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Abstract—Taxis are an important transportation mode in many cities due to their convenience and accessibility. 
In the taxi-dispatching problem, sometimes it is more beneficial for the supplier if taxis cruise in the network after 
serving the first request to pick up the next passenger, while sometimes it is better that they wait in stations for 
new trip requests. In this article, we propose a rolling-horizon scheme that dynamically optimizes taxi dispatching 
considering the actual traffic conditions. To optimize passenger satisfaction, we define a limitation for passenger 
waiting time. To be able to apply the method to large-scale networks, we introduce a clustering-based technique that 
can significantly improve the computation time without harming the solution quality. Finally, we test our method on 
a real test case considering taxi requests with personal car trips to reproduce actual network loading and unloading 
congestion during peak hours.
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T
axis play an essential role as a transportation alterna-
tive in many cities because of their convenience and 
accessibility. The regulation of the taxi industry and 
how the taxi problem has been addressed in the lit-

erature have a long history. The authors in [36] presented 
a comprehensive review of the different models developed 
for the taxicab problem.

Today, the spread of mobile devices and the develop-
ment of GPS make it possible for all of the transport op-
erators to dynamically adapt the transportation supply to 
travel demand. These new technologies have made consid-
erable changes in the transportation modes as well as tax-
is. With traditional taxi services, the demand is requested 
via a call center, and the drivers must rely on experience to 
handle the optimization process. With the app-based plat-
forms, however, the requests are centralized, and more 
advanced optimization techniques can be implemented to 
assign passengers to the fleet [9]. Consequently, many piec-
es of research have been performed on different methods 
to improve the efficiency of taxis, especially approaches for 
taxi recommending under different conditions and objec-
tives [17], [29].

The critical issue in dynamic assignment is to be able 
to solve the optimization process very quickly, especial-
ly for large-scale networks with thousands of requests, 
while respecting the current traffic situation in the net-
work at the time. In the taxi-assignment problem, the 
objective is to reduce the taxi travel time and distance. 
Also, it is important to minimize the passengers’ waiting 
times.

Another serious point is to predict the travel times accu-
rately to determine the availability of the taxi and pickup/
drop-off times. This important problem, to the best of our 
knowledge, has not yet received enough attention. In the 
literature, authors usually assume that the travel times 
during the assignment process stay the same during the 
execution of the vehicle schedules. However, the network 
congestion can have significant impacts on vehicle speed 
and travel time, which means that the number of private 

cars that are currently driving besides the taxis should be 
considered as well [1].

In this article, we present an algorithm at full spatial 
scale to optimize taxi operation, considering the current 
network traffic conditions over a given rolling horizon. This 
algorithm is capable of finding the routes with minimum 
travel times to serve all of the passengers with acceptable 
waiting times. Also, the system needs fewer taxis to serve 
a higher number of passengers because the optimization 
process adjusts the sequence of trip requests. As depicted 
in Figure 1, with this method, one taxi can serve three pos-
sible sequential trips from one taxi station to another in a 
shorter time than if these three requests were served with 
three different taxis. 

To speed up the optimization computation time, especial-
ly for large-scale problems, we introduce a heuristic method 
based on clustering. We apply the clustering method based on 
the “Sequential Function” on the requests to put those who 
have more potential to be served successively by the same 
taxi in the same cluster. Then we employ the dynamic taxi-
dispatching algorithm (DTaD) within each cluster. 

The goal of this study is to assess the performance of a 
taxi service under the optimal situation on a large scale 
considering the traffic dynamics. The optimal situation is 
the scenario in which all of the total costs (for the taxis 
and passengers) are minimal. To be sure that we can find 
most of the sequential taxi trips for each taxi and mini-
mize the taxi travel distance, we choose a rolling horizon 
of 10 min. With a short prediction horizon of next requests, 
it is not possible to optimally manage a taxi fleet, and we 
have to resort to a very simple strategy like assigning the 
nearest vehicle. As we want to dynamically optimize the 
fleet management, we need to assume that the requests are 
predicted over the rolling horizon. We do not question this 
assumption in this article.

To dynamically test the performance of our system, we 
use a traffic simulator that predicts the mean network speed 
with respect to the current accumulation in the system every 
second [2], [21], [27]. Such a simulator has been inspired by 
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FIG 1 An example of serving the requests in sequence.
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the concept of a macroscopic fundamental diagram (MFD) 
[14]. We use a real case study from Lyon, France, with the 
data about all of the trips (taxi trips and also personal cars 
in the network). Hence, we can assess the influence of per-
sonal trips in the network on the dynamic taxi-service per-
formance and vice versa.

Literature Review
Taxi-recommendation systems aim to suggest a sequence 
of pickup points that can serve passengers with the shortest 
driving distance, as in [16], [20], [42], and [45]. The authors 
in [43] provide an optimized online querying subsystem to 
calculate the probability of getting a taxi.

Taxi dispatch systems map the customers with drivers 
for traveling a certain distance from the pickup locations, 
as in [4], [11], and [22]. Recently, many studies have focused 
on order dispatch in taxi networks [6], [13], [46]. Xu et al. 
[44] propose an order-dispatch algorithm to optimize 
the platform’s long-term efficiency. However, their pro-
posed method is costly in terms of computation time 
and not f lexible to transfer knowledge across cities. 
Maciejewski et al. [24] model large-scale, real-time 
taxi dispatching and use a strategy that involves clas-
sifying the system state into two categories. If there is 
an oversupply of vehicles relative to unassigned pas-
sengers, requests are assigned to the nearest idle ve-
hicle based on the first-in, first-served rule. If there is an 
undersupply of vehicles, when a vehicle becomes idle, it is 
assigned to the nearest unassigned traveler request.

The taxi-dispatching problem is solved exactly by mod-
eling it as a mixed-integer program or by applying the 
heuristics in the literature. The main exact solutions are 
extensions of the branch-and-cut method, which is based 
on the branch-and-bound procedure, where cutting planes 
are added to the problems in the branch-and-bound tree 
[7], [31]. In this research, we propose an algorithm based 
on the branch-and-bound concept to explore all of the pos-
sible combinations of trips to be served in sequence.

It has been indicated in the literature that the patterns 
of demands and supplies are spatially–temporally depen-
dent [41]. Much of the research in this domain uses differ-
ent clustering methods to consider these dependencies, 
such as dividing the time into several time slots or dividing 
the space into several clusters, road segments, or cells [10], 
[15], [33], [45]. Qiang and Shuang-Shuang [34] propose an 
algorithm to use the data set of taxi get-off points to achieve 
the clustering of taxis on urban roads and compare their 
method with classical clustering methods. However, 
the taxi-clustering data in their study are conducted in 
a static environment. Bard and Jarrah [3] demonstrate 
that, for large-scale problems, an appropriate solution is 
clustering the demand nodes and downsizing the network. 

Some researches try to limit the feasible region with 
clustering methods to speed up the computation. They 

usually divide the demand nodes in the network into 
geographically dense clusters [30], [35]. In our proposed 
method, we make the clusters based on a similarity func-
tion. Therefore, even the trips that are not geographically 
in the same cluster but have the potential to be picked up 
sequentially with the same vehicle can be in the same clus-
ter; thus, the clustering method does not remove possible 
optimal solutions. 

One of the recent works on the clustering of the trips is 
reported in [37]. The investigators introduce the notion of 
a shareability network to quantify the spatial and tempo-
ral compatibilities of individual trips in a dynamic envi-
ronment. In their method, two trips are shareable if they 
would incur a delay of no more than 5 min. Then, Vazifeh 
et al. [39] modify the idea to model the sharing of vehicles 
instead of rides and address the minimum fleet problem in 
on-demand urban mobility. 

In this research, we propose the concept of “sequen-
tial function” for the same purpose to assess the possibil-
ity of serving two trips with the same car in sequence. 
Our proposal employs a method that reduces the num-
ber of required taxis because possible sequences and not 
only initial matching are considered. We prove that the 
proposed method provides high-quality solutions very 
quickly and overcomes previous methods.

This is very important if we envision the shift from clas-
sical human-driven taxi fleets to autonomous vehicles. 
Different research focuses on different objectives in the 
problem related to passengers [38], drivers [8], [23], provid-
ers [18], [25], [32], or the network [5].

In the taxi problem, it is important balance all of the 
participants’ objectives. Our method optimizes the travel 
time, minimizes the total travel distance, and reduces the 
number of cars while keeping the passenger waiting times 
at acceptable levels. Also, we assess the impact of the taxi 
service on traffic congestion to find the best configuration 
for the system to improve the network traffic condition.

App-Based Platform
The proposed system function is illustrated in Figure 2. The 
passenger launches his or her request in (a), which con-
tains the origin point, the destination point, and the desired 
pickup time, via an e-hailing application in the smartphone 
(b). The app is connected to a server, which can access the 
supplier data (c) and network (e). These data encompass all 
of the waiting locations’ situations, taxicab timetables, cur-
rent location of each taxi, and current vehicle mean speed 
in the network. The mean speed is computed based on the 
current traffic situation. When the algorithm (d) receives 
the requests, it searches all of the waiting or moving taxi-
cabs in the system to find the best assignment with the min-
imum taxi travel time and passenger waiting time for each 
request. Then, it sends the defined schedule to the fleet and 
a response to each passenger.
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The DTaD
We have defined an algorithm for taxi dispatching based 
on the branch-and-bound concept to find the best schedule 
for the taxis and serve requests with minimum passenger 
waiting time. First, we present the primary algorithm, 
which can do the process for short- or medium-scale prob-
lems; then, we introduce our heuristic method based on 
clustering to speed up the algorithm and make it quali-
fied to handle large-scale problems with thousands of re-
quests.

The taxi leaves the closest waiting location to serve 
the first passenger. After dropping off the passenger at the 
destination, the cab faces two choices. The first option is 
to continue to another origin, and the second is to go back 
to the nearest waiting location to wait for the next pas-
senger. The designed algorithm computes all of the pos-
sible routes for the received requests. If the waiting time 
for each passenger is acceptable, the algorithm calculates 
the car travel time. In the end, when it computes all of the 
possible options based on the exploration of a tree (branch 
and bound), it chooses the optimal situation. At each it-
eration, the algorithm removes the assigned requests and 
continues with the rest of the requests until it inserts all 
of the passengers into the taxi schedules. Table 1 lists the 
notations that we used, and Algorithm 1 provides the pri-
mary algorithm steps.

The algorithm works iteratively. The objective func-
tion is to minimize the taxi travel time. At each iteration, it 
builds a tree of routes for all of the trip requests that have not 
been assigned and, at the end, chooses the best branch of the 
tree. For the next iteration, it removes all of the trips of the 
previous iteration’s selected branch and builds a new tree 
with the remaining requests. This process continues until 
all of the requests are served. Figure 3 depicts a brief ex-
ample of the algorithm performance for five requests. First, 
the algorithm finds the nearest taxi to each request. Then, 
in the next step, it starts the iterations. In the first iteration, 
the algorithm finds the best route among the possible so-
lutions. Afterward, it removes passengers 1 and 3 from the 
request set and continues the computations. Finally, taxi A 
serves passengers 1 and 3, taxi E serves passengers 4 and 5, 
and taxi B serves passenger 2.

The presented algorithm solves the static dispatching 
problem. To solve the dynamic and real-time problem, we 
employ a rolling-horizon solution approach. This reactive 
approach is based on a scheduling formulation that solves 
the static dispatching problem iteratively by moving for-
ward the optimization horizon in each iteration.

The proposed algorithm optimizes taxi routes to serve 
all of the passengers. This algorithm minimizes travel 
time and distance and mobilizes fewer taxis to serve the 
passengers. However, since the algorithm explores all of 
the feasible routes, the computation time increases greatly 
and rapidly with increasing numbers of requests.

A Heuristic Method Based on Clustering
In large-scale problems, for dynamic dispatching, the sys-
tem must be able to find the schedules on very short notice. 
To make the proposed algorithm fast enough to handle 
large-scale problems, we propose a heuristic method based 
on clustering. The originality of our proposal is that it re-
uses the DTaD method presented earlier while feeding it 
with fewer requests to optimize. This selection of requests 
must be performed such that it does not overlook promising 
pairs of requests, i.e., those that can be efficiently served 
together. In our method, limiting the algorithm to make 
branches with only the trips that have a greater possibility 
of creating the optimal assignment can narrow the search 
of feasible solutions. To apply this limitation, we define a 
clustering method to make clusters of requests that could 
conceivably be efficiently served with the same taxi. Then, 
the algorithm is executed with each cluster separately.

To do so, we define the “sequence function” (SF) between 
request i and request j ( ,i j A! ). We compute SF ,i j  for each 
pair of trips, and the function value is the difference 
between the travel time when the two trips are served 
sequentially with the same taxi and the travel time to 
serve each trip individually with two separate taxis. If 
the travel time between the first destination and the sec-
ond origin is less than the summation of the travel time 
between the first origin and the closest waiting location 
and the travel time between the nearest waiting loca-
tion and the second origin, then serving the trips in a se-
quence is more beneficial than serving them separately. 
It means that the SF here is the difference between the 
passengers’ waiting times when the trips are in sequence 
and the passengers’ waiting times when the trips are in-
dependent.

The following equations demonstrate how we compute 
SF ,i j  for each pair of trips:

	 ; , ,
T T WT DTT WT

DTT i j N,

i j i jOrigin ,Destin

Origin Destin

i i

j j 6 !

+ = + +

+
� (1)

	
(

),
SF TT TT DTT

DTT WT WT
, ,

,

i j i j

i j

Origin Destin

Origin Destin

i i

j j

= + -

+ + +l l
�

(2)

and, finally,

	 ( )SF WT WT W WTT,i j i j ji= + - +l l .� (3) 

Afterward, we have the SF value for each pair of trips, 
and it creates a sequential matrix, which is a kind of dis-
similarity matrix for the received requests that can be used 
in the clustering process. When we make clusters based 
on the SF, we put the trip requests that are more poten-
tial to be efficiently served by the same taxi in the same 
cluster (the trips that have a lower SF value). To create the 
clusters, we first use the multidimensional scaling method 
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(compare [40]) to convert the dissimilarity matrix to a dis-
tance matrix. The most common clustering approach is the 
k-means technique (compare [26]). To have clusters with 
the same size, we apply the modified k-means clustering 
method, which customizes the cluster sizes (compare [12]).

With this heuristic method, the algorithm is executed 
inside each cluster to make the branches using only the 
trips in the considered cluster. Hence, compared with the 
primary algorithm, we may lose some feasible solutions, 
but, on the other hand, the computation time should de-
crease significantly as the number of starting branches 
decreases. The idea is to find the best tradeoff between the 
size of clusters and computation time considering the ob-
jective function values.

Figure 4 provides an example of the clustering method 
for the case in Figure 3. First, we compute the SF between 
each pair of requests and build a 5 × 5 dissimilarity ma-
trix [Figure 4(a)]. Then, with the multidimensional scal-
ing method, we get the configuration of five points in two 
dimensions [Figure 4(b)]. In the next step, we apply the 
modified k-means clustering method with a cluster size of 
three. The result is two clusters of trips. The first cluster 
contains request numbers 1 and 3, and the second includes 
requests 2, 4, and 5. We apply DTaD inside each group and, 
finally, get the final routes for taxis [Figure 4(c)].

The important point in using the heuristic method is 
to make a decision about the size of the clusters. Bigger 
cluster sizes can give better results but with a high compu-
tational price. Therefore, it is necessary to determine the 
best tradeoff between the quality of the objective function 

and the computation time to choose the appropriate clus-
ter size. In the next section, first, we launch the algorithm 
with different cluster sizes to find such a tradeoff.

The waiting time is a critical issue in taxi-dispatching 
problems. The objective of DTaD is also to minimize the 
travel time while satisfying a constraint on passengers’ 
waiting times. The maximum acceptable waiting time 
(MWT) in our algorithm defines the passengers’ waiting 
times, and it is important to choose a proper value for this 
parameter. Bigger values for MWT give more flexibility to 
the provider but, on the other side, lead to passenger dissat-
isfaction. Another goal of this article is to fix a suitable value 
for this parameter.

The last important parameter is the number of taxis in 
the fleet. This parameter has a crucial role for provider 
costs. In this article, we are interested in assessing the im-
pact of different values for this parameter, as it has impor-
tant influences on the passengers’ waiting times and, also, 
the traffic situation.

Variable Description 

C Set of taxis 

A Set of requests 

B Set of branches in the algorithm 

origini Origin of request i 

destini Destination of request i

Results Set of routes defined by the algorithm 

WLc Closest waiting location to taxi c 

WTi Waiting time of passenger i

WT'i Waiting time of passenger i when he or she is served individually

MWT MWT for each passenger 

TTb Total travel time of route b 

T i Passenger i travel time 

DTTi,j Direct travel time from points i to j 

M A large enough number 

Table 1. A description of the major notations used. 

while A is not empty do
    ;nob 1=
    for request i A!  do
        minimum Mdistance = ;
        for taxi c C!  do
            if minimumD ,o WL distancei c #  then
                minimum D ,o WLdistance i c= ;
                taxii =  c;
        Create branch bnob for taxi c to serve passenger i from WLc;
        Put the branch bnob in branch set B;
        Compute TTnob;
        nob nob 1= +

    while B 4!  do
        for branch b B!  do
            createbranch =  false;
            for request j A! -  Trips on b do
                Compute WTj;
                if WT MWTj #  then
                    Create branch bnob by adding request j to branch b;
                    Compute TTnob;
                    Put the branch bnob in set B;
                    nob nob 1= + ;
                    createbranch =  true
        if createbranch =  false then
            Add the closest WL from the last request on b to it;
            Compute TTnob;
            Put branch b in Results set;
            Remove branch b from B
    minimum TT M- = ;
    for branch R Results!  do
        if minimumTTR TT#  then
            TTminimumTT R= ;
            Result =  R
    Remove the trips on Result from A;
    Put route Result in Final Results set
return Final Results

Algorithm 1. The DTaD.
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Experiments

Case Study
In the proposed research, we apply our method on a real-
istic origins–destinations (ODs) matrix for the city of Lyon, 
France. The network is loaded with travelers of all ODs 
with a given departure time to represent 4 h of the network 

with more than 62,000 requests based on the study of [19]. 
This network has 1,883 nodes and 3,383 links. The area is 
depicted in Figure 5.

The origins set contains 94 points, the destinations set 
includes 227 points, and the waiting locations set contains 
237 points on the network. We do the experiments for the 
morning peak hour from 6:30 a.m. to 10:30 a.m. for 4 h. 
The trips number during this period is 62,450. Some trips 
start from within or end outside of the network. They are 
considered only from their entering point or up to their 
existing location. We serve the trips that are completely 
included inside the network with taxis in our assessment, 
which contains 11,235 trips.

The MWT for the passengers is defined based on their 
trip length. It is equal to a fixed value plus 1 min for each 
1 km. We do a sensitivity analysis to find the best value for 
the fixed part of the MWT, which can provide a reason-
able compromise between the passengers’ waiting times 
and total taxi travel distance. To detect the best tradeoff 
between the size of clusters and the computation time, we 
compute the MWT for each trip with a fixed value equal 
to 6 min.

We have defined two kinds of waiting locations: the lo-
cal waiting locations and the central depot. In the begin-
ning, there are 142 taxis in the local waiting locations and 
500 taxis in the central depot. For each trip, the algorithm 
ranks the waiting locations based on the distance to the 
first origin and then sends a taxi from the closest non-
empty stop location to serve the first passenger. When the 
assigned trips end, the taxi goes to the nearest waiting lo-
cation to the last destination. We consider a 1-min service 
time for each passenger to get in and out of the taxi, which 
is computed in the total travel time.

One of the goals of this research is to figure out the per-
formance of a taxi-dispatching system under the optimal 
situation. In this case study, we fully monitor traffic dy-
namics as we assess both service and personal trips in the 
network. To find the near-optimal dispatching of taxi ser-
vices in the dynamic traffic conditions, we choose a longer 
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time step compared to other dynamic methods to guaran-
tee that we can find most of the optimal sequential trips for 
the taxis. Hence, to solve the dispatching problem dynami-
cally, we apply the DTaD method every 10 min, considering 
we have a perfect knowledge of all requests over such a 
time horizon. The computations are carried out on a desk-
top with an Intel Xeon core E5-2620 with two processors, 
64 GB of random-access memory, and a Windows 10 oper-
ating system running C++ Visual Studio 2013. 

Simulation Model
The goal of this study is to assess the performance of DTaD 
considering the traffic dynamics, so a simulation platform, 
which is able to simulate the time evolution of traffic flows 
and speeds on the road network, is used to simulate the 
function of DTaD. In this research, we use the trip-based 
MFD to accommodate individual trips while keeping 
a very simple description of traffic dynamics [21], [27], 
[28]. This method can compute the distance that a car can 
pass during a particular time based on the vehicle’s mean 
speed at the time. In addition to the taxis that are mov-
ing in the network, personal cars are also circulating in 
the network. Therefore, the accumulation of vehicles in 
the system and, consequently, the mean speed depend on 
the accumulation of cars in the network at each specific 
time. We update the situation of all of the vehicles every 
second based on the current mean speed of cars in the 
simulations. Also, we compute the travel times in DTaD 
based on this speed to consider the traffic dynamics in 
the network.

Therefore, we use the trips-based MFD as the dynam-
ic simulator and the predicted speed at the beginning 

of each horizon as the prediction model, which can be 
calibrated, to do the optimization. The mean speed is 
changing over the full horizon but not that much over 
the next 10 min. During the loading of the network, the 
estimation of the real value of the mean speed is a little 
overconfident, and, during the unloading, it is a little 
conservative. Figure 6 illustrates the predicted speed 
at the beginning of each horizon and the mean speed 
during the 4-h simulation. It is clear that the difference 
is very small, but, to estimate the speed more precisely, 
we define the coefficient factor a for the speed during 
the loading and unloading. Considering the difference 
between the current speed and mean speed, we define a 
equal to 0.95 during loading and 1.05 during unloading 
in the simulations.

Results
In the proposed algorithm, it is important to define the 
configuration correctly. The clustering-based heuris-
tic method can speed up the computations and make 
the algorithm capable of sending the response to the 
passenger very fast. On the other hand, it narrows the 
search of feasible space. Therefore, we may roll away 
from the optimal solution by choosing the wrong value 
for cluster sizes. The first step is, then, to determine 
the size of clusters that can ensure a near-optimal solu-
tion. For our case study, in the peak hour, the number 
of requests received every 5 min exceeds 400. We do 
our simulations with different cluster sizes from 20 to 
160 to extract the proper cluster size and find a tradeoff 
between the algorithm computation time and the clus-
ter size.

(a) (b)

FIG 5 The Lyon 6e + Villeurbanne. (a) Mapping data from Google 2018. (Source: Google.) (b) The traffic network.  
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Figure 7 presents the simulation time and the objec-
tive function (total travel time) for different cluster sizes. 
The simulation times for up to cluster size 100 are under 
100 min. Considering the simulation horizon (4 h for the 
morning peak hour) with 100 trips inside each cluster, the 
computation time for each cluster is approximately 35 s. 
Therefore, with DTaD working on parallel trends, the sys-
tem can optimize the assignment and provide a response to 
the passenger in less than 1 min.

The total travel time decreases by increasing the size of 
clusters because the algorithm can explore a bigger space. 
However, the difference is mainly marginal, as the differ-
ence between the optimal solution for 20 clusters and for 
160 is less than 0.1%.

Considering these results, the best tradeoff between 
the computation time and the objective function happens 
when the size of the clusters is 100. In the following, we do 
all of the simulations with a cluster size of 100.

Different clustering methods have been implemented 
in the literature for large-scale problems. They usually di-
vide the space geographically and use a spatial clustering 
to downsize the problem. We have compared the sequen-
tial clustering with such a spatial clustering method. For 
spatial clustering, if the distance between two origins is 
less than a specified value, which we call the spatial factor, 
we put the two corresponding trips in the same cluster. To 
increase the size of the clusters, we increase the value of 
the “spatial factor.” Also, we try to cluster the trips based 
on the time in a temporal clustering method. For tempo-
ral clustering, we define the “temporal factor,” which is 
related to the starting time of each of the two trips, and 
then we cluster the trips based on this factor. Finally, we 
compare these three methods to substantiate the quality of 
our proposition. 

Figure 8(a) depicts the different clustering methods’ to-
tal travel times for different sizes of clusters. Point zero for 
the size of the clusters shows the optimal solution for the 
problem. The spatial clustering method is not comparable 

to the other two methods. The temporal clustering and 
sequential clustering methods can provide better results, 
as they can consider the combination of trips that have the 
potential to be combined but do not have spatially close 
origins. For cluster sizes of 20, 40, and 60, the results are 
almost the same for the temporal and sequential cluster-
ing because, with small clusters, sequential clustering 
cannot explore all of the trips’ combination opportunities. 
With bigger clusters, however, the sequential clustering 
performance overcomes temporal clustering, and it can 
significantly provide near-optimal solutions. Figure 8(b) 
depicts the comparison for the computation time. The 
temporal clustering is the cheapest method in terms of 
computation time. Still, for example, for the size of cluster 
100, with less than 0.08-s more computation time for each 
trip, the SF can improve the results by more than 32 min at 
this scale. 

The passenger MWT is a determinant parameter from 
a passenger’s perspective. In the algorithm, we have to 
define an appropriate value for this parameter. The algo-
rithm minimizes the taxi’s travel time while putting a con-
straint on the passenger’s waiting time.

Figure 9 illustrates the results for different MWT values. 
We simulate five different scenarios for different MWTs from 
2 to 10 min. Figure 9(a) demonstrates the total waiting time 
for passengers for different MWTs. When the maximum wait-
ing time is 2 min, the passenger total waiting time is 3.83 h, 
and, then, when we increase the MWT to 10 min, the total 
waiting time is 4.43 h. Each passenger takes the taxi less than 
2 s after her or his desired pickup time, on average, in both 
scenarios.

By increasing the MWT, the algorithm can find more 
trips in sequence, and after dropping off each passenger, 
the taxi moves to the next passenger instead of cruising 
in the network or going back to the waiting locations 
to wait for new passengers. Thus, the total travel dis-
tance for the taxi decreases. Figure 9(b) presents the to-
tal travel distance for different MWT values. With MWT 
equal to 2 min, the total travel distance is 38,437 km, 
and it reduces to 38,418.3 km for an MWT equal to 10 
min. This means the system serves the same requests, 
saving 18.7 km. We have to set a value for the MWT that 
is acceptable to and beneficial for both the provider and 
passengers. 

Another critical parameter in DTaD is the number of 
taxis in waiting locations in the network. Increasing the 
number of taxis adds flexibility for the algorithm to choose 
the closest cruising taxi, but, on the other hand, it increas-
es the number of taxis cruising in the network and, con-
sequently, the congestion. Here, we investigate the impact 
of the number of taxis on the travel time and passengers’ 
waiting times.

We have 237 allowed waiting or stop locations for the 
taxis in this network. The fleet size is 500, and these 500 
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taxis are located in the central depot. On the one hand, 
distributing taxis over the waiting locations decreases the 
waiting time to be picked up for passengers. On the other 
hand, in the peak hour, if many taxis are circulating in the 
network, the congestion increases, and it leads to more 
travel time for taxis and passengers. Therefore, we analyze 
the number of taxis in the waiting locations over the net-
work to decide the best distribution of taxis.

To locate the taxis at the beginning of the simulations, 
we use the historical data for the network demand to es-
timate the demand distribution over the network. Then, 
we specify the number of taxis at each location based 
on the demand around this waiting location. Therefore, 
if the demand is high for a stopping point, we consider 
more cars at that point, and, if the demand is low, we 
put fewer taxis at that location. Thus, considering the 
demand distribution, we feed 14 waiting locations with 
two taxis and 114 locations with one taxi, and we put 14 
empty waiting locations at the beginning of the simula-
tions, for a total of 142 taxis. Then, we increase the num-

ber of taxis to analyze the waiting time and travel time 
based on the demand distribution. Therefore, we have 
different scenarios with 157, 172, and 187 taxis. Figure 9 
provides the results for 142, 157, 172, and 187 taxis in 237 
waiting locations in the network.

Figure 10(a) illustrates the total waiting time for pas-
sengers with different numbers of taxis. When the number 
of taxis is 142, the total waiting time is 3.97 h, and, then, 
when we increase the number of taxis to 187, the total wait-
ing time is 3.89 h. It means that, by adding 60 more taxis, 
we can reduce the passengers’ waiting times by up to 5 
min. 

When the system has access to more taxis, to reduce 
the travel time between the waiting location and the first 
origin, it chooses more taxis to serve the trips. Then, in 
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the peak hour, the number of taxis cruising in the network 
increases, and the speed decreases for the cars. Therefore, 
with an increase in the number of taxis, the total travel 
time increases because of the congestion. Figure 10(b) 
represents the total travel time for different numbers of 
taxis. The results indicate that, by having 45 more taxis 
in waiting locations (187 taxis) at the beginning of the day, 
the travel time is 1.64 h longer than with fewer cars  (142 
taxis).

Besides the taxis that are cruising in the network, 
there are also personal cars circulating in the network. 
Figure 11 depicts the private cars’ travel times for dif-
ferent cluster sizes. It is significant that increasing the 
cluster size can reduce the travel distance on the taxis. 
Therefore, the taxis stay less in the network, and the 
congestion decreases. Hence, the vehicles’ speeds in-
creases in the system when the size of clusters increases. 
The total travel time for personal cars is 7,135.72 h when 

the size of the clusters is 20, and it decreases to 7,131.03 
h for a cluster size of 100 and to 7,131 for cluster sizes of 
120, 140, and 160.

Conclusions
In this article, we propose a new taxi-dispatching system 
called DTaD. The proposed DTaD assigns fleet taxis to 
the trip requests that correspond to a rolling horizon of 
10 min. The method investigates all of the feasible assign-
ments considering the maximum threshold on the passen-
ger waiting time and, finally, chooses the optimal route for 
each taxi that can minimize the taxi’s travel time. To speed 
up the method, we propose a heuristic method based on the 
clustering to put in the same cluster the trips with greater 
potential to be served in sequence by the same taxi. There-
fore, we introduce the concept of the SF.

The algorithm can minimize the total travel time, 
total travel distance, and passengers’ waiting times. 
First, we investigate the proper cluster size for DTaD 
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and, then, assess the impact of the maximum acceptable 
travel time and the number of taxis in local waiting loca-
tions. The results reveal that, with a cluster size of 100, 
the algorithm works very quickly, and the system can re-
spond to the passenger request in less than 36 s. Also, we 
demonstrate that a proper decision about the constraint 
on the passengers’ waiting times and the number of taxis 
in local waiting locations improve the performance of 
the taxi f leet, and optimal decisions computed by DTaD 
can be revealed to the providers. We also show that the 
proposed system can improve the traffic in the network.

In future work, we will investigate the pricing scheme 
for such a system and apply our method to a larger network 
with more than a million requests. Also, we are interested 
in applying our method to taxi-sharing and ride-sharing by 
changing the concept of the SF to a “shareability function” 
in our heuristic method.
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