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Abstract

Nowadays, real-world pervasive computing applications increasingly face multi-

objective problems. This is the case for recommendation systems where, from a user’s

view point, recommended items must be both accurate and diverse.

In recent years, model-based recommendation systems like those relying on Multi-

Armed Bandit algorithms have been extensively studied. They are known to ensure the-

oretical guarantees of global accuracy. Nevertheless, despite these guarantees, the ex-

isting algorithms obtain different results depending on the application or on the dataset

they operate on. Hence, when one needs to integrate such solutions, they should first

be thoroughly evaluated to ensure the chosen method is efficient for the dynamic and

potentially non-stationary nature of the target environments. However, human-based

evaluations cost in time and money. Here, we propose a novel algorithm portfolio ap-

proach, Gorthaur-EXP3 aiming at automatically selecting the optimal algorithms which

best maximise global accuracy and diversity of recommendations according to a prede-

fined trade-off. Our method uses the EXP3 bandit algorithm which ensures a contin-

uous exploration and a systematic exploitation of the best algorithm to apply in each

situation it encounters. Gorthaur-EXP3 is an extension of the original Gorthaur method,

which uses a roulette wheel selection, and obtains better results in most experimental

cases.
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1. Introduction

In recent years, bandit-based recommendation systems have been widely evaluated

offline and online [1, 2, 3, 4, 5]. Whether they are contextual (Contextual Multi-Armed

Bandit : CMAB) [6] or not (Multi-Armed Bandit : MAB) [7], they rely on theoretically

grounded proofs and offer strong guarantees for various applications.

Nevertheless, MAB and CMAB algorithms [1, 8, 9] give different experimental re-

sults [10] for both global accuracy and diversity [11] depending on the dataset they use.

Those differences can be explained by the nature of the data on which the algorithms are

trained, for instance their fairness [12] (e.g., calibration within groups, balance for the

negative class, balance for the positive class) or the presence of intrinsic biases. Indeed,

since recently, the 2018 Turing Award winner Yann Lecun argues that ”Data is biased, in

part because people are biased. But learning algorithms themselves are not biased. Bias in data

can be fixed. Bias in people is harder to fix.” Such bias in datasets can partly explain the

variety of results that are obtained by identical algorithms on different data.

The above considerations that are true for both offline and online applications, led us

to develop a novel approach for the bi-objective meta-selection of learning algorithms

from a portfolio. The first version of our approach entitled Gorthaur and presented in

[13], aimed at maximising both criteria of global accuracy and diversity of the recom-

mendations made to users. The principle of Gorthaur was to use a roulette wheel to

select algorithms proportionally to their ability to maximise the two criteria according

to a desired predefined trade-off. We will now refer to the original Gorthaur as Gorthaur-

Wheel. This heuristic-based meta-selection approach chooses, from a given set or port-

folio of algorithms, the ones which are the most adapted to reach the desired trade-

off (accuracy/diversity) for a given situation. Gorthaur-Wheel obtains consistent results

which have been compared and validated with those of each algorithm in the portfolio.

However, even though Gorthaur-Wheel obtains encouraging results, it still suffers from

an important loss of global accuracy compared to the best algorithm in the portfolio.

Depending on the requirements of the recommendation system in which the method is
Preprint submitted to Information Sciences July 24, 2020



to be integrated, it could be wise to explore another algorithm selection strategy. We be-

lieve that the theoretical guarantees provided by a model-based selection mechanism,

should enhance the method and provide more robustness.

Hence, in this article we propose a novel algorithm selection approach for Gorthaur-

EXP3 and compare it with the original Gorthaur-Wheel method [13] in terms of global

accuracy and diversity. Gorthaur-EXP3 is similar to Gorthaur-Wheel but uses an EXP3

bandit algorithm to select algorithms among its portfolio. Thus, Gorthaur-EXP3 ensures

that the optimal algorithm that best meets the optimization criteria ends up being sys-

tematically chosen.

Herein, we focus on the global accuracy and diversity results obtained by Gorthaur-

EXP3’s algorithm selection approach in different use cases. They are evaluated and

compared to those obtained by Gorthaur-Wheel in different cases: stationary environ-

ment and non stationary environment; using a mechanism that shares rewards among

the algorithms of the portfolio and with no reward sharing mechanism.

We observe that, for most experiments, Gorthaur-EXP3 obtains better results than the

original Gorthaur-Wheel method:

1. In stationary environments, whether rewards are shared or not, Gorthaur-EXP3 sys-

tematically outperforms the original Gorthaur-Wheel method except for the non con-

textual case.

2. In non stationary environments, when rewards are not shared, Gorthaur-EXP3 sys-

tematically outperforms the original Gorthaur-Wheel method.

3. In non stationary environments, when rewards are shared, Gorthaur-EXP3 is bet-

ter than the original Gorthaur-Wheel method for concept-drift/shift cases. This is

not the case for covariate-shift for which the original Gorthaur-Wheel obtains better

results.

The paper is organised as follows. Section 2 clarifies our motivations along with the

problem. Section 3 reviews the related work on MAB and CMAB problems for rec-

ommendation and sheds light on meta-selection of learning algorithms. This section

also presents preliminary studies that were carried out to evaluate the individual algo-

rithms included in the portfolio of recommendation algorithms. Section 4 describes the

method we propose: Gorthaur-EXP3. Section 5 depicts our experimental evaluation; the
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results of which are presented and discussed in Section 6. Finally, Section 7 presents our

conclusion and perspectives.

2. Motivation and problem

The experiments that have been carried out to evaluate MAB or CMAB based recom-

mendation systems have shown that no single algorithm is suited for all situations. Of

course, CMAB algorithms are those that fit best when contextual information is avail-

able, while MAB algorithms should be preferred when it is missing. However, perfor-

mances also depend on cases that are encountered by recommendation systems. For

instance, some methods perform better than others when facing non-stationary envi-

ronments where the rewarding distribution changes over time.

Moreover, in the case of recommendation systems, we believe that the accuracy metric

which reflects the proportion of successful arm selections (or recommendations) is not

sufficient to evaluate the performance of the system and should be extended with a

diversity metric. Indeed, by diversifying the recommendations it provides, the system

is more likely to explore new actions and is more able to discover new relevant items

that fit user preferences, through serendipity.

Thus, we advocate that, a multi-armed bandit based recommendation system should

not solely rely on one MAB/CMAB algorithm for all its recommendations, but rather

should choose an algorithm from a pool of available methods for each recommendation

it provides depending on the data and situation it is faced with. In this work we pro-

pose to provide the recommendation system with a portfolio of MAB and CMAB algo-

rithms from which to choose for making its recommendations. We propose to consider

the algorithm selection as a bi-objective optimization problem in which a target trade

off between global accuracy and diversity of recommendations should be reached. We

have carried out preliminary studies of such a portfolio approach using a roulette wheel

selection mechanism based on the fitness of each algorithm in the portfolio to meet the

accuracy/diversity trade-off. We obtained very interesting first results [13]. In this arti-

cle, we propose to enhance the method by considering its algorithm selection phase as

a MAB problem and using a dedicated algorithm to solve it.
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3. Related work and background

In this section we start by reminding the non-contextual and contextual Multi-Armed

Bandit (MAB and CMAB) problems, and the main algorithms used to solve them. In

a second part we present how recommendation can be seen as a Multi-Armed Bandit

problem. With this approach, items to be recommended represent the arms of the MAB

or CMAB problem and the aim of the problem is to select an item that is most likely to

best fit the recommendation request, using an appropriate algorithm.

3.1. Multi-Armed Bandits and Recommendation

The Multi-Armed Bandit (MAB) problem has been extensively studied since its first

formulation by [7] in 1952.

The problem can be illustrated simply by considering a player facing slot machines

(one-armed bandits) in a casino. The player’s aim is to pull the most rewarding arm each

time a coin is inserted in the slot machine. The MAB problem refers to the challenge of

developing a strategy aimed at determining, at each turn, an arm to pull (without any

initial prior knowledge of the payoff rate of each of them) in order to maximise the

total gain. One must thus find a trade-off between the exploration needed to estimate

the value of each arm, and the exploitation which consists in relying on the knowledge

learnt from past experiences to select the best rewarding arms.

An extended version of this problem, known as the Contextual Multi-Armed Bandit

Problem CMAB [6, 9], takes contextual information into account. More precisely, with

CMAB problems, it is considered that the reward of an arm depends on the context. The

challenge thus becomes, at each turn, to choose the best rewarding arm according to the

context.

Several solutions to the MAB and CMAB problems have been developed: some us-

ing stochastic formulations [14, 15], others using Bayesian [16] approaches. MAB and

CMAB problems have been adapted to fit the requirements of recommendation sys-

tems. Thus, several works have used MABs to model recommendation problems and

experimented the use of algorithms such as UCB [14], Thompson Sampling (TS) [16] and

EXP3 [8] to solve them. Similarly, contextual recommendation problems, in which the

fitness of a recommendation depends on the context, have been modeled as CMABs.
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Algorithms such as LinUCB [1], Linear Thompson Sampling (LinTS) [9] have been widely

experimented to solve them.

The following subsection formally describes the MAB and CMAB problems for rec-

ommendation and depicts the notion of regret in such settings.

3.1.1. Multi-Armed Bandits for recommendation

Hereafter, based on the original definition of the Multi-Armed Bandit (MAB) problem,

we formally describe the MAB problem for recommendation, algorithms that solve this

problem and the notion of regret.

The Multi-Armed Bandit (MAB) problem for recommendation. Let A = {a1, . . . , ak}

be a set of k independent arms to be pulled. In the specific case of recommendation,

there exists an item to be recommended corresponding to each arm. Let Dr denote the

distribution of the reward expectancy of the items to be recommended. Therefore, Dr =

(µa1 , . . . , µak ) ∈ [0, 1]k, where µai ∈ [0, 1] is the reward probability when recommending

item ai, i ∈ [1, k] ∩N. The problem is sequential: at each iteration t ∈ [1, T], a user

u ∈ U arrives and is considered. First, a sample (ra1 , . . . , rak ), rai ∈ {0, 1} is drawn from

Dr. Then one item ai ∈ A is chosen by the player (the recommender) and recommended

to u. Finally, user u’s reward rai is revealed: 1 if the user appreciated the recommended

item and 0 otherwise.

MAB algorithms for recommendation. At each iteration t, a MAB algorithm A for rec-

ommendation determines an item ai ∈ A, A = {a1, . . . , ak} to recommend, based on the

previous sequence of t− 1 observations (ai,1, rai ,1), . . . , (ai,t−1, rai ,t−1). On receiving the

recommendation the user evaluates it and returns a feedback to the player (the recom-

mender) was a success and 0 otherwise. Upon receiving the user’s feedback the player

updates the rewards vector ~rt.

The player’s goal is to maximise the expected total reward ∑T
t=1 E~rt∼D[ra,t ]. An opti-

mal policy knows each item’s average reward and recommends item a∗ with the highest

average reward, i.e., a∗ = arg max
a∈A

(µa).

Thus, in order to determine the efficiency of a MAB algorithmA for recommendation,

we should measure the cumulative regret it obtains ρT(A) (where T is the Horizon) and
6



compare it to that obtained by the optimal policy. We can therefore define the regret as

follows.

Regret in MAB problems for recommendation. In the case of bandit-based recommen-

dation systems, a gain can be considered as a successful recommendation to a user u,

and a regret as a failure. Let g∗T = ∑T
t=1 ra∗ ,t the gain obtained by an optimal policy at

horizon T. Then, the gain expectancy of the optimal policy is E[g∗T ] = T µ∗. Let A be a

MAB algorithm for recommendation. The cumulative regret of an algorithm having rec-

ommended the following sequence of items ai,1, . . . , ai,T is therefore ρT = g∗T −∑T
t=1 rai ,t.

3.1.2. Contextual Multi-Armed Bandits for recommendation

Herein, from the original Contextual Multi-Armed Bandit (CMAB) problem definition

proposed by Langford in 2008 [6], we formally describe the CMAB problem for recom-

mendation, algorithms that solve this problem, and the notion of regret when using a

context-aware approach.

Contextual Multi-Armed Bandit (CMAB) problems for recommendation. Let A =

{a1, . . . , ak} be a set of k independent arms to be pulled, for each of which, in the case

of recommendation, there exists an item to be recommended. Let Dx,r denote the joint

distribution between contexts x and rewards r, such that Dx,r = (x, ra1 , . . . , rak ), where

x ∈ X∩Rd is a context, and rai ∈ {0, 1} is the reward associated to item ai, i ∈ [1, k]∩N.

The problem is sequential: at each iteration t, a sample (x, ra1 , . . . , rak ) is drawn from

Dx,r, user u with his/her context x arrive and are observed, then an item a is selected

by the player, recommended to u and its reward ra is revealed (1 if the user appreciated

the recommended item, 0 otherwise).

CMAB algorithms for recommendation. At each iteration t a CMAB algorithm A de-

termines an item to recommend ai ∈ A, A = {a1, . . . , ak}. This choice is based on the

previous sequence of observations (x1, ai,1, rai ,1), . . . , (xt−1, ai,t−1, rai ,t−1) and the current

observed context xt. The algorithm then updates the rewards vector ~rt according to the

user’s feedback.

The goal is to maximise the expected total reward ∑T
t=1 Ex,~rt∼D[ra,t ]. Let Π : X → A

be the set of possible recommendation policies where the optimal policy to be deter-
7



mined is π∗ = arg maxπ∈Π Er,x[rt,π(x)]. Thus, in order to determine the efficiency of a

CMAB algorithm A for recommendation, we can measure the cumulative regret it ob-

tains ρT(A) and compare it to that obtained by the optimal recommendation policy. We

can therefore define the regret as follows.

Regret in CMAB problems for recommendation. In the case of context-aware bandit-

based recommendation systems, a successful recommendation given to a user u in con-

text x is considered a gain; whereas, a failed recommendation is a regret. The expected

reward for a recommendation policy π ∈ Π is:

R(π) = E(x,~r)∼D[rπ(x)]

Consider any CMAB algorithm A. Let ZT = {(x1, ~r1), . . . , (xT , ~rT)}, and the expected

regret of A with respect to policy π be:

∆ρ(A, π, T) = T R(π)−EZT∼DT

T

∑
t=1

rA(x),t

The expected regret of A up to horizon T with respect to the recommendation policy

space Π is then defined as:

∆ρ(A, Π, T) = sup
π∈Π

ρ(A, π, T)

3.1.3. Limits of MAB and CMAB

Despite the theoretically grounded guarantees that MAB and CMAB algorithms en-

sure, we observe different results depending on the nature of the real-world applications

or the offline datasets [13]. Thus, when one needs to deploy a machine learning model-

based recommendation system in the real-world, it is necessary to consider beforehand

which algorithm could best meet the application needs. Moreover, we should ensure

the system provides both accurate and diversified recommendations.

3.2. Meta-selection of learning algorithms

In order to maximize the performance of online recommendation systems, a solution

could consist in choosing the best algorithm from the state-of-the art. Unfortunately,

without prior knowledge, there is no ”best” algorithm for all cases. We advocate that a
8



selection mechanism should be used to dynamically choose the algorithm that best fits

the application or dataset.

The problem of selecting an efficient algorithm was introduced by [17] as a general

scheme. Given a problem space and an algorithm space, the basic idea is to find an

algorithm/problem pair that identifies the best algorithm for the specific problem (in-

stance). In the case of combinatorial optimization, algorithm selection has been exten-

sively studied over the past two decades [18] and has obtained competitive results for

the SAT problem [19].

Reinforcement learning is one approach used by meta-heuristic algorithms for pa-

rameter tuning. For example in [20], UCB-based algorithms are used to provide better

strategies for the Adaptive Operator Selection (AOS) issue in Evolutionary Algorithms.

More precisely, the authors present several parameter control mechanisms to tackle the

selection of mutation and crossover operators during the online-phase. Each operator

is considered as an arm and the reward function (credit assignment) is computed. To

avoid confusion, we consider the diversity in the prism of recommendation systems,

i.e., where it corresponds to the diversity of the arms chosen by the MAB/CMAB algo-

rithms and not to the diversity of the population (e.g., entropy between individuals).

In the case of MAB problems and considering an online evaluation, several ap-

proaches have been developed and meta-selection of learning algorithms can be sum-

marized to the dynamic selection of an algorithm in a portfolio [21, 22, 23]. To imple-

ment this approach, first, the set of algorithms contained in the portfolio needs to be

chosen. This choice is presented and discussed in section 3.5. Then, an adequate algo-

rithm selection mechanism should be defined. We now present two selection strategies

which inspired our approach.

3.2.1. Selection of learning experts

In [24], the authors present a novel meta-selection approach based on the selection of

what they refer to as ”learning experts” using EXP3. They consider a learning expert

as being a contextual multi-armed bandit algorithm. At each iteration, a player chooses

the expert that selects an action after observing the context vector representing the en-

vironment. Each expert aims at minimizing its own estimation error and the player

estimates the experts’ performances.
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The authors argue that exploration is done by an efficient grounded algorithm and

the bias of experts, e.g., sensibility to the context, is reduced by selecting the best one.

Two algorithms are proposed to handle meta-selection: Learn, Then Explore and Exploit

- LTEE and Learn, Explore and Exploit - LEE. LTEE is a 2-steps algorithm. During the

first step, the learning phase, each expert can be selected and evaluated. For the second

step, an optimal expert is elected after having successively eliminated experts according

to identified rejection criteria. Despite good performances in theory, in practical cases

the complexity can be impacted negatively by the complexity of the worst expert. To

improve the results, with the LEE algorithm, learning, exploration and exploitation are

handled in parallel and done simultaneously.

3.2.2. Multi-objective selection with Gorthaur-Wheel

To deal with multiple performance criteria, Multi-Objective Multi-Armed Bandit

methods [25] such as MO-MAB [26, 27] or MOC-MAB [28] (contextual version) have

been proposed. With classical CMAB problems the agent aims at maximizing its cu-

mulative reward on a single-objective. Contrarily, with MOC-MAB the agent aims at

maximizing its cumulative reward for a non-dominant objective while ensuring that it

also maximizes the cumulative reward it obtains for a dominant objective. However,

those approaches aggregate a set of performance criteria into one. Hence, inducing a

mono-objective resolution.

Moreover, the dominant and non-dominant objectives may be conflicting and thus,

the maximization of both objectives can be detrimental for the performance of an entire

offline simulation or a whole online evaluation. Hence, to ensure keeping the perfor-

mance of each of the selected MAB or CMAB algorithms without having to deal with

contradictory objectives, we preferred to implement a portfolio method [13] which se-

lects the algorithms that best fit the bi-objective trade-off that is set a priori according to

application requirements.

In [13], we have implemented a bi-objective portfolio approach aimed at selecting

bandit-based recommendation algorithms by maximising two criteria: Global accuracy

and diversity. This method entitled Gorthaur-Wheel, uses a roulette wheel to dynami-

cally select multi-armed bandit algorithms used for recommendation. According to the

first results obtained, we observe that the advantage of using Gorthaur-Wheel is twofold:
10



1) The method manages to find a trade-off in cases where there is no prior knowledge

about the nature of the dataset or the recommendation application to deploy; 2) For a

given dataset, Gorthaur-Wheel is able to identify a set of optimal algorithms.

Nevertheless, depending on the needs of the recommendation system, it may be

preferable to use a Multi-Armed Bandit selection instead of a Roulette wheel. It would

be the case when one prefers to select the optimal algorithm rather than a set of them

proportionally. Thus, in this article we propose a novel approach Gorthaur-EXP3 built

upon the combination of the original Gorthaur-Wheel algorithm [13] and the EXP3 se-

lection of learning experts [24] (where algorithms of the portfolio are considered as ex-

perts).

Herein, our main motivations for comparing a bandit-based and a roulette wheel

selection strategy are twofold:

1. We need to shed light on which method allows to best meet the two criteria that we

wish to optimise in stationary environments ; i.e., global accuracy and diversity of

recommendations.

2. Since online applications of recommendation systems have to deal with non-

stationarity, we need to know which strategy is able to best cope with this issue.

3.3. The original Gorthaur-Wheel method

According to the literature on recommendation systems, the evaluation of multi-

armed bandit algorithms are most often based on the cumulative rewards (or regret)

they obtain. This means such recommendation systems aim at maximising the global

accuracy, which in this specific application case can be at the expense of low diver-

sity. The principle of Gorthaur-Wheel (Generic-ORienTed Heuristic Algorithm for User

Recommendation) [13] relies on the use of a portfolio of MAB/CMAB algorithms for

recommendation and uses a roulette wheel strategy to select them. The objective of

Gorthaur-Wheel is to maximise the trade-off between global accuracy and diversity ac-

cording to a given target. The main goal of Gorthaur-Wheel, inspired by the Compass

method [29], is thus to benefit from the advantage of each algorithm in the portfolio on

both these criteria.

As presented in [13] and illustrated on Figure 1, let ∆Acc denote the variation of

global accuracy on the vertical axis, and ∆Div denote the variation of diversity on the
11



horizontal axis. At the starting point t0, we express a reference vector ~c defined by the

angle Θ ∈ [0; π
2 ] made by ~c with the horizontal axis (∆Div). This reference vector ~c

expresses the trade-off required between global accuracy and diversity. According to

the value of Θ we set, we can choose to favor global accuracy, diversity, or to compute

a balance between both criteria.

Figure 1: Gorthaur’s projections on reference vector c to compute fitness

Let B denote a set of recommendation algorithms all having the same fixed number

of arms. At each iteration t, Gorthaur selects an algorithm b ∈ B which itself chooses an

arm a to recommend according to its own strategy. Then, Gorthaur computes the global

accuracy acc(b, t) of algorithm b at iteration t and its diversity div(b, t).
12



acc(b, t), the average global accuracy is defined by:

acc(b, t) =
g(b, t)

tb
(1)

where g(b, t) = ∑t
t=1 r(b, t) is the sum of rewards obtained by algorithm b at iteration

t, ∀t ∈ [1; T], and tb is the number of times algorithm b was selected by Gorthaur-Wheel

since the initial time step t0.

div(b, t) is the diversity obtained by algorithm b at iteration t and is defined as fol-

lows. By considering Nb,t = {na1(b, t), . . . , nak (b, t)} where naj(b, t) is the total number

of times arm aj was recommended by algorithm b at time step t, we formally define

cν(Nb,t) =
σ(Nb,t)

Nb,t
where Nb,t is the average number of times any arm has been selected

by algorithm b at trial t, and σ(Nb,t) is its standard deviation. Then, the resulting diver-

sity for each algorithm b at trial t is:

div(b, t) = 1−
cν(Nb,t)√

k
(2)

The ability of an algorithm to provide recommendations that are both accurate and

diversified is then expressed by a vector ob,t such that:

ob,t = (div(b, t), acc(b, t))

The measured values of div(b, t) and acc(b, t) are then normalised as follows:

divnorm(b, t) =
div(b, t)

max{div(b, t)}

and

accnorm(b, t) =
acc(b, t)

max{acc(b, t)}

This allows the computation of a normalised vector:

onorm
b,t =

(
divnorm(b, t), accnorm(b, t)

)
(3)

Gorthaur-Wheel then continues with the algorithm selection step using a roulette

wheel method [13] which relies on the fitness fb,t of each algorithm. Namely, the fitness

fb,t is obtained using the projection of the normalised vector onorm
b,t over the reference

13



vector ~c (see Figure 1). It is thus possible to compute the fitness fb,t for each algorithm

b ∈ B at iteration t as follows:

fb,t = |onorm
b,t | cos αb,t −minb{|onorm

b,t | cos αb,t} (4)

Then, at each iteration t, Gorthaur-Wheel chooses an algorithm b ∈ B with a probability

pb,t defined as follows:

pb,t =
fb,t + ξ

∑
|B|
i=1 fbi ,t + ξ

(5)

where ξ = 2−1074 is a constant which both avoids dividing by 0 and ensures that, at

each step, each algorithm has a minimum probability of being selected by the roulette

wheel.

The selection of arm/item a ∈ A is then processed according to the strategy of algo-

rithm b chosen by Gorthaur-Wheel. Finally, reward rt is observed and algorithm b’s pa-

rameters are updated (e.g., average reward of each arm, reward expectancy for ε-Greedy

[30], response vector and covariance matrix in the case of LinUCB [1]).

In [13] it was observed that Gorthaur-Wheel selects algorithms (among its portfolio)

which best fit the datasets or cases it encounters. This is a major advantage when deal-

ing online with real-world applications. The performance of such an approach thus

depends on both 1) the algorithms in the portfolio and 2) the strategy used to select an

algorithm from the portfolio. Our first experiments with Gorthaur-Wheel related in [13]

aimed at validating the portfolio approach implemented in Gorthaur-Wheel showed that

in the case of recommendation, the method managed to cope with different types of

datasets. Of course, Gorthaur-Wheel chose CMAB algorithms when faced with contex-

tual settings and MAB algorithms for non-contextual problems. Also, with the datasets

that it was experimented on, Gorthaur-Wheel was able to choose the algorithms that were

most efficient in reaching the required accuracy/diversity target trade off. In this article

we concentrate on the algorithm selection method. Here, rather than using a Roulette

wheel selection based on each algorithm’s fitness, we consider the selection of algo-

rithms from the portfolio as a MAB problem and use the EXP3 MAB algorithm to solve

it.
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3.4. Selection strategy: EXP3

EXP3 stands for EXPonential-weight algorithm for EXPloration and EXPloitation [8, 31]

and has been implemented to handle the non-stochastic adversarial multi-armed bandit

problem. In this case, we assume that rewards obtained for the sequence generated by

the Markov process are defined by an adversary (conscious or consciousless). EXP3

operates by using reward estimates to produce a distribution over the arms. It basically

maintains those estimations through a list of weights, one for each arm, and uses these

weights to randomly select the arm to pull. Then, it receives a payoff for the chosen

action (arm) and updates the weight with respect to this returned value of the payoff.

Furthermore, in EXP3 we introduce η ∈]0, 1] which is an egalitarianism factor aiming

at adding more or less random selections (the closer η is to 1, the less the weights have

an effect on the selection of the arms).

Namely, when using EXP3, the probability to choose arm a at iteration t is defined as

follows:

Pa,t = (1− η)
wa,t

∑k
i=1 wai ,t

+
η

k

where wa,t+1 = wa,t exp
(

η
ra,t

pa,tk

)
if arm a was selected at iteration t and ra,t was the

corresponding reward. Otherwise wa,t+1 = wa,t. It has been proven for EXP3 [8] that

for a set of k arms, the regret upper bound ρT ≤ c
√

kT ln(k) where c is a fixed constant.

One of the main advantages of using EXP3 is that it continually explore sub-

optimal actions. This property of EXP3 should ensure robustness with respect to non-

stationarity in cases where the model changes over time. Thus, even though EXP3 gen-

erally obtains lower payoffs than other algorithms (see Table 1) due to its continuous

exploration, it can adapt well to changing situations.

Since our new proposal for Gorthaur-EXP3 uses an EXP3 selection strategy, the EXP3

algorithm is reminded in Algorithm 1.

3.5. Background studies

In order to determine the best competitive algorithms to include in Gorthaur-EXP3’s

portfolio, we have carried out a preliminary study to evaluate several MAB and CMAB

algorithms manually [11, 13, 32]. The results we obtained are presented in Table 1 and
15



Algorithm 1 - EXP3 algorithm

Require: The set of k arms a ∈ A; horizon T; η ∈]0, 1]; ∀a ∈ A, wa = 1.

for t = 1 to T do

for i = 1 to k do

Set Pai ,t = (1− η)
wai ,t

∑k
j=1 waj ,t

+ η
k

end for

Select arm at randomly according to the probabilities Pa1,t, . . . , Pak ,t

Receive reward rat ,t

for j = 1 to k do

r̂aj ,t =


raj ,t

paj ,t
if aj = at

0 otherwise

Update waj ,t+1 = waj ,t exp
(

η
k r̂aj ,t

)
end for

end for

will be considered as the reference when evaluating the results obtained by Gorthaur-

EXP3’s Bandit based selection strategy.

Furthermore, in our previous work [13] we noticed that EXP4.P [31] and ε-Greedy

do not give any significant advantage to Gorthaur’s portfolio compared to other algo-

rithms. Moreover, we observed in [32] that a balance between the number of MABs and

of CMABs in the portfolio helped reach a higher global efficiency (accuracy and diver-

sity). Thus, in this work, we decide to remove ε-Greedy [30] and to replace EXP4.P by

SW-LinUCB [11] in order to, both, better deal with non stationarity and increase diver-

sity.

4. Method

4.1. Problem setting

In most real-world applications that recommend items to users, the criteria of global

accuracy and diversity (See Section 3.3) are both important to consider [33] in order

to make relevant recommendations and prevent users from being bored by the redun-

dancy of similar recommendations. Thus, herein we state our problem as a bi-objective
16



Global Accuracy Diversity

Control CMABs CMABs

RS-ASM (ff) LinUCB SW-LinUCB

Food LinUCB, LinTS SW-LinUCB

RS-ASM (sf) LinUCB, LinTS SW-LinUCB

Movie Lens LinUCB, LinTS SW-LinUCB

Jester UCB1, TS EXP3

RS-ASM (season) LinUCB, LinTS SW-LinUCB

RS-ASM (LS10k-T) UCB1, TS EXP3

RS-ASM (LS10k-30k) LinUCB SW-LinUCB

Table 1: Best algorithms for each dataset and each criterion

optimization problem where the goal is to maximise the global accuracy and the diver-

sity of recommendations made to users. Formally, it can be stated as follows [13]:

max(div(t); acc(t)) s.t. t ∈ [1, T]

In the case of our portfolio approach, at each time step t, one algorithm b ∈ B is selected

from the portfolio such that:

b = argmaxbi∈B(div(bi, t); acc(bi, t))

Basically, our new method Gorthaur-EXP3, presented in the next section, uses a selec-

tion algorithm based on a MAB algorithm (EXP3) and is not able to manage a tuple

as a reward but only a single value. Hence, this requires to aggregate both measures

of accuracy and diversity. The level of aggregation that defines the balance of accu-

racy/diversity, is set by the value of Θ itself and can be either decided at the beginning

[29] or dynamically computed [13]. Then, the reward update computation is carried out

sequentially using the algorithm’s fitness obtained from the projection of normalised

vectors onorm
bi ,t

over the reference vector~c (determined by Θ).
17



4.2. Gorthaur-EXP3

The main difference between the original Gorthaur-Wheel method and the method

proposed in this article is its algorithm selection strategy. At each iteration t, Gorthaur-

EXP3 chooses an algorithm bt ∈ B with a probability pb,t defined as follows:

pbt = (1− η)
wbt

∑
|B|
j=1 wbj,t

+
η

|B| (6)

Gorthaur-EXP3 then selects an arm a ∈ A according to the strategy of the chosen al-

gorithm bt and recommends the associated item to user ut. Finally, Gorthaur-EXP3 ob-

serves the obtained reward rt and proceeds with the update of accuracy, diversity and

fitness of algorithm bt (See Equations 1 to 4) as the original Gorthaur-Wheel . Afterwards,

for the chosen algorithm bt Gorthaur-EXP3 computes f̂b,t =
fb,t
pb,t

and f̂b,t = 0 for others

(i.e., algorithms that were not selected at trial t). Finally, Gorthaur-EXP3 updates its

weights as follows:

∀b ∈ |B|, η ∈]0; 1], wb,t+1 = wb,t exp
(

η

|B| f̂b,t

)
(7)

A recommendation system using Gorthaur-EXP3 works as shown in Algorithm 2.

4.3. Accuracy/Diversity Trade-off

In this article, we simulate real-world cases which require a balanced trade-off be-

tween accuracy and diversity. The settings for Algorithm 2 have been given with a fixed

angle of Θ = π
4 which corresponds to this balance. However, depending on application

needs, it may be useful to favour either accuracy or diversity [13] therefore requiring

different values of Θ. Gorthaur-EXP3 determines the fitness of an algorithm b to reach

the accuracy/diversity trade-off by computing the projection of the normalised vector

onorm
b,t (See Equation 3) over the reference vector ~c (See Figure 1). Thus, the favoring

granted to each criteria corresponds to the value of Θ itself (See Section 3.31).

4.4. About expected regret

As proven by [23], when one uses a portfolio approach with reinforcement learning

algorithms, the regret would not be worse than the worst algorithm. Moreover, accord-

1The reference vector~c is defined by the angle Θ ∈ [0; π
2 ] made by~c with the horizontal axis (∆Div)
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Algorithm 2 - Gorthaur-EXP3 Algorithm for recommendation

Require: List of users u ∈ U and their context x ∈ X (if context is available). List of

k items to recommend associated to arms a ∈ A. The algorithms portfolio b ∈ B.

Angle Θ = 45°. η ∈]0; 1]. wbi,1
= 1 for i = 1, .., |B|.

1: for t = 1 to T do

2: Randomly select a user ut ∈ U and his context xt ∈ X

3: for all bi ∈ B do

4: Calculate pbi,t
= (1− η)

wbi,t

∑
|B|
j=1 wbj,t

+ η
|B| as defined in Equation (6)

5: end for

6: Draw selection of algorithm bt randomly according to the probabilities

pb1,t , . . . , pb|B|,t , and then play algorithm bt

7: Select item a ∈ A according to the strategy of the previously chosen algorithm bt

and recommend this item to user ut

8: Observe the obtained reward rt

9: Update parameters of the previously chosen algorithm bt according to its reward

processing strategy

10: Update acc(bt, t) as defined in Equation (1)

11: Update div(bt, t) as defined in Equation (2)

12: Update onorm
bt ,t

as defined in Equation (3)

13: Update fbt ,t as defined in Equation (4)

14: for j = 1 to |B| do

15: f̂bj ,t =


fbj ,t

pbj ,t
if bj = bt

0 otherwise

16: Update wbj ,t+1 = wbj ,t exp

(
η

f̂bj ,t

|B|

)
17: end for

18: end for

ing to the no free lunch theorem it would also not be better than the best algorithm in

the portfolio [34].

However, since the rewarding function fully relies on Gorthaur-EXP3’s fitness calcu-
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lation, we can ensure that the convergence of Gorthaur-EXP3 is similar to that of the

algorithm that best fits the target accuracy/diversity trade-off. Also, the final regret of

Gorthaur-EXP3 converges to that of its best algorithm proportionally to its probability

of selection.

We expect Gorthaur-EXP3 to be more selective than its previous version with Roulette

Wheel selection.

Theorem 1. Gorthaur-EXP3 convergence of the accuracy/diversity trade-off in a sta-

tionary environment.

Let B be the set of algorithms in Gorthaur-EXP3’s portfolio and b ∈ B a specific algorithm of

the portfolio where. Let fb(t) be the fitness of algorithm b ∈ B at iteration t ∈ [1; T] where T is

the finite horizon. Let η ∈]0; 1] be the egalitarianism factor to be initialized at time point t0 = 0.

Then, according to the general proof of convergence of EXP3 presented in [8] we can express

that for Gorthaur-EXP3 we have:

∀t ∈ [1; T]; ∀b ∈ B with |B| > 0; ∀ fb(t); ∀η ∈]0; 1]

Gmax, f (T)−E(GGorthaur, f (T))

≤ (e− 1)ηGmax, f (T) +
|B| ln(|B|)

η

where Gmax, f (T) is the maximum gain of fitness that can be obtained at horizon T by sys-

tematically selecting the optimal algorithm that best fits the accuracy/diversity trade-off and

GGorthaur, f (T) is the gain of fitness obtained with the Gorthaur-EXP3 algorithm.

The following section gives a sketch of the proof of convergence of the accu-

racy/diversity trade-off for Gorthaur-EXP3. It is based on the proof of convergence of

the EXP3 algorithm given in [8].

4.5. Gorthaur-EXP3 accuracy/diversity trade-off analysis - Sketch of the proof

By thoroughly following the general proof of EXP3 [8] (Section 3), we can demon-

strate the convergence of the Gorthaur-EXP3 accuracy/diversity trade-off when using

optimal algorithm selection (proof of Theorem 1) for a preset value of Θ = π
4 corre-

sponding to a balance between accuracy and diversity.
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Proof (Sketch) of Theorem 1.

∀t ∈ [1; T]; ∀b ∈ B with |B| > 0 (to simplify further notations, let z = |B|); ∀ fb(t); ∀η ∈

]0; 1], let Wt = ∑z
i=1 wbi

(t) be the sum of each algorithm’s weight. Note that W1 = z

since ∀b ∈ B we have for t = 1, wb(1) = 1 and ∀b ∈ (B); pb(t) = (1− η)wb(t)
Wt + η

z (See

Algorithm 2).

For all sequence of selection algorithms drawn by Gorthaur-EXP3, we have:

Wt+1

Wt
=

z

∑
i=1

wbi
(t) exp ( η

z f̂bi
(t))

Wt
,

=
z

∑
i=1

pbi
(t)− η

z
1− η

exp (
η

z
f̂bi
(t)),

Since f̂b(t) ≤ 1
pb(t)
≤ z

η , and exp (x) ≤ 1 + x + (e− 2)x2 when x ≤ 1 we have:

Wt+1

Wt
≤

z

∑
i=1

pbi
(t)− η

z
1− η

[
1 +

η

z
f̂bi
(t) + (e− 2)

(η

z

)2
f̂bi
(t)2

]
,

Since ∑z
i=1 pbi

(t) f̂bi
(t) = fb(t) and ∑z

i=1 pbi
(t) f̂bi

(t)2 ≤ ∑z
i=1 f̂bi

(t) we can write:

Wt+1

Wt
≤ 1 +

( η
z
)

1− η
fbt(t) +

(e− 2) ( η
z )

2

1− η

z

∑
i=1

f̂bi
(t),

Considering that 1 + ∆ ≤ exp (∆) we have:

ln
(

Wt+1

Wt

)
≤
( η

z
)

1− η
fbt(t) +

(e− 2)
( η

z
)2

1− η

z

∑
i=1

f̂bi
(t),

When summing over t (operating with a finite horizon T), we get:

ln
(

WT+1

W1

)
≤

η
z

1− η
GGorthaur, f (T) +

(e− 2)
( η

z
)2

1− η

z

∑
i=1

T

∑
t=1

f̂bi
(t),

For any algorithm selection b, we have:

ln
(

WT+1

W1

)
≥ ln (Wb(T + 1))

ln (W1)
=

η

z

T

∑
t=1

f̂b(t)− ln (z),

we thus obtain the following equation:

GGorthaur, f (T) ≥ (1− η)

(
T

∑
t=1

f̂b(t)−
z ln(z)

η

)
− (e− 2)

η

z

z

∑
i=1

T

∑
t=1

f̂bi
(t),
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When taking the expectation of both sides of the previous equation and since b is

chosen arbitrarily such that ∑T
t=1 fbi

(t) ≤ η Gmax we have:

E
[

GGorthaur, f (T)
]
≥ (1− η)

(
Gmax, f (T)−

z ln(z)
η

)
− (e− 2) η Gmax, f (T),

and thus :

E
[

GGorthaur, f (T)
]
− Gmax, f (T) ≥ −η (e− 1) Gmax, f (T)−

z ln(z)
η

,

which leads directly to Theorem 1:

Gmax, f (T)−E
[

GGorthaur, f (T)
]
≤ (e− 1) η Gmax, f (T) +

|B| ln(|B|)
η

.

Once again, note that for more information about the complete analysis, both our

sketch and theorem rely on the key article [8] and its detailed proof in Section 3.

Furthermore, since Gorthaur-EXP3 selects the different algorithms of its portfolio ac-

cording to their capacity to meet the desired trade-off, one can assume that at worst the

final regret upper bound of Gorthaur-EXP3 will be the sum of the regret upper bounds of

the algorithms in the portfolio proportionally to their selection rate at Horizon T. How-

ever, according to the proof above, since Gorthaur-EXP3 will process its exploitation

step by selecting the most optimal algorithm from its portfolio, we argue that Gorthaur-

EXP3’s final regret upper bound will tend towards that of its optimal algorithm.

4.6. Sharing rewards

In our previous works with Gorthaur-Wheel each algorithm of the portfolio learned

from its own past recommendation history. The user’s feedback on a recommendation

resulting from a given algorithm only affected that specific algorithm. Here we would

like to investigate whether reward sharing between algorithms of the portfolio can en-

hance the performances of all algorithms rather than those that are chosen. Even though

the theoretical soundness of the approach still needs to be formally proven, experiments

tend to show that it adapts well to cases where the reaction of users in given contexts

is stable (stationary environments). Both approaches, with and without reward sharing

between the algorithms of the portfolio, were considered in our experimental evaluation

of Gorthaur-EXP3.
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4.7. Gorthaur’s portfolio

Following the different algorithms’ criteria in terms of accuracy, personalization, di-

versity, and applicability to real-time applications [13], Gorthaur-EXP3’s portfolio is

composed of the following 6 Multi-Armed Bandit algorithms both contextual and non

contextual:

• Multi-Armed Bandits algorithms (MAB): UCB1 [8], Thompson Sampling (TS) [16],

and EXP3 [8]

• Contextual Multi-Armed Bandits algorithms (CMAB): LinUCB [1], SW-LinUCB

[11], and Linear Thompson Sampling (LinTS) [9].

In this article, a specific set of algorithms were selected according to particular

needs. Nevertheless, it is possible to use other types of recommendation algorithms in

Gorthaur-EXP3’s portfolio e.g., collaborative-filtering [35], Monte-Carlo Markov Chain

[36] algorithms, etc.

5. Empirical evaluations

In this section, we first briefly remind the notion of context and describe the datasets

we choose for our experiments (See Table 2) and the algorithms we compare. Finally,

after detailing our experimental settings, we present and discuss our results.

5.1. The notion of context

Herein, for each dataset we make the context [1, 37, 38, 39, 40] exploitable by repre-

senting it by a features vector. Thus, the context is provided in a structured represen-

tation of binary variables (one-hot encoding). More precisely, its computation consists in

transforming the continuous variables of the original datasets into categorical variables

by dividing them according to their range following their quantiles. Then, we finally

binarize ({0, 1}) the categorical variables in order to obtain a one-hot vector.

5.2. Datasets

Datasets have been chosen according to different criteria in terms of scale: Number of

instances (from 424 to 1,025,010), number of binary features (from 0 to 270), and number

of arms (from 4 to 100).
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The evaluation of our proposal is based on five datasets (See Table 2) among which,

one is an artificial dataset used for control, and four are real-world datasets:

Dataset Number of Categorical Binary Number Dataset

name instances features features of arms source

Control 1,000 4 4 4 Artificial

RS-ASM 2,152 8 56 18 Kaggle

Food 424 80 270 20 AIST

Movie Lens 943 43 51 1682 Grouplens

Jester 24,983 0 0 100 UC Berkeley

Table 2: Original Datasets

• Control: An artificially generated dataset with an equiproportional distribution

between the four arms, and generated with a x∗ which illustrates the optimal oper-

ation of a CMAB algorithm. As it was the case in our past contributions, this dataset

is considered as the reference [11, 13].

• Recommendation System for Angers Smart City (RS-ASM) from Kaggle2: A

dataset used both with full features (ff) and with sparse features (sf) by intentionally

removing parts of the context (preferences and hobbies). This allows the observation

of the impact of induced sparsity in this real-world dataset.

The RS-ASM dataset has also been used for the non-stationary experiments and

therefore modified according to the needs of the three different non-stationary cases

we set: RS-ASM(season), RS-ASM(LS10k-T), and RS-AS(LS10k-30k) (see Simula-

tion description in 5.3.1 for detailed explanations of modifications).

• Food from National Institute of Advanced Industrial Science and Technology

(AIST), Japan: A context-aware food preference dataset for recommendation sys-

tems, used and distributed by Hideki Asoh [41].

• Movie Lens 100K from GroupLens Research3: A movie recommendation dataset

2https://www.kaggle.com/
3https://grouplens.org/datasets/movielens/100k/
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in which 1682 movies are rated on a scale from 1 to 5 by 943 users.

• Jester from UC Berkeley4: A non-contextual dataset for joke recommendation.

RSASM Environment Categorical Binary New dataset

dataset specificities features features specificities

(sf) sparse context 6 24 Sparsity

(season) non stationarity 8 56 Concept-shift

(LS10k-T) non stationarity 8→ 0 56→ 0 Covariate-shift

(LS10k-30k) non stationarity 8→ 0→ 8 56→ 0→ 56 Covariate-shift

Table 3: Special modifications on RS-ASM based Datasets

5.3. Experimental settings

5.3.1. Simulation

In order to simulate a data stream of arriving users with their contexts (see line 2 of

Algorithm 2), we randomly select them sequentially from the whole dataset.

In the case of stationary experiments, since the number of instances is different be-

tween datasets, we need to scale up the time horizon T. Hence, depending on the size

of the dataset, we set:

• 50,000 rounds for small datasets (i.e., with less than 2500 users), Control, RS-ASM,

Food, and Movie Lens.

• 100,000 rounds for medium size dataset Jester.

Since learning in the presence of concept-drift or hidden contexts is an important

challenge in the field of machine learning [39, 42], we focus our non-stationary and

restricted context experiments on the observation of the effects of concept-drift/shift or

covariate-shift. Thus, we construct five different cases from the RS-ASM dataset :

4http://eigentaste.berkeley.edu/dataset/
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• A case of induced sparsity where context is given with missing features (See de-

scription of RS-ASM (sf) in 5.2).

• A case representing a change of season where the reward probabilities of the arms

are changed after 25,000 rounds (RS-ASM (season)).

• A case where ”sensors” are lost after 10,000 rounds and never recovered (RS-ASM

(LS10k-T)).

• A case where ”sensors” are lost after 10,000 rounds and recovered after 30,000

rounds (RS-ASM (LS10k-30k)).

The two latter cases are interesting to experiment since they correspond to situations

in real-world application of mobile recommendation systems, smart cars or smart boats

using recommendation systems where data from sensors can be partially or totally miss-

ing for some time.

5.3.2. Comparison of algorithms

Our new portfolio approach Gorthaur-EXP3, applying an EXP3 algorithm selection

is compared with the original Gorthaur-Wheel method that applies a roulette wheel algo-

rithm selection [13].

All comparisons are made in terms of final values of global accuracy and diversity (as

defined in equations 1 and 2 of sub-section 3.3). The convergence of both approaches up

to horizon T and the speed at which they converge are also experimentally observed.

The latter is an important criterion for real-world applications which do not only need

a good asymptotic limit of global accuracy but should also ensure an acceptable time to

reach it.

In our comparison and for both algorithm selection methods (EXP3 and roulette

wheel), two specific cases are considered : one in which rewards are shared between

the algorithms of the portfolio and another in which they are not.

The above comparisons are made using datasets that correspond to both stationary

and non-stationary environments.

In all cases, both implementations of Gorthaur are compared with the best and the

worst algorithm of the portfolio.
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Finally, concerning Gorthaur-EXP3’s setting, note that we set Θ = π
4 i.e., Θ =

45°, which we can consider as a balanced or fair parameterization between accuracy and

diversity [13].

6. Results and discussion

This section presents the results obtained for all our simulations. The characteris-

tics of each experiment are summarised in Table 4. The table also indicates, in column

”Presentation of Results”, where the detailed results of each experiment are presented.

Furthermore, a selection of results is presented graphically in Figures 2 and 3. They

show the evolution of global accuracy over time and give an indication on the con-

vergence of both Gorthaur-Wheel and Gorthaur-EXP3 methods for the different datasets

(some corresponding to stationary environments, others to non-stationary environ-

ments). We also plot the results of the best CMAB and MAB algorithms for comparison.

In the remaining part of this section, the evaluation metrics that we have used and

the presentation that we have chosen for our results are first explained. Then, both

algorithm selection methods (Roulette weel and EXP3) are compared in two different

situations: stationary and non stationary environments. Finally, the effect of sharing

rewards among the algorithms of the portfolio is discussed.

The main result of our experiments is that Gorthaur-EXP3 outperforms Gorthaur-Wheel

in all cases except for specific datasets that correspond to non-stationary co-variate shift

environments (RS-ASM (LS10K-30K) and RS-ASM (LS10K-T)).

6.1. Evaluation metrics and presentation of results

Tables 5a to 8b, present the results obtained using each of Gorthaur’s selection meth-

ods (Roulette wheel and EXP3) and, for each experiment, the results obtained individu-

ally by each algorithm in the portfolio in terms of accuracy and diversity.

In each table, the first line labeled ”GORTHAUR-WHEEL” or ”GORTHAUR-EXP3”

indicates the values of global accuracy and diversity5 obtained with the given selection

method. These global results are presented in the form (acc(T) / div(T)). The following

5See Section 3.3 for a description of how to compute Accuracy and Diversity
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Algorithm

Selection

Reward

sharing

Stationary

/

non-stationary

Presentation

of Results

Wheel No Stationary Table 5a

Wheel Yes Stationary Table 6a

EXP3 No Stationary Table 5b

EXP3 Yes Stationary Table 6b

Wheel No non-stationary Table 7a

EXP3 No non-stationary Table 7b

Wheel Yes non-stationary Table 8a

EXP3 Yes non-stationary Table 8b

Table 4: Presentation of results

lines respectively indicate, for each algorithm of the portfolio: its proportion of use

(by Gorthaur) as a percentage, its global accuracy, and its diversity. These figures are

presented in the form (proportion in % / acc(T) / div(T)). Moreover, note that the

value of Θ given both in radians and in degrees indicates the trade-off set between

accuracy and diversity. Depending on the requirements of the real-world application,

Θ can be set to favour either accuracy (i.e., Θ → π
2 ) or diversity (i.e., Θ → 0) [13]. Note

that Θ can also be set to be dynamically self-calculated in order to determine the Pareto

front of both criteria according to the algorithms in the portfolio [13]. Here, we decide to

use a value of Θ = π
4 indicating a balance between accuracy and diversity. The idea is to

simulate a real-world recommendation system in which diversity of recommendation

is as important as accuracy.

6.2. Gorthaur-EXP3 Versus Gorthaur-Wheel

Here, the results obtained by both algorithm selection methods are presented and

discussed. Two different experimental settings are considered; The first corresponding

to a stationary environment and the other to a non-stationary environment.
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6.2.1. Evaluation in a stationary environment

The results obtained when running the experiments under stationary conditions are

presented in Tables 5 and 6, and in Figure 2. They show that for all datasets except for

the non contextual one (i.e., Jester), Gorthaur-EXP3 outperforms Gorthaur-Wheel both in

terms of final global accuracy and in terms of diversity.

Control RS-ASM (ff) Food Jester Movie Lens

GORTHAUR-WHEEL 0.78 / 0.92 0.54 / 0.76 0.82 / 0.78 0.55 / 0.4 3.59 / 0.9

LinUCB 23.9% / 0.99 / 0.99 22.1% / 0.59 / 0.88 21.5% / 0.89 / 0.91 4% / 0.3 / 0.99 17.7% / 3.56 / 0.96

LinTS 24.5% / 0.99 / 0.99 19.8% / 0.49 / 0.88 20.4% / 0.86 / 0.86 3.9% / 0.3 / 0.99 16.9% / 3.67 / 0.86

SW-LinUCB 24.5% / 0.98 / 0.99 22% / 0.58 / 0.9 21.3% / 0.87 / 0.94 4.4% / 0.3 / 0.99 17.5% / 3.56 / 0.97

UCB1 5.5% / 0.25 / 0.01 8.1% / 0.5 / 0.31 7% / 0.65/ 0.02 27% / 0.67 / 0.28 13% / 3.87 / 0.32

EXP3 12.2% / 0.25 / 0.69 16.4% / 0.5 / 0.55 16.9% / 0.7 / 0.6 36.5% / 0.45 / 0.78 17.2% / 3.4 / 0.96

TS 10.2% / 0.24 / 0.6 11.6% / 0.57 / 0.17 12.9% / 0.78 / 0.22 24.2% / 0.56 / 0.4 17.7% / 3.57 / 0.93

(a) Gorthaur-Wheel (Θ = π
4 , i.e., Θ = 45°)

Control RS-ASM (ff) Food Jester Movie Lens

GORTHAUR-EXP3 0.97 / 0.99 0.63 / 0.86 0.9 / 0.92 0.46 / 0.52 3.83 / 0.91

LinUCB 70.9% / 0.99 / 0.99 71.8% / 0.67 / 0.85 20.5% / 0.88 / 0.91 1.4% / 0.3 / 0.99 76.2% / 3.96 / 0.87

LinTS 1.5% / 0.96 / 0.96 5.6% / 0.4 / 0.93 1.8% / 0.69 / 0.94 1.4% / 0.3 / 0.99 4.5% / 3.32 / 0.96

SW-LinUCB 24.5% / 0.97 / 0.99 17.6% / 0.54 / 0.9 71.1% / 0.93 / 0.93 1.3% / 0.3 / 0.99 4.9% / 3.34 / 0.98

UCB1 0.8% / 0.25 / 0.04 1.9% / 0.55 / 0.03 2% / 0.63 / 0.14 2% / 0.61 / 0.3 8.8% / 3.64 / 0.76

EXP3 1.5% / 0.26 / 0.76 2% / 0.35 / 0.9 2.2% / 0.62 / 0.89 93.5% / 0.51 / 0.52 2.3% / 3.29 / 0.94

TS 0.8% / 0.23 / 0.67 1% / 0.47 / 0.56 2.4% / 0.71 / 0.49 0.4% / 0.36 / 0.4 3.3% / 3.29 / 0.94

(b) Gorthaur-EXP3 (Θ = π
4 , i.e., Θ = 45°)

Table 5: Results with stationary environment and no reward sharing

With regards to the proportion of selection of each algorithm, the main difference be-

tween both selection methods is that Gorthaur-Wheel selects algorithms proportionally

to their ability to best fit the accuracy/diversity trade-off, whereas Gorthaur-EXP3 works

as a bandit algorithm and eventually selects the algorithm which obtains the best trade-

off. This difference is important to notice since the chosen selection strategy determines

the result we want to really obtain in the real-world application. Namely, the question

we need to answer is: Do we want to find the algorithm that best fits the targeted accu-

racy/diversity trade-off or an optimal proportion of several algorithms in the portfolio

that can reach this trade-off ?

This can explain why, in most cases, Gorthaur-EXP3 performs better than Gorthaur-

Wheel according to both criteria.
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Figure 2: Evolution of global accuracy with stationary environment
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Control RS-ASM (ff) Food Jester Movie Lens

GORTHAUR-WHEEL 0.78 / 0.99 0.57 / 0.79 0.84 / 0.89 0.49 / 0.32 3.86 / 0.89

LinUCB 23.6% / 0.99 / 0.99 21.2% / 0.65 / 0.88 20.2% / 0.95 / 0.95 6.8% / 0.3 / 0.99 17.6% / 3.73 / 0.95

LinTS 23.6% / 0.99 / 0.99 19.9% / 0.62 / 0.79 19.2% / 0.94 / 0.87 6.8% / 0.3 / 0.99 17.3% / 3.92 / 0.9

SW-LinUCB 23.6% / 0.99 / 0.99 20.4% / 0.6 / 0.9 19.9% / 0.9 / 0.95 6.8% / 0.3 / 0.99 17.6% / 3.7 / 0.96

UCB1 10.5% / 0.24 / 0.89 12.9% / 0.53 / 0.51 14.4% / 0.66 / 0.84 12.5% / 0.44 / 0.4 13% / 4.22 / 0.55

EXP3 8.1% / 0.25 / 0.74 15.4% / 0.41 / 0.78 15.6% / 0.64 / 0.89 57.1% / 0.51 / 0.4 17.3% / 3.75 / 0.9

TS 10.6% / 0.26 / 0.9 10.2% / 0.57 / 0.28 10.7% / 0.75 / 0.48 10% / 0.54 / 0.2 17.2% / 3.95 / 0.81

(a) Gorthaur-Wheel (Θ = π
4 , i.e., Θ = 45°)

Control RS-ASM (ff) Food Jester Movie Lens

GORTHAUR-EXP3 0.97 / 0.99 0.67 / 0.87 0.94 / 0.9 0.47 / 0.56 3.95 / 0.9

LinUCB 74.3% / 0.99 / 0.99 80.3% / 0.71 / 0.87 90.9% / 0.96 / 0.9 1.7% / 0.3 / 0.99 79.2% / 4 / 0.9

LinTS 10.3% / 0.99 / 0.97 10.1% / 0.53 / 0.86 2.5% / 0.9 / 0.85 1.7% / 0.3 / 0.99 7.9% / 3.73 / 0.92

SW-LinUCB 11.7% / 0.99 / 0.98 2.8% / 0.51 / 0.95 1.8% / 0.86 / 0.95 1.7% / 0.3 / 0.99 2% / 3.6 / 0.95

UCB1 1% / 0.26 / 0.88 1.5% / 0.46 / 0.43 1.5% / 0.65 / 0.73 0.6% / 0.35 / 0.53 2.6% / 3.76 / 0.51

EXP3 0.9% / 0.26 / 0.69 4.3% / 0.38 / 0.85 2.3% / 0.65 / 0.9 93.7% / 0.51 / 0.58 6.8% / 3.71 / 0.88

TS 1.8% / 0.26 / 0.93 1% / 0.4 / 0.5 1% / 0.73 / 0.54 0.6% / 0.3 / 0.36 1.5% / 3.84 / 0.8

(b) Gorthaur-EXP3 (Θ = π
4 , i.e., Θ = 45°)

Table 6: Results with stationary environment and sharing rewards

However, for the experiment using the non-contextual Jester dataset, Gorthaur-EXP3

obtains better results than Gorthaur-Wheel in terms of diversity despite being eventually

less accurate. This can be explained by the performance of the optimal algorithm se-

lected by Gorthaur-EXP3 which is chosen in terms of accuracy/diversity trade-off. In

this specific case, the optimal algorithm chosen from the portfolio is EXP3. Out of all

the algorithms of the portfolio, it is the one that offers the best trade-off between both

criteria - i.e. for which the projection of the (Acc, Div) vector on the reference vector

defined by Θ has the highest norm (UCB1 and TS reach higher levels of global accuracy,

but remain lower in terms of diversity).

On Figure 2, we observe that in cases where rewards are shared,Gorthaur-Wheel out-

performs Gorthaur-EXP3 when horizon T is small (i.e., T < 10000). This can be ex-

plained by the fact that Gorthaur-EXP3 uses a EXP3 selection strategy which involves

an early and continuing exploration step. During this period, the selection strategy

does not solely exploit the optimal algorithm unlike the Roulette Wheel selection which

rapidly chooses among the set of optimal algorithms proportionally to their fitnesses.

We do not observe this particular result when rewards are not shared, because algo-
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rithms among the portfolio do not stay in competition for long since they do not share

their knowledge.

6.2.2. Evaluation in a non-stationary environment

The results obtained when running our experiments under non-stationary conditions

are presented in Tables 7 and 8, and Figure 3.

RS-ASM (sf) RS-ASM (season) RS-ASM (LS10k-T) RS-ASM (LS10k-30k)

GORTHAUR-WHEEL 0.54 / 0.58 0.53 / 0.77 0.41 / 0.56 0.45 / 0.67

LinUCB 20.9% / 0.56 / 0.6 21.4% / 0.58 / 0.89 16% / 0.27 / 0.25 17.5% / 0.4 / 0.61

LinTS 19.7% / 0.56 / 0.55 20.6% / 0.5 / 0.87 15.7% / 0.26 / 0.24 17.3% / 0.37 / 0.62

SW-LinUCB 21.7% / 0.51 / 0.74 21.6% / 0.56 / 0.91 15% / 0.27 / 0.24 17.5% / 0.38 / 0.61

UCB1 7.3% / 0.54 / 0.01 6.5% / 0.3 / 0.03 9.8% / 0.56 / 0.01 9.6% / 0.45 / 0.29

EXP3 18.2% / 0.53 / 0.47 17.2% / 0.52 / 0.57 25.7% / 0.51 / 0.54 21.7% / 0.52 / 0.45

TS 12.2% / 0.58 / 0.13 12.7% / 0.57 / 0.17 17.8% / 0.57 / 0.18 16.4% / 0.57 / 0.22

(a) Gorthaur-Wheel (Θ = π
4 , i.e., Θ = 45°)

RS-ASM (sf) RS-ASM (season) RS-ASM (LS10k-T) RS-ASM (LS10k-30k)

GORTHAUR-EXP3 0.57 / 0.59 0.65 / 0.87 0.47 / 0.57 0.54 / 0.74

LinUCB 68.8% / 0.6 / 0.51 88.8% / 0.68 / 0.87 26.2% / 0.35 / 0.45 59.2% / 0.57 / 0.8

LinTS 5% / 0.49 / 0.67 2.5% / 0.36 / 0.95 1.9% / 0.22 / 0.22 4% / 0.3 / 0.66

SW-LinUCB 21.3% / 0.51 / 0.74 1.4% / 0.36 / 0.97 6.1% / 0.22 / 0.22 1.5% / 0.3 / 0.6

UCB1 1% / 0.22/ 0.19 1.7% / 0.53 / 0.11 1.9% / 0.49 / 0.37 1.9% / 0.57 / 0.06

EXP3 3.2% / 0.44 / 0.71 4.2% / 0.43 / 0.83 60.4% / 0.55 / 0.57 32% / 0.52 / 0.46

TS 0.7% / 0.5 / 0.5 1% / 0.49 / 0.44 3.5% / 0.52 / 0.56 1.4% / 0.47 / 0.68

(b) Gorthaur-EXP3 (Θ = π
4 , i.e., Θ = 45°)

Table 7: Results with non-stationary environments and no reward sharing

From these results, we observe that in most cases Gorthaur-EXP3 outperforms

Gorthaur-Wheel. This is the case for all experiments in which rewards are not shared

among the algorithms of the portfolio (Table 7).

However, in cases where rewards are shared, we observe in Table 8, and in Fig-

ure 3 that for RS-ASM (10k-T) and RS-ASM (10k-30k) datasets (i.e., covariate-shift cases)

Gorthaur-Wheel outperforms Gorthaur-EXP3 both in terms of final global accuracy and

diversity. Nevertheless, we observe in Tables 8a and 8b that for RS-ASM (sf) and

RS-ASM (season) datasets (i.e., concept-drift/shift cases) Gorthaur-EXP3 outperforms

Gorthaur-Wheel both in terms of final global accuracy and diversity.
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Figure 3: Evolution of global accuracy with non-stationary environment

Thus in the case when rewards are shared among algorithms, a roulette-wheel se-

lection strategy allows to best deal with covariate-shift cases while it is preferable to

use an EXP3 strategy when faced with concept-drift/shift. However, in real-world ap-

plications, it is difficult to predict when and whether concept-drift/shift or covariate-

shift may occur. When one needs to apply Gorthaur in real recommendation system

applications, we advocate that to deal with non-stationarity, the possible risks of both

concept-drift and covariate-shift should be studied before choosing the relevant selec-

tion strategy.
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RS-ASM (sf) RS-ASM (season) RS-ASM (LS10k-T) RS-ASM (LS10k-30k)

GORTHAUR-WHEEL 0.56 / 0.56 0.58 / 0.78 0.42 / 0.48 0.48 / 0.67

LinUCB 19% / 0.59 / 0.55 20.6% / 0.66 / 0.86 14.5% / 0.27 / 0.24 17.1% / 0.45 / 0.63

LinTS 18.4% / 0.62 / 0.49 19.9% / 0.62 / 0.77 15.4% / 0.28 / 0.25 16.9% / 0.44 / 0.62

SW-LinUCB 21.1% / 0.5 / 0.76 20.2% / 0.58 / 0.92 14.6% / 0.28 / 0.25 16.5% / 0.43 / 0.62

UCB1 12.8% / 0.58 / 0.24 13.1% / 0.54 / 0.55 18.4% / 0.58 / 0.25 17% / 0.55 / 0.45

EXP3 16.8% / 0.52 / 0.56 15.4% / 0.44 / 0.77 22.6% / 0.46 / 0.45 20.2% / 0.44 / 0.63

TS 11.9% / 0.58 / 0.25 10.8% / 0.56 / 0.38 14.5% / 0.58 / 0.58 12.3% / 0.58 / 0.16

(a) Gorthaur-Wheel(Θ = π
4 , i.e., Θ = 45°)

RS-ASM (sf) RS-ASM (season) RS-ASM (LS10k-T) RS-ASM (LS10k-30k)

GORTHAUR-EXP3 0.6 / 0.57 0.67 / 0.84 0.35 / 0.4 0.46 / 0.62

LinUCB 89.8% / 0.62 / 0.57 72.9% / 0.71 / 0.82 50.6% / 0.3 / 0.27 2.2% / 0.46 / 0.56

LinTS 3.1% / 0.55 / 0.56 3.1% / 0.64 / 0.78 13.7% / 0.3 / 0.27 9.6% / 0.34 / 0.43

SW-LinUCB 1.2% / 0.4 / 0.83 18.9% / 0.61 / 0.91 3.2% / 0.23 / 0.24 81.8% / 0.48 / 0.63

UCB1 1.4% / 0.5 / 0.55 1.7% / 0.48 / 0.47 1.8% / 0.55 / 0.28 1.9% / 0.48 / 0.49

EXP3 3.5% / 0.51 / 0.56 2.2% / 0.4 / 0.84 29.5% / 0.44 / 0.42 3.2% / 0.31 / 0.52

TS 1% / 0.55 / 0.33 1.2% / 0.47 / 0.59 1.2% / 0.61 / 0.19 1.3% / 0.49 / 0.55

(b) Gorthaur-EXP3 (Θ = π
4 , i.e., Θ = 45°)

Table 8: Results with non-stationary environment and sharing rewards

6.3. Sharing Versus Not sharing rewards

The results presented in Tables 5 and 6 show that in stationary environments and

when dealing with contextual datasets, the sharing of rewards among the algorithms

of the portfolio always increases the final global accuracy whatever the algorithm se-

lection method (Wheel or EXP3). In most cases, reward sharing seems to also increase

the value of diversity. It is the case with all contextual datasets except for MovieLens

(with both algorithm selection methods) and for Food when using the EXP3 algorithm

selection method. In those specific cases, the sharing of rewards very slightly decreases

the final value of diversity. For the non contextual dataset (Jester, only Gorthaur-EXP3

seems to benefit from reward sharing. When applied with Gorthaur-Wheel, reward shar-

ing fails to increase both the final global accuracy and the diversity of the proposed

recommendations.

In non-stationary experimental settings, we observe in Tables 8 and Figure 3 that

in the case of concept-drift/shift datasets, sharing rewards benefits to both methods
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in terms of final global accuracy. Note that it does not improve diversity which stays

similar or is up to 3,4% lower in the case where rewards are shared.

However, in the case of covariate-shift datasets, sharing rewards benefits in terms of

final global accuracy to the roulette wheel selection strategy but not to the EXP3 strat-

egy which totally under-performs compared to the non sharing case. We assume that

when algorithms share rewards, even though EXP3 eventually discovers the new opti-

mal algorithm to select, it remains unable to re-compute the right probability selection

rapidly enough. Contrarily, when rewards are not shared, EXP3’s continuous explo-

ration ability allows it to rapidly consider and recover the new optimal algorithm to

use.

7. Conclusion and perspectives

In this article, we propose Gorthaur-EXP3: a novel portfolio approach of MAB

and CMAB algorithms for recommendation which extends the original Gorthaur-Wheel

method [13]. It aims at finding , among a portfolio, the algorithm which best maximises

both criteria of global accuracy and diversity of the recommendations made to users.

More generally, Gorthaur-EXP3 selects, from a given set of algorithms, the optimal

algorithm that best fits the datasets or cases it faces. We argue that online real-world

applications can benefit from such a method which would give an essential advantage

by automatically and rapidly identifying the algorithm to use in different cases. More-

over, this identification relies on the EXP3 guarantees that were previously theoretically

proven. This gives strong confidence that the algorithm finds the optimal algorithm

among a portfolio. Furthermore, EXP3 has a continuous exploration mechanism that

ensures its robustness in non stationary conditions which are typically encountered in

various online applications.

In this article, we observe that Gorthaur-EXP3 outperforms the original Gorthaur-

Wheel method in most cases except in two specific cases: 1) when evaluations are con-

duced in a context-free and stationary environment and rewards are not shared; 2)

when evaluations are carried out under non-stationary conditions due to covariate-shift

(in simulation cases where the non-stationary conditions are due to concept-drift/shift

Gorthaur-EXP3 remains better).
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In the Mobile Crowd Sensing and Computing paradigm, we are supposed to rely on

rich context features sensed by user devices. Moreover, in such real world applications

we consider that the risk of covariate-shift is low, predictable and possibly mitigable.

Therefore, based on the results that we have obtained, we strongly believe that using

Gorthaur-EXP3 instead of the original Gorthaur-Wheel method is the best choice to make.

In future works, it will be interesting to:

1. Add more criteria to the optimization problem (e.g., individual accuracy) with

which Gorthaur-EXP3 will need to operate in a sphere or a n-sphere. This multi-

objective perspective can be the centerpiece of multiple online applications which

may require to optimise multiple criteria (e.g., sailing, cultural and social mobile

recommendation systems, group recommendations).

2. Integrate and evaluate Gorthaur-EXP3 in an online application in order to study real

world aspects (e.g., real non stationary cases, partial user feedbacks) that cannot be

fully observed when evaluating offline.

Both perspectives still remain to be experimented and will thus, naturally be our next

step.
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