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The subject of this paper is about the synthesis of the design parameters of a parallel manipulator with three RPS legs while considering the prescribed operation modes at the design stage. The synthesis is based on the Euler parametrization and the results of primary decomposition. The design parameters and the coordinates of one RPS leg are initially defined to formulate the constraint equation associated with this leg. Seven classes of RPS legs are identified and the geometric properties of each class are highlighted. By selecting three different or identical classes of the RPS leg, a new 3-RPS parallel manipulator is proposed without specific values of the design parameters. The primary decomposition is computed over a set of three constraint equations. One or more Euler parameter(s) in the results of primary decomposition is(are) constrained to be equal to zero, which leads to particular types of operation modes. The methodology also provides new architectures of the 3-RPS parallel manipulators based on a classification of the RPS legs, that satisfy the prescribed operation mode.

I. Introduction

The well-known 3-RPS (R, P, S, represent revolute, prismatic, and spherical joints, respectively) parallel manipulator with different shapes for the moving platform and the base was extensively studied by many researchers. In 1983 [START_REF] Hunt | Structural Kinematics of In-Parallel-Actuated Robot-Arms[END_REF], Hunt introduced the 3-RPS manipulator which has an equilateral triangle base and an equilateral triangle platform. Since then, many researches and experimentations have been presented to deal with this manipulator. Huang et al. in [START_REF] Huang | Analysis of Instantaneous Motions of Deficient Rank 3-RPS Parallel Manipulators[END_REF] examined the principal screws of the 3-RPS manipulator in several configurations. Tsai [START_REF] Tsai | Robot Analysis: The Mechanics of Serial and Parallel Manipulators[END_REF] and Schadlbauer et al. [START_REF] Schadlbauer | The 3-RPS Parallel Manipulator from an Algebraic Viewpoint[END_REF] used different approaches to enumerate sixteen solutions of the direct kinematics. Schadlbauer et al. also revealed that the 3-RPS manipulator has two distinct operation modes. Later in [START_REF] Schadlbauer | Operation Modes in Lower Mobility Parallel Manipulators[END_REF], Schadlbauer et al. characterized the motion type in both operation modes by using the axodes. The selfmotions of this mechanism were classified in [START_REF] Schadlbauer | Self-motions of 3-RPS Manipulators[END_REF] via Study kinematic mapping.

Kim et al. in [START_REF] Han | Kinematic Synthesis of a Spatial 3-RPS Parallel Manipulator[END_REF] determined the design parameters of the 3-RPS manipulator to fulfil six prescribed positions of the moving platform. However in most of the cases six precision point accuracy is not sufficient to obtain a given mo-tion. Hence Rao et al. [START_REF] Nalluri | Multi-position Dimensional Synthesis of a Spatial 3-RPS Parallel Manipulator[END_REF] modified the synthesis method by means of the least square method and the Newton-Raphson method to synthesize the design parameters for any number of approximate prescribed positions of the moving platform. Later in [START_REF] Nalluri | Dimensional Synthesis of a Spatial 3-RPS Parallel Manipulator for a Prescribed Range of Motion of Spherical Joints[END_REF], Rao et al. improved the approximation results by adopting the Genetic Algorithm.

Another parallel manipulator of the 3-RPS family is the 3-RPS cube manipulator and was proposed by Huang et al. in 1995 [10]. The 3-RPS cube manipulator is composed of a cube-shaped base and an equilateral triangle platform. Huang et al. in 2011 [11] discussed the impact of manufacturing errors and the orientation capability based on the Euler angles for a group of 3-dof rotational parallel mechanisms without intersecting axes. The following year the type synthesis of this motion group was presented in [START_REF] Chen | Type Synthesis of 3-DOF Rotational Parallel Mechanisms With No Intersecting Axes[END_REF].

By identifying the reciprocal screws of each leg, Huang et al. in [START_REF] Huang | The Screw Motion Simulation on 3-RPS Parallel Pyramid Mechanism[END_REF] showed that the 3-RPS cube manipulator is able to perform 1-dof motion along its diagonal, which is known as the Vertical Darboux Motion. This phenomenon was further discussed by Nurahmi et al. in [START_REF] Nurahmi | Kinematic Analysis of the 3-RPS Cube Parallel Manipulator[END_REF], [START_REF] Nurahmi | Kinematic Analysis of the 3-RPS Cube Parallel Manipulator[END_REF], [START_REF] Nurahmi | Motion Capability of the 3-RPS Cube Parallel Manipulator[END_REF], using the Study kinematic mapping. The authors also found that this mechanism has only one operation mode in which the 3-dof general motion and the Vertical Darboux Motion occur inside the same operation mode.

Bai et al. in [START_REF] Bai | Design and Analysis of a 3-PPR Planar Robot with U-shape Base[END_REF] studied the kinematics of the 3-PPR planar parallel manipulator with different types of the base and the platform. The authors also designed a novel planar parallel robot with a non-symmetrical base which is able to perform large workspace without affecting its motion accuracy.

The 3-RPS manipulator proposed by Hunt and the 3-RPS cube manipulator proposed by Huang have three identical RPS legs. However, the number and the types of operation modes for both manipulators are different due to the manipulator architectures. The axes of the three revolute joints in the 3-RPS cube manipulator are orthogonal to each other, while the axes of the three revolute joints in the 3-RPS manipulator proposed by Hunt are coplanar.

Accordingly, a general approach to synthesize the design parameters by considering the prescribed operation modes for a parallel manipulator with three RPS legs, is discussed in more details in this paper. The approach is based on the Euler parametrization [START_REF] Bottema | Theoretical Kinematics[END_REF], and the primary decomposition is used to reveal the existence of the number and the type of operation modes [START_REF] Nurahmi | Operation Modes and Selfmotions of a 2-RUU Parallel Manipulator[END_REF]- [START_REF] Walter | Kinematic Analysis of the TSAI 3-UPU Parallel Manipulator Using Algebraic Methods[END_REF].

The first essential step is to characterize the coordinates and to define the design parameters of one RPS leg. Then, the constraint equation of this RPS leg is formulated by means of the Euler parametrization. This constraint equation should vanish in any configuration of the moving platform, likewise in the home configuration where the fixed frame and the moving frame are coincident. As a result, seven classes of the RPS legs are obtained based on the position and the orientation of the RPS legs.

By selecting three different or identical classes of the RPS legs, 3-RPS parallel manipulators are obtained without any specific value of the design parameters. This is an intermediate stage and one needs to derive the constraint equations of the corresponding new manipulator and compute the primary decomposition. In the results of primary decomposition, one or more Euler parameter(s) is(are) constrained to be null. Under this condition, the design parameters are synthesized.

This paper is organized as follows: A detailed definition of the design parameters is given in Section 2. The constraint equation of one RPS leg is expressed in Section 3. This equation is used to classify seven classes of the RPS legs in Section 4. Eventually in Section 5, some new 3-RPS parallel manipulators are synthesized by selecting three identical classes for the RPS legs corresponding to the prescribed operation modes. The RPS leg depicted in Fig. 1, is composed of a revolute joint, an actuated prismatic joint, and a spherical joint mounted in series. The revolute joint is attached to the base and denoted by point A i (i denotes the number of the leg used in the manipulator, i = 1, 2, 3). This point is located in the three-dimensional space which is specified by the azimuth angle α i , the polar angle β i , and the radial distance a i from the origin O of the fixed frame Σ 0 .

II. Parametrization of the RPS Leg

x 0 y 0 z 0 x 1 y 1 z 1 O P α i β i ε i ζ i a i b i Σ 0 Σ 1 A i B i s i
The spherical joint is attached to the moving platform and denoted by point B i . This point is also located in the threedimensional space which is specified by the azimuth angle ε i , the polar angle ζ i , and the radial distance b i from the origin P of the moving frame Σ 1 . The axis of the revolute joint is along the vector s i , which is specified by the azimuth angle γ i and the polar angle Γ i (Fig. 2). The coordinates of points A i , B i and unit vector s i are:

r 0 Ai = 1, c αi c βi a i , s αi c βi a i , s βi a i T , r 1 Bi = 1, c εi c ζi b i , s εi c ζi b i , s ζi b i T , s i = 0, c γi c Γi , s γi c Γi , s Γi T . (1) 
where

c αi = cos(α i ), s αi = sin(α i ), c βi = cos(β i ), s βi = sin(β i ), c εi = cos(ε i ), s εi = sin(ε i ), c ζi = cos(ζ i ), s ζi = sin(ζ i ), c γi = cos(γ), s γi = sin(γ), c Γi = cos(Γ)
, and s Γi = sin(Γ). As a consequence, there are eight design parameters for one RPS leg, namely a i , b i , α i , β i , ε i , ζ i , γ i , and Γ i . Since the 3-RPS parallel manipulator is composed of three legs, it has 24 design parameters.

III. Leg Constraint Equation

In this section, the constraint equation is expressed for one RPS leg shown in Fig. 1. To obtain the coordinates of point B i expressed in the fixed frame Σ 0 , the transformation matrix M is used as follows:

M = x 2 0 + x 2 1 + x 2 2 + x 2 3 0 T 3×1 d R (2) 
R is an orthogonal matrix obtained with the Euler parametrization [START_REF] Bottema | Theoretical Kinematics[END_REF] and d is the point-displacement vector:

R = x 2 0 + x 2 1 -x 2 2 -x 2 3 2(x 1 x 2 -x 0 x 3 ) 2(x 1 x 3 + x 0 x 2 ) 2(x 1 x 2 + x 0 x 3 ) x 2 0 -x 2 1 + x 2 2 -x 2 3 2(x 2 x 3 -x 0 x 1 ) 2(x 1 x 3 -x 0 x 2 ) 2(x 2 x 3 + x 0 x 1 ) x 2 0 -x 2 1 -x 2 2 + x 2 3 d = X Y Z
(3) The parameters x 0 , x 1 , x 2 , x 3 , which appear in matrix R, are called Euler parameters of the rotation. They are useful in the representation of a spatial Euclidean displacement and should satisfy the following equation [START_REF] Husty | Algebraic Methods in Mechanism Analysis and Synthesis[END_REF]:

x 2 0 + x 2 1 + x 2 2 + x 2 3 -1 = 0 (4) 
This condition will be used in the following computations to simplify the algebraic expressions. The coordinates of point B i expressed in Σ 0 are obtained by:

r 0 Bi = M r 1 Bi (5)
As the coordinates of all points are given in terms of Euler parameters and design parameters, the constraint equation can be obtained by examining the design of the RPS leg. The leg connecting points A i and B i is orthogonal to the axis s i of the revolute joint. Accordingly, the scalar product of vector (r 0 Bir 0 Ai ) and vector s i vanishes, namely:

(r 0 Bi -r 0 Ai ) T s i = 0 (6) 
After computing the corresponding scalar product and removing the common denominators, the following constraint equation of one RPS leg comes out:

h i : c γi c Γi X + c Γi s γi Y + (x 2 0 -x 2 1 -x 2 2 + x 2 3 )s ζi s Γi b i -s βi s Γi a i + (2x 1 x 2 -2x 0 x 3 )b i c Γi c γi s εi c ζi + (2 x 0 x 3 + 2x 1 x 2 )b i s γi c Γi c ζi c εi + (x 2 0 + x 2 1 -x 2 2 -x 2 3 ) c εi c ζi c γi c Γi b i -c αi c βi c γi c Γi a i + (x 2 0 -x 2 1 + x 2 2 - x 2 3 )c ζi s εi c Γi s γi b i -c βi c Γi s αi s γi a i + (2x 0 x 1 + 2x 2 x 3 )b i s Γi s εi c ζi + (2x 0 x 2 + 2x 1 x 3 )b i c Γi c γi s ζi + (2 x 2 x 3 -2x 0 x 1 )b i s γi c Γi s ζi + (2x 1 x 3 -2x 0 x 2 )b i s Γi c ζi c εi + s Γi Z = 0 (7) 

IV. Classification of the RPS legs

In this section, the constraint equation associated with the design parameters are solved to synthesize seven classes of RPS legs. The constraint equations h i (i = 1, 2, 3) in Eq. ( 7) should vanish for any configuration of the moving platform and in particular in the home configuration where the fixed frame and the moving frame coincide. In the home configuration, the transformation matrix M defined by Eq. ( 2) becomes the identity matrix I and the variables become x 0 = 1, x 1 = 0, x 2 = 0, x 3 = 0, X = 0, Y = 0, Z = 0. By substituting these values into Eq. ( 7), h i takes the following form:

h 0 i : (c εi c ζi c γi c Γi + c ζi c Γi s εi s γi + s ζi s Γi )b i - (c αi c βi c γi c Γi + c βi c Γi s αi s γi + s βi s Γi )a i = 0 (8) 
Equation ( 8) does not bring any geometric insight on the geometric arrangements of the 3-RPS legs for the 3-RPS parallel manipulator to be assembled in the home configuration. As a consequence, we are looking for some particular geometric arrangements of the legs for the 3-RPS parallel manipulator to be assembled. For instance, the manipulator can be assembled in the home configuration when the two following terms vanish:

m i =(c εi c ζi c γi c Γi + c ζi c Γi s εi s γi + s ζi s Γi )b i n i =(c αi c βi c γi c Γi + c βi c Γi s αi s γi + s βi s Γi )a i with: h 0 i : m i -n i = 0 (9) 
It can be seen that m i and n i are polynomials in terms of the design parameters. To find the relations between the design parameters for which the constraint equation h 0 i vanishes, we compute one particular condition where m i and n i vanish simultaneously. One has to discuss the ideal I = m i , n i and compute the Groebner basis with lexicographic order. Twenty three relations are obtained and substituted into Eq. ( 1). For detailed results of the 23 relations, the reader can refer to [23].

Based on their geometric properties, seven classes are identified and each class contains one or more sub-classes as shown in Table I. The detailed expressions of each sub-class are presented in Table II-IV. The sub-classes give the location of the RPS legs in the three-dimensional space, in which r 0

Ai gives the location of the revolute joint with respect to Σ 0 , r 1 Bi gives the location of the spherical joint with respect to Σ 1 , and s i gives the unit vector of the axis of the revolute joint with respect to Σ 0 .

By selecting three different or identical classes, a new manipulator with three RPS legs can be created. The user may assign some arbitrary values into the design parameters and assemble the legs accordingly. However, it is interesting to generate various designs of the 3-RPS manipulator that fulfil the prescribed operation modes as presented in the following.

V. Synthesis of Design Parameters

In the following, an example of 3-RPS parallel manipulator with three identical classes of the RPS leg is presented. Then, the design parameters associated with the new manipulator are synthesized by imposing the prescribed operation modes.

Class Sub-class

Coordinates of points and axis 

r 0 Ai r 1 Bi s i A A.1     1 0 0 0         1 0 0 0         0 c γi c Γi s γi c Γi s Γi     B B.1     1 c αi a i s αi a i 0         1 c εi b i s εi b i 0         0 0 0 1     B.2     1 c αi a i s αi a i 0         1 c εi b i s εi b i 0         0 0 0 -1     C C.1     1 0 0 a i         1 0 0 b i         0 c γi s γi 0     C.2     1 0 0 a i         1 0 0 -b i         0 c γi s γi 0     C.3     1 0 0 -a i         1 0 0 b i         0 c γi s γi 0     C.4     1 0 0 -a i         1 0 0 -b i         0 c γi s γi 0     D D.1     1 0 0 a i         1 -s γi c ζi b i c γi c ζi b i s ζi b i         0 c γi s γi 0     D.2     1 0 0 a i         1 s γi c ζi b i -c γi c ζi b i s ζi b i         0 c γi s γi 0     D.3     1 0 0 -a i         1 -s γi c ζi b i c γi c ζi b i s ζi b i         0 c γi s γi 0    
s i D D.4     1 0 0 -a i         1 s γi c ζi b i -c γi c ζi b i s ζi b i         0 c γi s γi 0     E E.1     1 -s γi c βi a i c γi c βi a i s βi a i         1 0 0 b i         0 c γi s γi 0     E.2     1 s γi c βi a i -c γi c βi a i s βi a i         1 0 0 b i         0 c γi s γi 0     E.3     1 -s γi c βi a i c γi c βi a i s βi a i         1 0 0 -b i         0 c γi s γi 0     E.4     1 s γi c βi a i -c γi c βi a i s βi a i         1 0 0 -b i         0 c γi s γi 0     F F.1     1 -s γi c βi a i c γi c βi a i s βi a i         1 -s γi c ζi b i c γi c ζi b i s ζi b i         0 c γi s γi 0     F.2     1 c εi c βi a i s εi c βi a i s βi a i         1 c εi c ζi b i s εi c ζi b i s ζi b i         0 -s εi c εi 0     F.3     1 -s γi c βi a i c γi c βi a i s βi a i         1 s γi c ζi b i -c γi c ζi b i s ζi b i         0 c γi s γi 0     F.4     1 s γi c βi a i -c γi c βi a i s βi a i         1 -s γi c ζi b i c γi c ζi b i s ζi b i         0 c γi s γi 0     G G.1     1 -s γi a i c γi a i 0         1 -s γi b i c γi b i 0         0 c γi c Γi s γi c Γi s Γi    
s i G G.2     1 s γi a i -c γi a i 0         1 s γi b i -c γi b i 0         0 c γi c Γi s γi c Γi s Γi     G.3     1 s γi a i -c γi a i 0         1 -s γi b i c γi b i 0         0 c γi c Γi s γi c Γi s Γi     G.4     1 -s γi a i c γi a i 0         1 s γi b i -c γi b i 0         0 c γi c Γi s γi c Γi s Γi    

A. Sub-class F.2

In this section, the 3-RPS manipulator is generated by selecting three identical sub-classes, namely sub-class F.2. The RPS leg in this class consists of a revolute joint and a spherical joint that are located in any position with respect to Σ 0 and Σ 1 , respectively. The axis of the revolute joint is parallel to the xy-plane of Σ 0 . In this sub-class, the coordinates of points A i , B i , and vector s i are:

r 0 Ai = 1 c εi c βi a i s εi c βi a i s βi a i , r 1 Bi = 1 c εi c ζi b i s εi c ζi b i s ζi b i , s i = 0 -s εi c εi 0 . (10) 
Due to the fact that the computation of primary decomposition in software Singular fails for reasons of memory and time, points A i and B i are assumed to lie in the xy-plane of Σ 0 and Σ 1 , respectively. Therefore, some values are assigned for

β 1 = β 2 = β 3 = 0 and ζ 1 = ζ 2 = ζ 3 = 0, we obtain: r 0 Ai = 1 c εi a i s εi a i 0 , r 1 Bi = 1 c εi b i s εi b i 0 . (11) 
The first RPS leg of the manipulator is fixed by substituting ε 1 = 0, hence the coordinates of points A 1 , B 1 and vector s 1 become:

14th World Congress in Mechanism and Machine Science, Taipei, Taiwan, 25-30 October, 2015 IMD-123

r 0 A1 = 1 a 1 0 0 , r 1 B1 = 1 b 1 0 0 , s 1 = 0 0 1 0 . (12) 
To obtain the coordinates of points B 1 , B 2 , B 3 expressed in Σ 0 , the coordinate transformation is performed by means of the Euler parametrization as stated in Eq. ( 5), namely r 0 Bi = M r 1 Bi (i = 1, 2, 3). The constraint equations are determined by computing the scalar products of the vector ---→ A i B i and the unit vector s i , which should vanish as stated in Eq. ( 6), namely (r 0 Bir 0 Ai ) T s i = 0. The constraint equations take the form:

h 1 : Y + (2x 0 x 3 + 2x 1 x 2 )b 1 = 0 h 2 : 4c 2 ε2 b 2 x 1 x 2 -2(x 2 1 -x 2 2 )c ε2 s ε2 b 2 + c ε2 Y -s ε2 X+ (2x 0 x 3 -2x 1 x 2 )b 2 = 0 h 3 : 4c 2 ε3 b 3 x 1 x 2 -2(x 2 1 -x 2 2 )c ε3 s ε3 b 3 + c ε3 Y -s ε3 X+ (2x 0 x 3 -2x 1 x 2 )b 3 = 0 ( 13 
) For the algebraic computation, the half-tangent substitutions are performed to remove the trigonometric functions in the second and the third legs:

s εi = (2te i ) (1 + te 2 i ) , c εi = (1 -te 2 i ) (1 + te 2 i ) (14) 
where te i = tan( ε i 2 ). Hence, new constraint equations in terms of half-tangents are obtained:

h 1 : Y + (2x 0 x 3 + 2x 1 x 2 )b 1 = 0 h 2 : -2Xte 3 2 -2te 2 X -Y te 4 2 + Y + (2x 0 x 3 + 2x 1 x 2 ) b 2 te 4 2 + 4(x 2 1 -x 2 2 )b 2 te 3 2 + (4x 0 x 3 -12x 1 x 2 )b 2 te 2 2 -4(x 2 1 -x 2 2 )te 2 b 2 + (2x 0 x 3 + 2x 1 x 2 )b 2 = 0 h 3 : -2Xte 3 3 -2te 3 X -Y te 4 3 + Y + (2x 0 x 3 + 2x 1 x 2 ) b 3 te 4 3 + 4(x 2 1 -x 2 2 )b 3 te 3 3 + (4x 0 x 3 -12x 1 x 2 )b 3 te 2 2b 1 b 2 te 2 te 4 3 -2b 1 b 3 te 4 2 te 3 -2b 2 b 3 te 4 2 te 3 -4b 2 b 3 te 3 2 te 2 3 + 4b 2 b 3 te 2 2 te 3 3 + 2b 2 b 3 te 2 te 4 3 + 2b 1 b 2 te 3 2 - 2b 1 b 3 te 3 3 -2b 2 b 3 te 3 2 -4b 2 b 3 te 2 2 te 3 + 4b 2 b 3 te 2 te 2 3 + 2b 2 b 3 te 3 3 -2b 1 b 2 te 2 + 2b 1 b 3 te 3 + 2b 2 b 3 te 2 - 2b 2 b 3 te 3 )x 2 2 = 0
It can be seen from Eqs. [START_REF] Nurahmi | Motion Capability of the 3-RPS Cube Parallel Manipulator[END_REF][START_REF] Bai | Design and Analysis of a 3-PPR Planar Robot with U-shape Base[END_REF][START_REF] Bottema | Theoretical Kinematics[END_REF] that g 1 , g 2 , g 3 are free of Z component. This means that for any value of the design parameters (b 1 , b 2 , b 3 , ε 2 , ε 3 ), the manipulator can always perform a pure translation along z direction.

Variable x 3 can be solved linearly from g 1 and x 3 is parametrized by x 0 , x 1 , x 2 . This means that the manipulator is capable of orientations determined by x 0 , x 1 , x 2 in which variable x 3 is not null. The mechanism might be subjected to a parasitic motion as discussed in [START_REF] Carretero | Kinematic Analysis and Optimization of a New Three Degree-ofFreedom Spatial Parallel Manipulator[END_REF], [START_REF] Li | Parasitic Motion Comparison of 3-PRS Parallel Mechanism with Different Limb Arrangements[END_REF].

The equations g 2 , g 3 can be solved linearly for variables Y and X, respectively. This shows that the manipulator undergoes translational motions along x and y directions which are coupled to the orientations. In the following, the rotational components {x 0 , x 1 , x 2 , x 3 } from g 1 , g 2 , g 3 are constrained to be equal to zero, which leads to different operation modes. By fulfilling this condition, the design parameters are synthesized and new architectures are proposed.

A.1 Case x 0 = 0 One variable is constrained to be null, namely x 0 = 0. Since only the equation g 1 has component x 0 , the computation will be carried out only for g 1 . After substituting x 0 = 0, equation g 1 becomes:

g 1 : ax 2 1 + bx 1 x 2 + cx 2 2 = 0 (19) 
where a, b, c are polynomial coefficients in terms of the design parameters (b 1 , b 2 , b 3 , te 2 , te 3 ).

To synthesize the design parameters, all polynomial coefficients have to vanish. Hence, one has to discuss the ideal J = a, b, c . The Groebner basis of the ideal J with lexicographic order is computed and 17 solutions are obtained for the design parameters. Not all solutions are possible and hence some assumptions are made, as follows:

1. The second and the third legs cannot be coincident with the first leg: -ε 2 = 0 and ε 3 = 0 2. The second leg cannot be coincident with the third leg:

-

ε 2 = ε 3 3. The magnitude of b i (i = 1, 2, 3) should be positive: -b i ≥ 0, i = 1, 2, 3 4. The platform cannot be a point: -b 1 = b 2 = b 3 = 0 5. No complex solutions: -{b 1 , b 2 , b 3 , ε 2 , ε 3 } ∈ R
After removing the solutions that do not fulfil the assumptions stated above, four designs are obtained:

L 1 : b 2 = 0, b 3 = 0, ε 3 = π + ε 2 L 2 : b 2 = b 1 tan(ε 3 ) , b 3 = 0, ε 2 = π 2 , ε 3 = 0 or ε 3 = ±π L 3 : b 2 = - b 1 tan(ε 3 ) , b 3 = 0, ε 2 = - π 2 , ε 3 = 0 or ε 3 = ±π L 4 : b 1 = b 3 cos(ε 2 -ε 3 ) cos(ε 2 ) , b 2 = b 3 cos(ε 3 ) cos(ε 2 ) , ε 2 = ± π 2 or ε 2 = ± 3π 2 (20) 
The 3-RPS parallel manipulator can be generated by selecting one of the designs (L 1 , L 2 , L 3 , L 4 ). In the following, the parallel manipulators obtained with designs L 2 and L 4 are presented.

Design L 2

In design L 2 , some values are assigned as b 1 = 1 and ε 3 = -2π/3. Other design parameters are obtained as:

b 2 = √ 3/3, b 3 = 0, ε 2 = π/2.
The new architecture of the 3-RPS manipulator is depicted in Fig. 3. The base and the moving platform have right-angle triangle shapes. The unit vectors s 1 and s 2 are orthogonal (s 1 ⊥ s 2 ).

The values of the design parameters are substituted into the set of three constraint equations defined in Eq. [START_REF] Huang | The Screw Motion Simulation on 3-RPS Parallel Pyramid Mechanism[END_REF]. Then the constraint equations associated with the new parallel manipulator are:

k 1 : Y + 2x 0 x 3 + 2x 1 x 2 k 2 : 2 √ 3x 0 x 3 -2 √ 3x 1 x 2 -3X k 3 : X √ 3 -Y (21) 
These three constraint equations are defined as a new ideal K = k 1 , k 2 , k 3 and the primary decomposition is computed to verify if the ideal K is the intersection of several smaller ideals. Indeed, the ideal K is decomposed into two components, which correspond to two different operations modes as K = 2 i=1 K i , with the results of primary decomposition:

K 1 = x 0 , 3X - √ 3Y, 2x 1 x 2 + Y K 2 = x 3 , 3X - √ 3Y, 2x 1 x 2 + Y (22) 
The first operation mode is shown by the first sub-ideal K 1 , in which x 0 = 0. All possible poses of the mechanism in this operation mode are obtained by rotating the platform from the home configuration about a transformation axis by π and translating along the same direction. The second operation mode is shown by the sub-ideal K 2 with x 3 = 0. In this operation mode, the transformation axis is parallel to the xyplane of Σ 0 . The investigation of these two operation modes are discussed in more detail in [START_REF] Schadlbauer | The 3-RPS Parallel Manipulator from an Algebraic Viewpoint[END_REF]. . Therefore, we can obtain b 1 = 1 and b 2 = 1. The 3-RPS parallel manipulator generated with these design parameters has the equilateral triangle base and the equilateral triangle platform, as depicted in Fig. 4. This 3-RPS parallel manipulator was introduced by Hunt in 1983 [START_REF] Hunt | Structural Kinematics of In-Parallel-Actuated Robot-Arms[END_REF].
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The set of three constraint equations in Eq. ( 13) is recalled and the values of the design parameters are substituted. This yields:

k 1 : Y + 2x 0 x 3 + 2x 1 x 2 k 2 : √ 3x 2 1 - √ 3x 2 2 - √ 3X + 4x 0 x 3 -2x 1 x 2 -Y k 3 : - √ 3x 2 1 + √ 3x 2 2 + √ 3X + 4x 0 x 3 -2x 1 x 2 -Y (23 
) These constraint equations are written as an ideal K = k 1 , k 2 , k 3 and the primary decomposition is computed. It turns out that the ideal K is decomposed into two components, which correspond to two different operations modes as K = 2 i=1 K i , with the results of primary decomposition:

K 1 = x 0 , -x 2 1 + x 2 2 + X, 2x 1 x 2 + Y K 2 = x 3 , -x 2 1 + x 2 2 + X, 2x 1 x 2 + Y (24) 
It turns out that the manipulators generated by either de- A.2 Case x 3 = 0

x 0 y 0 z 0 x 1 y 1 z 1 Σ 0 Σ 1 s 1 s 2 s 3 A 1 A 2 A 3 B 1 B 2 B 3
In this section, variable x 3 is constrained to be equal to null. In Eqs. [START_REF] Nurahmi | Motion Capability of the 3-RPS Cube Parallel Manipulator[END_REF][START_REF] Bai | Design and Analysis of a 3-PPR Planar Robot with U-shape Base[END_REF][START_REF] Bottema | Theoretical Kinematics[END_REF], only the equation g 1 has variable x 3 . In equation g 1 , only one monomial contains variable x 3 and apparently this monomial contains variable x 0 simultaneously.

Accordingly, the synthesis of the design parameters with x 3 = 0 will lead to the same designs as determined in Section V-A.1, namely Eq. 20. This means that the 3-RPS manipulators generated in this section will have at least two operation modes containing x 0 = 0 and x 3 = 0.

A.3 Case x 1 = 0

In this section, the variable x 1 in Eqs. [START_REF] Nurahmi | Motion Capability of the 3-RPS Cube Parallel Manipulator[END_REF][START_REF] Bai | Design and Analysis of a 3-PPR Planar Robot with U-shape Base[END_REF][START_REF] Bottema | Theoretical Kinematics[END_REF] is constrained to be null. After substituting x 1 = 0, the equations g 1 , g 2 , g 3 become:

g 1 : ax 0 x 3 + bx 2 2 = 0 g 2 : cY + dx 2 2 = 0 g 3 : eX + f x 2 2 = 0 (25) 
where a, b, c, d, e, f are polynomial coefficients in terms of the design parameters (b 1 , b 2 , b 3 , te 2 , te 3 ).

To synthesize the design parameters corresponding to the variable x 1 = 0, all polynomial coefficients in Eq. ( 25) have to vanish. Accordingly, one has to discuss the ideal J = a, b, c, d, e, f . The Groebner basis of ideal J with lexicographic order is computed and 11 solutions of the design parameters are obtained. Not all solutions are possible and hence by following the aforementioned assumptions in Section V-A.1, three designs are obtained as:

L 1 : b 2 = - b 1 tan(ε 3 ) , b 3 = 0, ε 2 = π 2 , ε 3 = 0 or ε 3 = ±π L 2 : b 2 = b 1 tan(ε 3 ) , b 3 = 0, ε 2 = - π 2 , ε 3 = 0 or ε 3 = ±π L 3 : b 1 = -b 3 cos(ε 2 -ε 3 ) cos(ε 2 ) , b 2 = b 3 cos(ε 3 ) cos(ε 2 ) , ε 2 = ± π 2 or ε 2 = ± 3π 2 (26 
) By selecting one of the designs (L 1 , L 2 , L 3 ), a new 3-RPS parallel manipulator can be built. The application of the design L 3 is presented in the following.

Design L 3

Design L 3 is selected to generate the 3-RPS parallel manipulator whose operation modes contain x 1 = 0. The design parameters b 3 = 1, ε 2 = π/4, and ε 3 = -π/4 are assigned, hence b 1 = √ 2 and b 2 = 1 are determined. The 3-RPS parallel manipulator with these design parameters is depicted in Fig. 5, in which the base and the moving platform have right-angle triangle shapes. The axes of the second and the third revolute joints are orthogonal and meet at point A 1 .

The values of the design parameters are substituted into the set of three constraint equations defined in Eq. [START_REF] Huang | The Screw Motion Simulation on 3-RPS Parallel Pyramid Mechanism[END_REF]. Then the constraint equations associated with the new parallel manipulator are:

k 1 : Y + 2 √ 2x 0 x 3 + 2 √ 2x 1 x 2 k 2 : - √ 2X + √ 2Y + 4x 0 x 3 -2x 2 1 + 2x 2 2 k 3 : √ 2X + √ 2Y + 4x 0 x 3 + 2x 2 1 -2x 2 2 (27) 
These three constraint equations are defined as a new ideal K = k 1 , k 2 , k 3 and the primary decomposition is computed to verify if the ideal K is the intersection of several smaller ideals. Indeed, the ideal K is decomposed into two components, which correspond to two different operations modes as K = 2 i=1 K i , with the results of primary decomposition:

K 1 = x 1 , 4x 0 x 3 + √ 2Y, 2x 2 2 - √ 2X K 2 = x 2 , 4x 0 x 3 + √ 2Y, 2x 2 1 + √ 2X (28) 
The sub-ideal K 1 shows the first operation mode of this manipulator, in which x 1 = 0. In this operation mode, the moving platform is transformed from the home configuration about an axis parallel to the yz-plane of Σ 0 . The second operation mode of this manipulator is shown by sub-ideal K 2 In this section, variable x 2 is constrained to be equal to zero. Substituting x 2 = 0 into Eqs. [START_REF] Nurahmi | Motion Capability of the 3-RPS Cube Parallel Manipulator[END_REF][START_REF] Bai | Design and Analysis of a 3-PPR Planar Robot with U-shape Base[END_REF][START_REF] Bottema | Theoretical Kinematics[END_REF], we obtain: It turns out that the polynomial coefficients in Eq. ( 29) have the same mathematical expressions as the polynomial coefficients in Eq. ( 25). The computation yields three designs, which are identical to Eq. ( 26) derived in Section V-A.3. Eventually one can conclude that the 3-RPS parallel manipulators generated in this section will have at least two operation modes containing x 1 = 0 and x 2 = 0.
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VI. Conclusions

In this paper, the synthesis of the design parameters corresponding to the prescribed operation modes for a parallel manipulator with three RPS legs was addressed. The Euler parametrization and the results of primary decomposition were used to define the synthesis procedure by considering the type and number of operation modes at the design stage. First, the parametrization of one RPS leg was defined. Then, the constraint equation corresponding to this leg was derived. Accordingly, seven classes of the RPS legs were obtained. Each class contains several sub-classes corresponding to the specific position and orientation of the RPS legs.

As a result, it is possible to generate new 3-RPS parallel manipulator architectures by selecting three different or identical classes of RPS legs. The constraint equations of the new manipulators have been formulated and the corresponding primary decomposition has been computed.

In the results of primary decomposition, some constraints were applied to the Euler parameters that lead to particular types of operation modes. The polynomial coefficients of the results of primary decomposition depend on the design parameters. Consequently, the design parameters were synthesized by computing the Groebner basis over an ideal of these polynomial coefficients. Several architectures of the 3-RPS parallel manipulators corresponding to the prescribed operation modes were presented. The applications of the proposed approach for parallel manipulators with different types of legs will be the subject of future research.

Fig. 1 .

 1 Fig. 1. Parameters of the RPS leg.

Fig. 2 .

 2 Fig. 2. The axis of revolute joint.
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Fig. 3 . 2 .L 4

 324 Fig. 3. The 3-RPS parallel manipulator based on design L 2 .

Fig. 4 .

 4 Fig. 4. The 3-RPS parallel manipulator based on design L 4 .

Fig. 5 .

 5 Fig. 5. The 3-RPS parallel manipulator based on design L 3 .

g 1 :

 1 ax 0 x 3 + bx 2 1 = 0 g 2 : cY + dx 2 1 = 0 g 3 : eX + f x 2 1 = 0 (29)where a, b, c, d, e, f are polynomial coefficients in terms of the design parameters (b 1 , b 2 , b 3 , te 2 , te 3 ).

14th

  World Congress in Mechanism and Machine Science, Taipei, Taiwan, 25-30 October, 2015 IMD-123

TABLE II .

 II Coordinates of points A i and B i and revolute joint axis for each sub-class 14th World Congress in Mechanism and Machine Science, Taipei, Taiwan, 25-30 October, 2015

		IMD-123
	Class Sub-class	Coordinates of points and axis r 0 Ai r 1 Bi

TABLE IV .

 IV Coordinates of points A i and B i and revolute joint axis for each sub-class (continued)
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-4(x 2 1 -x 2 2 )te 3 b 3 + (2x 0 x 3 + 2x 1 x 2 )b 3 = 0 (15) Then these three constraint equations are written as a polynomial ideal I = h 1 , h 2 , h 3 with variables {x 0 , x 1 , x 2 , x 3 , X, Y } over the coefficient ring C[b 1 , b 2 , b 3 , te 2 , te 3 ]. The primary decomposition is computed and it turns out that I cannot be decomposed, but it can be reformulated as I = g 1 , g 2 , g 3 :