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Abstract. This paper deals with the formulation of the dimensionally homogeneous extended 

Jacobian matrix, which is an important issue for the performance analysis of f degrees-of-freedom (f 

≤6) parallel manipulator having coupled rotational and translational motions. By using the f 

independent coordinates to define the permitted motions and (6-f) independent coordinates to define 

the restricted motions of the moving platform, the 6×6 dimensionally homogeneous extended 

Jacobian matrix is derived for non-redundant parallel manipulators. The condition number is 

computed over the homogeneous extended Jacobian matrix, the homogeneous actuation wrench 

matrix, and the homogeneous constraint wrench matrix to evaluate the performance of the parallel 

manipulators. By using these indices, the closeness of a pose to different singularities can be detected. 

An illustrative example with the 3-RPS parallel manipulator is provided to highlight the effectiveness 

of the approach and the proposed indices.  

Introduction 

The input-output relationship of the manipulators is represented by the Jacobian matrix that maps 

the actuators rates onto the velocity twist of the moving platform. By applying the theory of reciprocal 

screw, Joshi and Tsai in [1] proposed a systematic procedure to express a 6×6 overall Jacobian matrix 

that comprises both f linearly independent actuation wrenches and (6-f) linearly independent 

constraint wrenches. However, the overall Jacobian matrix considers only the instantaneous motions 

accessible by the moving platform. In [2], Huang et al. developed a methodology to formulate the 

Jacobian matrix that takes into account the instantaneous motions inaccessible by the moving 

platform, named the generalized Jacobian matrix.  

The Jacobian matrix of parallel manipulators with coupled rotational and translational motions, 

possess nonhomogeneous physical units. It leads to significant problem in which the computation of 

the condition number will vary with the scaling of dimensions. Dated back to 1990 [3], Gosselin used 

the velocities of two points to describe the velocity of the end effector hence the entries of the Jacobian 

matrix would bear the same units. Stocco et al. in [4] presented the diagonal scaling matrices by 

separating the task-space forces and the joint-space torques. The characteristic/natural length was 

introduced in [5-7] to overcome the issue of nonhomogeneous physical units. Kim and Ryu in [8] 

used three non collinear points on the moving platform and linked the linear velocities of these points 

with the actuators rates. In [9], Liu et al. introduced a tetrahedron containing five points and specified 

relevant axes at these points. A set of independent axes are selected which represents the permitted 

motions of the moving platform. Then, the dimensionally homogeneous Jacobian matrix is derived 

by combining the linear map between the twist of moving platform with the selected independent 

coordinates, and the generalized Jacobian matrix defined in [2]. However, this method does not take 

into account the restricted motions due to the existence of the constraint wrenches on the moving 

platform, that also affect the performance of the lower-mobility parallel manipulators.  

Accordingly, this paper focuses on the formulation of the dimensionally homogeneous extended 

Jacobian matrix for non-redundant lower-mobility parallel manipulators with coupled rotational and 

translational motions. By considering a set of linear independent axes which depicts the restricted 

motions of the moving platform, the 6×6 dimensionally homogeneous extended Jacobian matrix is 

derived. The method is applied to the 3-RPS (R, P, S denote prismatic, revolute, and spherical joints, 

respectively) manipulator. The condition number is computed over the homogeneous extended 



 

Jacobian matrix, the homogeneous actuation wrench matrix, and the homogeneous constraint wrench 

matrix. These indices can measure the closeness of a pose to different singularities, namely the 

actuation singularity, the constraint singularity, and the compound singularity.  

Formulation of the Jacobian Matrix 

This section briefly reviews the derivation of the Jacobian matrix for non-redundant parallel 

manipulators having f-dof . The instantaneous motions of a body must form a six dimensional vector, 

known as twist space 𝒯, that comprises a permitted twist subspace 𝒯𝑎 and a restricted twist subspace 

𝒯𝑐. The subspaces 𝒯𝑎 and 𝒯𝑐 have  $𝑡𝑎𝑖 and  $𝑡𝑐𝑗 being its elements, respectively. $𝑡𝑎𝑖 is the 𝑖-th 

permitted twist screw of the moving platform and $𝑡𝑐𝑗 is the 𝑗-th virtual restricted twist screw that is 

produced by releasing the correspondence 𝑗-th constraint wrench.  

On the other hand, the entire set of wrenches exerted in the moving platform forms six dimensional 

vector space, known as wrench space 𝒲, that comprises an actuation wrench subspace 𝒲𝑎  and a 

constraint wrench subspace 𝒲𝑐. The subspaces 𝒲𝑎 and 𝒲𝑐 have  $̂𝑤𝑎𝑖 and  $̂𝑤𝑐𝑗 being its elements, 

respectively. Therefore, the relationships between all four subspaces are: 𝒲𝑎 =  𝒯𝑐
⊥ and 𝒲𝑐 =  𝒯𝑎

⊥.  

The twist of the moving platform at each instant $𝑡 ∈ 𝒯 can be expressed as linear combination of 

the elements of 𝒯𝑎 and 𝒯𝑐, as: 

 

$𝑡 = $𝑡𝑎𝑖 + $𝑡𝑐𝑗 = ∑ �̇�𝑎𝑖  $̂𝑡𝑎𝑖
𝑓
𝑖=1 + ∑ �̇�𝑐𝑗  $̂𝑡𝑐𝑗

(6−𝑓)
𝑗=1          (1) 

where �̇�𝑎𝑖 and �̇�𝑐𝑗 are the actuated joints rates and the virtual constrained joints rates, respectively. 

The twist $𝑡 contains the linear velocity 𝒗𝒐 and the angular velocity 𝝎𝒐 of the moving platform origin. 

By performing the reciprocal product on both sides of Eq. (1) with $̂𝑤𝑎𝑖 and  $𝑤𝑐𝑗, we obtain: 

 

𝐉𝒕 $𝑡 = 𝐉𝒒 �̇�              (2) 

𝐉𝒕 = [
𝐉𝑡𝑎

𝐉𝑡𝑐
],  𝐉𝑡𝑎 = [

$̂𝑤𝑎1

⋮

$̂𝑤𝑎𝑓

],  𝐉𝑡𝑐 = [
$̂𝑤𝑐1

⋮

$̂𝑤𝑐(6−𝑓)

], 𝐉𝒒 = [
𝐉𝑞𝑎

𝐉𝑞𝑐
],  𝐉𝑞𝑎 = [

 $̂𝑤𝑎1

𝑇
$̂𝑡𝑎1 … …

⋮ ⋱ ⋮

⋯ ⋯ $̂𝑤𝑎𝑓

𝑇
$̂𝑡𝑎𝑓

],  

𝐉𝑞𝑐 = [
 $̂𝑤𝑐1

𝑇
$̂𝑡𝑐1 … …

⋮ ⋱ ⋮

⋯ ⋯ $̂𝑤𝑐(6−𝑓)

𝑇
$̂𝑡𝑐(6−𝑓)

], �̇� = [
�̇�𝑎

�̇�𝑐
],  �̇�𝑎 = [

�̇�𝑎1

⋮
�̇�𝑎𝑓

],  �̇�𝑐 = [

�̇�𝑐1

⋮
�̇�𝑐(6−𝑓)

],  $𝑡 = [
𝝎𝒐

𝒗𝒐
]. 

where 𝐉𝒕 and 𝐉𝒒 are 6×6 Jacobian matrices for non-redundant parallel manipulators. The derivation 

of the Jacobian matrices defined in Eq. (2) will be employed to formulate the 6×6 dimensionally 

homogeneous extended Jacobian matrix discussed hereafter.    

Formulation of the 6×6 Dimensionally Homogeneous Extended Jacobian Matrix 

Theoretically, the rotations and the translations of a body can be sufficiently described by the 

translations of three non collinear points embedded on it. Let us consider a moving platform as shown 

in Fig. 1 with the origin 𝑂 and the moving frame 𝛴1 attached to it. It rotates with angular velocity 𝝎𝒐 

and translates with linear velocity 𝒗𝒐 with respect to the fixed frame 𝛴0 of the base. If point 𝑃 is 

embedded at the moving platform with the position vector 𝐩𝟏 (with respect to the moving frame 𝛴1), 

its velocity with respect to the fixed frame 𝛴0 can be defined as:   

 

𝒗𝒑
𝟎 = 𝒗𝒐 + 𝝎𝒐 × 𝐩𝟎              (3) 

where 𝐩𝟎 = 𝐌 𝐩𝟏. 𝐌 is a spatial Euclidean transformation matrix  𝐌 ∈ 𝑆𝐸(3) defined in [10]. Place 

a set of axes at point 𝑃 defined as 𝒆𝑖,𝑗
1 . After transforming into 𝒆𝑖,𝑗

0 , take the dot product on both sides 

of Eq. (3) with 𝒆𝑖,𝑗
0 , it yields:  



 

 

    𝒗𝑝(𝑖,𝑗)
0 =  [

𝐩𝟎 × 𝒆𝑖,𝑗
0

𝒆𝑖,𝑗
0 ]  $𝑡             (4) 

To describe the velocity of the moving platform, a tetrahedron adopted from [9] is defined in Fig. 

2.  It contains five points (𝑃𝑖 , 𝑖 = 0. .4) with an equilateral base and three identical isosceles faces. 

The orthogonal axes are attached at each point i.e. 𝒆𝑖,1
1 ⊥ 𝒆𝑖,2

1 , 𝒆𝑖,1
1 ⊥ 𝐩1, and 𝒆𝑖,2

1 ⊥ 𝐩1, (𝑖 = 1. .4).  

𝒆1,1
1 = [0 1 0]𝑇, 𝒆2,1

1 = [0 −
√3

2
−

1

2
]

𝑇

 , 𝒆3,1
1 = [0

√3

2
−

1

2
]

𝑇

 , 𝒆1,2
1 = [0 0 1]𝑇, 

𝒆2,2
1 = [0 0 1]𝑇, 𝒆3,2

1 = [0 0 1]𝑇, 𝒆4,1
1 = [1 0 0]𝑇, 𝒆4,2

1 = [0 1 0]𝑇,    (5) 

𝒆0,1
1 = [1 0 0]𝑇, 𝒆0,2

1 = [0 1 0]𝑇, 𝒆0,3
1 = [0 0 1]𝑇. 

Transform all the position vectors and the unit vectors in Eq. (5) with respect to the fixed frame 𝛴0 

and substitute into Eq. (4), we can obtain in matrix form: 

 

𝒗𝑝
0 = 𝐓 $𝑡                 (6) 

where  

𝒗𝑝
0 = [𝒗𝑝0,1

0 𝒗𝑝0,2
0     ⋯ 𝒗𝑝4,2

0 ]
𝑻
     and   𝐓 = [

(𝐩0 × 𝒆0,1
0 ) 𝒆0,1

0

⋮
(𝐩0 × 𝒆4,2

0 ) 𝒆4,2
0

]  

and 𝐓 is a 11×6 matrix. For any f-dof non-redundant parallel manipulators with certain motion type, 

any f linearly independent row vectors of 𝐓 can be selected to represent the permitted motions of the 

moving platform. Furthermore, (6-f) linearly independent row vectors of 𝐓 are selected such that it 

depicts the restricted motions of the moving platform. By substituting Eq. (2) into Eq. (6), we can 

obtain the linear map from the joint rates  �̇� onto the linear and angular velocities of the moving 

platform, represented by the selected points (𝑃𝑖).  

 

𝐉𝒑 𝒗𝒑
𝟎 = 𝐉𝒒 �̇�,          𝐉𝒑 = 𝐉𝒕 𝐓−𝟏,          𝐉𝒑 = [

𝐉𝑝𝑎

𝐉𝑝𝑐
].        (7) 

where 𝐉𝒑 is a 6×6 dimensionally homogeneous extended Jacobian matrix for non-redundant parallel 

manipulators and it contains a f×6 homogeneous actuation wrench matrix (𝐉𝑝𝑎), and a (6-f)×6  

homogeneous constraint wrench matrix (𝐉𝑝𝑐). 

   
Figure 1: Rigid body displacement  Figure 2: Points and axes in tetrahedron 

Condition Number  

The condition number is quite often used as an index to explain the accuracy/dexterity of a parallel 

manipulator. It is also used to measure the closeness of a pose to a singularity. For a parallel 

manipulator with mix rotations and translations, the computation of the condition number is in general 



 

not possible due to the inconsistent units. However, after formulating the 6×6 dimensionally 

homogeneous extended Jacobian matrix, the condition number can be evaluated throughout the 

workspace, defined as: 𝜅(𝐉𝒑
−𝟏). The condition number can also be computed over the f×6 

homogeneous actuation wrench matrix (𝐉𝑝𝑎) and the (6-f)×6  homogeneous constraint wrench matrix 

(𝐉𝑝𝑐), defined as 𝜅((𝐉𝒑𝒂 𝐉𝒑𝒂
𝑻)−𝟏) and 𝜅((𝐉𝒑𝒄 𝐉𝒑𝒄

𝑻)−𝟏), respectively.  

Consequently, the parallel manipulators are said to be at an actuation singularity if 

𝜅((𝐉𝒑𝒂 𝐉𝒑𝒂
𝑻)−𝟏) = 0 and at a constraint singularity if 𝜅((𝐉𝒑𝒄 𝐉𝒑𝒄

𝑻)−𝟏) = 0. It also indicates that the 

actuation wrench matrix and the constraint wrench matrix degenerate, respectively. On the other 

hand, there is a case in which the parallel manipulators are neither at the actuation singularity nor at 

the constraint singularity while the system is subjected to a singularity. In this case, the Jacobian 

matrix degenerates due to the dependency between the actuation wrench matrix and the constraint 

wrench matrix, hence 𝜅(𝐉𝒑
−𝟏) = 0, while 𝜅((𝐉𝒑𝒂 𝐉𝒑𝒂

𝑻)−𝟏) ≠ 0 and 𝜅((𝐉𝒑𝒄 𝐉𝒑𝒄
𝑻)−𝟏) ≠ 0. This type 

of singularity is called a compound singularity and the moving platform gains one or more 

uncontrolled motion. Therefore, larger values of the condition number signify larger distances of a 

pose to different types of singularities.  

Application: 3-RPS Parallel Manipulator 

 
Figure 3: 3-RPS Parallel Manipulator 

The 3-RPS parallel manipulator shown in Fig. 3 is a 3-dof parallel manipulator. It is composed of 

an equilateral triangle base (circumradius ℎ0), an equilateral triangle platform (circumradius ℎ1), and 

three RPS limbs. The fixed frame 𝛴0 and the moving frame 𝛴1 are located at the origin of the base 

and at the origin of the moving platform, respectively. The revolute joint in the 𝑖-th limb is located at 

point 𝐴𝑖, its axis being along vector 𝐬𝑖, while the  spherical joint is located at point 𝐵𝑖  (𝑖 = 1. .3). 

Each pair of vertices (𝐴𝑖𝐵𝑖) is connected by a prismatic joint along the direction 𝐮𝑖.  

Due to the manipulator architecture, each limb applies one constraint force, which is perpendicular 

to the actuated prismatic joint and parallel to the axis 𝐬𝑖 of the revolute joint. By considering that the 

prismatic joints are actuated, each leg applies one actuation force whose axis is along the direction of 

the corresponding actuated joint 𝐮𝑖. By collecting all the actuation forces and the constraint forces, 

the Jacobian matrix 𝐉𝒕 can be obtained.  
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𝐉𝒕 = [
(𝐫𝐵1

0 × 𝐮1) (𝐫𝐵2
0 × 𝐮2) (𝐫𝐵3

0 × 𝐮3)
𝐮1 𝐮2 𝐮3

    
(𝐫𝐵1

0 × 𝐬1) (𝐫𝐵1
0 × 𝐬2) (𝐫𝐵3

0 × 𝐬3)
𝐬1 𝐬2 𝐬3

]
𝑇

  

𝐉𝒒 = 𝐈 (6 × 6 Identity matrix)  

Since the 3-RPS parallel manipulator has one pure translation along vertical direction and two 

rotations, three linearly independent axes can be selected from the tetrahedron to represent 3-dof 

permitted motions i.e. 𝒆𝑖,2
1 , 𝑖 = 1. .3. Furthermore, three other independent axes are selected to 

represent the restricted motions of the manipulators i.e. 𝒆𝑖,1
1 , 𝑖 = 1. .3. Hence:  

𝐓 = [
(𝐫𝐵1

0 × 𝒆1,2
0 ) (𝐫𝐵2

0 × 𝒆2,2
0 ) (𝐫𝐵3

0 × 𝒆3,2
0 )

𝒆1,2
0 𝒆2,2

0 𝒆3,2
0     

(𝐫𝐵1
0 × 𝒆1,1

0 ) (𝐫𝐵1
0 × 𝒆2,1

0 ) (𝐫𝐵3
0 × 𝒆3,1

0 )

𝒆1,1
0 𝒆2,1

0 𝒆3,1
0 ]

𝑇

  

Eventually, the 6×6 dimensionally homogeneous extended Jacobian matrix of the 3-RPS parallel 

manipulator is formulated i.e. 𝐉𝒑 𝒗𝒑
𝟎 = �̇�. The Euler angles (azimuth-tilt-torsion) is used to represent  

 
(a) Distribution of κ(𝑱𝒑
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(b) Distribution of κ((𝑱𝒑𝒂 𝑱𝒑𝒂
𝑻)−𝟏)    (c) Distribution of κ((𝑱𝒑𝒄 𝑱𝒑𝒄

𝑻)−𝟏) 

Figure 4: Distribution of the Condition number as a function of the azimuth angle (ϕ) and tilt angle ( θ) 



 

 

the orientation workspace of the moving platform. It is well known that the orientation capability of 

the 3-RPS parallel manipulator is defined as the maximum tilt angle 𝜃 for a given azimuth angle 𝜙. 

Its maximum orientation capability depends mostly on the singularity loci.  

The design parameters are assigned as ℎ0 = 2𝑚 and ℎ1 = 1𝑚. Let us consider the moving 

platform works at altitude 𝑍 = 3𝑚, then the condition number of 𝐉𝑝, 𝐉𝑝𝑎, 𝐉𝑝𝑐 is computed throughout 

the entire workspace and its distributions are plotted in Fig. 4(a)-4(c). For a given value of azimuth 

angle 𝜙, the performance of the 3-RPS manipulator reaches its maximum at 𝜃 = 0°. Figure 4(b) 

shows that the manipulator never reaches the actuation singularity. In [11-12], it reveals that the 3-

RPS manipulator has two operation modes and the constraint singularity occurs at the boundary of 

each operation mode. This condition is explained in Fig. 4(c) when the moving platform is titled by  

𝜃 = 180° for any value of azimuth angle 𝜙.  

Figure 5 represents the singularity loci of the 3-RPS manipulator and the distribution of the 

condition number 𝜅(𝐉𝒑
−𝟏) over the entire orientation workspace. The performance of the manipulator 

decreases when the tilt angle is no longer zero and eventually reaches the singularity loci. It reveals 

that the singularity loci in Fig. 5 corresponds to the compound singularity since neither the actuation 

wrench matrix nor the constraint wrench matrix degenerates. Likewise (𝐉𝒑
−𝟏) = 0, while 

𝜅((𝐉𝒑𝒂 𝐉𝒑𝒂
𝑻)−𝟏) ≠ 0 and 𝜅((𝐉𝒑𝒄 𝐉𝒑𝒄

𝑻)−𝟏) ≠ 0. It means that when the 3-RPS manipulator is in the 

compound singularity, there is the dependency between the actuation wrench matrix and the 

constraint wrench matrix.  

 

 
Figure 5: Atlas of singularity loci and condition number κ(𝑱𝒑

−𝟏) 

Singularity loci 



 

Conclusions 

In this paper, the 6×6 dimensionally homogeneous extended Jacobian matrix is derived for non-

redundant parallel manipulators. The method can be used for the parallel manipulators with coupled 

rotations and translations by considering a set of linear independent axes at the points of a tetrahedron, 

which represents the permitted motions and the restricted motions of the moving platform. The 

proposed approach is applied to the 3-RPS manipulator and the condition number is computed over 

the homogeneous extended Jacobian matrix (𝐉𝒑), the homogeneous actuation wrench matrix (𝐉𝒑𝒂), 

and the homogeneous constraint wrench matrix (𝐉𝒑𝒄). It reveals that at altitude 𝑍 = 3𝑚, the 

singularity loci of the 3-RPS manipulator corresponds to the compound singularity, in which the 3-

RPS manipulator is neither at the actuation singularity nor at the constraint singularity. The 3-RPS 

manipulator reaches the constraint singularity when the moving platform is tilted by 𝜃 = 180° for 

any value of azimuth angle 𝜙. Accordingly, these indices can measure the closeness of a pose to 

different types of singularities, namely the actuation singularity, the constraint singularity, and the 

compound singularity.  

References 

[1] S. A. Joshi and L.-W. Tsai, Jacobian Analysis of Limited-DOF Parallel Manipulators, ASME 

Journal of Mechanical Design, 124(2), pp. 254-258, 2002. 

[2] T. Huang., H. T. Liu., and D. G. Chetwynd, Generalized Jacobian Analysis of Lower Mobility 

Parallel Manipulators, Mechanism and Machine Theory, 46, pp. 831-844, 2011. 

[3] Clément M. Gosselin, Dexterity Indices for Planar and Spatial Robotic Manipulators, Proceedings 

of the IEEE International Conference on Robotics and Automation, Cincinnati, pp.650-655, 13-

18 May 1990. 

[4] Leo J. Stocco., S. E. Salcudean., and F. Sassani, On the Use of Scaling Matrices for Task-Specific 

Robot Design, IEEE Transactions on Robotics and Automation, 15(5), October 1999. 

[5] M. Tandirci, J. Angeles., and F. Ranjbaran, Characteristic Point and the Characteristic Length of 

Robotic Manipulators, ASME Des. Eng. Division, 45, pp. 203-208, 1992. 

[6] Waseem A. Khan and J. Angeles, The Kinetostatic Optimization of Robotic Manipulators: The 

Inverse and the Direct Problems, Transactions of the ASME, 128, pp. 168-178, 2006. 

[7] Jorge Angeles, Is there a characteristic length of a rigid-body displacement?, Mechanism and 

Machine Theory, 41, pp. 884-896, 2006. 

[8] S.-G. Kim and J. Ryu, New Dimensionally Homogeneous Jacobian Matrix Formulation by Three 

End-Effector Points for Optimal Design of Parallel Manipulators, IEEE Transactions on Robotics 

and Automation, 19(4), 2003.  

[9] H. Liu., T. Huang., and D. G. Chetwynd, A Method to Formulate a Dimensionally Homogeneous 

Jacobian of Parallel Manipulators, IEEE Transactions on Robotics, 27(1), 2011. 

[10] L. Nurahmi., J. Schadlbauer., S. Caro., M. Husty., and P. Wenger, Kinematic Analysis of the 3-

RPS Cube Parallel Manipulator, ASME Journal of Mechanims and Robotics, 7(1), pp. 011008-

1-011008-10, 2015. 

[11] J. Schadlbauer., L. Nurahmi., M. Husty., P. Wenger., and S. Caro, Operation Modes in Lower-

Mobility Parallel Manipulators, In Second Conference on Interdisciplinary Applications of 

Kinematics, Lima, Peru, pp. 1-9, 2013. 

[12] J. Schadlbauer., D. R. Walter., and M. L. Husty., The 3-RPS Parallel Manipulator from an 

Algebraic Viewpoint, Mechanism and Machine Theory, 75, pp. 161-176, 2014. 


