the encoding
efficiency is too large and the true motion amplitude exceeds the dynamic range, phase wraps
occur. Unfortunately, selecting a large dynamic range leads to poor quality images since – for a
given signal-to-noise-ratio (SNR) in the magnitude image – the “motion-to-noise-ratio” (MNR) is
proportional to the dynamic range.

There are usually two approaches to remove the wraps.
First, unwrapping algorithms have been developed by assuming that the motion field is smooth

in space, see e.g. [2, 13] and references therein. Nevertheless, they cannot recover the true under-
lying motion and often fail when the aliased regions are highly heterogeneous, subject to noise or
include nested wraps. In such cases, the unwrapped phase appears to be distorted and obstructs
further data processing steps. For instance, the simple 2π-unwrapping Flynn [7] algorithm is in-
herently two-dimensional and fails to unwrap noisy complex wraps when no well-defined enclosed
region exists. The true motion cannot be recovered because arbitrary 2π-offsets are added. Gradi-
ent based algorithms [18] only yield the derivative of the phase and amplify noise. Laplacian based
unwrapping algorithms [20] remove the constant and linear terms from the data and induce spatial
smoothing, altering the resulting phase where important details may be lost.

Second, voxelwise motion reconstructions using dual-encoding strategies have been proposed
in PC-MRI which are based on unwrapping low dynamic-range data by exploiting high-dynamic
range data [4]. In other words, measurements with a reduced dynamic range (hence, improved
MNR) are unwrapped using a measurement with a larger dynamic range. Those methods are
performed at each voxel independently and therefore they do not assume or enforce smoothness of
the motion-encoded phase field [12, 19, 28]. This allows the reconstruction of the correct motion
images, however, at the cost of additional measurements. To the best of the authors’ knowledge,
there is neither a reported analysis of MNR in dual encoding nor an extension to multiple motion
encoding.

Hence, the aim of this work is threefold.
Firstly, we mathematically and numerically analyze dual motion-encoding strategies to answer

the question: Which combination of MEGs provides the smallest noise in the motion image for a
given dynamic range and noise level in the phase images?

Secondly, we will use our previously introduced mathematical framework of optimal dual-
encoding [4] for an extension to multiple motion encoding in MRE, henceforth termed Optimal
Multiple Motion Encoding (OMME).

And thirdly, it will be shown that OMME can successfully provide wrap-free low dynamic
range MRE phase images for phantom and in vivo brain experiments which are closest to the true
underlying motion in the range of MNR of the smallest dynamic range. Reconstructed wrap-free
phase images are used as input for the MRE reconstruction that permits recovering more details
in SWS maps than commonly phase-unwrapped input images.
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2 Theory

This section presents the OMME method and its mathematical analysis. Although OMME can be
applied to any PC-MRI modality, for the sake of clarity the method is explained using the example
of MRE.

2.1 Single motion-encoding in PC-MRI

For a given MEG G, the model of measured phase can be written in the form

ϕG(u) = ϕ0 + δG + u
π

dG
+ επ (1)

with the following notation:

• ϕ0 is the reference phase due to the static field inhomogeneities,

• δG is a MEG-dependent phase induced e.g by eddy currents and Maxwell effects,

• dG is the “dynamic range”, i.e. the inverse of the encoding efficiency depending on the MEG’s
amplitude, duration, shape and relative phase of the mechanical wave,

• u denotes the tissue harmonic displacement in the direction of the MEG,

• ε ∼ N (0, σ2ϕ) represents the measurement noise in the phase. The value of σ2ϕ depends on the
SNR of the magnitude measurements.

We will also denote utrue the ground truth displacement.
Notice that we have neglected the contribution of the phase encoded by the imaging gradients.

This assumption is justified since the imaging gradients are usually velocity compensated and only
higher order terms contribute.

In the case of MRE, the motion-independent phase ϕG(0) = ϕ0 + δG can be removed by:

1. Either measuring ϕG(u) using a MEG at sufficient equidistant timepoints and separate the
harmonic oscillation by the temporal Fourier transform,

2. Or measuring and subtracting the offset phase directly by repeating the experiment without
external vibrations for one time step.

The latter approach will be used in the remainder of this work.
Assuming now that ϕG(u) and ϕG(0) is measured (including noise), u can be estimated as:

u = (ϕG(u)− ϕG(0))
dG
π
− (εu − ε0)dG (2)

with εu and ε0 independent realizations of ε for the two phase measurements. Consequently,
u ∼ N (ū, 2d2Gσ

2
ϕ) since at least two phase measurements are needed due to the unknowns u and

ϕG(0). Consequently, dG should be chosen as small as possible.
However, phase can be measured only within the interval [−π, π). Hence, if dG < |utrue| (if

σϕ = 0) then the measured displacement u wraps by a multiple of 2dG. Naturally, aliasing can
occur even if dG > |utrue| in the presence of noise ε 6= 0.
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For a given dynamic range, a natural approach to reduce the variance of u is to average more
measurements. If n is the number of measurements made of ϕG (always with the same dG) and n0
the number of measurements of ϕG(0), then

u ∼ N (ū, d2Gσ
2
ϕ(n−1 + n−10 )) =

N (ū,
(

dG√
n

)2
σ2ϕ) , n� n0

N (ū, 2
(

dG√
n

)2
σ2ϕ) , n = n0

(3)

From this relation it is clear that decreasing dG is more effective than increasing the number of
measurements n, since the standard deviation of u decreases linearly with respect to dG/

√
n.

2.2 Classical dual motion encoding revisited

The basic idea of multiple motion encoding approaches is to include additional measurements with
a reduced value of dG (e.g., larger MEGs) while keeping the dynamic range of the motion-sensitive
phase image large. In this section we will treat the case of dual encoding, i.e. for two different
values d1, d2 for dG.

We assume now that we measure phases with two different MEGs amplitudes G1 < G2 = G1/β,
with 0 < β < 1, with dynamic ranges d1 and d2, respectively. This results in four measured phases
ϕ1 = ϕ1(u), ϕ1(0), ϕ2 = ϕ2(u), ϕ2(0). We assume that these values already include the additive
noise with zero mean and variance π2σϕ as in Equation (1).

From the four phase measurements, four motion images can then be estimated:

u1 =
ϕ1 − ϕ1(0)

π
d1 , u2 =

ϕ2 − ϕ2(0)

π
d2

ups =
ϕ1 + ϕ2 − ϕ1(0)− ϕ2(0)

π
dps , upc =

ϕ2 − ϕ1 + ϕ1(0)− ϕ2(0)

π
dpc

with dps = (d−11 + d−12 )−1 , dpc = (d−12 − d
−1
1 )−1. Notice that

dpc = d1
β

1− β
≥ d1 > d2 = βd1 > dps = d1

β

1 + β
.

and thus we call dpc = deff as the effective dynamic range of the dual encoding method.
Defining α =

√
2σϕd1, the variances of the different motion estimators satisfy:

Var(u1) = 2σ2ϕd
2
1 = α2 , Var(u2) = 2σ2ϕd

2
2 = α2β2

Var(upc) = 4σ2ϕd
2
pc = α2 2β2

(1− β)2
= α2 β2(

1− β√
2

)2 , Var(ups) = 4σ2ϕd
2
ps = α2 2β2

(1 + β)2
= α2 β2(

1 + β√
2

)2 ,

and therefore
Var(upc) > Var(u1) > Var(u2) > Var(ups).

Dual encoding reconstructions aim to unwrap a motion reconstructed with low dynamic range
using a motion reconstructed with a high dynamic range as follows [12]:

uuw = ulow + 2dlowN.I.

(
uhigh − ulow

2dlow

)
(4)
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with N.I. the nearest integer operator. This leads to Var(uuw) = Var(ulow) when the unwrap-
ping is successful. This method will be denoted in as standard dual encoding. To pick up ulow
and uhigh we apply the following reasoning. Firstly, we pick ulow = u2 since it possess a higher
dynamic range than ups (e.g. dpc = 3/2dps for β = 1/2) only with a slightly higher variance (e.g.
Var(u2)/Var(ups) = 1.125 for β = 1/2). Secondly, we pick

uhigh =

{
u1 β ∈ {1/2, 1}
upc elsewise

since upc has the desired effective range deff ≥ d1, but for β = 1/2 it holds d1 = deff and
Var(u1) < Var(upc), and for β = 1 upc is not defined and d1 = deff .

2.3 The optimal dual motion encoding method [4] revisited

In [4], a new method for unwrapping two motion-encoded images was introduced, Optimal dual
venc (ODV)- a method originally proposed for flow MRI. In this paragraph we will briefly recall
the method, and show some new theoretical results.

The method is based on the formulation of the phase contrast problem as the minimization of
cost functional. For the single motion encoding case, the cost functional has the form:

Ji(u) = 1− cos

(
ϕi − ϕi(0)− πu

di

)
= 1− cos

(
π

di
(ui − u)

)
which comes from a least squares approximation for the angle by measuring the components of a
vector and where ϕi and ϕG(0) where defined in the previous section.

It is easy to see that the period of Ji(u) is 2di, and therefore local minimum among with
smallest value (in absolute terms) ui + 2kidi, kiZ corresponds to the the single encoding phase-
contrast motion.

For the dual encoding case, the problem shifts from finding the local minima of J(u) to find
the global minima of

Jdual(u) = J1(u) + J2(u) = 2− cos

(
π

d1
(u1 − u)

)
− cos

(
π

d2
(u2 − u)

)
.

It was proven in [4] that utrue is a global minimum of Jdual. Moreover, as a new result, Jdual has
periodicity 2deff when β = a/b, a < b ∈ N, see Appendix A for the proof.

In the optimal dual encoding method, the unwrapped motion corresponds to the global minimum
with smallest magnitude, which we will denote u∗. Therefore, due to the 2deff -periodicity, aliasing
will occur when deff ≤ |utrue|. Notice that in opposite than the standard dual encoding for β 6= 1/2
we do not need upc for unwrapping: both u1 and u2 can be aliased, still resulting in an unwrapped
u∗.

In [4], no theoretical noise analysis was performed, which will be shown here. First, we need
an expression u∗, which can be obtained from the fact that the global minimum is also a local
minimum, i.e. J ′dual(u∗) = 0. Indeed

J ′dual(u∗) = − π
d1

sin

(
π

d1
(u1 − u∗)

)
− π

d2
sin

(
π

d2
(u2 − u∗)

)
= − π

d1
sin

(
π

d1
(u1 + 2k1d1 − u∗)

)
− π

d2
sin

(
π

d2
(u2 + 2k2d2 − u∗)

)
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for all k1, k2 ∈ Z. Notice that u∗ ≈ u1 + 2k1d1 ≈ u2 + 2k2d2 for some fixed k1, k2 in case of small
measurement noise in the phase (and equal if no noise is present). Hence, we can approximate the
sin-terms by its arguments leading to:

u∗ ≈
(
d−21 + d−22

)−1 (
u1d
−2
1 + u2d

−2
2 + 2

(
k1d
−1
1 + k2d

−1
2

))
. (5)

Since assume all that measurements are statistically independent (and therefore u1 and u2), the
variance of u∗ has the form

Var(u∗) =
(
d−21 + d−22

)−2 (
Var(u1)d

−4
1 + Var(u2)d

−4
2

)
(6)

=
(
d−21 + d−22

)−2 (
α2d−41 + α2β2d−42

)
=

Var(u2)

1 + β2
< Var(u2). (7)

Thus, an improved estimate in terms of variance is obtained.
Figure 1 presents the previous findings in a graphical way. There, we show the standard

deviations of the estimators (i.e. the square root of the variances) versus the effective dynamic
ranges for various values of β. The plots are constructed as follows:

• For a fixed value of deff and β, d1 and d2 are computed and 5000 realizations of the measure-
ments for all four phases are generated using a value for σϕ. Here, the ground truth values
are ū = 1 and ϕ1(0) = φ0 and ϕ2(0) = 2φ0, with φ0 = 0.9π.

• Then u1, u2, uuw, u∗ are computed. Also ueff being the single motion phase contrast estimate
with dG = deff is computed for comparison.

• The standard deviation of such estimates considering the 5000 realizations is computed.

• The curves are drawn by repeating this procedure in the interval deff ∈ [1, . . . , 4].

• Four values of β ∈ {1, 1/2, 2/3, 3/4} are used. The value β = 1 means that two set of
measurements are obtained with the same dynamic range. This serves for better assessing
the gains of dual encoding approaches.

Note that the peaks in the empirical curves come from aliasing for the corresponding dynamic
range; the larger σϕ the larger the interval where aliasing may occur.

The quality of the results depends on both values of β and σϕ. For small values of σϕ, the
empirical and theoretical standard deviations match, but the empirical deviates from the theoretical
one when deff → |utrue|, as expected, due to the aliasing. In this low noise scenario, the maximum
gain with respect to the case of repeating the same measurements (i.e. β = 1) is when β = 3/4
since for a fixed deff , d1 = deff/3 and d2 = deff/4.

However, the reconstruction with β = 3/4 becomes unstable when increasing σϕ. The most
robust variant with respect to noise for both standard and optimal methods appears to be β = 1/2,
where d1 = deff and d2 = deff/2. In case of the optimal method, this can be explained by the fact
that the local minima of both J1 and J2 cost functionals have maximal distance. For β = 3/4, this
distance is much smaller, see details in [4].

In particular for β = 1/2, between both methods, the optimal dual encoding appears to be
more robust with respect to noise, especially when deff → |utrue|, and slightly better than the
standard dual encoding approach when deff > |utrue| due to (6). The possible explanation is
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(a) β = 1. The curve for upc is not shown since it is not defined. All curves lie on each other except in the optimal
method. The region of aliasing becomes larger when increasing σϕ.

(b) β = 0.5. Aliasing occurs for u2 at deff = 2, as expected. All other cases have aliasing limit at deff = 1.

(c) β = 2/3. Aliasing occurs for u1 at deff = 2 and for u2 at deff = 3, as expected.

(d) β = 3/4. Aliasing occurs for u1 at deff = 3 and for u2 at deff = 4, as expected. For this value of β, results become
very sensitive to noise.

Figure 1: Single v/s dual motion encoding in one voxel. Left column: σϕ = 0.01. Middle column:
σϕ = 0.05. Right column: σϕ = 0.1. The continuous lines represent the empirical variances (i.e. the
one computed from the numerical experiments) and the dashed lines the theoretical ones derived
before.
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that unwrapping and noise compensation are done simultaneously, and therefore, a more robust
unwrapping method results.

Henceforth, β = 1/2 is used. This choice makes the formulation of a multiple encoding recon-
struction easy to implement and analyze. Moreover, it has the practical advantage that at least
one image with the desired deff is acquired, hence allowing to use standard scan protocols which
will be just complemented by the new measurements.

2.4 Optimal multiple motion encoding (OMME)

The optimal dual encoding formulation allows a straightforward extension to multiple MEGs, i.e.

JN (u) =
N∑
j=1

(
1− cos

(
π

dj
(uj − u)

))
The multiple motion encoding reconstruction u∗ is then the global minimum of smallest magnitude
within [−deff , deff ], with deff the dynamic range of OMME. From the proof in Appendix A, JN
has periodicity equal to the least common multiplier of 2d1 = · · · = 2dN when dj = d1(a/b)

j−1, a <
b ∈ N, being then deff = aN−1d1 half of that periodicity.

Analogously to the dual encoding case, the optimum can be found to approximately be

u∗ ≈

 N∑
j=1

d−2j

−1 N∑
j=1

ujd
−2
j + 2kjd

−1
j

 , kj ∈ Z, j = 1, . . . , N

with variance

Var(u∗) =

 N∑
j=1

d−2j

−2 N∑
j=1

Var(uj)d
−4
j = 2σ2ϕ

 N∑
j=1

d−2j

−2 N∑
j=1

d−2j

= 2σ2ϕ

 N∑
j=1

d−2j

−1 = Var(uN )

 N∑
j=1

(
dN
dj

)2
−1 < Var(uN )

If we consider the case dN = djβ
N−j for j = 1, . . . , N , we obtain:

Var(u∗) = Var(uN )β−2N

 N∑
j=1

β−2j

−1 = Var(uN )
1− β2

1− β2N
= Var(u1)β

2(N−1) 1− β2

1− β2N
.

Note the exponential reduction of the standard deviation with respect to the number of measure-
ments, instead of the linear reduction obtained by averaging equal dynamic range data (i.e. β = 1).

Figure 2 shows the results for the standard deviation versus deff for the case of β = {1/2, 1}
and N = 1, . . . , 5.

For large noise, i.e. σϕ = 0.1, the empirical standard deviations deviate from the theoretical
ones, most likely due to failed unwrapping of noisy data. This is a relevant aspect which implies
in practice that noise limits escalation of multiple encoding to an arbitrary number of MEGs.
Accordingly, if noise becomes stronger, simple averaging will become the most robust alternative
for noise reduction in the motion image.
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The theoretical calculations are confirmed and in the case σϕ = 0.05 the large superiority of the
multiple encoding approach (right, β = 0.5) compared to averaging (left, β = 1) in terms of noise
reduction can be observed.

(a) σϕ = 0.05. Left: β = 1. Right: β = 1/2.

(b) σϕ = 0.1. Left: β = 1. Right: β = 1/2.

Figure 2: Multiple motion encoding reconstruction. The continuous lines represent the empiri-
cal variances (i.e. the one computed from the numerical experiments) and the dashed lines the
theoretical ones.

3 Methods

3.1 Phantom experiments

Phantom tests were performed using heparin-sodium gel (180 000 IU per 100 g, Ratiopharm,
Ulm, Germany) in a 2 L cubic container to experimentally confirm our theory of OMME. The gel
mainly consists of Carbomer 980 (polyacrylic acid), trometamol (TRIS), glycerol hydroxystearate,
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propylene glycol, and isopropanol with the eponymous active agent only accounting for less than 1%
of the gel volume. All experiments were performed in a 3-Tesla MRI scanner (Siemens Magnetom
Lumina, Erlangen, Germany).

Air cavities in the phantom material were exploited for the assessment of the fidelity of detail
resolution in the MRE maps.

External harmonic vibrations at 30.03 Hz were induced by a pressurized air driver operating
at 150 mBar as described elsewhere [21]. The driver was connected to a plate vertically immersed
in the gel to reduce vibrations of the casing and to provide plane wave propagation in mainly one
direction. The setup is shown in Figure 3. The vibrations were induced 2 s before the start of data
acquisition to ensure that a steady state of time-harmonic oscillations was established.

One wavefield component along the top-bottom direction was acquired by using a single-shot,
spin-echo echo-planar imaging sequence with flow-compensated MEG. Eight phase offsets over a
full vibration period were recorded in 10 coronal slices with 130× 160 mm2 field of view and 1.27
x 1.27 x 0.9 mm3 voxel size. Further imaging parameters were: echo time = 165 ms; repetition
time = 2500 ms; flip angle 90o; MEG frequency of 29.45 Hz and MEG amplitude of {4, 8,16,32}
mT/m respectively. The experiment was repeated without external vibrations to measure ϕG(0)
(see Section 2). Therefore, ϕG(0) contains phase offsets from MEG induced eddy currents and
involuntary patient motion. One image per encoding direction needs to be acquired. Encoded
phase of harmonic motion from imaging gradients can be neglected due to their low encoding
efficiency.

3.2 Volunteers

In vivo MRE was performed in two male 29-years-old healthy volunteers. The study was approved
by the ethics committee of Charite Universitaetsmedizin Berlin in accordance with the Ethical
Principles for Medical Research Involving Human Subjects of the World Medical Association Dec-
laration of Helsinki. The participant gave written informed consent.

For each volunteer a different measurement protocol was used to demonstrate robustness of
OMME and to explore different features of the method. For volunteer 1 external harmonic vibra-
tions at 25 Hz were introduced by two pressurized air drivers placed under the volunteers head
and operated in alternate fashion similar to [21]. Three components of the wavefield in orthogonal
directions were acquired without flow-compensated MEGs. Eight phase offsets over a full vibration
period were recorded at 11 transversal slices (50% slice gap) with a field-of-view of 200× 200 mm2

and 2 x 2 x 2 mm3 voxel size. Further imaging parameters were: echo time = 81 ms; repetition
time = 1750 ms; flip angle 80 o; MEG frequency of 27.75 Hz and MEG amplitude of {4, 8, 16, 32}
mT/m respectively.

For volunteer 2 external harmonic vibrations at 30.03 Hz were used and three components of the
wavefield in orthogonal directions were acquired with flow-compensated MEGs. Eight phase offsets
over a full vibration period were recorded at 18 transversal slices (no slice gap) with a field-of-view
of 202×202 mm2 and 1.6 x 1.6 x 2 mm3 voxel size. Further imaging parameters were: echo time =
67 ms; repetition time = 2110 ms; flip angle 81 o; MEG frequency of 37.76 Hz and MEG amplitude
of {4, 8, 16, 32} mT/m respectively.

Both experiments were repeated without external vibrations to measure ϕG(0). Acquisition time
(TA) for all encoding directions for the measurement with one MEG amplitude is 42 s (volunteer
1) and 51 s (volunteer 2), in addition the acquisition of the respective offset phase takes 5.25 s
(volunteer 1) and 6.33 s (volunteer 2).
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3.3 MRE data processing

3.3.1 Wave images

Single encoding-phase contrast wave images were computed for each MEG using Equation (2)
(assuming no noise). Dual encoding wave images were computed using combinations of those
single encoding images using standard and optimal methods. In addition, OMME was used to
combine wave images acquired with different MEGs. The specific MEGs are indicated in each
figure in the results section. Wrapped single motion encoding phase images were unwrapped using
Laplacian and Flynn based unwrapping algorithm as outlined in the introduction.

3.3.2 Shear wave speed reconstruction

Finally, wrap-free phase images from single and multiple encoding methods were used for recon-
struction of SWS maps based on phase-gradient wavenumber recovery to avoid noise amplification
by the Laplacian operator which is inevitable in direct inversion techniques [9, 16]. SWS is related
to tissue stiffness and will be termed as such in the following. The principle of wavenumber (k-)
based multi-component, elasto-visco (k-MDEV) inversion was originally introduced for liver MRE
and is outlined in [27]. Since k-MDEV inversion was never applied to brain MRE data before we
adapted the spatial filters to the resolution of brain MRE. Compared to k-MDEV proposed for
abdominal organs [27], we replaced the linear radial filter in the spatial frequency domain by a
radial bandpass Butterworth filter of third order with highpass threshold of 15 1/m and lowpass
threshold of 250 1/m.

3.3.3 Noise analysis

Signal intensity and MNR of the wrap-free phase images are important parameters for the subse-
quent post-processing and final SWS reconstruction. According to our theory, OMME promises
wrap-free phase images with MNR corresponding to the highest MEG used for OMME phase re-
covery. To calculate MNR for experimental data we used the blind noise estimation method of
Donoho et al. [6] as outlined and previously applied to MRE data in [3]. Noise estimation in the
wavelet domain is expected to be well suited for wave images [1, 22]. We estimated MNR from the
dual-tree wavelet transformation of the displacement images with the median absolute deviation of
the finest band of wavelet coefficients [6]. The estimated signal power is derived from the L2-norm.
Signal and noise levels are estimated from a magnitude threshold based region of the wavefield (see
Figure 3i and Figure 8) for all slices and components and averaged afterwards.

4 Results

4.1 Experimental phantom

Figure 3 presents the waves for the single encoding cases, optimal and standard dual encoding, and
OMME using three MEGs. Results are as expected, i.e. both dual encoding methods show the
wraps of the low MEG image. The standard and dual encoding methods behave similarly, since
β = 1/2 and the noise level of the images is low σϕ ≈ 0.02, which is estimated from MEG=0
images. The tri-MEG image shows also the dynamic range of the largest MEG. All dual and tri
MEG including MEG=8 are fully unwrapped. Figure 4 presents the same waves but colored in a
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tighter motion range, in order to put in evidence the gain in the MNR when increasing the number
of gradients within OMME in the regions with low motion amplitude, i.e. far from the vibration
probe (left part of the pictures).

Figure 5 presents, SWS maps obtained by single and optimal multiple encoding reconstructions
compared with Laplace and Flynn unwrapping applied to the single encoding images. In all cases,
the SWS maps are more homogeneous towards the center of the phantom and noisier far from the
probe, as expected since the wave is damped with decreasing the MNR. However, it is also clear
that increasing the MEG reduces the noise in the SWS maps in all cases. Both conventional phase
unwrapping algorithms exhibit different drawbacks. Laplacian based unwrapping smooths image
details as it can be seen from the disappeared air inclusions in the reconstructed SWS map for the
phantom data. The inclusions also disappear with Flynn since it cannot solve correctly the phase
jump at the air-heparin boundary.

This artifact increases when the MEG increases, probably because more wraps appear in the
wave image amplifying the smoothing effects of the unwrapping algorithm. Flynn becomes more
unstable the more wraps occur. In contrast, OMME allows recovering image details, without
wraps resulting in smoother SWS maps. A homogeneous appearance of SWS is expected for our
homogeneous phantom.
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(a) MEG=8 (b) MEG=16 (c) MEG=32

(d) OMME MEGs={8,16} (e) OMME MEGs={16,32} (f) OMME MEGs={8,16,32}

(g) Standard encoding MEGs={8,16} (h) Standard encoding MEGs={16,32} (i) MRE magnitude image

Figure 3: Multiple motion encoding reconstruction in the phantom. Color scale is set in the interval
± 80% of the dynamic range of the MEG=8 image. Large positive values are colored in yellow
and negative values in blue, while green being zero. The last image shows the T2 weighted MRE
magnitude as geometric reference.
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(a) MEG=8 (b) MEG=16 (c) MEG=32

(d) OMME MEGs={8,16} (e) OMME MEGs={16,32} (f) OMME MEGs={8,16,32}

Figure 4: Multiple motion encoding reconstruction in the phantom. Colour scale is set in the
interval ± 30% the dynamic range of the MEG=32 image. Large positive values are colored in
yellow and negative values in blue, while green being zero.
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(a) MEG=8 (b) OMME MEGs={8,16} (c) OMME MEGs={8,16,32}

(d) Laplacian unwrapped MEG=8 (e) Laplacian unwrapped MEG=16 (f) Laplacian unwrapped MEG=32

(g) Flynn unwrapped MEG=8 (h) Flynn unwrapped MEG=16 (i) Flynn unwrapped MEG=32

Figure 5: SWS maps reconstructed from k-MDEV at 30.03 Hz vibration frequency for a selected
slice in the phantom. The excitation plate is visible on the right side. First row shows OMME
results with one (a) to four (d) MEGs combined. The second row shows SWS recovered from
Laplacian based unwrapped phase images with MEG of different strength. Last row shows SWS
recovered from Flynn unwrapped phase images. Colorbar for SWS maps range from 0 to 1 m/s.

4.2 Volunteers

In Figure 6 and 7, we present the wavefields and reconstructed SWS maps for the in vivo brain
experiment from volunteer 1, respectively. In this case, we combined four MEGs with OMME to
omit standard unwrapping procedures. Compared are SWS reconstructions based on wrap-free
phase images from OMME, Laplacian based unwrapping and Flynn unwrapping.

It is well visible that OMME preserves detail in the resulting SWS map which appears more
smoothed after applying Laplace and Flynn unwrapping. Especially tissue/air interfaces are sharper
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(red arrow) and noise outside the brain is largely reduced. Overall, the contrast of the image is
better with OMME.

This example illustrates the capability of OMME to compensate for wraps and noise simulta-
neously.

We noticed wraps in Figure 6a in the lower part, which the standard dual MEG method cannot
unwrap it (see Figure 6e). However, this artifact disappears when combining MEGs 4 and 8 with
OMME, and successively including higher MEGs 6f. This is most likely due to the fact that the
dynamic range in the MEG 4 image is very close to the actual motion in that region, and hence
wraps appear due to the noise.

The checkerboard-like artifacts in the SWS map (red arrow) are resulted by directional filtering
in the preprocessing step. This artefact is more noticeable in the volunteer 1 data than in the
phantom (Figures 7a-7d), most likely due to the lower SNR in the brain compared to the phantom
data. Stronger smoothing could remove the artifact but would also lead to further blurring of the
images.

Finally, Figures 8 and 9 show SWS maps for volunteers 1 and 2, respectively, reconstructed from
OMME phase images using four MEGs, and Laplacian based unwrapping as well as Flynn unwrap-
ping with the strongest MEG. Additionally, T2 weighted MRE magnitude images are shown for
anatomical reference. Red arrows indicate areas where OMME based reconstruction shows higher
level of details than unwrapping procedures by fully recovering fluid/tissue boundaries between
brain tissue and either ventricles or gyri. The transition between the skull and the brain tissue is
also properly reconstructed , while the unwrapping methods smooth that region leading to spurious
stiffness values.
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(a) MEG=4 (b) MEG=8 (c) MEG=16 (d) MEG=32

(e) Standard dual
MEGs={4,8}

(f) OMME MEGs={4,8} (g) OMME MEGs={4,8,16} (h) OMME
MEGs={4,8,16,32}

Figure 6: Estimated motion in Volunteer 1, direction of maximal amplitude. Color scale is set in the
interval between zero (bright yellow) and minus the dynamic range of the image with MEG=4 image
(dark blue) since the wave has mainly positive displacement values. First wraps therefore appear
in yellow, nested wraps in orange. The first row shows phase images for a MEG acquisition with
increasing MEG amplitude. The second row shows standard dual encoding and OMME combined
phase images with increasing amount of MEGs.

17



(a) MEG=4 (b) OMME MEGs={4,8} (c) OMME MEGs={4,8,16} (d) OMME
MEGs={4,8,16,32}

(e) Laplace unwrapped
MEG=4

(f) Laplace unwrapped
MEG=8

(g) Laplace unwrapped
MEG=16

(h) Laplace unwrapped
MEG=32

(i) Flynn unwrapped
MEG=4

(j) Flynn unwrapped
MEG=8

(k) Flynn unwrapped
MEG=16

(l) Flynn unwrapped
MEG=32

Figure 7: SWS maps for in vivo brain experiment at 25 Hz vibration frequency for a selected slice.
First row shows OMME results with one (a) to four (d) MEGs combined. The second row shows
SWS recovered from Laplacian based unwrapped phase images with MEG of different strength.
Last row shows SWS recovered from Flynn unwrapped phase images. Colorbar for SWS maps
range from 0 to 2 m/s.
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(a) Slice 1: Magnitude (b) Slice 1: OMME (c) Slice 1: Laplace (d) Slice 1: Flynn

(e) Slice 2: Magnitude (f) Slice 2: OMME (g) Slice 2: Laplace (h) Slice 2: Flynn

(i) Slice 3: Magnitude (j) Slice 3: OMME (k) Slice 3: Laplace (l) Slice 3: Flynn

Figure 8: SWS maps for OMME (MEGs={4,8,16,32}) and Laplace and Flynn unwrapping
(MEG=32) for Volunteer 1 at three slices. The anatomical reference image from T2 weighted
MRE magnitude is included (red contour use later for noise estimation). Red arrows indicate areas
where OMME shows greater contrast in the SWS map. Colorbar for SWS maps range from 0.3 to
1.8 m/s.
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(a) Slice 1: Magnitude (b) Slice 1: OMME (c) Slice 1: Laplace (d) Slice 1: Flynn

(e) Slice 2: Magnitude (f) Slice 2: OMME (g) Slice 2: Laplace (h) Slice 2: Flynn

(i) Slice 3: Magnitude (j) Slice 3: OMME (k) Slice 3: Laplace (l) Slice 3: Flynn

Figure 9: SWS maps for OMME (MEGs={4,8,16,32}) and Laplace and Flynn unwrapping
(MEG=32) for Volunteer 2 at three slices. The anatomical reference image from T2 weighted
MRE magnitude is included (red contour use later for noise estimation). Red arrows indicate areas
where OMME shows greater contrast in the SWS map. Colorbar for SWS maps range from 0.2 to
2.2 m/s.
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4.3 Noise analysis

Figure 10 shows the results of the noise analysis for the phantom and in vivo data for the wrap-free
phase images recovered from Laplacian and Flynn phase unwrapping and OMME based unwrap-
ping. MNR and signal power are much higher in volunteer 1 than volunteer 2. Overall MNR
increases with increasing MEG as signal power stays fairly constant and noise levels decrease as
predicted by theory. OMME based unwrapping clearly outperforms the other methods in terms of
MNR, since signal power is the highest. Since the underlying displacement is the same for all MEG
strengths, the signal power should be constant. Slight decrease in signal power could result from
the smoothing effects of the unwrapping procedures.

(a) Phantom

(b) In vivo

Figure 10: MNR (left), signal power (center) and noise (right) levels estimated from wavelet decom-
position for all MEG strengths with Flynn and Laplacian unwrapping and OMME for (a) phantom
data and (b) in vivo data. Signal and noise levels were averaged over all slices and components.
For OMME, the data points indicate highest MEG used, i.e. at MEG 8, OMME used MEG 8 and
4; at MEG 16, OMME used MEG 16, 8 and 4; at MEG 32, OMME used MEG 32, 16, 8 and 4.

5 Discussion

We have developed, theoretically analyzed and assessed in numerical, phantom and volunteer data
a new method for combining an arbitrary number of motion-encoded PC-MRI images. The novel
method, Optimal Multiple Motion Encoding method (OMME), was analyzed and demonstrated
based on MRE measurements, but can be applied to other PC-MRI modalities as well. Dual
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encoding was originally developed for flow MRI[4]. To the best of the authors’ knowledge, this is
the first reported method to combine an arbitrary number of motion encoded images obtained from
different MEGs.

For a fixed effective dynamic range of the imaged motion, OMME presents a superior perfor-
mance with respect to noise compared to standard dual encoding unwrapping. This was assessed
analytically and confirmed numerically in a ”single voxel” experiment. The noise analysis for the
experimental data confirm these findings.

It was shown that suppression of noise perturbations is most efficient when N images are com-
bined which were measured in the dynamic ranges d1, . . . , dN such that di = 2−i+1d1. This allows
the scanner operator to select the largest MEG and the number of measurements N only, as it is
usually done when the MEG is kept fixed.

The OMME was compared against standard unwrapping methods (Laplacian and Flynn). Re-
markably, OMME allows to improve the SWS maps by reducing the noise in the wave images
without spatial smoothing as Laplace unwrapping does and without unwrapping failure as it may
occur with Flynn unwrapping predominantly at boundaries. This showed, in both phantom and
volunteer data, that details can be preserved which are otherwise smoothed (out) by standard un-
wrapping methods. This can be relevant for higher resolution MRE in a variety of applications
including tumor detection or characterization of lesion in multiple sclerosis (MS) [25]. Moreover, we
showed that standard unwrapping methods smear boundaries between fluid filled spaces and brain
tissue. This not only affects the outer boundaries of the brain but also interfaces between tissue
and fluid filled ventricles. If tissue mechanical properties are altered at those boundaries, e.g. as a
result of impaired CSF-brain barriers in MS [26] OMME based wrap-free MRE phase images could
be sensitive to those alterations. Also other interfaces between tumor and healthy tissue could
potentially be better resolved. Further, the increased dynamic range of OMME with good MNR
properties could be utilized when high frequency vibrations induce heavy wraps near the source
and are quickly damped towards small deflection amplitudes inside the tissue under investigation.
The potential of OMME for higher frequency MRE needs to be further investigated.

Interestingly, the advantage of the unwrapping robustness of OMME is reduced when the dy-
namic range increases (less phase-wraps) and MNR decreases. Without heavy wraps, Laplacian
and Flynn unwrapping methods perform similar. This means OMME appears to be very suitable
for high MNR applications.

As a limitation of OMME, examination times are increased by additional measurements for
multiple MEGs. Each additional MEG increases total scan time by the total TA of one measure-
ment. Moreover, the reference phase (i.e. MEGs on and vibration off) needs to be measured, which
however is required at one time step only for all encoding directions, adding another 1/(number
of timesteps) * TA. However, this time investment pays off when phase wraps can be avoided and
maps are generated that are more detailed than standard methods. Even resolving wraps only
partly supports unwrapping algorithms and permits higher encoding efficiencies than standard
MRE towards measurement of damped waves without corrupting high amplitude regions.

OMME can be also applied to to other PC-MRI methods like e.g. flow MRI. In that case the
dynamic range will be the venc parameter. However, some careful noise analysis may be needed
when the then phase that does not depend on the motion is measured only once, as it is the
case in 4D Flow, since then the phase differences for each venc will be correlated. This might be
investigated in a future work.
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6 Conclusion

In this study, we proposed an optimal multiple motion encoding (OMME) method which is suit-
able for motion sensitive PC-MRI. A detailed theoretical analysis was provided to derive optimal
combinations of motion encoding gradients. We applied novel OMME to MRE measurements in
phantoms and in vivo human brain. It was shown that OMME allows to recover more tissue details
due to its increased MNR ratio within a high dynamic range leading to SWS maps which pre-
serve important details such as discontinuities in the stiffness. Especially for applications of high
resolution MRE wrap-free images with proper MNR – as provided by OMME – are desired.
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A Effective dynamic range in OMME

Here we prove that the effective dynamic range in OMME, corresponding to the smallest period of
the cost function

JN (u) =
N∑
j=1

(
1− cos

(
π

dj
(uj − u)

))
,

is the least common multiplier of 2d1, . . . , 2dN , i.e. deff = d1a
N−1, under the assumption that

dj = (a/b)j−1d1, with a < b ∈ N.
We proceed as it is usual for these problems: find the smallest possible value T > 0 such that

JN (u) = JN (u+ T ), i.e.:
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Due to the fact that
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Equation (8) becomes
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Note now that the functions cos (πu/dj) and sin (πu/dj) are linearly independent in R for all values
of j. Indeed, using the change of variable x = πu/d1/a

N−1 the problem reduces to show that the
following functions are linearly independent:

cos
(
xbj−1aN−j

)
, sin

(
xbj−1aN−j

)
, j = 1, . . . , N,

which is true since aN−1 < aN−2b < · · · < bN−1. Therefore, we obtain that the following relations
need to be satisfied:
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)
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)
= 0 , sin
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dj
(uj + T )

)
− sin
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or using complex variable

exp i
π

dj
(uj + T ) = exp i

π

dj
uj .

This leads to T = {2kjdj}∀kj . Since this has to hold for all j = 1, . . . , N simultaneously, it proves
that the smallest period T is the least common multiplier of 2d1, . . . , 2dN . This leads to the period
being T = 2d1a

N−1.
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