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Abstract

Purpose: To propose an optimal multiple motion encoding (OMME) method for Phase-Contrast
MRI (PC-MRI) with application to Magnetic Resonance Elastography (MRE) for reconstructing
wrap-free wave images.
Theory: OMME is formulated and analyzed as an extension of [5] using an arbitrary number of
measurements with different motion encoding gradients (MEG) to increase the dynamic range of
motion encoding.
Methods: OMME is assessed numerically for several high and low motion sensitivity ratios in
terms of motion-to-noise-ratio (MNR) for different image SNR. The algorithms are then tested on
MRE data from heparin phantom experiments and ultimately from in vivo human brain experi-
ments for the most robust MEGs combination. The wrap-free motion images are further used to
reconstruct shear wave speed (SWS) maps and compared to the ones obtained using conventional
phase unwrapping methods.
Results: For the dual encoding case, OMME performs better than the standard method, in terms
of robustness to noise and effective MNR. OMME allowed to successfully combine three and four
MRE wave images with different dynamic ranges in the phantom and volunteer data, respectively,
leading to SWS maps which preserve important details (e.g. discontinuities in the stiffness) when
compared to conventional unwrapping methods.
Conclusion: In Phase-Contrast MRI, with OMME the MNR grows exponentially with the num-
ber of measurements as opposeds to standard image averaging. In MRE, this allows for great
improvements in recovering tissue details in the SWS maps in contrast to conventional unwrapping
methods.

1 Introduction

Phase-Contrast MRI (PC-MRI) is a well-established method for measuring flow velocities [26]
or tissue displacements due to harmonic excitation as used in Magnetic Resonance Elastography
(MRE) [10, 16, 14, 25, 11, 19].
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Motion is encoded in the phase of the complex transverse magnetization proportional to the
encoding efficiency of the motion encoding gradient (MEG). However, the phase can only be mea-
sured in the half-open interval [−π, π) and phase wraps (abrupt jumps of ±2π) occur if the encoded
phase exceeds those limits. Hence for a given encoding efficiency, there is a fixed amplitude range or
dynamic range, where motion can be acquired without phase wraps. If the encoding efficiency is too
large and the true motion amplitude exceeds the dynamic range, phase wraps occur. Unfortunately,
selecting a large dynamic range leads to poor quality images since for a given signal-to-noise-ratio
(SNR) in the magnitude image, the “motion-to-noise-ratio” (MNR) is proportional to the dynamic
range.

Phase wrapping is one of the main limitations for measuring complex features of blood flows,
particularly, when high and low velocities are present in the same image, such as in heart, valvular
and vascular malformations [4]. In MRE, the induced mechanical waves are prone to frequency
dependent damping which leads to possibly large spatial variations in the displacement magnitude
towards the interior of the organs. There are usually two approaches to generate wrap-free phase
images.

First, unwrapping algorithms have been developed by assuming that the motion field is smooth
in space, see e.g. [13] for flow MRI and [2] for MRE, and references therein. Nevertheless, they can
not recover the true underlying motion for various reasons and fail when the aliased regions are
complex, subject to noise or include nested wraps. In such cases the unwrapped phase appears to
be distorted and obstructs further data processing steps. For instance, the simple 2π-unwrapping
Flynn [9] algorithm is inherently two-dimensional and fails to unwrap noisy complex wraps when
no well-defined enclosed region exists. The true motion can not be recovered because arbitrary
2π-offsets are added. Gradient based algorithms [20] only yield the derivative of the phase and
amplify noise. Laplacian based unwrapping algorithms [22] remove the constant and linear terms
from the data and induce spatial smoothing. The resulting phase is altered and important details
may be lost.

Second, voxelwise motion reconstructions using dual-encoding strategies have been proposed in
PC-MRI which are based on unwrapping low dynamic range data by using the high dynamic range
data. In other words, the goal is to include additional measurements with a reduced dynamic range
(hence, improved MNR) while maintaining a large dynamic range for the reconstructed image.
Those methods do not involve any assumption of smoothness of the motion-encoded phase field
[12, 21, 5, 30] as an alternative to avoid altering the output motion image but at the price of
additional measurements. To the best of the authors’ knowledge, there is neither any reported
analysis of their performance with respect to SNR of dual encoding nor an extension to multiple
encoding.

Hence, the aim of this work is threefold.
Firstly, to mathematically and numerically analyze dual-encoding strategies as a way to answer

the question: Which combination of MEGs provides the best MNR for a given dynamic range
(number of phase wraps) and SNR? As a conclusion, it will be shown that the so-called optimal
dual-encoding [5] shows the best performance in terms of noise robustness for dual encoding, while
providing a mathematical framework to select an optimal set of MEGs.

Secondly, we will show how the optimal dual-encoding approach provides a straightforward
extension to multiple motion encoding, the Optimal Multiple Motion Encoding (OMME) method.

And thirdly, it will be shown that OMME can successfully provide wrap-free low dynamic
range MRE phase images for phantom and in vivo brain experiments which are closest to the true
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underlying motion in the range of the MNR of the smallest dynamic range. Reconstructed wrap-
free phase images are used as input for MRE reconstruction and allow to recover more details in
the SWS maps compared to common phase-unwrapped input images.

2 Theory

This section deals with the mathematical framework of the work and it is therefore general for any
PC modality.

2.1 Single motion-encoding in PC-MRI

For a given MEG G, the model of measured phase can be written in the form

ϕG(u) = ϕ0 + δG + u
π

dG
+ επ (1)

with the following notation:

• ϕ0 is the reference phase due to the static field inhomogeneities,

• δG is a MEG-dependent phase induced e.g by eddy currents and Maxwell effects,

• dG is the “dynamic range”, i.e. the inverse of the encoding efficiency depending on the
MEG’s amplitude, duration, time shape and alignment with the mechanical wave, or the
venc parameter in flow MRI,

• u denotes the tissue harmonic displacement or flow velocity in the direction of the MEG, for
MRE or Flow MRI, respectively.

• ε ∼ N (0, σ2ϕ) represents the measurement noise in the phase. The value of σ2ϕ depends on the
SNR of the magnitude measurements.

We will also denote utrue the ground truth displacement/velocity.
In the case of MRE, the motion u is usually recovered by either:

1. Measuring ϕG using a MEG at equidistant timepoints of one cycle of the propagating me-
chanical wave, and then only use the first harmonic component using time-frequency domain
analysis to remove stationary and higher harmonic components, or

2. Obtaining one (single time point) measurement without any vibration but with the MEG
turned off to measure ϕG(0) = ϕ0 + δG + επ. Then such measurement is repeated with the
mechanical vibration on to measure ϕG(u) for the all other time steps. Since usually the
number of time steps measured are at least 4 (but typically 8), the additional measurement
of ϕG(0) involves a negligible scan time.

Notice that we have neglected the phase encoded by imaging gradients, but this contribution
can be neglected since those gradients are usually velocity compensated and only higher order terms
contribute.

If ϕG(0) is directly measured, u can be computed as:

u = (ϕG(u)− ϕG(0))
dG
π
− (εu − ε0)dG (2)
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with εu and ε0 independent realizations of ε for the both phase measurements. As a consequence,
u ∼ N (ū, 2d2Gσ

2
ϕ) since at least two phase measurements are needed due to the unknowns u and

ϕG(0). Therefore, dG should be chosen as small as possible.
However, phase can be measured only within the interval [−π, π). Hence, if dG < |utrue| (if

σϕ = 0) then the measured displacement u wraps by a multiple of 2dG. Naturally, aliasing can
occur even if dG > |utrue| in the presence of noise ε 6= 0.

For a given dynamic range, a natural approach to reduce the variance of u is to average more
measurements. If n is the number of measurements made of ϕG (always with the same dG) and n0
the number of measurements of ϕG(0), then

u ∼ N (ū, d2Gσ
2
ϕ(n−1 + n−10 )) =

N (ū,
(

dG√
n

)2
σ2ϕ) , n� n0

N (ū, 2
(

dG√
n

)2
σ2ϕ) , n = n0

(3)

From this relation it is clear that decreasing dG is more effective than increasing the number of
measurements n, since the standard deviation of u decreases linearly with respect to dG/

√
n.

2.2 Classical dual motion encoding revisited

The goal of multiple motion encoding approaches is to include additional measurements with a
reduced value of dG (e.g., larger MEGs) while maintaining the dynamic range of the motion image
large. In this section we will treat the case of dual encoding, i.e. for two different values d1, d2 for
dG.

We assume now that we measure phases with two different MEGs amplitudes G1 < G2 = G1/β,
with 0 < β < 1. This results in four measured phases ϕ1, ϕ1(0), ϕ2, ϕ2(0) ∼ N (0, σ2ϕ). In the case
σϕ = 0, these phases satisfy the relations:

ϕ1 = ϕ1(0) + u
π

d1
, ϕ2 = ϕ2(0) + u

π

d2
.

From the noisy measurements, four motion images can be reconstructed:

u1 =
ϕ1 − ϕ1(0)

π
d1 , u2 =

ϕ2 − ϕ2(0)

π
d2 , ups =

ϕ1 + ϕ2 − ϕ1(0)− ϕ2(0)

π
dps , upc =

ϕ2 − ϕ1 + ϕ1(0)− ϕ2(0)

π
dpc

with dps = (d−11 + d−12 )−1 , dpc = (d−12 − d
−1
1 )−1. Notice that

dpc = d1
β

1− β
≥ d1 > d2 = βd1 > dps = d1

β

1 + β
.

and therefore we call dpc = deff as the effective dynamic range of the dual encoding method. In
case σϕ > 0, the variances of the different motion estimators satisfy:

Var(upc) > Var(u1) > Var(u2) > Var(ups)

and by defining α =
√

2σϕd1, more precisely we have

Var(upc) = 4σ2ϕd
2
pc = α2 2β2

(1− β)2
= α2 β2(

1− β√
2

)2 , Var(u1) = 2σ2ϕd
2
1 = α2,
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Var(u2) = 2σ2ϕd
2
2 = α2β2 , Var(ups) = 4σ2ϕd

2
ps = α2 2β2

(1 + β)2
= α2 β2(

1 + β√
2

)2 .

Dual encoding reconstructions aim to unwrap a motion reconstructed with low dynamic range using
a motion reconstructed with a high dynamic range as follows [12]:

uuw = ulow + 2dlowN.I.

(
uhigh − ulow

2dlow

)
(4)

with N.I. the nearest integer operator. This leads to Var(uuw) = Var(u2) when the unwrapping
is successful. This method will be denoted in as standard dual encoding. To pick up ulow and
uhigh we apply the following reasoning. Firstly, we pick ulow = u2 since it possess a higher dy-
namic range than ups (e.g. dpc = 3/2dps for β = 1/2) only with a slightly higher variance (e.g.
Var(u2)/Var(ups) = 1.125 for β = 1/2). Secondly, we pick

uhigh =

{
u1 β ∈ {1/2, 1}
upc elsewise

since upc has the desired effective range deff ≥ d1, but for β = 1/2 it holds d1 = deff and
Var(u1) < Var(upc), and for β = 1 upc is not defined and d1 = deff .

2.3 The optimal dual motion encoding method revisited [5]

In [5], a new method for unwrapping two motion-encoded images was introduced, the so called
Optimal dual venc (ODV) method (since it was originally propose for flow MRI). In the next lines
we will recall the method, and show some new theoretical results.

The method is based on the formulation of the phase contrast problem as the minimization of
cost functional. For the single motion encoding case, the cost functional has the form:

Ji(u) = 1− cos
(
ϕi − ϕG(0)− πu

di

)
= 1− cos

( π
di

(ui − u)
)

which comes from a least squares approximation for the angle by measuring the components of a
vector and where ϕi and ϕG(0) where defined in the previous section.

It is easy to prove that the minima of J(u) correspond to the classical PC formula and therefore
the periodicity of Ji(u) is 2di. The single encoding PC motion is the smallest value (in absolute
terms) where the minima is attained.

For the dual encoding case, the problem shifts from finding the local minima of J(u) to find
the global minima of

Jdual(u) = J1(u) + J2(u) = 2− cos
( π
d1

(u1 − u)
)
− cos

( π
d2

(u2 − u)
)

It was proven in [5] that utrue is a global minimum of Jdual. Moreover, as a new result, Jdual has
periodicity 2deff when β = n/(n+ 1), n ∈ N. Indeed:

Jdual(u+ 2deff ) = 2− cos
( π
d1

(u1 − u− 2
d1β

1− β
)
)
− cos

( π
d2

(u2 − u− 2
d1β

1− β
)
)

(5)

(6)

= 2− cos
( π
d1

(u1 − u)− 2πn
)
− cos

( π
d2

(u2 − u)− 2π(n+ 1)
)

= Jdual(u)(7)
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In the optimal dual encoding method, the unwrapped motion corresponds then to the global
minimum with smallest magnitude, which we will call u∗. Therefore, due to the 2deff -periodicity,
aliasing will occur when deff ≤ |utrue|. Notice that in opposite than the standard dual venc for
β 6= 1/2 we do not need upc for unwrapping: both u1 and u2 can be aliased, still resulting in an
unwrapped u∗.

In [5], no theoretical noise analysis was performed, which will be therefore shown here. First,
we need an expression u∗, which can be obtained from the fact that the global minimum is also a
local minimum, i.e. J ′dual(u∗) = 0. Indeed

J ′dual(u∗) = − π
d1

sin
( π
d1

(u1 − u∗)
)
− π

d2
sin
( π
d2

(u2 − u∗)
)

= − π
d1

sin
( π
d1

(u1 + 2k1d1 − u∗)
)
− π

d2
sin
( π
d2

(u2 + 2k2d2 − u∗)
)

for all k1, k2 ∈ Z. Notice that u∗ ≈ u1 + 2k1d1 ≈ u2 + 2k2d2 for some fixed k1, k2 in case of small
measurement noise in the phase (and equal if no noise is present). Therefore, we can approximate
the sin-terms by its arguments leading to:

u∗ ≈
(
d−21 + d−22

)−1 (
u1d
−2
1 + u2d

−2
2 + 2

(
k1d
−1
1 + k2d

−1
2

))
. (8)

Since assume all that measurements are statistically independent (and therefore u1 and u2), the
variance of u∗ has the form

Var(u∗) =
(
d−21 + d−22

)−2 (
Var(u1)d

−4
1 + Var(u2)d

−4
2

)
(9)

=
(
d−21 + d−22

)−2 (
α2d−41 + α2β2d−42

)
=

Var(u2)

1 + β2
< Var(u2). (10)

And therefore an improved estimate in terms of variance is obtained.
Figure 1 presents the previous findings in a graphical way. There, we show the standard

deviations of the estimators (i.e. the square root of the variances) versus the effective dynamic
ranges for various values of β. The plots are constructed as follows:

• For a fixed value of deff and β, d1 and d2 are computed and 5000 realizations of the measure-
ments for all four phases are generated using a value for σϕ. Here, the ground truth values
are ū = 1 and ϕ1(0) = φ0 and ϕ2(0) = 2φ0, with φ0 = 0.9π.

• Then u1, u2, uuw, u∗ are computed. Also ueff beeing the single motion phase contrast estimate
with dG = deff is computed for comparison.

• The standard deviation of such estimates considering the 5000 realizations is computed.

• The curves are drawn by repeating this procedure in the interval deff ∈ [1, . . . , 4].

• Four values of β ∈ {1, 1/2, 2/3, 3/4} are used. The value β = 1 means that two set of
measurements are obtained with the same dynamic range. This serves for better assessing
the gains of dual encoding approaches.

First note that the peaks in the empirical curves come from aliasing for the corresponding
dynamic range, and the larger σϕ the larger the interval where aliasing may occur.
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(a) β = 1. The curve for upc is not shown since it is not defined. All curves lie on each other except in the optimal
method. The region of aliasing becomes larger when increasing σϕ.

(b) β = 0.5. Aliasing occurs for u2 at deff = 2, as expected. All other cases have aliasing limit at deff = 1.

(c) β = 2/3. Aliasing occurs for u1 at deff = 2 and for u2 at deff = 3, as expected.

(d) β = 3/4. Aliasing occurs for u1 at deff = 3 and for u2 at deff = 4, as expected. For this value of β, results become
very sensitive to noise.

Figure 1: Single v/s dual motion encoding in one voxel. Left column: σϕ = 0.01. Middle column:
σϕ = 0.05. Right column: σϕ = 0.1. The continous lines represent the empirical variances and
(i.e. the one computed from the numerical experiments) and the dashed lines the theoretical ones
derived before.
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The quality of the results depends on both values of β and σϕ. For small values of σϕ, the
empirical and theoretical standard deviations match, but the empirical deviates from the theoretical
one when deff → |utrue|, as expected, due to the aliasing. In this low noise scenario, the maximum
gain with respect to the case of repeating the same measurements (i.e. β = 1) is when β = 3/4
since for a fixed deff , d1 = deff/3 and d2 = deff/4.

However, the reconstruction with β = 3/4 becomes unrobust when increasing σϕ. The most
robust variant with respect to noise for both standard and optimal methods appears to be β = 1/2,
where d1 = deff and d2 = deff/2. In case of the optimal method, this can be explained by the fact
that the local minima of both J1 and J2 cost functionals have maximal distance. For β = 3/4, this
distance is much smaller, see details in [5].

In particular for β = 1/2, among both methods, the optimal dual encoding appears to be more
robust with respect to noise, specially when deff → |utrue|, and slightly better than the standard
dual encoding approach when deff > |utrue| due to (9). The possible explanation is that unwrapping
and noise compensation are done simultaneously, and therefore, a more robust unwrapping method
results.

In conclusion, we adopt from now on β = 1/2. This choice makes the formulation of a multiple
encoding reconstruction easy to implement and analyze. Moreover, it has the practical advantage
that at least one image with the desired deff is acquired, what can be convenient in case e.g. of
uncooperative patients.

2.4 Optimal multiple motion encoding (OMME)

The optimal dual encoding formulation allows a straightforward extension to multiple MEGs, i.e.

JN (u) =

N∑
j=1

(
1− cos

( π
dj

(uj − u)
))

The multiple motion encoding reconstruction u∗ is then the global minimum of smallest magnitude.
Analogously to the dual encoding case, the optimum can be found to approximately be

u∗ ≈

 N∑
j=1

d−2j

−1 N∑
j=1

ujd
−2
j + 2kjd

−1
j

 , kj ∈ Z, j = 1, . . . , N

with variance

Var(u∗) =

 N∑
j=1

d−2j

−2 N∑
j=1

Var(uj)d
−4
j = 2σ2ϕ

 N∑
j=1

d−2j

−2 N∑
j=1

d−2j

= 2σ2ϕ

 N∑
j=1

d−2j

−1 = Var(uN )

 N∑
j=1

(
dN
dj

)2
−1 < Var(uN )

If we consider the case dN = djβ
N−j for j = 1, . . . , N , we obtain:

Var(u∗) = Var(uN )β−2N

 N∑
j=1

β−2j

−1 = Var(uN )
1− β2

1− β2N
= Var(u1)β

2(N−1) 1− β2

1− β2N
.
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Notice the exponential reduction of the standard deviation with respect to the number of mea-
surements, instead of linear which is the case when averaging of equal dynamic range data (i.e.
β = 1).

Figure 2 shows the results for the standard deviation versus deff for the case of β = {1/2, 1}
and N = 1, . . . , 5.

For large noise, i.e. σϕ = 0.1, the empirical standard deviations deviate from the theoretical
ones, most likely due to failure in unwrapping due to the noise. This is a relevant aspect and implies
in practice that noise limits escalation of multiple encoding to an arbitrary number of MEGs.
Therefore, if noise becomes stronger, simple averaging will become the most robust alternative for
noise reduction in the motion image.

The theoretical calculations are confirmed and in the case σϕ = 0.05 the large superiority of the
multiple encoding approach (right, β = 0.5) compared to averaging (left, β = 1) in terms of noise
reduction can be observed. Indeed, it takes 5 averages to achieve the same standard deviation in
the motion that only multiple encoding measurements.

(a) σϕ = 0.05. Left: β = 1. Right: β = 1/2.

(b) σϕ = 0.1. Left: β = 1. Right: β = 1/2.

Figure 2: Multiple motion encoding reconstruction. The continuous lines represent the empirical
variances and (i.e. the one computed from the numerical experiments) and the dashed lines the
theoretical ones.

9



3 Methods

3.1 Phantom experiments

Phantom tests were performed using heparin-sodium gel (180 000 IU per 100 g, Ratiopharm,
Ulm, Germany) in a 2 L cubic container to confirm the behaviour described in the theory on
experimental MRE data. The gel mainly consists of Carbomer 980 (polyacrylic acid), trometamol
(TRIS), glycerol hydroxystearate, propylene glycol, and isopropanol with the eponymous active
agent only accounting for less than 1% of the gel volume. All experiments were performed in a
3.0T MRI scanner (Siemens Magnetom Lumina, Erlangen, Germany).

In the phantom some air inclusions appeared which allow to assess the capacity of the recon-
struction methods to resolve image details.

External harmonic vibrations at 30.03 Hz were induced by a pressurized air driver operating
at 150 mBar as described elsewhere [23]. The driver was acting on a plate vertically immersed in
the gel to reduce vibrations of the casing and to provide plane wave propagation in mainly one
direction. The setup is shown in Figure 3. The vibrations were induced 2 s before data acquisition
started to ensure a steady state of time-harmonic oscillations of the medium. The wave generator
[6] was synchronized with the MRI clock to ensure optimal timing for data acquisition [29].

One component of the wavefield in top-bottom direction was acquired by using a single-shot,
spin-echo echo-planar imaging sequence with flow-compensated MEGs. Eight phase offsets over a
full vibration period were recorded at 10 consecutive centered coronal slices with a field-of-view
of 130 × 160 mm2 and 1.27 x 1.27 x 0.9 mm3 voxel size. Further imaging parameters were: echo
time = 165 ms; repetition time = 2500 ms; flip angle 90o; MEG frequency of 29.45 Hz and MEG
amplitude of {2, 4, 8,16,32} mT/m respectively. The experiment was repeated without external
vibrations to measure ϕG(0) (see Section 2).

Notice that this is different from the phase measured with external vibrations on and MEG
amplitude of 0 mT/m. In the first case (Vibration off, MEG on) the phase offset is induced by the
eddy currents of the MEGs and any other residual motion encoded by the MEGs. Small temporal
variations due to residual tissue motion can be neglected and only one time step per encoding
directions needs to be measured. In the other case (Vibration on, MEG off) motion induced phase
variations encoded by the imaging gradients are measured. Here it is sufficient to measure only one
encoding direction, but all time steps are necessary. We found that the MEG induced phase offset
is much stronger than phase offsets due to motion encoding by the imaging gradients. Therefore
we chose vibration off and MEG on in order to measure the offset phase.

3.2 Volunteers

In vivo MRE was performed in 1 healthy volunteer (male, age 29). The study was approved by the
ethics committee of Charite Universitaetsmedizin Berlin in accordance with the Ethical Principles
for Medical Research Involving Human Subjects of the World Medical Association Declaration of
Helsinki. The participant gave written informed consent. External harmonic vibrations at 25 Hz
were introduced by two pressurized air drivers at 650 mBar. The drivers were placed under the
volunteers head and operated in alternate fashion similar to [23].

Three components of the wavefield in orthogonal directions were acquired without flow-compensated
MEGs. Eight phase offsets over a full vibration period were recorded at 11 transversal slices (50%
slice gap) with a field-of-view of 200 × 200 mm2 and 2 x 2 x 2 mm3 voxel size. Further imaging
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parameters were: echo time = 81 ms; repetition time = 1750 ms; flip angle 80 deg; MEG frequency
of 27.75 Hz and MEG amplitude of {2, 4, 8, 16, 32} mT/m respectively. Again the experiment was
repeated without external vibrations to measure ϕG(0). Acquisition time (TA) for the measure-
ment with one MEG amplitude is 42 s (for all three encoding directions), plus the acquisition of
the respective offset phase which takes 5.25 s. For the conventional MRE data processing, where
the phase unwrapping is done using phase unwrapping algorithms and the offset phase is removed
by the temporal Fourier transform, a single acquisition of 42 s suffices.

3.3 MRE data processing

3.3.1 Wave images

Single encoding-phase contrast wave images were computed for each MEG using Equation (2)
(assuming no noise). Dual encoding wave images were computed using combinations of those
single encoding images using standard and optimal methods. Also, OMME was used to combine
wave images with several MEGs. The specific chosen MEGs are indicated in each figure in the
results section. Wrapped single motion encoding phase images were unwrapped using Laplacian
and Flynn based unwrapping algorithm as outlined in the introduction.

Moreover, in the phantom we compute additional wave images by adding a random noise to the
measured phase with ϕ = 0.1, since the original data was estimated to have ϕ = 0.02.

3.3.2 Shear wave speed reconstruction

Finally, the wrap-free phase images from the single and multiple encoding methods were used
for reconstruction of SWS maps based on single-gradient wavenumber recovery to avoid noise
amplification of the Laplacian, which is invoked by direct inversion techniques [10, 18]. SWS is
related to tissue stiffness. The principle of wavenumber (k-) based multi-component, elasto-visco
(k-MDEV) inversion was originally introduced for liver MRE and is outlined in [28]. First the
complex MRE data is smoothed using a Gaussian filter and then unwrapped (Laplacian). The
unwrapped phase images are temporally Fourier transformed and the first harmonic component is
selected and denoted as wavefield. For further data processing the wavefield is Fourier transformed
into the spatial domain (2D) and multiplied with a radially increasing linear filter function to
suppress compression waves. Next, the filtered wavefield is decomposed into eight propagation
directions. To do so, the wavefield is subjected to a directional filter with increasing angle and each
filtered wavefield is transformed back to image space. These images contain propagating waves with
approximately a single propagation direction. This fulfils the underlying assumptions of the final
k-MDEV inversion, where the wavenumber is determined from the phase gradient and subsequently
transformed to a propagation velocity or SWS. k-MDEV inversion was never applied to brain MRE
data before. Therefore we had to adapt the spatial filters used in the post processing to match
the different resolutions and wave patterns encountered in brain MRE data in order to avoid over-
smoothing and better resolve the brain anatomy. The actual inversion step was left unchanged.
First the smooth of the complex signal prior to the temporal Fourier transform was removed and
secondly the linear radial filter in the spatial frequency domain was replaced by a radial bandpass
Butterworth filter with highpass threshold of 15 1/m (order 3) and lowpass threshold of 350 1/m
(order 3, phantom data) and 200 1/m (order 3, in vivo data). Different lowpass threshold values
for the phantom and in vivo data were chosen due to different spatial resolution and therefore
different extend of the spatial frequency domain. We moved the smoothing (lowpass filter) to a
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later point because the directional filter induces high frequency noise which otherwise can not be
suppressed. In fact it removes conjugate spatial frequencies to separate waves propagating into
opposed directions. This also removes high spatial frequency components associated with noise
which previously leaked across the spectrum which results in high frequency noise in the filtered
wavefields across the whole image.

3.3.3 Noise analysis

Signal intensity and noise level of the wrap-free wavefields are important parameters for the sub-
sequent post-processing and final SWS reconstruction. OMME promises to deliver low noise (high
MEG), wrap-free images with the noise level given by the highest MEG used in the OMME phase
recovery. To calculate the noise levels for experimental data we used the blind noise estimation
method of Donoho et al. [7] as outlined and previously applied to MRE data in [3]. Noise esti-
mation in the wavelet domain is expected to be well suited for wave images [1, 24]. Recent work
[17, 15] suggests using the SNR of the derivative images rather than the displacement images as a
determinant of the image quality, as the numerical derivative have an dominant effect on the SWS
recovery. Therefore we estimated the noise levels from the dual-tree wavelet transformation of the
Laplacian image with the median absolute deviation of the finest band of wavelet coefficients [7].
The estimated signal power is derived from the L2-norm. Levels are estimated in a central region of
the wavefield (see Figure 3i and Figure 9m) for all slices and components and averaged afterwards.

4 Results

4.1 Experimental phantom

Figure 3 presents the reconstructions for the single encoding cases, optimal and standard dual
encoding, and OMME using three MEGs. Results are as expected, i.e. both dual encoding methods
show the wraps of the low MEG image. The standard and dual encoding methods behave similarly,
since β = 1/2 and the noise level of the images is low σϕ ≈ 0.02, which is estimated from MEG=0
images. The tri-MEG image shows also the dynamic range of the largest MEG. All dual and tri
MEG including MEG=8 are fully unwrapped. Figure 4 presents the same reconstructions but
colored in a smaller motion range, in order to put in evidence the gain in the MNR when increasing
the number of gradients within OMME in the regions with low motion amplitude, i.e. far from the
vibration probe (left part of the pictures).

The reconstructions with additional random noise to the measured phase with ϕ = 0.1 are
shown in Figure 5. Now, differences between standard and optimal dual encodings are perceptible,
appearing the optimal method to be more robust as it was shown in Figure 1b in the numerical
simulations. It is also now more evident how the tri-MEG optimal variant strongly increases the
MNR of the image.

Finally, we present in Figure 6 the resulting SWS maps from the single and optimal multiple
encoding reconstructions, and compared with Laplace and Flynn unwrapping on the single encoding
images. It can be appreciate that in all cases the SWS maps are more homogeneous towards the
center of the phantom and more noise far from the probe, as expected since the wave is damped with
decreasing the MNR. However, it is also clear that increasing the MEG reduces the noise in the SWS
maps in all cases. Both conventional phase unwrapping algorithms exhibit different drawbacks.
Laplacian based unwrapping smooths image details as it can be seen from the disappeared air
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inclusions in the reconstructed SWS map for the phantom data. In the case of Flynn the inclusions
disappear as well but for a different reason: at the air-heparin boundary a phase jump occurs but not
of magnitude ±2π and therefore Flynn is unable to recover the true motion and the reconstruction
fails.

Moreover, this smoothing effect seems to be more important when the MEG increases, probably
due to the fact that more wraps appear in the wave image amplifying the smoothing effects of the
unwrapping algorithm. Flynn gets more unstable the more wraps occur. In contrast, OMME allows
to recover both image details, without wraps and obtaining a smoother SWS map, what is expected
in this case since the material is the same everywhere in the phantom.

4.2 Volunteers

In Figure 7 and 8 we present the wavefields and reconstructed SWS maps for the in vivo brain
experiment. In this case, we combined four MEGs with OMME to fully omit standard unwrapping
procedures. Compared are SWS reconstructions based on wrap-free phase images from OMME,
Laplacian based unwrapping and Flynn unwrapping.

In particular, while some details are smoothed but still present when applying Laplace and
Flynn (in green), OMME allows to preserve more details in the resulting SWS map. Especially
tissue/air boundaries are better preserved and noise outside the brain is heavily reduced. In general
the contrast of the image is better with OMME.

In this example the capability of OMME to compensate for wraps and and noise simultaneously
becomes evident. Note in Figure 7a that in the lower part wraps are still present for the lowest
MEG. As expected, the standard dual MEG method cannot unwrap it, see Figure 7e. However,
as Figure 7f shows when combining MEGs 4 and 8 with OMME, and successively including higher
MEGs, that artifact disappears. This is most likely to have happened since the dynamic range in
the MEG 4 image is very close to the actual motion in that region, and hence wraps appear due to
the noise.

The chessbox-like artifacts in the SWS map due to the directional filter in the preprocessing
step are more noticeable in the volunteer data, see Figures 8a-8d, most likely due to the lower SNR
compared to the phantom data. Stronger smoothing could remove the artifact but would also lead
to further blurring of the images.

Finally, Figure 9 compares SWS maps reconstructed from wrap-free phase images of OMME
using four MEGs, and Laplacian based unwrapping and Flynn unwrapping with the highest MEG.
Additionally T2 weighted MRE magnitude images are shown for anatomical reference. Red arrows
indicate areas where OMME based reconstruction clearly outperforms standard unwrapping proce-
dures by fully recovering fluid/tissue boundaries between brain tissue and either ventricles or gyri.

4.3 Noise analysis

Figure 10 shows the results of the noise analysis for the phantom and in vivo data for the wrap-free
wavefields recovered from Laplacian and Flynn phase unwrapping and OMME based unwrapping.
Noise levels are decreasing with increasing MEG used as predicted by the theory. Noise levels
for all three methods are similar. Interestingly the recovered signal power or displacement shows
significant differences. For Laplacian and Flynn phase unwrapping the signal level is decreasing
with increasing MEG strength and only shows a constant level for the OMME method. Since
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(a) MEG=8 (b) MEG=16 (c) MEG=32

(d) OMME MEGs={8,16} (e) OMME MEGs={16,32} (f) OMME MEGs={8,16,32}

(g) Standard encoding MEGs={8,16} (h) Standard encoding MEGs={16,32} (i) MRE magnitude image

Figure 3: Multiple motion encoding reconstruction in the phantom. Color scale is set in the interval
± 80% of the dynamic range of the MEG=8 image. Large positive values are coloured in yellow
and negative values in blue, while green being zero. The last image shows the T2 weighted MRE
magnitude as geometric reference.
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(a) MEG=8 (b) MEG=16 (c) MEG=32

(d) OMME MEGs={8,16} (e) OMME MEGs={16,32} (f) OMME MEGs={8,16,32}

Figure 4: Multiple motion encoding reconstruction in the phantom. Colour scale is set in the
interval ± 30% the dynamic range of the MEG=32 image. Large positive values are colored in
yellow and negative values in blue, while green being zero.
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(a) MEG=8 (b) MEG=16 (c) MEG=32

(d) OMME MEGs={8,16} (e) OMME MEGs={16,32} (f) OMME MEGs={8,16,32}

(g) Standard encoding MEGs={8,16} (h) Standard encoding MEGs={16,32}

Figure 5: Multiple motion encoding reconstruction in the phantom with additional σϕ = 0.1. Color
scale is set in the interval ± 80% of the dynamic range of the MEG=8 image. Large positive values
are colored in yellow and negative values in blue, while green being zero.
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(a) MEG=8 (b) OMME MEGs={8,16} (c) OMME MEGs={8,16,32}

(d) Laplacian unwrapped MEG=8 (e) Laplacian unwrapped MEG=16 (f) Laplacian unwrapped MEG=32

(g) Flynn unwrapped MEG=8 (h) Flynn unwrapped MEG=16 (i) Flynn unwrapped MEG=32

Figure 6: SWS maps reconstructed from k-MDEV at 30.03 Hz vibration frequency for a selected
slice in the phantom. The excitation plate is visible on the right side. First row shows OMME
results with one (a) to four (d) MEGs combined. The second row shows SWS recovered from
Laplacian based unwrapped phase images with MEG of different strength. Last row shows SWS
recovered from Flynn unwrapped phase images. Colorbar for SWS maps range from 0 to 1 m/s.
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(a) MEG=4 (b) MEG=8 (c) MEG=16 (d) MEG=32

(e) Standard dual
MEGs={4,8}

(f) OMME MEGs={4,8} (g) OMME MEGs={4,8,16} (h) OMME
MEGs={4,8,16,32}

Figure 7: Multiple motion encoding reconstruction in the volunteer data. The first row shows phase
images for a MEG acquisition with increasing MEG amplitude. The second row shows standard
dual and OMME combined phase images with increasing amount of MEGs combined. Color scale
is set in the interval between zero (bright yellow) and minus the dynamic range of the image with
MEG=4 image (dark blue), hence the shift to yellow when wraps appear since the original image
wave has mainly positive values.
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(a) MEG=4 (b) OMME MEGs={4,8} (c) OMME MEGs={4,8,16} (d) OMME
MEGs={4,8,16,32}

(e) Laplace unwrapped
MEG=4

(f) Laplace unwrapped
MEG=8

(g) Laplace unwrapped
MEG=16

(h) Laplace unwrapped
MEG=32

(i) Flynn unwrapped MEG=4 (j) Flynn unwrapped MEG=8 (k) Flynn unwrapped
MEG=16

(l) Flynn unwrapped
MEG=32

Figure 8: SWS maps for in vivo brain experiment at 25 Hz vibration frequency for a selected slice.
First row shows OMME results with one (a) to four (d) MEGs combined. The second row shows
SWS recovered from Laplacian based unwrapped phase images with MEG of different strength.
Last row shows SWS recovered from Flynn unwrapped phase images. Colorbar for SWS maps
range from 0 to 2 m/s.
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(a) Slice 1: Magnitude (b) Slice 1: OMME (c) Slice 1: Laplace (d) Slice 1: Flynn

(e) Slice 2: Magnitude (f) Slice 2: OMME (g) Slice 2: Laplace (h) Slice 2: Flynn

(i) Slice 3: Magnitude (j) Slice 3: OMME (k) Slice 3: Laplace (l) Slice 3: Flynn

(m) Slice 4: Magnitude (n) Slice 4: OMME (o) Slice 4: Laplace (p) Slice 4: Flynn

Figure 9: SWS maps for standard unwrapping (MEG=32) in comparison to OMME
(MEGs={4,8,16,32}). Four selected slices show from left to right an anatomical reference im-
age from T2 weighted MRE magnitude, SWS map based on wrap-free OMME phase, based on
Laplacian unwrapped phase images and based on Flynn unwrapped phase images. Red arrows
indicate areas where OMME outperforms the standard approaches. Colorbar for SWS maps range
from 0.3 to 1.8 m/s.
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the underlying displacement is the same for all MEG strengths, the signal power should also be
constant. With similar noise but higher signal, OMME outperforms the other methods in terms of
SNR.

(a) Phantom

(b) In vivo

Figure 10: Signal (left) and noise (right) levels estimated from wavelet decomposition for all MEG
strengths with Flynn and Laplacian unwrapping and OMME for (a) phantom data and (b) in vivo
data. Signal and noise levels were averaged over all slices and components. For OMME, the data
points indicate highest MEG used, i.e. at MEG 8, OMME used MEG 8 and 4; at MEG 16, OMME
used MEG 16, 8 and 4; at MEG 32, OMME used MEG 32, 16, 8 and 4.

5 Discussion

We have developed, theoretically analyzed and assessed in numerical, phantom and volunteer data
a new method for combining an arbitrary number of motion encoded PC images, the Optimal
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Multiple Motion Encoding method (OMME). OMME was assessed using MRE measurements, but
can be applied to other PC-MRI modalities as Flow MRI as it was done originally for the dual
encoding case. To the best of the authors’ knowledge, this is the first reported method to combine
arbitrary number of motion encoded images with different MEGs.

For a fixed effective dynamic range of the imaged motion, OMME presents a superior perfor-
mance with respect to noise compared to standard dual encoding unwrapping. This was assessed
analytically and confirmed numerically in a ”single voxel” experiment. The noise analysis for the
experimental data confirm these findings.

It was concluded that the most robust strategy with respect to noise perturbations to combine
N images was to measure dynamic ranges d1, . . . , dN such that di = 2−i+1d1. In practice, this
combinations being fixed allows the scanner operator to easily select the largest dynamic range and
number of measurements only, as it is usually done when selecting the signal averages, but now
with a greater efficacy in MNR improvement with respect to the number of measurements.

The OMME was compared against standard unwrapping methods (Laplacian and Flynn). Re-
markably, OMME allows to improve the SWS maps by reducing the noise in the wave images
without spatial smoothing as Laplace unwrapping does and without unwrapping failure as it oc-
curs with Flynn (predominantly at boundaries). This showed, in both phantom and volunteer data,
to allow to capture details that either are considerably smoothed (out) by standard unwrapping
methods. This can be extremely relevant for further pushing the ranges of higher resolution where
MRE is applied to capture milder spatial variations of the tissue properties. It could be of potential
value in future applications, for example to resolve small focal lesions as they occur in Multiple
Sclerosis or to better resolve small stiffness contrasts in various applications. Moreover it is visible
that standard unwrapping methods smear boundaries between fluid filled spaces and brain tissue.
It not only effects the outer boundary of the brain but also transitions between tissue and fluid
filled ventricles. If tissue mechanical properties are altered at those boundaries as it might be the
case for Multiple Sclerosis OMME based wrap-free MRE phase images could have a great potential
to be sensitive in those areas. At last, the increased dynamic range of OMME with good SNR
properties could be utilized when high frequency vibrations induce heavy wraps near the source
and get quickly damped with small deflection amplitudes inside the tissue under investigation. The
potential OMME for high frequency brain MRE needs to be further investigated.

Concerning MRE, examination times are increased due to additional measurements necessary
to acquire additional MEGs. Each additional MEG increases total scan time by the TA of one mea-
surement. Moreover, the reference phase (i.e. MEGs on and vibration off) needs to be measured,
which however is required at one time step only for all encoding directions, adding another 1/(num-
ber of timesteps) * TA. But if phase wraps can be fully resolved, data impairment by unwrapping
algorithms are avoided which can be critical for high resolution MRE. Even resolving wraps only
partly prevents unwrapping algorithms from failure and allows high encoding efficiencies to capture
damped waves without corrupting high amplitude regions.

Furthermore gains in MNR outperform regular averaging of multiple scans and possibly less
data need to be acquired. In practical situations, scanner operators repeat scans if large wraps
are seen by, e.g., reducing the vibration amplitude. OMME allows to keep the amplitude and
continuously acquire (with different MEGs) and combine the images afterwards.
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6 Conclusion

In this study, we proposed an optimal multiple motion encoding (OMME) method for any PC-
MRI modality, including a detailed theoretical analysis. We applied this novel technique to MRE
measurements and results are presented based on phantom and in vivo data. In MRE, OMME
allows to recover better tissue details due to its increased MNR with a high dynamic range. This
leads to SWS maps which preserve important details (e.g. discontinuities in the stiffness).

Especially for future applications of high resolution MRE when small features should be resolved,
smoothing the wave image is undesired. For instance the mechanical characterization of focal
demyelination of in vivo human brain tissue as it occurs in Multiple Sclerosis is not possible yet
[27] and different attempts towards a finer resolution have already been investigated [8]. Application
of OMME to other PC-MRI methods like e.g. Flow MRI might be investigated in future work.
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Jöhrens, Jürgen Braun, and Ingolf Sack. Tomoelastography by multifrequency wave number
recovery from time-harmonic propagating shear waves. Medical image analysis, 30:1–10, 2016.

[29] John B Weaver, Elijah EW Van Houten, Michael I Miga, Francis E Kennedy, and Keith D
Paulsen. Magnetic resonance elastography using 3d gradient echo measurements of steady-state
motion. Medical physics, 28(8):1620–1628, 2001.

25



[30] Ziying Yin, Yi Sui, Joshua D Trzasko, Phillip J Rossman, Armando Manduca, Richard L
Ehman, and John Huston III. In vivo characterization of 3d skull and brain motion during dy-
namic head vibration using magnetic resonance elastography. Magnetic resonance in medicine,
80(6):2573–2585, 2018.

26


	Introduction
	Theory
	Single motion-encoding in PC-MRI
	Classical dual motion encoding revisited
	The optimal dual motion encoding method revisited carrillo2019
	Optimal multiple motion encoding (OMME)

	Methods
	Phantom experiments
	Volunteers
	MRE data processing
	Wave images
	Shear wave speed reconstruction
	Noise analysis


	Results
	Experimental phantom
	Volunteers
	Noise analysis

	Discussion
	Conclusion

