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Abstract— The subject of this paper is about the synthe-

sis of the design parameters of a parallel manipulator with

three RPS legs while considering the prescribed operation

modes at the design stage. The synthesis is based on the Eu-

ler parametrization and the results of primary decomposi-

tion. The design parameters and the coordinates of one RPS

leg are initially defined to formulate the constraint equation

associated with this leg. Seven classes of RPS legs are iden-

tified and the geometric properties of each class are high-

lighted. By selecting three different or identical classes of

the RPS leg, a new 3-RPS parallel manipulator is proposed

without specific values of the design parameters. The pri-

mary decomposition is computed over a set of three con-

straint equations. One or more Euler parameter(s) in the

results of primary decomposition is(are) constrained to be

equal to zero, which leads to particular types of operation

modes. The methodology also provides new architectures of

the 3-RPS parallel manipulators based on a classification of

the RPS legs, that satisfy the prescribed operation mode.

Keywords: Synthesis, design parameters, primary decomposition,

operation mode, RPS legs

I. Introduction

The well-known 3-RPS (R, P, S, represent revolute, pris-

matic, and spherical joints, respectively) parallel manipulator

with different shapes for the moving platform and the base

was extensively studied by many researchers. In 1983 [1],

Hunt introduced the 3-RPS manipulator which has an equi-

lateral triangle base and an equilateral triangle platform.

Since then, many researches and experimentations have been

presented to deal with this manipulator. Huang et al. in [2]

examined the principal screws of the 3-RPS manipulator in

several configurations. Tsai [3] and Schadlbauer et al. [4]

used different approaches to enumerate sixteen solutions of

the direct kinematics. Schadlbauer et al. also revealed that

the 3-RPS manipulator has two distinct operation modes.

Later in [5], Schadlbauer et al. characterized the motion

type in both operation modes by using the axodes. The self-

motions of this mechanism were classified in [6] via Study

kinematic mapping.

Kim et al. in [7] determined the design parameters of the

3-RPS manipulator to fulfil six prescribed positions of the

moving platform. However in most of the cases six preci-

sion point accuracy is not sufficient to obtain a given mo-

tion. Hence Rao et al. [8] modified the synthesis method by

means of the least square method and the Newton-Raphson

method to synthesize the design parameters for any number

of approximate prescribed positions of the moving platform.

Later in [9], Rao et al. improved the approximation results

by adopting the Genetic Algorithm.

Another parallel manipulator of the 3-RPS family is the

3-RPS cube manipulator and was proposed by Huang et al.

in 1995 [10]. The 3-RPS cube manipulator is composed

of a cube-shaped base and an equilateral triangle platform.

Huang et al. in 2011 [11] discussed the impact of manu-

facturing errors and the orientation capability based on the

Euler angles for a group of 3-dof rotational parallel mecha-

nisms without intersecting axes. The following year the type

synthesis of this motion group was presented in [12].

By identifying the reciprocal screws of each leg, Huang et

al. in [13] showed that the 3-RPS cube manipulator is able to

perform 1-dof motion along its diagonal, which is known as

the Vertical Darboux Motion. This phenomenon was further

discussed by Nurahmi et al. in [14], [15], [16], using the

Study kinematic mapping. The authors also found that this

mechanism has only one operation mode in which the 3-dof

general motion and the Vertical Darboux Motion occur inside

the same operation mode.

Bai et al. in [17] studied the kinematics of the 3-PPR pla-

nar parallel manipulator with different types of the base and

the platform. The authors also designed a novel planar par-

allel robot with a non-symmetrical base which is able to per-

form large workspace without affecting its motion accuracy.

The 3-RPS manipulator proposed by Hunt and the 3-RPS

cube manipulator proposed by Huang have three identical

RPS legs. However, the number and the types of operation

modes for both manipulators are different due to the manipu-

lator architectures. The axes of the three revolute joints in the

3-RPS cube manipulator are orthogonal to each other, while

the axes of the three revolute joints in the 3-RPS manipulator

proposed by Hunt are coplanar.

Accordingly, a general approach to synthesize the design

parameters by considering the prescribed operation modes

for a parallel manipulator with three RPS legs, is discussed

in more details in this paper. The approach is based on the

Euler parametrization [18], and the primary decomposition

is used to reveal the existence of the number and the type of

operation modes [19]-[22].

The first essential step is to characterize the coordinates

and to define the design parameters of one RPS leg. Then, the
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constraint equation of this RPS leg is formulated by means

of the Euler parametrization. This constraint equation should

vanish in any configuration of the moving platform, like-

wise in the home configuration where the fixed frame and

the moving frame are coincident. As a result, seven classes

of the RPS legs are obtained based on the position and the

orientation of the RPS legs.

By selecting three different or identical classes of the RPS

legs, 3-RPS parallel manipulators are obtained without any

specific value of the design parameters. This is an intermedi-

ate stage and one needs to derive the constraint equations of

the corresponding new manipulator and compute the primary

decomposition. In the results of primary decomposition, one

or more Euler parameter(s) is(are) constrained to be null. Un-

der this condition, the design parameters are synthesized.

This paper is organized as follows: A detailed definition

of the design parameters is given in Section 2. The con-

straint equation of one RPS leg is expressed in Section 3.

This equation is used to classify seven classes of the RPS

legs in Section 4. Eventually in Section 5, some new 3-RPS

parallel manipulators are synthesized by selecting three iden-

tical classes for the RPS legs corresponding to the prescribed

operation modes.

II. Parametrization of the RPS Leg
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Fig. 1. Parameters of the RPS leg.
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Fig. 2. The axis of revolute joint.

The RPS leg depicted in Fig. 1, is composed of a revo-

lute joint, an actuated prismatic joint, and a spherical joint

mounted in series. The revolute joint is attached to the base

and denoted by point Ai (i denotes the number of the leg

used in the manipulator, i = 1, 2, 3). This point is located

in the three-dimensional space which is specified by the az-

imuth angle αi, the polar angle βi, and the radial distance ai
from the origin O of the fixed frame Σ0.

The spherical joint is attached to the moving platform and

denoted by point Bi. This point is also located in the three-

dimensional space which is specified by the azimuth angle εi,
the polar angle ζi, and the radial distance bi from the origin

P of the moving frame Σ1. The axis of the revolute joint is

along the vector si, which is specified by the azimuth angle

γi and the polar angle Γi (Fig. 2). The coordinates of points

Ai, Bi and unit vector si are:

r0Ai
=

[

1, cαi
cβi

ai, sαi
cβi

ai, sβi
ai

]T

,

r1Bi
=

[

1, cεicζibi, sεicζibi, sζibi

]T

,

si =

[

0, cγi
cΓi

, sγi
cΓi

, sΓi

]T

.

(1)

where cαi
= cos(αi), sαi

= sin(αi), cβi
= cos(βi), sβi

=
sin(βi), cεi = cos(εi), sεi = sin(εi), cζi = cos(ζi), sζi =
sin(ζi), cγi

= cos(γ), sγi
= sin(γ), cΓi

= cos(Γ), and

sΓi
= sin(Γ). As a consequence, there are eight design pa-

rameters for one RPS leg, namely ai, bi, αi, βi, εi, ζi, γi,
and Γi. Since the 3-RPS parallel manipulator is composed of

three legs, it has 24 design parameters.
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III. Leg Constraint Equation

In this section, the constraint equation is expressed for one

RPS leg shown in Fig. 1. To obtain the coordinates of point

Bi expressed in the fixed frame Σ0, the transformation ma-

trix M is used as follows:

M =

(

x2
0 + x2

1 + x2
2 + x2

3 0T3×1

d R

)

(2)

R is an orthogonal matrix obtained with the Euler

parametrization [18] and d is the point-displacement vector:

R =

(

x2

0
+ x2

1
− x2

2
− x2

3
2(x1x2 − x0x3) 2(x1x3 + x0x2)

2(x1x2 + x0x3) x2

0
− x2

1
+ x2

2
− x2

3
2(x2x3 − x0x1)

2(x1x3 − x0x2) 2(x2x3 + x0x1) x2

0
− x2

1
− x2

2
+ x2

3

)

d =

(

X

Y

Z

)

(3)

The parameters x0, x1, x2, x3, which appear in matrix R,

are called Euler parameters of the rotation. They are useful

in the representation of a spatial Euclidean displacement and

should satisfy the following equation [24]:

x2

0 + x2

1 + x2

2 + x2

3 − 1 = 0 (4)

This condition will be used in the following computations to

simplify the algebraic expressions. The coordinates of point

Bi expressed in Σ0 are obtained by:

r0Bi
= M r1Bi

(5)

As the coordinates of all points are given in terms of Eu-

ler parameters and design parameters, the constraint equation

can be obtained by examining the design of the RPS leg. The

leg connecting pointsAi andBi is orthogonal to the axis si of

the revolute joint. Accordingly, the scalar product of vector

(r0Bi
− r0Ai

) and vector si vanishes, namely:

(r0Bi
− r0Ai

)T si = 0 (6)

After computing the corresponding scalar product and re-

moving the common denominators, the following constraint

equation of one RPS leg comes out:

hi : cγi
cΓi

X + cΓi
sγi

Y + (x2

0 − x2

1 − x2

2 + x2

3)sζisΓi
bi

− sβi
sΓi

ai + (2x1x2 − 2x0x3)bicΓi
cγi

sεicζi + (2

x0x3 + 2x1x2)bisγi
cΓi

cζicεi + (x2

0
+ x2

1
− x2

2
− x2

3
)

cεicζicγi
cΓi

bi − cαi
cβi

cγi
cΓi

ai + (x2

0 − x2

1 + x2

2−
x2

3
)cζisεicΓi

sγi
bi − cβi

cΓi
sαi

sγi
ai + (2x0x1 + 2x2

x3)bisΓi
sεicζi + (2x0x2 + 2x1x3)bicΓi

cγi
sζi + (2

x2x3 − 2x0x1)bisγi
cΓi

sζi + (2x1x3 − 2x0x2)bisΓi

cζicεi + sΓi
Z = 0

(7)

IV. Classification of the RPS legs

In this section, the constraint equation associated with the

design parameters are solved to synthesize seven classes of

RPS legs. The constraint equations hi (i = 1, 2, 3) in Eq. (7)

should vanish for any configuration of the moving platform

and in particular in the home configuration where the fixed

frame and the moving frame coincide. In the home config-

uration, the transformation matrix M defined by Eq. (2) be-

comes the identity matrix I and the variables become x0 =
1, x1 = 0, x2 = 0, x3 = 0, X = 0, Y = 0, Z = 0. By

substituting these values into Eq. (7), hi takes the following

form:

h0

i : (cεicζicγi
cΓi

+ cζicΓi
sεisγi

+ sζisΓi
)bi−

(cαi
cβi

cγi
cΓi

+ cβi
cΓi

sαi
sγi

+ sβi
sΓi

)ai = 0
(8)

Equation (8) does not bring any geometric insight on the

geometric arrangements of the 3-RPS legs for the 3-RPS par-

allel manipulator to be assembled in the home configuration.

As a consequence, we are looking for some particular geo-

metric arrangements of the legs for the 3-RPS parallel manip-

ulator to be assembled. For instance, the manipulator can be

assembled in the home configuration when the two following

terms vanish:

mi =(cεicζicγi
cΓi

+ cζicΓi
sεisγi

+ sζisΓi
)bi

ni =(cαi
cβi

cγi
cΓi

+ cβi
cΓi

sαi
sγi

+ sβi
sΓi

)ai

with:

h0

i : mi − ni = 0 (9)

It can be seen that mi and ni are polynomials in terms

of the design parameters. To find the relations between

the design parameters for which the constraint equation h0

i

vanishes, we compute one particular condition where mi

and ni vanish simultaneously. One has to discuss the ideal

I = 〈mi, ni〉 and compute the Groebner basis with lexico-

graphic order. Twenty three relations are obtained and sub-

stituted into Eq. (1). For detailed results of the 23 relations,

the reader can refer to [23].

Based on their geometric properties, seven classes are

identified and each class contains one or more sub-classes as

shown in Table I. The detailed expressions of each sub-class

are presented in Table II-IV. The sub-classes give the loca-

tion of the RPS legs in the three-dimensional space, in which

r0Ai
gives the location of the revolute joint with respect to

Σ0, r1Bi
gives the location of the spherical joint with respect

to Σ1, and si gives the unit vector of the axis of the revolute

joint with respect to Σ0.

By selecting three different or identical classes, a new ma-

nipulator with three RPS legs can be created. The user may

assign some arbitrary values into the design parameters and

assemble the legs accordingly. However, it is interesting to

3
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Class Sub-class Geometric properties

A A.1

Points Ai, Bi are located

at the origins of Σ0 and

Σ1, respectively; the axes

of R-joints are arbitrary

B B.1, B.2

Points Ai, Bi are located

in the xy-plane of Σ0 and

Σ1, respectively; the axes

of R-joints are parallel to

the z-axis

C C.1, C.2, C.3, C.4

Points Ai, Bi are located

on the z-axis of Σ0 and Σ1,

respectively; the axes of R-

joints are parallel to the xy-

plane of Σ0

D D.1, D.2, D.3, D.4

Point Ai is located on z-axis

of Σ0 and point Bi is loca-

ted in any position in Σ1;

the axes of R-joints are pa-

rallel to the xy-plane of Σ0

E E.1, E.2, E.3, E.4

Point Ai is located in any

position in Σ0 and point Bi

is located on the z-axis of

Σ1; the axes of R-joints are

parallel to the xy-plane of Σ0

F F.1, F.2, F.3, F.4

Points Ai, Bi are located

in any position in Σ0 and

Σ1, respectively; the axes

of R-joints are parallel to

the xy-plane of Σ0

G G.1, G.2, G.3, G.4

Points Ai, Bi are located

in the xy-plane of Σ0 and

Σ1, respectively; the axes

of R-joints can take any

orientation

TABLE I. Classes and Sub-classes of RPS Legs

generate various designs of the 3-RPS manipulator that fulfil

the prescribed operation modes as presented in the following.

V. Synthesis of Design Parameters

In the following, an example of 3-RPS parallel manipula-

tor with three identical classes of the RPS leg is presented.

Then, the design parameters associated with the new manip-

ulator are synthesized by imposing the prescribed operation

modes.

Class Sub-class
Coordinates of points and axis

r0Ai
r1Bi

si

A A.1









1
0
0
0

















1
0
0
0

















0
cγi

cΓi

sγi
cΓi

sΓi









B

B.1









1
cαi

ai
sαi

ai
0

















1
cεibi
sεibi
0

















0
0
0
1









B.2









1
cαi

ai
sαi

ai
0

















1
cεibi
sεibi
0

















0
0
0
−1









C

C.1









1
0
0
ai

















1
0
0
bi

















0
cγi

sγi

0









C.2









1
0
0
ai

















1
0
0

−bi

















0
cγi

sγi

0









C.3









1
0
0

−ai

















1
0
0
bi

















0
cγi

sγi

0









C.4









1
0
0

−ai

















1
0
0

−bi

















0
cγi

sγi

0









D

D.1









1
0
0
ai

















1
−sγi

cζibi
cγi

cζibi
sζibi

















0
cγi

sγi

0









D.2









1
0
0
ai

















1
sγi

cζibi
−cγi

cζibi
sζibi

















0
cγi

sγi

0









D.3









1
0
0

−ai

















1
−sγi

cζibi
cγi

cζibi
sζibi

















0
cγi

sγi

0









TABLE II. Coordinates of points Ai and Bi and revolute joint axis for each

sub-class

4
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Class Sub-class
Coordinates of points and axis

r0Ai
r1Bi

si

D D.4









1
0
0

−ai

















1
sγi

cζibi
−cγi

cζibi
sζibi

















0
cγi

sγi

0









E

E.1









1
−sγi

cβi
ai

cγi
cβi

ai
sβi

ai

















1
0
0
bi

















0
cγi

sγi

0









E.2









1
sγi

cβi
ai

−cγi
cβi

ai
sβi

ai

















1
0
0
bi

















0
cγi

sγi

0









E.3









1
−sγi

cβi
ai

cγi
cβi

ai
sβi

ai

















1
0
0

−bi

















0
cγi

sγi

0









E.4









1
sγi

cβi
ai

−cγi
cβi

ai
sβi

ai

















1
0
0

−bi

















0
cγi

sγi

0









F

F.1









1
−sγi

cβi
ai

cγi
cβi

ai
sβi

ai

















1
−sγi

cζibi
cγi

cζibi
sζibi

















0
cγi

sγi

0









F.2









1
cεicβi

ai
sεicβi

ai
sβi

ai

















1
cεicζibi
sεicζibi
sζibi

















0
−sεi
cεi
0









F.3









1
−sγi

cβi
ai

cγi
cβi

ai
sβi

ai

















1
sγi

cζibi
−cγi

cζibi
sζibi

















0
cγi

sγi

0









F.4









1
sγi

cβi
ai

−cγi
cβi

ai
sβi

ai

















1
−sγi

cζibi
cγi

cζibi
sζibi

















0
cγi

sγi

0









G G.1









1
−sγi

ai
cγi

ai
0

















1
−sγi

bi
cγi

bi
0

















0
cγi

cΓi

sγi
cΓi

sΓi









TABLE III. Coordinates of points Ai and Bi and revolute joint axis for

each sub-class (continued)

Class Sub-class
Coordinates of points and axis

r0Ai
r1Bi

si

G

G.2









1
sγi

ai
−cγi

ai
0

















1
sγi

bi
−cγi

bi
0

















0
cγi

cΓi

sγi
cΓi

sΓi









G.3









1
sγi

ai
−cγi

ai
0

















1
−sγi

bi
cγi

bi
0

















0
cγi

cΓi

sγi
cΓi

sΓi









G.4









1
−sγi

ai
cγi

ai
0

















1
sγi

bi
−cγi

bi
0

















0
cγi

cΓi

sγi
cΓi

sΓi









TABLE IV. Coordinates of points Ai and Bi and revolute joint axis for

each sub-class (continued)

A. Sub-class F.2

In this section, the 3-RPS manipulator is generated by se-

lecting three identical sub-classes, namely sub-class F.2. The

RPS leg in this class consists of a revolute joint and a spher-

ical joint that are located in any position with respect to Σ0

and Σ1, respectively. The axis of the revolute joint is parallel

to the xy-plane of Σ0. In this sub-class, the coordinates of

points Ai, Bi, and vector si are:

r0Ai
=

[

1 cεicβi
ai sεicβi

ai sβi
ai

]

,

r1Bi
=

[

1 cεicζibi sεicζibi sζibi

]

,

si =

[

0 −sεi cεi 0

]

.

(10)

Due to the fact that the computation of primary decom-

position in software Singular fails for reasons of memory

and time, points Ai and Bi are assumed to lie in the xy-plane

of Σ0 and Σ1, respectively. Therefore, some values are as-

signed for β1 = β2 = β3 = 0 and ζ1 = ζ2 = ζ3 = 0, we

obtain:

r0Ai
=

[

1 cεiai sεiai 0

]

,

r1Bi
=

[

1 cεibi sεibi 0

]

.

(11)

The first RPS leg of the manipulator is fixed by substituting

ε1 = 0, hence the coordinates of points A1, B1 and vector s1
become:

5
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r0A1
=

[

1 a1 0 0

]

,

r1B1
=

[

1 b1 0 0

]

,

s1 =

[

0 0 1 0

]

.

(12)

To obtain the coordinates of points B1, B2, B3 expressed

in Σ0, the coordinate transformation is performed by means

of the Euler parametrization as stated in Eq. (5), namely

r0Bi
= M r1Bi

(i = 1, 2, 3).

The constraint equations are determined by computing

the scalar products of the vector
−−−→
AiBi and the unit vec-

tor si, which should vanish as stated in Eq. (6), namely

(r0Bi
−r0Ai

)T si = 0. The constraint equations take the form:

h1 : Y + (2x0x3 + 2x1x2)b1 = 0

h2 : 4c2ε2b2x1x2 − 2(x2

1
− x2

2
)cε2sε2b2 + cε2Y − sε2X+

(2x0x3 − 2x1x2)b2 = 0

h3 : 4c2ε3b3x1x2 − 2(x2

1 − x2

2)cε3sε3b3 + cε3Y − sε3X+

(2x0x3 − 2x1x2)b3 = 0
(13)

For the algebraic computation, the half-tangent substitu-

tions are performed to remove the trigonometric functions in

the second and the third legs:

sεi =
(2tei)

(1 + te2i )
, cεi =

(1− te2i )

(1 + te2i )
(14)

where tei = tan(
εi
2
). Hence, new constraint equations in

terms of half-tangents are obtained:

h1 : Y + (2x0x3 + 2x1x2)b1 = 0

h2 : − 2Xte32 − 2te2X − Y te42 + Y + (2x0x3 + 2x1x2)

b2te
4

2
+ 4(x2

1
− x2

2
)b2te

3

2
+ (4x0x3 − 12x1x2)b2te

2

2

− 4(x2

1 − x2

2)te2b2 + (2x0x3 + 2x1x2)b2 = 0

h3 : − 2Xte3
3
− 2te3X − Y te4

3
+ Y + (2x0x3 + 2x1x2)

b3te
4

3 + 4(x2

1 − x2

2)b3te
3

3 + (4x0x3 − 12x1x2)b3te
2

3

− 4(x2

1
− x2

2
)te3b3 + (2x0x3 + 2x1x2)b3 = 0

(15)

Then these three constraint equations are written as a poly-

nomial ideal I = 〈h1, h2, h3〉 with variables {x0, x1, x2, x3,
X, Y } over the coefficient ring C[b1, b2, b3, te2, te3]. The

primary decomposition is computed and it turns out that I
cannot be decomposed, but it can be reformulated as I =
〈g1, g2, g3〉:

g1 : (2b2te
3

2te
3

3 − 2b3te
3

2te
3

3 + 2b2te
3

2te3 − 2b2te2te
3

3 + 2

b3te
3

2
te3 − 2b3te2te

3

3
− 2b2te2te3 + 2b3te2te3)x

2

1
+ (

b1te
4

2te
3

3 − b1te
3

2te
4

3 + b2te
4

2te
3

3 − b3te
3

2te
4

3 + b1te
4

2te3

− b1te2te
4

3
+ b2te

4

2
te3 − 6b2te

2

2
te3

3
+ 6b3te

3

2
te2

3
− b3

te2te
4

3 + b1te
3

2 − b1te
3

3 − 6b2te
2

2te3 + b2te
3

3 − b3te
3

2+

6b3te2te
2

3
+ b1te2 − b1te3 + b2te3 − b3te2)x1x2 + (−

2b2te
3

2
te3

3
+ 2b3te

3

2
te3

3
− 2b2te

3

2
te3 + 2b2te2te

3

3
− 2b3

te32te3 + 2b3te2te
3

3 + 2b2te2te3 − 2b3te2te3)x
2

2 + (b1

te4
2
te3

3
− b3te

3

2
− b1te

3

2
te4

3
+ b2te

4

2
te3

3
− b3te

3

2
te4

3
+ b1

te42te3 − b1te2te
4

3 + b2te
4

2te3 + b2te
3

3 + 2b2te
2

2te
3

3 − 2

b3te
3

2
te2

3
− b3te2te

4

3
+ b1te

3

2
− b1te

3

3
+ 2b2te

2

2
te3 + b1

te2 − b1te3 + b2te3 − b3te2 − 2b3te2te
2

3)x0x3 = 0
(16)

g2 : Y (b1te
4

2te
3

3 − b1te
3

2te
4

3 + b2te
4

2te
3

3 − b3te
3

2te
4

3 + b1

te4
2
te3 − b1te2te

4

3
− b3te2 + b2te

4

2
te3 + 2b2te

2

2
te3

3

− 2b3te
3

2
te2

3
− b3te2te

4

3
+ b1te

3

2
− b1te

3

3
+ b2te3

+ 2b2te
2

2te3 + b2te
3

3 − b3te
3

2 − 2b3te2te
2

3 + b1te2

− b1te3) + (−4b1b2te
3

2
te3

3
+ 4b1b3te

3

2
te3

3
− 4b1b2

te32te3 + 4b1b2te2te
3

3 − 4b1b3te
3

2te3 + 4b1b3te2te
3

3

+ 4b1b2te2te3 − 4b1b3te2te3)x
2

1
+ (16b1b2te

2

2
te3

3

− 16b1b3te
3

2te
2

3 + 16b1b2te
2

2te3 − 16b1b3te2te
2

3)

x1x2 + (4b1b2te
3

2
te3

3
− 4b1b3te

3

2
te3

3
+ 4b1b2te

3

2
te3

− 4b1b2te2te
3

3
+ 4b1b3te

3

2
te3 − 4b1b3te2te

3

3
− 4

b1b2te2te3 + 4b1b3te2te3)x
2

2 = 0
(17)

g3 : X(b1te
4

2te
3

3 − b1te
3

2te
4

3 + b2te
4

2te
3

3 − b3te
3

2te
4

3 + b1

te4
2
te3 − b1te2te

4

3
+ b2te

4

2
te3 + 2b2te

2

2
te3

3
− 2b3te

3

2

te23 − b3te2te
4

3 + b1te
3

2 − b1te
3

3 − b3te2 + 2b2te
2

2te3

+ b2te
3

3
− b3te

3

2
− 2b3te2te

2

3
+ b1te2 − b1te3 + b2

te3) + (2b1b2te
3

2te
4

3 − 2b1b3te
4

2te
3

3 − 2b2b3te
4

2te
3

3+

2b2b3te
3

2
te4

3
− 2b1b2te2te

4

3
+ 2b1b3te

4

2
te3 + 2b2b3

te4
2
te3 + 4b2b3te

3

2
te2

3
− 4b2b3te

2

2
te3

3
− 2b2b3te2te

4

3

− 2b1b2te
3

2 + 2b1b3te
3

3 + 2b2b3te
3

2 + 4b2b3te
2

2te3−
4b2b3te2te

2

3
− 2b2b3te

3

3
+ 2b1b2te2 − 2b1b3te3 − 2

b2b3te2 + 2b2b3te3)x
2

1 + (−8b1b2te
2

2te
4

3 + 8b1b3te
4

2

te2
3
+ 8b2b3te

4

2
te2

3
− 8b2b3te

2

2
te4

3
+ 8b1b2te

2

2
− 8b1

b3te
2

3 − 8b2b3te
2

2 + 8b2b3te
2

3)x1x2 + (−2b1b2te
3

2

te4
3
+ 2b1b3te

4

2
te3

3
+ 2b2b3te

4

2
te3

3
− 2b2b3te

3

2
te4

3
+

(18)

6
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2b1b2te2te
4

3
− 2b1b3te

4

2
te3 − 2b2b3te

4

2
te3 − 4b2b3

te3
2
te2

3
+ 4b2b3te

2

2
te3

3
+ 2b2b3te2te

4

3
+ 2b1b2te

3

2
−

2b1b3te
3

3 − 2b2b3te
3

2 − 4b2b3te
2

2te3 + 4b2b3te2te
2

3

+ 2b2b3te
3

3
− 2b1b2te2 + 2b1b3te3 + 2b2b3te2−

2b2b3te3)x
2

2 = 0

It can be seen from Eqs. (16-18) that g1, g2, g3 are free of

Z component. This means that for any value of the design pa-

rameters (b1, b2, b3, ε2, ε3), the manipulator can always per-

form a pure translation along z direction.

Variable x3 can be solved linearly from g1 and x3 is

parametrized by x0, x1, x2. This means that the manipulator

is capable of orientations determined by x0, x1, x2 in which

variable x3 is not null. The mechanism might be subjected

to a parasitic motion as discussed in [25], [26].

The equations g2, g3 can be solved linearly for variables Y
and X , respectively. This shows that the manipulator under-

goes translational motions along x and y directions which are

coupled to the orientations. In the following, the rotational

components {x0, x1, x2, x3} from g1, g2, g3 are constrained

to be equal to zero, which leads to different operation modes.

By fulfilling this condition, the design parameters are syn-

thesized and new architectures are proposed.

A.1 Case x0 = 0

One variable is constrained to be null, namely x0 = 0.

Since only the equation g1 has component x0, the computa-

tion will be carried out only for g1. After substituting x0 = 0,

equation g1 becomes:

g1 : ax2

1
+ bx1x2 + cx2

2
= 0 (19)

where a, b, c are polynomial coefficients in terms of the de-

sign parameters (b1, b2, b3, te2, te3).
To synthesize the design parameters, all polynomial coef-

ficients have to vanish. Hence, one has to discuss the ideal

J = 〈a, b, c〉. The Groebner basis of the ideal J with lex-

icographic order is computed and 17 solutions are obtained

for the design parameters. Not all solutions are possible and

hence some assumptions are made, as follows:

1. The second and the third legs cannot be coincident with

the first leg:

- ε2 6= 0 and ε3 6= 0
2. The second leg cannot be coincident with the third leg:

- ε2 6= ε3
3. The magnitude of bi (i = 1, 2, 3) should be positive:

- bi ≥ 0, i = 1, 2, 3
4. The platform cannot be a point:

- b1 6= b2 6= b3 6= 0
5. No complex solutions:

- {b1, b2, b3, ε2, ε3} ∈ R

After removing the solutions that do not fulfil the assump-

tions stated above, four designs are obtained:

L1 : b2 = 0, b3 = 0, ε3 = π + ε2

L2 : b2 =
b1

tan(ε3)
, b3 = 0, ε2 =

π

2
, ε3 6= 0 or ε3 6= ±π

L3 : b2 = − b1
tan(ε3)

, b3 = 0, ε2 = −π

2
, ε3 6= 0 or ε3 6= ±π

L4 : b1 = b3
cos(ε2 − ε3)

cos(ε2)
, b2 = b3

cos(ε3)

cos(ε2)
, ε2 6= ±π

2
or

ε2 6= ±3π

2
(20)

The 3-RPS parallel manipulator can be generated by se-

lecting one of the designs (L1, L2, L3, L4). In the following,

the parallel manipulators obtained with designs L2 and L4

are presented.

Design L2

In design L2, some values are assigned as b1 = 1 and

ε3 = −2π/3. Other design parameters are obtained as: b2 =√
3/3, b3 = 0, ε2 = π/2. The new architecture of the 3-RPS

manipulator is depicted in Fig. 3. The base and the moving

platform have right-angle triangle shapes. The unit vectors

s1 and s2 are orthogonal (s1 ⊥ s2).

The values of the design parameters are substituted into the

set of three constraint equations defined in Eq. (13). Then the

constraint equations associated with the new parallel manip-

ulator are:

k1 : Y + 2x0x3 + 2x1x2

k2 : 2
√
3x0x3 − 2

√
3x1x2 − 3X

k3 : X
√
3− Y

(21)

These three constraint equations are defined as a new ideal

K = 〈k1, k2, k3〉 and the primary decomposition is computed

to verify if the ideal K is the intersection of several smaller

ideals. Indeed, the ideal K is decomposed into two compo-

nents, which correspond to two different operations modes

as K =
⋂2

i=1
Ki, with the results of primary decomposition:

K1 = 〈x0, 3X −
√
3Y, 2x1x2 + Y 〉

K2 = 〈x3, 3X −
√
3Y, 2x1x2 + Y 〉

(22)

The first operation mode is shown by the first sub-idealK1,

in which x0 = 0. All possible poses of the mechanism in this

operation mode are obtained by rotating the platform from

the home configuration about a transformation axis by π and

translating along the same direction. The second operation

mode is shown by the sub-ideal K2 with x3 = 0. In this

operation mode, the transformation axis is parallel to the xy-

plane of Σ0. The investigation of these two operation modes

are discussed in more detail in [4].

7
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x0
y0

z0

x1
y1

z1

Σ0

Σ1

s1

s2

s3

A1

A2

A3

B1

B2

B3

Fig. 3. The 3-RPS parallel manipulator based on design L2.

Design L4

In designL4, the design parameters b3, ε2, ε3 are assigned,

namely b3 = 1, ε2 =
2π

3
, and ε3 = −2π

3
. Therefore, we

can obtain b1 = 1 and b2 = 1. The 3-RPS parallel manip-

ulator generated with these design parameters has the equi-

lateral triangle base and the equilateral triangle platform, as

depicted in Fig. 4. This 3-RPS parallel manipulator was in-

troduced by Hunt in 1983 [1].

The set of three constraint equations in Eq. (13) is recalled

and the values of the design parameters are substituted. This

yields:

k1 : Y + 2x0x3 + 2x1x2

k2 :
√
3x2

1
−
√
3x2

2
−
√
3X + 4x0x3 − 2x1x2 − Y

k3 : −
√
3x2

1 +
√
3x2

2 +
√
3X + 4x0x3 − 2x1x2 − Y

(23)

These constraint equations are written as an ideal K =
〈k1, k2, k3〉 and the primary decomposition is computed. It

turns out that the ideal K is decomposed into two compo-

nents, which correspond to two different operations modes

as K =
⋂2

i=1
Ki, with the results of primary decomposition:

K1 = 〈x0,−x2

1
+ x2

2
+X, 2x1x2 + Y 〉

K2 = 〈x3,−x2

1
+ x2

2
+X, 2x1x2 + Y 〉 (24)

It turns out that the manipulators generated by either de-

x0

y0

z0

x1

y1

z1

Σ0

Σ1

s1

s2

s3

A1

A2

A3

B1

B2

B3

Fig. 4. The 3-RPS parallel manipulator based on design L4.

sign L2 or design L4 will have similar number and type of

operation modes, namely x0 = 0 and x3 = 0. This condition

is applied also for other designs, namely L1 and L3. How-

ever, they might have different parasitic motions o f transla-

tions in x and y directions.

A.2 Case x3 = 0

In this section, variable x3 is constrained to be equal to

null. In Eqs. (16-18), only the equation g1 has variable x3. In

equation g1, only one monomial contains variable x3 and ap-

parently this monomial contains variable x0 simultaneously.

Accordingly, the synthesis of the design parameters with

x3 = 0 will lead to the same designs as determined in Section

V-A.1, namely Eq. 20. This means that the 3-RPS manipula-

tors generated in this section will have at least two operation

modes containing x0 = 0 and x3 = 0.

A.3 Case x1 = 0

In this section, the variable x1 in Eqs. (16-18) is con-

strained to be null. After substituting x1 = 0, the equations

g1, g2, g3 become:

g1 : ax0x3 + bx2

2
= 0

g2 : cY + dx2
2 = 0

g3 : eX + fx2

2 = 0
(25)

where a, b, c, d, e, f are polynomial coefficients in terms of

the design parameters (b1, b2, b3, te2, te3).
To synthesize the design parameters corresponding to the

variable x1 = 0, all polynomial coefficients in Eq. (25)

8
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have to vanish. Accordingly, one has to discuss the ideal

J = 〈a, b, c, d, e, f〉. The Groebner basis of ideal J with

lexicographic order is computed and 11 solutions of the de-

sign parameters are obtained. Not all solutions are possible

and hence by following the aforementioned assumptions in

Section V-A.1, three designs are obtained as:

L1 : b2 = − b1
tan(ε3)

, b3 = 0, ε2 =
π

2
, ε3 6= 0 or ε3 6= ±π

L2 : b2 =
b1

tan(ε3)
, b3 = 0, ε2 = −π

2
, ε3 6= 0 or ε3 6= ±π

L3 : b1 = −b3
cos(ε2 − ε3)

cos(ε2)
, b2 = b3

cos(ε3)

cos(ε2)
, ε2 6= ±π

2

or ε2 6= ±3π

2
(26)

By selecting one of the designs (L1, L2, L3), a new 3-RPS

parallel manipulator can be built. The application of the de-

sign L3 is presented in the following.

Design L3

Design L3 is selected to generate the 3-RPS parallel ma-

nipulator whose operation modes contain x1 = 0. The de-

sign parameters b3 = 1, ε2 = π/4, and ε3 = −π/4 are

assigned, hence b1 =
√
2 and b2 = 1 are determined. The

3-RPS parallel manipulator with these design parameters is

depicted in Fig. 5, in which the base and the moving platform

have right-angle triangle shapes. The axes of the second and

the third revolute joints are orthogonal and meet at point A1.

The values of the design parameters are substituted into the

set of three constraint equations defined in Eq. (13). Then the

constraint equations associated with the new parallel manip-

ulator are:

k1 : Y + 2
√
2x0x3 + 2

√
2x1x2

k2 : −
√
2X +

√
2Y + 4x0x3 − 2x2

1 + 2x2

2

k3 :
√
2X +

√
2Y + 4x0x3 + 2x2

1
− 2x2

2

(27)

These three constraint equations are defined as a new ideal

K = 〈k1, k2, k3〉 and the primary decomposition is computed

to verify if the ideal K is the intersection of several smaller

ideals. Indeed, the ideal K is decomposed into two compo-

nents, which correspond to two different operations modes

as K =
⋂2

i=1
Ki, with the results of primary decomposition:

K1 = 〈x1, 4x0x3 +
√
2Y, 2x2

2 −
√
2X〉

K2 = 〈x2, 4x0x3 +
√
2Y, 2x2

1 +
√
2X〉 (28)

The sub-ideal K1 shows the first operation mode of this

manipulator, in which x1 = 0. In this operation mode, the

moving platform is transformed from the home configuration

about an axis parallel to the yz-plane of Σ0. The second op-

eration mode of this manipulator is shown by sub-ideal K2

x0

y0

z0

x1

y1

z1

Σ0

Σ1

s1

s2

s3

A1

A2

A3

B1

B2

B3

Fig. 5. The 3-RPS parallel manipulator based on design L3.

with x2 = 0. The transformation axis of this operation mode

is parallel to the xz-plane of Σ0.

A.4 Case x2 = 0

In this section, variable x2 is constrained to be equal to

zero. Substituting x2 = 0 into Eqs. (16-18), we obtain:

g1 : ax0x3 + bx2

1
= 0

g2 : cY + dx2

1
= 0

g3 : eX + fx2
1 = 0

(29)

where a, b, c, d, e, f are polynomial coefficients in terms of

the design parameters (b1, b2, b3, te2, te3).

It turns out that the polynomial coefficients in Eq. (29)

have the same mathematical expressions as the polynomial

coefficients in Eq. (25). The computation yields three de-

signs, which are identical to Eq. (26) derived in Section V-

A.3. Eventually one can conclude that the 3-RPS parallel

manipulators generated in this section will have at least two

operation modes containing x1 = 0 and x2 = 0.

VI. Conclusions

In this paper, the synthesis of the design parameters cor-

responding to the prescribed operation modes for a parallel

manipulator with three RPS legs was addressed. The Eu-

ler parametrization and the results of primary decomposition

were used to define the synthesis procedure by considering

the type and number of operation modes at the design stage.

9



14th World Congress in Mechanism and Machine Science, Taipei, Taiwan, 25-30 October, 2015 IMD-123

First, the parametrization of one RPS leg was defined.

Then, the constraint equation corresponding to this leg was

derived. Accordingly, seven classes of the RPS legs were ob-

tained. Each class contains several sub-classes correspond-

ing to the specific position and orientation of the RPS legs.

As a result, it is possible to generate new 3-RPS paral-

lel manipulator architectures by selecting three different or

identical classes of RPS legs. The constraint equations of the

new manipulators have been formulated and the correspond-

ing primary decomposition has been computed.

In the results of primary decomposition, some constraints

were applied to the Euler parameters that lead to particular

types of operation modes. The polynomial coefficients of

the results of primary decomposition depend on the design

parameters. Consequently, the design parameters were syn-

thesized by computing the Groebner basis over an ideal of

these polynomial coefficients. Several architectures of the

3-RPS parallel manipulators corresponding to the prescribed

operation modes were presented. The applications of the pro-

posed approach for parallel manipulators with different types

of legs will be the subject of future research.
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