
HAL Id: hal-02947216
https://hal.science/hal-02947216

Submitted on 23 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Operation Modes and Singularities of 3-PRS Parallel
Manipulators with Different Arrangements of P-joints

Latifah Nurahmi, Stéphane Caro, Philippe Wenger

To cite this version:
Latifah Nurahmi, Stéphane Caro, Philippe Wenger. Operation Modes and Singularities of 3-PRS Par-
allel Manipulators with Different Arrangements of P-joints. ASME International Design Engineering
Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2015,
Aug 2015, Boston, United States. �10.1115/DETC2015-47935�. �hal-02947216�

https://hal.science/hal-02947216
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


the ASME 2015 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2015
2-5 August2015Boston, MassachusettsUSA

DETC2015/47935

OPERATION MODES AND SINGULARITIES OF 3-PRS PARALLEL MANIPULATORS
WITH DIFFERENT ARRANGEMENTS OF P-JOINTS
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Emails: {latifah.nurahmi, stephane.caro, philippe.wenger}@irccyn.ec-nantes.fr

ABSTRACT
The subject of this paper is about the study of the operation

modes and the singularity conditions of the 3-PRS parallel ma-

nipulator with different arrangements of prismatic joints. The

three prismatic joints of the PRS legs are attached to the base

with an angle α between the horizontal plane of the base and

their directions.

By using an algebraic approach, namely the Study kinematic

mapping of the Euclidean group SE(3), the mechanisms are de-

scribed by a set of eight constraint equations. A primary decom-

position is computed over a set of eight constraint equations and

reveals that the 3-PRS manipulators with different arrangements

of prismatic joints have identical operation modes, namely x0 = 0

and x3 = 0. Both operation modes are analysed.

The singularity conditions are obtained by deriving the de-

terminant of the Jacobian matrix of the eight constraint equa-

tions. All the singular configurations are mapped onto the joint

space and are geometrically interpreted. The singularity loci of

the 3-PRS parallel manipulators are also traced in its orientation

workspace for different values of angle α.

INTRODUCTION
Since Hunt proposed the 3-RPS (R, P, S represent revolute,

prismatic and spherical joints, respectively) parallel manipulator

in 1983 [1], various parallel manipulators which have identical

motions have been extensively developed, for example DS Tech-

nologie in Germany has developed a machining tool head named

∗Address all correspondence to this author.

the Sprint Z3 [2]. The design of the Sprint Z3 is based on the

3-PRS mechanism in which the prismatic joints are assembled

parallel to each other and are vertical. This mechanism is named

3-PVRS by Liu and Bonev in [3], where the subscript V indicates

that the directions of the three prismatic joints are vertical.

In [3], Liu and Bonev showed that the accuracy of the 3-

PVRS becomes poorer with the increment of the tilt angle of the

moving platform. The optimal kinematic design of this mecha-

nism was presented in [4], by introducing three indices that can

evaluate the effectiveness of the motion/force transmission. By

using these indices, the link lengths were optimized for the pur-

pose of high orientation capability and good motion/force trans-

missibility.

Tsai et al. in [5] found 64 solutions for the direct kinematics

problem by using the Bezout’s elimination method to solve three

nonlinear trigonometric equations. Fan et al. in [6] analysed this

mechanism for machining purposes. The authors also showed

that the positioning accuracy of the prismatic joints and the tool

length are the most critical parameters that affect the position and

the orientation of the spindle platform or the cutter location.

Although the parasitic motion are generally small, they may

yield the control of the machine complex and reduce its accu-

racy. In [7], the authors analysed and compared the parasitic mo-

tions of the 3-PVRS mechanism by classifying the geometrical

arrangements of the legs and the location of the three spherical

joints. Based on this result, Xie et al. in [8] proposed a new

architecture of a three degree-of-freedom 3-dof mechanism and

analysed its kinematic optimization. In [9], Carbonari et al. pro-

posed a mechatronic system that cooperates two mechanisms of
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3-dof. Both mechanism architectures are 3-CPU (C and U repre-

sent cylindrical and universal joints, respectively) manipulators

in which the universal joints attached to the platform are assem-

bled differently, i.e., a three degrees of freedom translational mo-

tion is generated with the first mechanism, whereas a spherical

motion is generated with the second one.

Another architecture of parallel manipulator which is based

on the 3-PRS mechanism was proposed by Carretero et al.

in [10] for a telescope application. This mechanism is referred

to as the 3-PHRS since the prismatic joints are horizontal and

they are coplanar to the base. Later in [11], the authors showed

the existence of the parasitic motion and concluded that the total

translational parasitic motion is free of z component. The design

parameters were also optimized to reduce the parasitic motions.

In [12], the authors investigated the singularity conditions

for both the 3-PVRS and the 3-PHRS manipulators. By using the

orientation representation, named Tilt-and-Torsion, the degener-

acy of the screw system applied on the platform was detected. By

using the screw theory, Li and Xu in [13] analysed the kinematic

behaviour of the 3-PRS mechanism with layout angle variations

of the prismatic joints.

Accordingly, this paper focuses on the study of the operation

modes and the singularity conditions of the 3-PRS manipulator

for different values of angle α, which is the angle between the

horizontal plane of the base and the prismatic joint directions.

By using Study kinematic mapping of the Euclidean group SE(3)

and a primary decomposition based on [14–16], it is shown that

the 3-PRS parallel manipulators with any value of α have identi-

cal operation modes, namely x0 = 0 and x3 = 0. The singularity

conditions of the 3-PRS parallel manipulators are examined in

this paper by deriving the determinant of their Jacobian matrix

with respect to the Study parameters and their orientation capa-

bility are analysed.

This paper is organized as follows: The manipulator archi-

tecture is described in Section 2. The constraint equations of

the manipulators are expressed in Section 3. A set of constraint

equations is used to identify the number and types of operation

modes in Section 4. In Section 5, the vanishing conditions of the

determinant of the Jacobian matrix are presented and the orien-

tation capabilities of the mechanisms under study are analysed

in Section 6. Eventually, the conditions of the actuated lengths

corresponding to the transition between the operation modes for

five different architectures of the 3-PRS parallel manipulators are

discussed in Section 7.

MANIPULATOR ARCHITECTURES
The 3-PRS parallel manipulator shown in Fig. 1, is com-

posed of an equilateral triangle base, an equilateral triangle plat-

form, and three identical legs. Each leg consists of a prismatic

joint, a revolute joint, and a spherical joint mounted in series.

The origin O of the fixed frame Σ0 is located at the circum-
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Figure 1: THE 3-PRS PARALLEL MANIPULATOR.

center of the equilateral triangle base. The base is bounded by

three vertices A1, A2, A3 with circumradius h0. The prismatic

joint of the i-th (i = 1,2,3) leg is assembled with an angle α be-

tween the horizontal plane of the base and its direction.

The revolute joint of the i-th (i = 1,2,3) leg is located at point

Bi. Its axis being along vector si . The origin P of the moving

frame Σ1 is located at the circumcenter of the equilateral triangle

platform. The moving platform is bounded by three spherical

joints with vertices C1,C2,C3 and its circumradius is defined by

h1.

The segment BiCi , of length equal to l, is perpendicular to

vector si . As a consequence, the segment BiCi moves in a plane

normal to si . Eventually, the manipulator motions depend on four

design parameters l, h0, h1, α and three joint variables r1, r2, r3.

CONSTRAINT EQUATIONS

In this section, the constraint equations are expressed. In the

following, α is kept general and we use projective coordinates to

define the position vectors of points Bi and Ci . The coordinates

of points Bi and points Ci expressed in Σ0 and Σ1 are, respec-

tively:
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r0

B1
= [1, h0 − r1 cos(α),0,r1 sin(α)]T,

r0

B2
= [1,−1

2
(h0 − r2 cos(α)),

√
3

2
(h0 − r2 cos(α)),r2 sin(α)]T,

r0

B3
= [1,−1

2
(h0 − r3 cos(α)),−

√
3

2
(h0 − r3 cos(α)),r3 sin(α)]T,

r1

C1
= [1, h1,0,0]T,

r1

C2
= [1,−1

2
h1,

√
3

2
h1,0]T,

r1

C3
= [1,−1

2
h1,−

√
3

2
h1,0]T .

(1)

To obtain the coordinates of points C1, C2, C3 expressed in

Σ0, the Study parametrization of a spatial Euclidean transforma-

tion matrix M ∈ SE(3) is used as follows:

M =

(
x2

0
+ x2

1
+ x2

2
+ x2

3
0T

3×1

MT MR

)
(2)

where MT and MR represent the translational and rotational parts

of the transformation matrix M, respectively and take the form:

MT =
©­
«
2(−x0y1+ x1y0 − x2y3 + x3y2)
2(−x0y2+ x1y3+ x2y0 − x3y1)
2(−x0y3 − x1y2+ x2y1 + x3y0)

ª®¬
,

MR =
©­
«

x2

0
+ x2

1
− x2

2
− x2

3
2(x1x2 − x0x3) 2(x1x3+ x0x2)

2(x1x2+ x0x3) x2

0
− x2

1
+ x2

2
− x2

3
2(x2x3 − x0x1)

2(x1x3 − x0x2) 2(x2x3+ x0x1) x2

0
− x2

1
− x2

2
+ x2

3

ª®¬
(3)

The parameters x0, x1, x2, x3, y0, y1, y2, y3, which appear in

matrix M, are called Study-parameters. These parameters make

it possible to parametrize SE(3) with dual quaternions. The

Study kinematic mapping maps each spatial Euclidean displace-

ment of SE(3) via transformation matrix M onto a projective

point P [x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3] in the 6-dimensional

Study quadric S ∈ P7 [14], such that:

SE(3)→ P ∈ P7

(x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3)T , (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0)T
(4)

Every projective point P will represent a spatial Euclidean dis-

placement, if it fulfils the following equation and inequality:

x0y0+ x1y1+ x2y2+ x3y3 = 0, x2

0
+ x2

1
+ x2

2
+ x2

3
, 0 (5)

These two conditions will be used in the following computa-

tions to simplify the algebraic expressions. First of all, the half-

tangent substitutions for α are performed to remove the trigono-

metric functions:

cos(α) = 1− t2
a

1+ t2
a

, sin(α) = 2ta

1+ t2
a

(6)

where ta = tan(α
2
). The coordinates of points Ci expressed in Σ0

are obtained by:

r0

Ci
=M r1

Ci
i = 0, . . . ,3 (7)

As the coordinates of all points are given in terms of Study

parameters, the design parameters and the joint variables; the

constraint equations can be obtained by examining the design of

the manipulators. The segment connecting points Bi and Ci is

orthogonal to the axis si of the i-th revolute joint, with:

s1 =



0

0

1

0


, s2 =



0

−
√

3

2

−1

2
0


, s3 =



0√
3

2

−1

2
0


(8)

Accordingly, the scalar product of vector (r0

Ci

− r0

Bi

) and vector

si vanishes, namely:

(r0

Ci
− r0

Bi
)T si = 0 (9)

After computing the corresponding scalar products and re-

moving the common denominators (x2

0
+ x2

1
+ x2

2
+ x2

3
), the fol-

lowing three equations come out:

g1 : x0x3 = 0

g2 : 2h1x0x3 − h1x1x2+ x0y2 − x1y3 − x2y0+ x3y1 = 0

g3 : h1x2

1
− h1x2

2
+2x0y1 −2x1y0 +2x2y3 −2x3y2 = 0

(10)

Noticeably, ta does not appear in Eq. (10). It means that the

three constraint equations in Eq. (10) are valid for all the 3-PRS

parallel manipulators with any value of parameter angle α.
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To derive the constraint equations corresponding to the seg-

ment BiCi , the design parameter l is given. It follows that point

Ci has the freedom to move along a circle of center Bi and the

distance equation can be formulated as ‖(r0

Ci

− r0

Bi

)‖2
= l2. As a

consequence, the following three equations are obtained:

g4 : (h2

0
t2

a −2h0h1t2

a +2h0r1t2

a + h2

1
t2

a −2h1r1t2

a − l2t2

a + r2

1
t2

a+

h2

0
−2h0h1 −2h0r1 + h2

1
+2h1r1 − l2

+ r2

1
)x2

0
+8tah1r1x0x2

+ (4h0t2

a −4h1t2

a +4r1t2

a +4h0 −4h1−4r1)x0y1+8tar1x0

y3 + (h2

0
t2

a −2h0h1t2

a +2h0r1t2

a + h2

1
t2

a −2h1r1t2

a − l2t2

a + r2

1

t2

a
+ h2

0
−2h0h1 −2h0r1+ h2

1
+2h1r1 − l2

+ r2

1
)x2

1
−8tah1r1

x1x3 + (−4h0t2

a +4h1t2

a −4r1t2

a −4h0+4h1+4r1)x1y0+8

tar1x1y2+ (h2

0
t2

a +2h0h1t2

a +2h0r1t2

a + h2

1
t2

a +2h1r1t2

a − l2

t2

a
+ r2

1
t2

a
+ h2

0
+2h0h1 −2h0r1+ h2

1
−2h1r1 − l2

+ r2

1
)x2

2
−8

tar1x2y1+ (4h0t2

a +4h1t2

a +4r1t2

a +4h0+4h1−4r1)x2y3+

(h2

0
t2

a +2h0h1t2

a +2h0r1t2

a + h2

1
t2

a +2h1r1t2

a − l2t2

a + r2

1
t2

a+

h2

0
+2h0h1 −2h0r1 + h2

1
−2h1r1 − l2

+ r2

1
)x2

3
−8tar1x3y0+

(−4h0t2

a −4h1t2

a −4r1t2

a −4h0 −4h1+4r1)x3y2+ (4t2

a+4)
(y2

0
+ y

2

1
+ y

2

2
+ y

2

3
) = 0

g5 : (2
√

3h0t2

a +2

√
3h1t2

a +2

√
3r2t2

a +2

√
3h0+2

√
3h1 −2

√
3r2)

x3y1+ (−2
√

3h0t2

a
+2

√
3h1t2

a
−2

√
3r2t2

a
−2

√
3h0+2

√
3h1

+2
√

3r2)x2y0+4tah1r2x1x3+ (−2
√

3h0t2

a
−2

√
3h1t2

a
−2

√
3r2t2

a
−2

√
3h0 −2

√
3h1+2

√
3r2)x1y3+ (2

√
3h0t2

a
−2

√
3

h1t2

a +2

√
3r2t2

a +2

√
3h0 −2

√
3h1 −2

√
3r2)x0y2+ (2

√
3h0h1

t2

a +2

√
3h1r2t2

a +2

√
3h0h1 −2

√
3h1r2)x1x2 + (−2h0t2

a +2h1

t2

a −2r2t2

a −2h0+2h1+2r2)x0y1+ (2h0t2

a −2h1t2

a +2r2t2

a+

2h0 −2h1 −2r2)x1y0+ (−2h0t2

a
−2h1t2

a
−2r2t2

a
−2h0−2h1

+2r2)x2y3+ (2h0t2

a +2h1t2

a +2r2t2

a +2h0+2h1−2r2)x3y2

−4tah1r2x0x2+ (4t2

a+4)y2

0
+ (4t2

a +4)y2

2
+ (4t2

a +4)y2

1
+ (4

t2

a +4)y2

3
−4ta

√
3h1r2x2x3 −4ta

√
3h1r2x0x1+ (h2

0
t2

a −2h0

h1t2

a +2h0r2t2

a + h2

1
t2

a −2h1r2t2

a − l2t2

a + r2

2
t2

a + h2

0
−2h0h1−

2h0r2+ h2

1
+2h1r2 − l2

+ r2

2
)x2

0
+ (h2

0
t2

a
+ h0h1t2

a
+2h0r2t2

a
+

h2

1
t2

a + h1r2t2

a − l2t2

a + r2

2
t2

a + h2

0
+ h0h1 −2h0r2 + h2

1
− h1r2−

l2
+ r2

2
)x2

1
+ (h2

0
t2

a − h0h1t2

a +2h0r2t2

a + h2

1
t2

a − h1r2t2

a − l2t2

a

+ r2

2
t2

a
+ h2

0
− h0h1 −2h0r2+ h2

1
+ h1r2 − l2

+ r2

2
)x2

2
+ (h2

0
t2

a
+

2h0h1t2

a +2h0r2t2

a + h2

1
t2

a +2h1r2t2

a − l2t2

a + r2

2
t2

a + h2

0
+2h0h1

−2h0r2+ h2

1
−2h1r2 − l2

+ r2

2
)x2

3
+8tar2x0y3+8tar2x1y2−

(11)

8tar2x2y1 −8tar2x3y0 = 0

g6 : 4tah1r3x1x3 −4tah1r3x0x2+8tar3x0y3+8tar3x1y2 −8tar3

x2y1 −8tar3x3y0+ (2h0t2

a
+2h1t2

a
+2r3t2

a
+2h0+2h1 −2r3)

x3y2 + (−2h0t2

a +2h1t2

a −2r3t2

a −2h0+2h1+2r3)x0y1 + (2h0

t2

a −2h1t2

a +2r3t2

a +2h0 −2h1−2r3)x1y0+ (−2h0t2

a −2h1t2

a

−2r3t2

a
−2h0 −2h1+2r3)x2y3+ (4t2

a
+4)y2

0
+ (4t2

a
+4)y2

2
+

(4t2

a +4)y2

1
+ (4t2

a +4)y2

3
+ (h2

0
t2

a −2h0h1t2

a +2h0r3t2

a + h2

1
t2

a

−2h1r3t2

a − l2t2

a + r2

3
t2

a + h2

0
−2h0h1 −2h0r3+ h2

1
+2h1r3−

l2
+ r2

3
)x2

0
+ (h2

0
t2

a
+ h0h1t2

a
+2h0r3t2

a
+ h2

1
t2

a
+ h1r3t2

a
− l2t2

a

+ r2

3
t2

a + h2

0
+ h0h1 −2h0r3+ h2

1
− h1r3 − l2

+ r2

3
)x2

1
+ (h2

0
t2

a−
h0h1t2

a +2h0r3t2

a + h2

1
t2

a − h1r3t2

a − l2t2

a + r2

3
t2

a + h2

0
− h0h1−

2h0r3+ h2

1
+ h1r3 − l2

+ r2

3
)x2

2
+ (h2

0
t2

a
+2h0h1t2

a
+2h0r3t2

a
+

h2

1
t2

a
+2h1r3t2

a
− l2t2

a
+ r2

3
t2

a
+ h2

0
+2h0h1 −2h0r3+ h2

1
−2h1

r3 − l2
+ r2

3
)x2

3
+ (2

√
3h0t2

a
−2

√
3h1t2

a
+2

√
3r3t2

a
+2

√
3h0−

2
√

3h1 −2
√

3r3)x2y0+ (2
√

3h0t2

a
+2

√
3h1t2

a
+2

√
3r3t2

a
+2

√
3h0+2

√
3h1 −2

√
3r3)x1y3+ (−2

√
3h0h1t2

a −2

√
3h1r3t2

a

−2

√
3h0h1+2

√
3h1r3)x1x2+ (−2

√
3h0t2

a +2

√
3h1t2

a −2

√
3

r3t2

a
−2

√
3h0+2

√
3h1+2

√
3r3)x0y2+ (−2

√
3h0t2

a
−2

√
3h1

t2

a
−2

√
3r3t2

a
−2

√
3h0 −2

√
3h1+2

√
3r3)x3y1+4

√
3tah1r3

x0x1 +4

√
3tah1r3x2x3 = 0

(12)

The Study-equation in Eq. (5) is added since all solutions

have to be within the Study-quadric, i.e.:

g7 : x0y0+ x1y1+ x2y2 + x3y3 = 0 (13)

Under the condition (x2

0
+ x2

1
+ x2

2
+ x2

3
, 0), we can find all

possible points in P7 that fulfil these seven equations. To exclude

the exceptional generator (x0 = x1 = x2 = x3 = 0), we add the

following normalization equation:

g8 : x2

0
+ x2

1
+ x2

2
+ x2

3
−1 = 0 (14)

It assures that there is no point of the exceptional genera-

tor appears as a solution. However, for each projective solution

point, we obtain two affine representatives. This has to be taken

into account for the enumeration of the number of solutions.
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OPERATION MODES
The set of eight constraint equations is always written as

polynomial ideal with variables {x0, x1, x2, x3, y0, y1, y2, y3} over

the coefficient ring C[h0, h1, l, ta,r1,r2,r3], as:

I = 〈g1,g2,g3,g4,g5,g6,g7,g8〉 (15)

At this point, the following ideal which is independent of the

joint variables r1,r2 and r3, is examined:

J = 〈g1,g2,g3,g7〉 (16)

The primary decomposition is computed to verify if the ideal

J is the intersection of several smaller ideals. The primary de-

composition returns several Ji in which J = ⋂
i Ji . In other

words, the vanishing set is given by V(J) = ⋃
i V(Ji). It ex-

presses that the variety V(J) is the union of some other or sim-

pler varieties V(Ji).
The primary decomposition geometrically tells that the in-

tersection of those equations will split into smaller parts. Indeed,

the result shows that the ideal J is decomposed into three com-

ponents Ji as:

J =
3⋂

i=1

Ji (17)

with the results of primary decomposition:

J1 : 〈x0, x1y1+ x2y2+ x3y3, h1x1x2+ x2y0 − x3y1+ x1y3,

h1x2

1
− h1x2

2
−2x1y0 −2x3y2 +2x2y3, h1x2y

2

1
−3h1x2y

2

2

+ h2

1
x2

2
y3+ h1x1y0y3 −2y

2

0
y3 −2y

2

1
y3 − h1x3y2y3 −2

y
2

2
y3 − h1x2y

2

3
−2y

3

3
, x2y0y1 − x3y

2

1
− h1x2

2
y2 − h1x2x3

y3+ x1y1y3, h1x2

2
y1+2x1y0y1+ h1x1x2y2+2x3y1y2+

h1x1x3y3 −2x2y1y3, h1x3

2
+3x1x2y0 − x1x3y1+2x2x3

y2+ x2

1
y3 −2x2

2
y3, h1x3y

3

1
+ h2

1
x2

2
y1y2 −3h1x2y0y

2

2
+ h2

1

x2

2
y0y3+ h1x1y

2

0
y3 −2y

3

0
y3+ h2

1
x2x3y1y3 − h1x1y

2

1
y3−

2y0y
2

1
y3 − h1x3y0y2y3 −2y0y

2

2
y3 − h1x2y0y

2

3
−2y0y

3

3
〉

J2 : 〈x3, x0y0+ x1y1+ x2y2, h1x1x2+ x2y0 − x0y2+ x1y3,

h1x2

1
− h1x2

2
−2x1y0 +2x0y1 +2x2y3, h

2

1
x2

2
y0+ h1x1y

2

0

−2y
3

0
−2y0y

2

1
+3h1x2y1y2+ h1x1y

2

2
−2y0y

2

2
− h1x2y0

(18)

y3 −2y0y
2

3
, h1x3

2
+3x1x2y0 −2x0x2y1 − x0x1y2+ x2

1
y3

−2x2

2
y3〉

J3 : 〈x0, x1, x2, x3〉
(19)

An inspection of the vanishing set V(J3∪g8) gives an empty

result, since the set of polynomials {x0, x1, x2, x3, x
2

0
+ x2

1
+ x2

2
+

x2

3
−1 = 0} can never vanish simultaneously over R or C. There-

fore, only two components are left. As a consequence, the 3-PRS

manipulators with any value of α have two operation modes,

which are characterized by x0 = 0 and x3 = 0. It turns out that

these operation modes are also operation modes of the 3-RPS

parallel manipulator studied in [15].

To complete the analysis, the remaining equations have to

be added by writing:

Ki = Ji ∪ 〈g4,g5,g6,g8〉, i = 1,2 (20)

Each system Ki corresponds to a specific operation mode of the

3-PRS parallel manipulators. In the following, each system Ki

will be discussed separately.

System K1: Operation mode x0 = 0

In this operation mode, the moving platform is reversed

about an axis defined by (x1, x2, x3) by 180 degrees [17] from

the identity condition (when the fixed frame Σ0 and the moving

frame Σ1 are coincident). The condition x0 = 0 is valid for all

poses of the manipulators. The variables y0, y1, y3 can be solved

linearly from the ideal J1 and they are substituted back into the

matrix M, as:

T1 =

©­­­
«

1 0 0 0

h1(x2

1
− x2

2
) x2

1
− x2

2
− x2

3
2x1x2 2x1x3

−2h1x1x2 2x1x2 −(x2

1
− x2

2
+ x2

3
) 2x2x3

Z 2x1x3 2x2x3 −(x2

1
+ x2

2
− x2

3
)

ª®®®
¬

(21)

where Z =
h1(x2

1
x3 − x2

2
x3) −2(x2

1
y2 + x2

2
y2+ x2

3
y2)

x1

From the transformation matrix T1, it can be seen that the

translational motions can be parametrized by y2 and the rota-

tional motions can be parametrized by x1, x2, x3 in connection

with x2

1
+ x2

2
+ x2

3
−1 = 0 [19].

System K2: Operation mode x3 = 0

In this operation mode, the moving platform is rotated about

and translated along an axis parallel to the xy-plane [17] from
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the identity condition. The rotational angle ϕ of the transforma-

tion can be enumerated directly from cos

(
ϕ
2

)
= x0, whereas the

translational distance s of the transformation can be computed

from the Study parameters [18], as follows:

s =
2y0√

x2

1
+ x2

2
+ x2

3

(22)

The condition x3 = 0 is valid for all poses of the manipulators

and the variables y0, y2, y3 can be solved linearly from the ideal

J2. All variables are substituted back into the matrix M, as:

T2 =

©­­­
«

1 0 0 0

h1(x2

1
− x2

2
) x2

0
+ x2

1
− x2

2
2x1x2 2x0x2

−2h1x1x2 2x1x2 x2

0
− x2

1
+ x2

2
−2x0x1

Z −2x0x2 2x0x1 x2

0
− x2

1
− x2

2

ª®®®
¬

(23)

where Z =
h1(x2

1
x0 − x2

2
x0)+2(x2

0
y1+ x2

1
y1+ x2

2
y1)

x2

It can be seen from the transformation matrix T2 that the

translational motions can be parametrized by y1 and the rota-

tional motions can be parametrized by x0, x1, x2 in connection

with x2

0
+ x2

1
+ x2

2
−1 = 0 [19].

SINGULARITY CONDITIONS

The 3-PRS parallel manipulators reach a singular configura-

tion when the determinant of its Jacobian matrix vanishes. The

Jacobian matrix is the matrix of all first order partial derivatives

of eight constraint equations {g1,g2,g3,g4,g5,g6,g7,g8} with re-

spect to the Study parameters {x0, x1, x2, x3, y0, y1, y2, y3}.
Since the mechanisms have more than one operation mode,

the singular configurations can be classified into two different

types, i.e. the configurations that belong to a single operation

mode and the configurations that belong to more than one opera-

tion mode. The common configurations that belong to more than

one operation mode allow the mechanisms to switch from one

operation mode to another operation mode.

The singular poses are examined by taking the Jacobian ma-

trix from each system of polynomial Ki (i = 1,2) and computing

its determinant Si : det(Ji) = 0. The determinant of each system

splits into two factors, as:

S1 : p13(x1, x2, x3, y0, y1, y2, y3, ta,r1,r2,r3) · x3

S2 : p13(x0, x1, x2, y0, y1, y2, y3, ta,r1,r2,r3) · x0

(24)

The first factors of S1 and S2 in Eq. (24) give the singularity

conditions inside the system K1 and the system K2, respectively.

Under these singularity conditions, the orientation capability of

the 3-PRS manipulator with different value of angle α in each

system Ki will be analysed hereafter.

The second factors of each determinant from Eq. (24) lead

to the singularity configurations that belong to the system K1

and the system K2 simultaneously, i.e. x0 = x3 = 0. These con-

figurations are the transition configurations that allow the 3-PRS

parallel manipulators to switch from K1 to K2 and vice versa.

ORIENTATION CAPABILITY ANALYSIS
In this paper, the Euler angles based on [20] (or w-u-w Euler

angles by Tsai [21]) are used to parametrize the orientation of the

moving platform. It is possible to represent the rotational parts of

the Study parameters in terms of the Euler angles (φ, θ,ψ) [22],

as follows:

x0 = cos( θ
2
) cos(φ

2
+

ψ

2
)

x1 = sin( θ
2
) cos(φ

2
− ψ

2
)

x2 = sin( θ
2
) sin(φ

2
− ψ

2
)

x3 = cos( θ
2
) sin(φ

2
+

ψ

2
)

(25)

An orientation capability of the 3-PRS parallel manipula-

tors based on [3, 4] is defined as the maximum tilt angle θ for a

given azimuth angle φ. The maximum orientation capability of

the moving platform depends mostly on the singularities which

are derived from the first factors of the determinant of the Ja-

cobian matrix in Eq. (24). The second factors are not consid-

ered since the corresponding singularities occur on the boundary

of each operation mode, namely when the platform is tilted by

θ = π. These singularities appear at the transition between the

two operation modes.

Orientation Capability in Operation Mode x0 = 0

In this operation mode, the variables y0, y1, y3 are solved lin-

early from the ideal J1. The prismatic lengths r1,r2,r3 are ob-

tained from the equations g4,g5,g6 in Eqs. (11-12), respectively.

All joint variables and the Study parameters are substituted into

the first factor of the determinant of the Jacobian matrix S1 :

det(J1) = 0, hence it is determined in terms of ta, x1, x2, x3, y2.

To obtain the orientation of the moving platform, the remain-

ing Study parameters are converted into the tilt and azimuth an-

gles in Eq. (26) and the corresponding transformation matrix M1

is shown in Eq. (27). The altitude of the moving platform Z can

be determined as function of parameter y2 and tilt and azimuth
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angles. The design parameters are assigned as h0 = 2m, h1 = 1m,

l = 5m.

x1 = sin( θ
2
)sin(φ), x2 = −sin( θ

2
)cos(φ), x3 = cos( θ

2
). (26)

M1 =

©­­­­­«

1 0 0 0

X 2c2

φ
c2

θ

2

−2c2

φ
−2c2

θ

2

+1 −2s2
θ

2

sφcφ 2s θ

2

sφc θ

2

Y −2s2
θ

2

sφcφ −2c2

φ
c2

θ

2

+2c2

φ
−1 −2s θ

2

cφc θ

2

Z 2s θ

2

sφc θ

2

−2s θ

2

cφc θ

2

2c2
θ

2

−1

ª®®®®®
¬

(27)

where

X = − s2
θ

2

(2c2

φ −1)

Y = 2s2
θ

2

sφcφ

Z =

2c2

φ
c3

θ

2

−2c2

φ
c θ

2

− c3
θ

2

+ c θ

2

−2y2

s θ

2

sφ

(28)

where cφ = cos(φ), sφ = sin(φ), c θ

2

= cos( θ
2
), and s θ

2

= sin( θ
2
).

Figures 2-3 represent the singularity loci of the 3-PRS par-

allel manipulators for five values of parameter angle α, i.e. five

designs of the 3-PRS parallel manipulator, at altitude Z = 1m and

Z = 4m, respectively. For a given value of azimuth angle φ, the

workspace of the 3-PRS parallel manipulator with α = 0
◦ (the

prismatic joints are coplanar to the base) increases with the alti-

tude of the moving platform. Indeed, at the altitude Z = 1m, the

orientation of the moving platform is very limited in which θ is

lower than 15
◦. When the moving platform reaches the altitude

Z = 4m, the mechanism can tilt up to 60
◦ for φ = 30

◦ without

reaching any singularity.

When the prismatic joints of the 3-PRS parallel manipula-

tor are assembled with angle α = 30
◦, α = 45

◦, and α = 60
◦,

the manipulators have larger orientation workspace free of sin-

gularity. The workspace of the 3-PRS parallel manipulator with

α = 30
◦ is considerably large and the moving platform can tilt

up to θ = 90
◦ at φ = 30

◦,150
◦,−90

◦ while the manipulator does

not reach any singularity. The orientation capability of the 3-

PRS parallel manipulator with α = 90
◦ (the prismatic joints are

parallel to each other along z-axis) is relatively constant either at

lower or at higher altitude.

Orientation Capability in Operation Mode x3 = 0

The variables y0, y2, y3 in this operation mode are solved

linearly from the ideal J2. The prismatic lengths r1,r2,r3 can

are obtained from the equations g4,g5,g6 in Eqs. (11-12), re-

spectively. All joint variables and the Study parameters are

substituted into the first factor of the determinant of the Jaco-

bian matrix S2 : det(J2) = 0, hence it is determined in terms of

ta, x0, x1, x2, y1.

To obtain the orientation of the moving platform, the remain-

ing Study parameters are converted into the tilt and azimuth an-

gles in Eq. (29) and the corresponding transformation matrix M2

is shown in Eq. (30). The altitude of the moving platform Z can

be determined as function of parameter y1 and tilt and azimuth

angles. The design parameters are assigned as h0 = 2m, h1 = 1m,

l = 5m.

x0 = cos( θ
2
), x1 = sin( θ

2
)cos(φ), x2 = sin( θ

2
)sin(φ). (29)

M2 =

©­­­­­
«

1 0 0 0

X −2c2

φ
c2

θ

2

+2c2

φ
+2c2

θ

2

−1 2s2
θ

2

sφcφ 2s θ

2

c θ

2

sφ

Y 2s2
θ

2

sφcφ 2c2

φ
c2

θ

2

−2c2

φ
+1 −2s θ

2

c θ

2

cφ

Z −2s θ

2

sφc θ

2

2s θ

2

cφc θ

2

2c2
θ

2

−1

ª®®®®®¬
(30)

where

X = s2
θ

2

(2c2

φ −1)

Y = −2s2
θ

2

sφcφ

Z =

2c2

φ
c3

θ

2

−2c2

φ
c θ

2

− c3
θ

2

+ c θ

2

−2y1

s θ

2

sφ

(31)

where cφ = cos(φ), sφ = sin(φ), c θ

2

= cos( θ
2
), and s θ

2

= sin( θ
2
).

The singularity loci of the 3-PRS parallel manipulators for

five values of parameter angle α, i.e. five designs of the 3-PRS

parallel manipulator, at altitude Z = 1m and Z = 4m are shown

in figs. 4-5. In this operation mode, the orientation capability

of the 3-PRS parallel manipulators has the same behaviour as in

the operation mode x0 = 0. When the prismatic joints are as-

sembled coplanar to the base, the orientation capability of the

moving platform is very limited at the altitude Z = 1m and it in-

creases significantly at the altitude Z = 4m. The moving platform

can tilt up to θ = 90
◦ at φ = −30

◦,90
◦,−150

◦ without being in the

singularities.

The higher the altitude Z of the moving platform, the smaller

the orientation workspace of the manipulator for α = 30
◦, α =

45
◦, and α = 60

◦. When the prismatic joints are assembled in
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Figure 2: SINGULARITY LOCI IN OPERATION MODE x0 =

0, AT Z = 1m.
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Figure 3: SINGULARITY LOCI IN OPERATION MODE x0 =

0, AT Z = 4m.
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Figure 4: SINGULARITY LOCI IN OPERATION MODE x3 =

0, AT Z = 1m.
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Figure 5: SINGULARITY LOCI IN OPERATION MODE x3 =

0, AT Z = 4m.
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such a way that α = 60
◦, the moving platform can tilt maximally

up to ±7.5◦ at the altitude Z = 4m. For the 3-PRS parallel ma-

nipulator with α = 90
◦, the orientation capability of the moving

platform is relatively constant either at lower or at higher alti-

tude. However, its workspace in the operation mode x3 = 0 is

bigger than in the operation mode x0 = 0.

TRANSITION OF OPERATION MODES
The 3-PRS parallel manipulators may switch from one op-

eration mode to another operation mode by passing through a

constraint singularity. This singularity lies in the set x0 = x3 = 0.

From practical point of view, the singularity surface is desirable

also in the joint space as a function of angle α. The condition

x0 = x3 = 0 is substituted into one of the systems K1 or K2. Then

all Study parameters are eliminated to obtain a single polynomial

generated by r1, r2, r3, ta.

The design parameters are assigned as h0 = 2m, h1 = 1m,

l = 5m and the first prismatic length is assigned as r1 = 0. The

Study parameters are eliminated and the computation yields a

polynomial of degree 16 in r2, r3 and degree 24 in ta. Figure 6

represents the singularity surface of the manipulator under study

as a function of variables r2, r3 and parameter ta.

Figure 6 shows that the workspace of the mechanism be-

fore changing the operation mode is symmetrical with respect to

ta = 0 (α = 0). By taking a point on this surface, we are able to

compute the direct kinematics of at least one singularity pose. By

selecting five designs of the 3-PRS parallel manipulators, i.e. five

different values for angle α, the cross sections of the singularity

surface in Fig.6 is shown in Fig. 7. It is shown that the largest

joint space of the mechanism which is free of operation mode

changing, occurs when the prismatic joints are assembled copla-

nar to the base (α= 0). The 3-PRS parallel manipulators in which

the prismatic joints are assembled with α = 30
◦ and α = 60

◦ will

have similar singularity conditions since their curves are coinci-

dent.

CONCLUSIONS
In this paper, an algebraic geometry based approach was

applied to analyse the operation modes and the singularities of

the 3-PRS parallel manipulator with different arrangements of

prismatic joints. A primary decomposition of an ideal of eight

constraint equations revealed that the 3-PRS parallel manipula-

tor has always the same number and types of operation modes,

namely x0 = 0 and x3 = 0, no matter the angle α between the

horizontal base of the manipulator and the directions of the actu-

ated prismatic joints. The interpretation of these operation modes

was provided. The singularity conditions were computed. Under

the singularity conditions, the orientation capabilities for five dif-

ferent designs of the 3-PRS manipulators were obtained. These

orientation capabilities were presented in Euler angles and were

0
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discussed for both operation modes. It turns out that the when

the prismatic joints of the 3-PRS are assembled parallel to each

other and vertically (α = 90
◦), the moving platform orientation is

relatively constant in both operation modes. When the prismatic

joints are coplanar to the base (α = 0
◦), the higher the altitude Z

of the moving platform, the larger the orientation workspace

of the manipulator free of singularity in both operation modes.

For the 3-PRS parallel manipulators with α = 30
◦, α = 45

◦, and

α = 60
◦, the higher the altitude Z of the moving-platform, the

smaller the orientation workspace of the manipulator free of sin-

gularity in both operation modes. The transition of the operation

modes were analysed and represented in the joint space. It turns

out that the maximum workspace before changing the operation

mode is obtained by with the 3-PRS parallel manipulator with

coplanar prismatic joints (α = 0
◦). The investigation of colli-

sions and the analysis of kinematic performances of 3-PRS will

be the subject of future work.
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