Jochen Burghardt
email: jochen@first.fhg.de

E-Generalization Using Grammars

Keywords: equational theory, generalization, inductive logic programming

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

Many learning techniques in the field of symbolic Artificial Intelligence are based on adopting the features common to the given examples, called selective induction in the classification of [START_REF] Dietterich | A Comparative Review of Selected Methods for Learning from Examples[END_REF], for example. Syntactical antiunification reflects these abstraction techniques in the theoretically elegant domain of term algebras.

In this article, we propose an extension, called E-anti-unification or Egeneralization, which also provides a way of coping with the well-known problem of representation change [O'H92,[START_REF] Dastani | An Algebraic Method for Solving Proportional Analogy Problems[END_REF]. It allows us to perform abstraction while modeling equivalent representations using appropriate equations between terms. This means that all equivalent representations are considered simultaneously in the abstraction process. Abstraction becomes insensitive to representation changes.

In 1970, Plotkin and Reynolds [START_REF] Plotkin | A note on inductive generalization[END_REF][START_REF] Plotkin | A further note on inductive generalization[END_REF][START_REF] Reynolds | Transformational systems and the algebraic structure of atomic formulas[END_REF] introduced the notion of (syntactical) anti-unification of terms as the dual operation to unification: while the latter computes the most general common specialization of the given 1 1.

x + 0 = x 2. x + s(y) = s(x + y)

3.

x * 0 = 0 4. x * s(y) = x * y + x 0 = E 0 * 0 s 4 (0) = E s 2 (0) * s 2 (0)

syn. anti-un. syn. anti-un. y x * x terms, if it exists, the former computes the most special generalization of them, which always exists and is unique up to renaming. For example, using the usual 0-s representation of natural numbers and abbreviating s(s(0)) to s 2 (0), the terms 0 * 0 and s 2 (0) * s 2 (0) anti-unify to x * x, retaining the common function symbol * as well as the equality of its arguments.

While extensions of unification to equational theories and classes of them have been investigated [START_REF] Fay | First-order unification in an equational theory[END_REF][START_REF] Jrg | Universal Unification[END_REF][START_REF] Gallier | Complete sets of transformations for general E-unification[END_REF], anti-unification has long been neglected in this respect, except for the theory of associativity and commutativity [START_REF] Pottier | Generalisation de termes en theorie equationelle[END_REF] and so-called commutative theories [START_REF] Baader | Unification, weak unification, upper bound, lower bound, and generalization problems[END_REF]. For an arbitrary equational theory E, the set of all E-generalizations of given terms is usually infinite. Heinz [START_REF] Heinz | Anti-Unifikation modulo Gleichungstheorie und deren Anwendung zur Lemmagenerierung[END_REF][START_REF] Burghardt | Implementing anti-unification modulo equational theory[END_REF] presented a specially tailored algorithm that uses regular tree grammars to compute a finite representation of this set, provided E leads to regular congruence classes. However, this work has never been internationally published. In this paper, we try to make up for this neglect, giving an improved presentation using standard grammar algorithms only, and adding some new theoretical results and applications (Sect. 3.3, 4, 5.3 below).

In general, E-anti-unification provides a means to find correspondences that are only detectable using an equational theory as background knowledge. By way of a simple example, consider the terms 0 and s 4 (0). Anti-unifying them purely syntactically, without considering an equational theory, we obtain the term y, which indicates that there is no common structure. If, however, we consider the usual defining equations for (+) and (*), see Fig. 1 (left), the terms may be rewritten nondeterministically as shown in Fig. 1 (right), and then syntactically anti-unified to x * x as one possible result. In other words, it is recognized that both terms are quadratic numbers.

Expressed in predicate logic, this means we can learn a definition p(x * x) from the examples p(0) and p(s 4 (0)). Other possible results are p(s 4 (0) * x), and, less meaningfully, p(x + y * z). The closed representation of generalization sets by grammars allows us to filter out generalizations with certain properties that are undesirable in a given application context.

After some formal definitions in Sect. 2, we introduce our method of Egeneralization based on regular tree grammars in Sect. 3 and briefly discuss extensions to more sophisticated grammar formalisms. As a first step toward integrating E-generalization into Inductive Logic Programming (ILP), we provide, in Sect. 4, theorems for learning determinate or nondeterminate predicate definitions using atoms or clauses. In Sect. 5, we present applications of determinate atom learning in different areas, including inductive equational theorem-proving, learning of series-construction laws and user support for learning advanced screen-editor commands. Section 6 draws some conclusions.

Definitions

We assume familiarity with the classical definitions of terms, substitutions [START_REF] Dershowitz | Rewrite Systems[END_REF], and Horn clauses [START_REF] Kowalski | Predicate logic as programming language[END_REF]. The cardinality of a finite set S is denoted by # S.

A signature Σ is a set of function symbols f , each of which has a fixed arity; if some f is nullary, we call it a constant. Let V be an infinite set of variables. T V denotes the set of all terms over Σ and a given V ⊆ V. For a term t, var(t) denotes the set of variables occurring in t; if it is empty, we call t a ground term. We call a term linear if each variable occurs at most once in it.

By {x 1 → t 1 , . . . , x n → t n }, or {x i → t i | 1 i n}, we denote a substitution that maps each variable x i to the term t i . We call it ground if all t i are ground. We use the postfix notation tσ for application of σ to t, and στ for the composition of σ (to be applied first) and τ (second). The domain of σ is denoted by dom σ.

A term t is called an instance of a term t if t = t σ for some substitution σ.

In this case, we call t more special than t , and t more general than t. We call t a renaming of t if σ is a bijection that maps variables to variables.

A term t is called a syntactical generalization of terms t 1 and t 2 , if there exist substitutions σ 1 and σ 2 such that tσ 1 = t 1 and tσ 2 = t 2 . In this case, t is called the most specific syntactical generalization of t 1 and t 2 , if for each syntactical generalization t of t 1 and t 2 there exists a substitution σ such that t = t σ . The most specific syntactical generalization of two terms is unique up to renaming; we also call it their syntactical anti-unifier [START_REF] Plotkin | A note on inductive generalization[END_REF].

An equational theory E is a finite set of equations between terms. (= E) denotes the smallest congruence relation that contains all equations of E. Define

[t] E = {t ∈ T {} | t = E t}
to be the congruence class of t in the algebra of ground terms. The congruence class of a term is usually infinite; for example, using the equational theory from A congruence relation (= 1) is said to be a refinement of another congruence relation (= 2), if ∀t, t ∈ T V t = 1 t ⇒ t = 2 t . In Sect. 5.1, we need the definition t 1 ≡ E t 2 if t 1 σ = E t 2 σ for all ground substitutions σ with var(t 1) ∪ var(t 2) ⊆ dom σ; this is equivalent to the equality of t 1 and t 2 being inductively provable [DJ90, Sect. 3.2].

We call an n-ary function symbol f a constructor if n functions π f 1 , . . . , π f n exist such that ∀t, t 1 , . . . , t n : (

n i=1 π f i (t) = E t i) ↔ t = E f (t 1 , . . . , t n).
The π f i are called selectors associated to f . As usual, we assume additionally that f (s 1 , . . . , s n) = E g(t 1 , . . . , t m) = E x for any two constructors f = g, any variable x and arbitrary terms s i , t j . On this assumption, some constants can also be called constructors. No selector can be a constructor. If f is a constructor, then [f (t 1 , . . . , t

n)] E = f ([t 1] E , . . . , [t n] E).
A term t is called a constructor term if it is built from constructors and variables only. Let t and t be constructor terms.

Lemma 1 (Constructor terms) Let t and t be constructor terms.

(1) If tσ = E t , then tσ = t for some σ such that xσ is a constructor term and xσ = E xσ for each x ∈ V.

(2) If t = E t , then t = t .

(3) If tσ 1 = E tσ 2 , then ∀x ∈ var(t) : xσ 1 = E xσ 2 .

PROOF.

(1) Induction on t:

• If t = x ∈ V, then choose σ = {x → t }.

• If t = f (t 1 , . . . , t n), then f (t 1 σ, . . . , t n σ) = E t . Hence, t = f (t 1 , . . . , t n) for some t i , and t i σ = E π f i (tσ) = E π f i (t) = E t i . By I.H., t i σ i = t i for some σ i . For any i, j, and x ∈ dom σ i ∩ dom σ j , we have xσ i = E xσ = E xσ j , and therefore xσ i = xσ j . Hence, all σ i are compatible, and we can unite them into a single σ .

(2) Follows from 1 with σ = { }.

(3) Induction on t:

• For t = x ∈ V, we have nothing to show.

• If t = f (t 1 , . . . , t n), we have t i σ 1 = E π f i (tσ 1) = E π f i (tσ 2) = E t i σ 2 , and we are done by I.H. 2 A (nondeterministic) regular tree grammar [TW68,CDG + 99] is a triple G = Σ, N , R . Σ is a signature, N is a finite set of nonterminal symbols and R is a finite set of rules of the form N ::= f 1 (N 11 , ..., N 1n 1) | . . . | f m (N m1 , ..., N mnm) or, abbreviated, N ::= m i=1 f i (N i1 , ..., N in i). Each f i (N i1 , . . . , N in i) is called an alternative of the rule. We assume that for each nonterminal N ∈ N , there is exactly one defining rule in R with N as its left-hand side. As usual, the rules may be mutually recursive.

Given a grammar G and a nonterminal N ∈ N , the language L G (N) produced by N is defined in the usual way as the set of all ground terms derivable from N as the start symbol. We omit the index G if it is clear from the context. We denote the total number of alternatives in G by # G.

In Sect. 4, we will use the following predicate logic definitions. To simplify notation, we sometimes assume all predicate symbols to be unary. An n-ary predicate p can be simulated by a unary p using an n-ary tupling constructor symbol and defining p(t 1 , . . . , t n) ⇔ p (t 1 , . . . , t n).

An n-ary predicate p is called determinate wrt. some background theory B if there is some k such that w.l.o.g. each of the arguments k + 1, . . . , n has only one possible binding, given the bindings of the arguments 1, . . . , k [LD94, Sect. 5.6.1]. The background theory B may be used to define p, hence p's determinacy depends on B. Similar to the above, we sometimes write p(t 1 , . . . , t n) as a binary predicate p(t 1 , . . . , t k , t k+1 , . . . , t n) to reflect the two classes of arguments. For a binary determinate predicate p, the relation { s, t | s, t ∈ T {} ∧ B |= p(s, t)} corresponds to a function g. We sometimes assume that g is defined by equations from a given E, i.e. that B |= p(s, t) ↔ g(s) = E t.

A literal has the form p(t) or ¬p(t), where p is a predicate symbol and t is a term. We consider a negation to be part of the predicate symbol. We say that the literals L 1 and L 2 fit if both have the same predicate symbol, including negation. We extend (= E) to literals by defining p(t

1) = E p(t 2) if t 1 = E t 2 . For example, (¬divides(1 + 1, 5)) = E (¬divides(2, 5)) if 1 + 1 = E 2.
A clause is a finite set C = {L 1 , . . . , L n } of literals, with the meaning C ⇔ L 1 ∨ . . . ∨ L n . We consider only nonredundant clauses, i.e. clauses that do not contain congruent literals. For example, {p(x + 0), p(x)} is redundant if

x + 0 = E x. We write C 1 ⊆ E C 2 if ∀L 1 ∈ C 1 ∃L 2 ∈ C 2 : L 1 = E L 2 ; if C 2 is nonredundant, L 2 is uniquely determined by L 1 .
We say that C 1 E-subsumes C 2 if C 1 σ ⊆ E C 2 for some σ. In this case, the conjunction of E and C 1 implies C 2 ; however, there are other cases in which E ∧ C 1 |= C 2 but C 1 does not E-subsume C 2 . For example, {¬p(x), p(f (x))} implies, but does not subsume, {¬p(x), p(f (f (x)))}, even for an empty E.

A Horn clause is a clause {p 0 (t 0), ¬p 1 (t 1), . . . , ¬p n (t n)} with exactly one positive literal. It is also written as p 0 (t 0) ← p 1 (t 1) ∧ . . . ∧ p n (t n). We call p 0 (t 0) the head literal, and p i (t i) a body literal for i = 1, . . . , n. Like [LD94, Sect. 2.1], we call the Horn clause constrained if var(t 0) ⊇ var(t 1 , . . . , t n).

We call a Horn clause

p 0 (s 0 , t 0) ← n i=1 p i (s i , x i) ∧ m i=1 q i (t i)
semi-determinate wrt. some background theory B if all p i are determinate wrt. B, all variables x i are distinct and do not occur in s 0 , var(s i) ⊆ var(s 0) ∪ {x 1 , . . . , x i-1 }, and var(t 1 , . . . , t m) ⊆ var(s 0 , x 1 , . . . , x n). Semi-determinacy for clauses is a slight extension of determinacy defined by [LD94, Sect. 5.6.1], as it additionally permits arbitrary predicates q i . On the other hand, [START_REF] Lavrac | Inductive Logic Programming: Techniques and Applications[END_REF] permits x i = x j for i = j; however, p i (s i , x i) ∧ p j (s j , x i) can be equivalently transformed into p i (s i , x i) ∧ p j (s j , x j) ∧ x i = E x j .

E-Generalization

We treat the problem of E-generalization of ground terms by standard algorithms on regular tree grammars. Here, we also give a rational reconstruction of the original approach from [START_REF] Heinz | Anti-Unifikation modulo Gleichungstheorie und deren Anwendung zur Lemmagenerierung[END_REF], who provided monolithic specially tailored algorithms for E-anti-unification. We confine ourselves to E-generalization of two terms. All methods work similarly for the simultaneous E-generalization of n terms.

The Core Method

Definition 2 (E-Generalization) For an equational theory E, a term t is called an E-generalization, or E-anti-unifier, of terms t 1 and t 2 if there exist

E ¨B r r j t 1 t 2 E E [t 1] E [t 2] E E E • • • • • • • • • • • • • • B j σ 1 σ 2 r r j ¨B [t 1] σ 1 E [t 2] σ 2 E r r j ¨B [t 1] σ 1 E ∩ [t 2] σ 2 E E t Constrained E-generalization: σ 1 , σ 2 externally prescribed Unconstrained E-generalization: σ 1 , σ 2 computed from [t 1] E , [t 2] E Fig. 2. E-Generalization Using Tree Grammars
substitutions σ 1 and σ 2 such that tσ 1 = E t 1 and tσ 2 = E t 2 . In Fig. 1 (right), we had

t 1 = 0, t 2 = s 4 (0), t = x * x, σ 1 = {x → 0}, and σ 2 = {x → s 2 (0)}.
As in unification, a most special E-generalization of arbitrary terms does not normally exist. A set G ⊆ T V is called a set of E-generalizations of t 1 and t 2 if each member is an E-generalization of t 1 and t 2 . Such a G is called complete if, for each E-generalization t of t 1 and t 2 , G contains an instance of t. 2

As a first step towards computing E-generalization sets, let us weaken Def. 2 by fixing the substitutions σ 1 and σ 2 . We will see below, in Sect. 4 and 5, that the weakened definition has important applications in its own right.

Definition 3 (Constrained E-Generalization) Given two terms t 1 , t 2 , a variable set V , two substitutions σ 1 , σ 2 with dom σ 1 = dom σ 2 = V and an equational theory E, define the set of E-generalizations of t 1 and t 2 wrt. σ 1 and σ 2 as {t ∈ T

V | tσ 1 = E t 1 ∧ tσ 2 = E t 2 }. This set equals [t 1] σ 1 E ∩ [t 2] σ 2 E . 2
If we can represent the congruence class [t 1] E and [t 2] E as some regular tree language L G 1 (N 1) and L G 2 (N 2), respectively, we can immediately compute the set of constrained E-generalizations

[t 1] σ 1 E ∩ [t 2] σ 2 E :
The set of regular tree languages is closed wrt. union, intersection and complement, as well as under inverse tree homomorphisms, which cover substitution application as a special case. Figure 2 gives an overview of our method for computing the constrained set of E-generalizations of t 1 and t 2 wrt. σ 1 and σ 2 according to Def. 3:

O(# N 1 • # N 2).
• Each member t of the resulting tree language is an actual E-generalization of t 1 and t 2 . The question of enumerating that language is discussed later on.

Theorem 4 (Lifting) Let a regular tree grammar G = Σ, N , R and a ground substitution σ be given. Define

G σ := Σ ∪ dom σ, {N σ | N ∈ N }, R σ ,
where each N σ is a distinct new nonterminal, and the rules of R σ are built as follows:

For each rule

N ::= m i=1 f i (N i1 , . . . , N in i) in R include the rule N σ ::= m i=1 f i (N σ i1 , . . . , N σ in i) | x∈dom σ,xσ∈L G (N) x into R . Then for all N ∈ N and all t ∈ T V , we have t ∈ L G σ (N σ) iff var(t) ⊆ dom σ and tσ ∈ L G (N).
The condition xσ ∈ L G (N) in the defining rule of N σ is decidable. G and G σ have the same number of nonterminals, and of rules. Each rule of G σ may have at most # dom σ more alternatives. Note that variables from dom σ occur in the grammar G σ like constants. 2 Based on the above result about constrained E-generalization, we show how to compute the set of unconstrained E-generalizations of t 1 and t 2 according to Def. 2, where no σ i is given. It is sufficient to compute two fixed universal substitutions τ 1 and τ 2 from the grammars for [t 1] E and [t 2] E and to let them play the role of σ 1 and σ 2 in the above method (cf. the dotted vectors in Fig. 2). Intuitively, we introduce one variable for each pair of congruence classes and map them to a kind of normalform member of the first and second class by τ 1 and τ 2 , respectively.

We give below a general construction that also accounts for auxiliary nonterminals not representing a congruence class, and state the universality of τ 1 , τ 2 in a formal way. For the sake of technical simplicity, we assume that [t 1] E and [t 2] E share the same grammar G; this can easily be achieved by using the disjoint union of the grammars for [t 1] E and [t 2] E .

Definition 5 (Normal Form) Let an arbitrary tree grammar G = Σ, N , R be given. A non-empty set of nonterminals

N ⊆ N is called maximal if N ∈N L(N) = {}, but N ∈N L(N) = {} for each N ⊃ N. Define N max = {N ⊆ N | N = {}, N maximal }. Choose some arbitrary but fixed • maximal N(t) ⊇ {N ∈ N | t ∈ L(N)} for each t ∈ N ∈N L(N) • maximal N(t) for each t ∈ T V \ N ∈N L(N) • ground term t(N) ∈ N ∈N L(N) for each N ∈ N max
The mappings N(•) and t(•) can be effectively computed from G. We abbreviate t = t(N(t)); this is a kind of normalform of t. Each term not in any L(N), in particular each nonground term, is mapped to some arbitrary ground term, the choice of which does not matter. For a substitution σ = {x 1 → t 1 , . . . , x n → t n }, define σ = {x 1 → t 1 , . . . , x n → t n }. We always have xσ = xσ. 2 Lemma 6 (Substitution Normalization) For all N ∈ N , t ∈ T V , and σ,

(1) t ∈ L(N) ⇒ t ∈ L(N), and (2) tσ ∈ L(N) ⇒ tσ ∈ L(N).
PROOF. From the definition of N(•) and t(•), we get t ∈ L(N) ⇒ N ∈ N(t) and N ∈ N ⇒ t(N) ∈ L(N), respectively.

(1) Hence, t ∈ L(N) ⇒ N ∈ N(t) ⇒ t ∈ L(N).

(2) Induction on the structure of t:

• If t = x ∈ V and xσ ∈ L(N), then xσ = xσ ∈ L(N) by 1. • Assuming N ::= . . . f (N 11 , ..., N 1n) | . . . | f (N m1 , ..., N mn) . . ., we have f (t 1 , . . . , t n) σ ∈ L(N) ⇒ ∃i m ∀j n : t j σ ∈ L(N ij) by Def. L(•) ⇒ ∃i m ∀j n : t j σ ∈ L(N ij) by I.H. ⇒ f (t 1 , . . . , t n) σ ∈ L(N) by Def. L(•) 2
Lemma 7 (Universal Substitutions) For each grammar G, we can effectively compute two substitutions τ 1 , τ 2 that are universal for G in the following sense.

For any two substitutions σ 1 , σ 2 , a substitution σ exists such that for i = 1, 2, we have ∀t ∈ T dom σ 1 ∩dom σ 2 ∀N ∈ N :

tσ i ∈ L(N) ⇒ tστ i ∈ L(N). PROOF. Let v(N 1 , N 2) be a new distinct variable for each N 1 , N 2 ∈ N max . Define τ i = {v(N 1 , N 2) → t(N i) | N 1 , N 2 ∈ N max } for i = 1, 2. Given σ 1 and σ 2 , let σ = {x → v(N(xσ 1), N(xσ 2)) | x ∈ dom σ 1 ∩ dom σ 2 }.
Then στ i and σ i coincide on var(t), and hence tσ i ∈ L(N) ⇒ tστ i ∈ L(N) by Lem. 6.2. 2

Example 8 We apply Lem. 7 to the grammar G consisting of the topmost three rules in Fig. 3 below. The result will be used in Ex. 10 to compute some set of E-generalizations. We have

N max = {{N 0 , N t }, {N 1 , N t }}, since, e.g., 0 ∈ L(N 0) ∩ L(N t) and s(0) ∈ L(N 1) ∩ L(N t), while L(N 0) ∩ L(N 1) = {}.
We choose

N(t) = {N 0 , N t } if t ∈ L(N 0) {N 1 , N t } else and t({N 0 , N t }) = 0 t({N 1 , N t }) = s(0) .
We abbreviate, e.g., v({N 0 , N t }){N 1 , N t } to v 01 . This way, we obtain

τ 1 = { v 00 → 0, v 01 → 0, v 10 → s(0), v 11 → s(0) } and τ 2 = { v 00 → 0, v 01 → s(0), v 10 → 0, v 11 → s(0) } .
Given t = x * y, σ 1 = {x → 0+0, y → 0} and σ 2 = {x → s(0), y → s(0) * s(0)} for example, we obtain a proper instance v 01 * v 01 of t using τ 1 and τ 2 :

L(N 0) (0+0) * 0 σ 1 ←-x * y σ 2 -→ s(0) * (s(0) * s(0)) ∈ L(N 1) L(N 0) 0 * 0 τ 1 ←-v 01 * v 01 τ 2 -→ s(0) * s(0) ∈ L(N 1) . 2
The computation of universal substitutions is very expensive because it involves computing many tree-language intersections to determine the mappings N(•) and t(•). Assume N = N c ∪ N o , where N c comprises n c nonterminals representing congruence classes and N o comprises n o other ones. A maximal set N may contain at most one nonterminal from N c and an arbitrary subset of N o ; however, no maximal N may be a proper subset of another one. By some combinatorics, we get (n c +1)• no no/2 as an upper bound on # N max . Hence, the cardinality of dom τ i is bounded by the square of that number. In our experience, n o is usually small. In most applications, it does not exceed 1, resulting in # dom τ i (n c +1) 2 . Computing the τ i requires n o +1 grammar intersections in the worst case, viz. when N o ∪{N c } for some N c ∈ N c is maximal. In this case, dom τ i is rather small. Since the time for testing emptiness is dominated by the intersection computation time, and (n c + 1)

• no no/2 (n c + 1) • n no/2 o # G no+1 , we get a time upper bound of O(# G no+1) for computing the τ i .
If the grammar is deterministic, then each nonterminal produces a distinct congruence class [McA92, Sect.2], and we need compute no intersection at all to obtain τ 1 and τ 2 . We get # dom τ i = # N 2 . In this case, N(•), t(•), and v(•, •) can be computed in linear time from G. However, in general a nondeterminstic grammar is smaller in size than its deterministic counterpart.

Theorem 9 (Unconstrained E-Generalization) Let an equational theory E and two ground terms t 1 , t 2 be given. Let G = Σ, N , R be a tree grammar and

N 1 , N 2 ∈ N such that L G (N i) = [t i] E for i = 1, 2. Let τ 1 , τ 2 be as in Lemma 7. Then, [t 1] τ 1 E ∩[t 2] τ 2
E is a complete set of E-generalizations of t 1 and t 2 . A regular tree grammar for it can be computed from

G in time O(# G 2 + # G no+1). PROOF. If t ∈ [t 1] τ 1 E ∩ [t 2] τ 2 E , then tτ 1 = E t 1 and tτ 2 = E t 2 , i.e.
t is an Egeneralization of t 1 and t 2 . To show the completeness, let t be an arbitrary E-generalization of t 1 and t 2 , i.e. tσ i = E t i for some σ i . Obtain σ from Lemma 7 such that

tστ i ∈ [t i] E . Then, by definition, [t 1] τ 1 E ∩ [t 2] τ 2 E contains the instance tσ of t. 2
Since the set of E-generalizations resulting from our method is given by a regular tree grammar, it is necessary to enumerate some terms of the corresponding tree language in order to actually obtain some results. Usually, there is a notion of simplicity (or weight), depending on the application Egeneralization is used in, and it is desirable to enumerate the simplest terms (with least weight) first. The minimal weight of a term in the language of each nonterminal can be computed in time O(# G • log # G) by [START_REF] Burghardt | Weight computation of regular tree languages[END_REF]. After that, it is easy to enumerate a nonterminal's language in order of increasing weight in time linear to the output size using a simple Prolog program.

N 0 ::= 0 | N 0 +N 0 | N 0 * N t | N t * N 0 N 1 ::= s(N 0) | N 0 +N 1 | N 1 +N 0 | N 1 * N 1 N t ::= 0| s(N t) | N t +N t | N t *
N 0t ::=v 00 |v 01 |0 | N 0t +N 0t | N 0t * N tt | N tt * N 0t N t0 ::=v 00 |v 10 |0 | N t0 +N t0 | N t0 * N tt | N tt * N t0 N t1 ::= v 01 |v 11 |s(N t0)| N t0 +N t1 | N t1 +N t0 | N t1 * N t1 N tt ::=v 00 |v 01 |v 10 |v 11 |0| s(N tt) | N tt +N tt | N tt * N tt
Example 10 To give a simple example, we generalize 0 and s(0) wrt. the equational theory from Fig. 1 (left). Figure 3 shows all grammars that will appear during the computation. For now, assume that the grammar G defining the congruence classes [0] E and [s(0)] E is already given by the topmost three rules in Fig. 3. In Ex. 12 below, we discuss in detail how it can be obtained from E. Nevertheless, the rules of G are intuitively understandable even now; e.g. the rule for N 0 in the topmost line reads: A term of value 0 can be built by the constant 0, the sum of two terms of value 0, the product of a term of value 0 and any other term, or vice versa. Similarly, L(N 1) = [s(0)] E and L(N t) = T {} . In Ex. 8, we already computed the universal substitutions τ 1 and τ 2 from G.

Figure 3 shows the grammars G τ 1 and G τ 2 resulting from inverse substitu-tion application, defining the nonterminals N 0 * , N 1 * , N t * and N * 0 , N * 1 , N * t , respectively. For example, L G τ 1 (N 0 *) = [0] τ 1 E , where the rule for N 0 * is obtained from that for N 0 by simply including all variables that are mapped to a member of L G (N 0) by τ 1 . They appear as new constants, i.e. Σ G τ 1 = Σ G τ 2 = Σ G ∪ {v 00 , . . . , v 11 }. For each t ∈ L G τ 1 (N 0 *), we have tτ 1 = E 0.

The bottommost 6 rules in Fig. 3 show the intersection grammar G 12 obtained from a kind of product-automaton construction and defining N 00 , . . . , N tt . We have L G 12 (N ij) = L G τ 1 (N i)∩L G τ 2 (N j) for i, j ∈ {0, 1, t}. By Thm. 9, L G 12 (N 01) is a complete set of E-generalizations of 0 and s(0) wrt. E. We have, e.g., N 01 → N 01 * N t1 → v 01 * v 01 , showing that 0 and s(0) are both quadratic numbers, and

(v 01 * v 01)τ 1 = 0 * 0 = E 0, (v 01 * v 01)τ 2 = s(0) * s(0) = E s(0).
By repeated application of the rules N 01 ::= . . . N 01 * N t1 . . . and N t1 ::= . . . N t1 * N t1 . . ., we can obtain any generalization of the form v 01 * . . . * v 01 , with arbitrary paranthesation. By way of a less intuitive example, we have v 01 * s(v 10 + v 10) ∈ L G 12 (N 01). 2

Setting up Grammars for Congruence Classes

The question of how to obtain a grammar representation of the initial congruence classes [t 1] E and [t 2] E was deferred in Sect. 3.1. It is discussed below.

Procedures that help to compute a grammar representing the congruence class of a ground term are given, e.g., in [START_REF] Mcallester | Grammar rewriting[END_REF]Sect.3]. This paper also provides a criterion for an equational theory inducing regular tree languages as congruence classes:

Theorem 11 (Ground Equations) An equational theory induces regular congruence classes iff it is the deductive closure of finitely many ground equations E.

PROOF. To prove the if direction, start with a grammar consisting of a rule N f (t 1 ,...,tn) ::= f (N t 1 , . . . , N tn) for each subterm f (t 1 , . . . , t n) occurring in E. For each equation (t 1 = E t 2) ∈ E, fuse the nonterminals N t 1 and N t 2 everywhere in the grammar. Then successively fuse every pair of nonterminals whose rules have the same right-hand sides. The result is a deterministic grammar G such that t 1 = E t 2 iff t 1 , t 2 ∈ L G (N) for some N .

In addition to this nonoptimal but intuitive algorithm, McAllester gives an O(n • log n) algorithm based on congruence closure [START_REF] Peter | Variations on the common subexpression problem[END_REF], where n is the written length of E. The proof of the only if direction need not be sketched here. 2

In order to compute a complete set of E-generalizations of two given ground terms t 1 and t 2 , we do not need all congruence classes to be regular; it is sufficient that those of t 1 and t 2 are. More precisely, it is sufficient that (= E) is a refinement of some congruence relation (= G) with finitely many classes only, such that [

t i] E = [t i] G for i = 1, 2.
Example 12 Let Σ = {0, s, (+), (*)}, and let E be the equational theory from Fig. 1 (left). To illustrate the application of Thm. 11, we show how to obtain a grammar defining [0] E , . . . , [s n (0)] E for arbitrary n ∈ IN . Obviously, (= E) itself has infinitely many congruence classes. However, in order to consider the terms 0, . . . , s n (0) only, the relation (= G), defined by the classes

[0] E , . . . , [s n (0)] E and C = i>n [s i (0)] E , is
sufficient. This relation is, in fact, a congruence wrt. 0, s, (+), and (*): in a term t ∈ n i=0 [s i (0)] E , a member t c of C can occur only in some subterm of the form 0 * t c or similar, which always equals 0, regardless of the choice of t c .

For n = 1, we may choose a representative term 0, s(0), and c for the classes [0] E , [s(0)] E , and C, respectively. We may instantiate each equation from Fig. 1 (left) with all possible combinations of representative terms, resulting in 3 + 3 2 + 3 + 3 2 ground equations. After adding the equation c = s(s(0)), we may apply Thm.11 to obtain a deterministic grammar

G d with L G d (N 0) = [0] E , L G d (N s(0)) = [s(0)] E ,
L(N t) = [0] E ∪ [s(0)] E ∪ C. 2
In [BH96, Cor. 16], another sufficient criterion is given. Intuitively, it allows us to construct a grammar from each equational theory that describes only operators building up larger values (normal forms) from smaller ones:

Theorem 13 (Constructive Operators) Let E be given by a ground confluent and Noetherian term-rewriting system. For each term t ∈ T {} , let nf (t) denote its unique normal form; let NF be the set of all normal forms. Let (≺) be a well-founded partial ordering on NF with a finite branching degree, and let () be its reflexive closure. If

t i nf (f (t 1 , . . . , t n)) for all f ∈ Σ, t 1 , . . . , t n ∈ NF and i = 1, . . . , n, then for each t ∈ T {} , the congruence class [t] E is a regular tree language.
PROOF. Define one nonterminal N t for each normal-form term t ∈ NF . Whenever t = E f (t 1 , . . . , t n) for some t 1 , . . . , t n ∈ NF , include an alternative f (N t 1 , . . . , N tn) into the right-hand side of the rule for N t . Since t i t for all i, there are only finitely many such alternatives. This results in a finite grammar G, and we have L G (N nf (t)) = [t] E for all terms t. Let a i denote the number of i-ary function symbols in Σ and m denote the maximal arity in Σ. Then we need m i=0 a i • # NF i normal-form computations to build G, which has a total of these many alternatives and # NF rules. Its computation takes O(# G) time. 2 By way of an example, consider the theory E consisting of only equations 1. and 2. in Fig. 1 (left). E is known to be ground-confluent and Noetherian and to lead to

NF = {s n (0) | n ∈ IN }. Defining s i (0) ≺ s j (0) ⇔ i < j, we observe that s i (0) s i+j (0) = nf (s i (0) + s j (0)); similarly, s j (0) nf (s i (0) + s j (0)) and s i (0) nf (s(s i (0))).
Hence, E leads to regular congruence classes by Thm. 13. For example, there are just five ways to obtain a term of value s 3 (0) from normal-form terms using s and (+). Accordingly,

N 3 ::= s(N 2) | N 3 + N 0 | N 2 + N 1 | N 1 + N 2 | N 0 + N 3 defines [s 3 (0)] E .
If their respective preconditions are met, Thms. 11 and 13 allow us to automatically compute a grammar describing the congruence classes wrt. a given theory E. In practice, with Thm. 11 we have the problem that E is rarely given by ground equations only, while Thm. 13 requires properties that are sufficient but not necessary. For example, not even for the whole theory from Fig. 1 (left) is there an ordering such that s i (0) 0 = nf (s i (0) * 0) and 0 s i (0) = nf (0 + s i (0)). So far, it seems best to set up a grammar scheme for a given E manually. For example, for E from Fig. 1 (left), it is easy to write a program that reads n ∈ IN and computes a grammar describing the congruence classes [0] E , . . . , [s n (0)] E : The grammar consists of the rules for N 0 and N t from Fig. 3 (top) and one rule

N i ::= s(N i-1) | i j=0 N j + N i-j | j•k=i N j * N k for each i = 1, . . . , n.
Similarly, grammar schemes for the theory of list operators like append , reverse, etc. and other theories can be implemented.

The lack of a single algorithm that computes a grammar for each E from a sufficiently large class of equational theories restricts the applicability of our E-generalization method to problems where E is not changed too often. Using grammar schemes, this restriction can be relaxed somewhat. The grammarscheme approach is also applicable to theories given by conditional equations or even other formulas, as long as they lead to regular congruence classes and the schemes are computable.

A further problem is that not all equational theories lead to regular congruence classes. Consider, for example, subtraction (-) on natural numbers. We have 0 = E s i (0) -s i (0) for all i ∈ IN . Assume that (= E) is a refinement of some (= G) with finitely many classes; then s i (0) = G s j (0) for some i

= j. If (= G) is a congruence relation, 0 = G s i (0) -s i (0) = G s i (0) -s j (0), although 0 = E s i (0) -s j (0). Hence, [0] E = [0] G is
impossible. Thus, if an operator like (-) is defined in E, we cannot E-generalize using our method. However, we can still compute an approximation of the E-generalization set in such cases by artificially cutting off grammar rules after a maximum number of alternatives. This will result in a set that still contains only correct Egeneralizations but that is usually incomplete. For example, starting from the grammar rules

N 0 ::= 0 | N 0 -N 0 | N 1 -N 1 | N 2 -N 2 N 1 ::= s(N 0) | N 1 -N 0 | N 2 -N 1 N 2 ::= s(N 1) | N 2 -N 0 ,
we obtain only E-generalization terms t whose evaluation never exceeds the value 2 on any subterm's instance. Depending on the choice of the cut-off point, the resulting E-generalization set may suffice for a given application.

More Expressive Grammar Formalisms

To overcome the limited expressiveness of pure regular tree grammars, we tried to extend the results of Sect. 3.1 to automata with equality tests.

For automata with equality tests between siblings [BT92,CDG + 99] or, equivalently, shallow systems of sort constraints [Uri92], we have the problem that this language class is not closed under inverse substitution application [BT92, Sect. 5.2]. For example, consider the grammar

N 0 ::= 0 | N t -N t [x 1 = x 2] N t ::= 0 | s(N t) | N t -N t N xy ::= N x -N y N x ::= x | s(N x) N y ::= y | s(N y)
in which N 0 describes the congruence class [0] E wrt. the defining equations of (-), where the constraint [x 1 = x 2] requires the left and right operand of (-) to be equal. For

σ = {x → 0, y → s(0)}, the language [0] σ E is not recog- nizable because otherwise [0] σ E ∩ L(N xy) = {s i+1 (x) -s i (y) | i ∈ IN }
would have to be recognizable, too. However, the latter set cannot be represented by a grammar with equality tests between siblings. For reduction automata [CCD95,CDG + 99] and generalized reduction automata [CCC + 94], it seems to be still unknown whether they are closed under inverse substitution application.

The approach using universal substitutions τ 1 , τ 2 strongly depends on the fact that n j=1 t j ∈ L(N ij) ⇒ f (t 1 , . . . , t n) ∈ L(N), which is needed in the proof of Lem. 6.2. In other words, the rule N ::= . . . f (N i1 , . . . , N in) is not allowed to have additional constraints. The straightforward approach to incorporate equality constraints into the proof of Lem. 7 is to show additionally that ∀t , t ∈ T V : t σ i = t σ i ⇒ t στ i = t στ i for i = 1, 2. Note that syntactic equality is required by the form of constraints. However, this leads to a contradiction:

Lemma 14 If Σ contains at least one function symbol of arity 1 and one constant, there cannot exist τ 1 and τ 2 such that

∀σ 1 , σ 2 ∃σ ∀t , t ∈ T V ∀i = 1, 2 : t σ i = t σ i ⇒ t στ i = t στ i .
PROOF. If such τ i existed, we could construct a contradictory sequence σ

(j) 1 , σ (j)
2 j∈IN as follows. Let σ

(j) 1 = {x → f j (c)} and σ (j)
2 = {x → c}, where f (. . .), c ∈ Σ; for the sake of simplicity, we assume that f is only unary. Since xσ (j) is mapped by τ 1 and τ 2 to terms starting with different symbols, it must be a variable, and τ 1 must include the mapping xσ (j) → f j (c) for each j ∈ IN . This is impossible because dom τ 1 can only be finite. 2 For these reasons, our approach remains limited to ordinary regular tree grammars, i.e. those without any equality constraints. The following lemma shows that we cannot find a more sophisticated grammar formalism that can handle all equational theories, anyway.

(j) 1 = f j (c)σ (j) 1 , we have xσ (j) τ 1 = f j (c)σ (j) τ 1 = f j (c). Similarly, xσ (j) 2 = cσ (j) 1 implies xσ (j) τ 2 = c. Since xσ
Lemma 15 (General Uncomputability of E-Generalization) There are equational theories E such that it is undecidable whether the set of constrained E-generalizations for certain t 1 , t 2 , σ 1 , σ 2 is empty. Such a set cannot be represented by any grammar formalism that is closed wrt. language intersection and allows testing for emptiness.

PROOF. We encode a version of Post's correspondence problem into an E-generalization problem for a certain E. Let a set { a 1 , b 1 , . . . , a n , b n } of pairs of nonempty strings over a finite alphabet A be given. It is known to be undecidable whether there exists a sequence 1, i 2 , . . . , i m such that m 1 and

a 1 • a i 2 • . . . • a im = b 1 • b i 2 • . . . • b im [Sch97, Sect. 2.7],
where "•" denotes string concatenation. Let Σ = A ∪ {1, . . . , n} ∪ {(•), f, a, b}, and let E consist of the following equations:

(x • y) • z = x • (y • z) f (a, x • i, y • a i) = f (a, x, y) for i = 1, . . . , n f (b, x • i, y • b i) = f (b, x, y) for i = 1, . . . , n, Necessity: B |= F + Sufficiency: B ∧ h |= F + Weak Consistency: B ∧ h |= false Strong Consistency: B ∧ h ∧ F -|= false
E-generalizations [f (a, 1, a 1)] σ 1 E ∩ [f (b, 1, b 1)] σ 2
E is nonempty iff the given correspondence problem has a solution. 2

Learning Predicate Definitions

In this section, we relate E-generalization to Inductive Logic Programming (ILP), which seems to be the closest approach to machine learning. We argue in favor of an outsourcing of equational tasks from Horn program induction algorithms, similar to what has long been common practice in the area of deduction. From a theoretical point of view, a general-purpose theorem-proving algorithm is complete wrt. equational formulas, too, if all necessary instances of the congruence axioms s = E t ⇒ f (s) = E f (t) and s = E t ∧ p(s) ⇒ p(t) are supplied. However, in practice it proved to be much more efficient to handle the equality predicate (= E) separately using specially tailored methods, like E-unification for fixed, or paramodulation for varying E.

Similarly, we show that integrating E-anti-unification into an ILP algorithm helps to restrict the hypotheses-language bias and thus the search space. In particular, learning of determinate clauses can be reduced to learning of atoms using generalization wrt. an E defining a function for each determinate predicate.

We investigate the learning of a definition of a new predicate symbol p in four different settings. In all cases, we are given a conjunction F ⇔ F + ∧ F -of positive and negative ground facts, and a background theory B describing an equational theory E. In this section, we always assume that E leads to regular congruence classes. We generate a hypothesis h that must explain F using B. From Inductive Logic Programming, up to four requirements for such a hypothesis are known [Mug99, Sect. 2.1]. They are listed in Fig. 4. More precisely, the Necessity requirement does not impose a restriction on h, but forbids any generation of a (positive) hypothesis, provided the positive facts are explainable without it. Muggleton remarks that this requirement can be checked by a conventional theorem prover before calling hypothesis generation. The Weak and Strong Consistency requirements coincide if there are no negative facts; otherwise, the former is entailed by the latter. In [Dže96, Sect. 5.2.4], only Sufficiency (called Completeness there) and Strong Consistency are required.

We show under which circumstances E-generalization can generate a hypothesis satisfying the Sufficiency and both Consistency requirements. The latter are meaningful in an equational setting only if we require that (= E) is nontrivial , i.e. ∃x, y : ¬ x = E y. Without this formula, false could not even be derived from an equational theory, however nonsensical.

Given E, we require our logical background theory B to entail the reflexivity, symmetry and transitivity axiom for (= E), a congruence axiom for (= E) wrt. each function f ∈ Σ and each predicate p occurring in B, the universal closure of each equation in E, and the nontriviality axiom for (= E). As a more stringent alternative to the Necessity requirement, we assume that B is not contradictory and that the predicate symbol p for which a definition has to be learned does not occur in B, except in p's congruence axiom.

Atomic Definitions

To begin with, we investigate the learning of a definition of a unary predicate p by an atom h ⇔ p(t). Let F + ⇔ n i=1 p(t i) and F -⇔ m i=n+1 ¬p(t i). For sets T + , T -of ground terms and an arbitrary term t, define

h + (t, T +) ⇔ ∀t ∈ T + ∃χ : tχ = E t and h -(t, T -) ⇔ ∀t ∈ T -∀χ : tχ = E t .
We name the substitutions χ instead of σ in order to identify them as given by h + and h -in the proofs below.

Lemma 16 (Requirements) Let t i , t i be ground terms for i = 1, . . . , m and let t be an arbitrary term. Let

F + ⇔ n i=1 p(t i) and F -⇔ m i=n+1 ¬p(t i). Let T + = {t 1 , . . . , t n } and T -= {t n+1 , . . . , t m }. Then: (1) B ∧ p(t) |= p(t 1) ∨ . . . ∨ p(t n) iff tσ = E t i for some i, σ. (2) B ∧ p(t) |= F + iff h + (t, T +). (3) B ∧ p(t) ∧ F -|= false iff h -(t, T -).

PROOF.

(1) The if direction is trivial. The following Lem. 17, and Lem. 23 below for the determinate case, are the workhorses of this section. They show how to apply E-generalization to obtain a hypotheses term set from given positive and negative example term sets. In the theorems based on these lemmas, we only need to enclose the hypotheses terms as arguments to appropriate predicates.

Lemma 17 (Hypotheses) For each finite set T + ∪ T -of ground terms, we can compute a regular set H = H 17 (T + , T -) such that for all t ∈ T V :

t ∈ H ⇒ h + (t, T +) ∧ h -(t, T -) , and ∃σ : tσ ∈ H ⇐ h + (t, T +) ∧ h -(t, T -) . PROOF. Let T + = {t 1 , . . . , t n }, let G be a grammar defining [t 1] E , . . . , [t n] E .
Obtain the universal substitutions τ 1 , . . . , τ n for G from Lem. 7. All τ i have the same domain. Using the notations from Def. 5, let

S = {σ | dom σ = dom τ 1 ∧ ∀x ∈ dom σ ∃N ∈ N max : xσ = t(N)}. The set S is finite, but large; it has # N # N n max max elements. Define H + = n i=1 [t i] τ i E and H -= t ∈T -σ∈S [t] σ E . Define H = H + \ H -;
all these sets are regular tree languages and can be computed using standard grammar algorithms.

• For t ∈ H, we trivially have h + (t, T +). Assume that h -(t, T -) does not hold, i.e. tσ = E t for some σ and t ∈ T -. Since var(t) ⊆ dom τ 1 by construction, we may assume w.l.o.g. dom σ = dom τ 1 ; hence σ ∈ S. From Lem. 6.2, we get tσ

∈ [t] E ⇒ tσ ∈ [t] E ⇒ t ∈ [t] σ E , contradicting t ∈ H -. • If h + (t, T +) ∧ h -(t, T -), then tχ i = E t i for some χ i , i = 1, . . . , n. Using Lem. 7, we get some σ such that tσ ∈ [t i] τ i E , hence tσ ∈ H + . If we had tσ ∈ [t] σ E for some t ∈ T -and σ ∈ S, then tσσ = E t , contradicting h -(t, T -). 2
Theorem 18 (Atomic Definitions) Let t 1 , . . . , t m be ground terms. Let F + ⇔ n i=1 p(t i) and F -⇔ m i=n+1 ¬p(t i) be given. We can compute a regular set H = H 18 (F + , F -) such that

• each p(t) ∈ H is a hypothesis satisfying the Sufficiency and the Strong Consistency requirement wrt. F + , F -; and

• for each hypothesis satisfying these requirements and having the form p(t), we have p(tσ) ∈ H for some σ.

PROOF. Define T

+ = {t i | i = 1, . . . ,
G n + # G no+1
), which allows nontrivial practical applications. By way of an example, consider again the equational theory E from Fig. 1 (left). Let F + ⇔ 0 0 ∧ 0 s(0) and F -⇔ true be given. In Ex. 10, we already computed a grammar G describing [0] E = L G (N 0) and [s(0)] E = L G (N 1), see Fig. 3 (top). The congruence class of, say, 0, 0 could be defined by the additional grammar rule N 0,0 ::= N 0 , N 0 . Instead of that rule, we add N 0 0 ::= (N 0 N 0) to the grammar, anticipating that any t 1 , t 2 ∈ H 17 will be transformed to (t 1 t 2) ∈ H 18 by Thm. 18, anyway. Similarly, we add the rule N 0 1 ::= (N 0 N 1). The universal substitutions we obtain following the construction of Lem. 17 are simply τ 1 and τ 2 from Ex. 10. We do not extend them to also include variables like v({N 0 0 }, {N 0 1 }) = v 0 0,0 1 in their domain because neither v 0 0,0 1 ∈ H 18 nor v 0,0 , 0,1 ∈ H 17 would make sense. From a formal point of view, retaining the τ i from Ex. 10 restricts H 18 and H 17 to predicates and terms of the form t 1 t 2 and t 1 , t 2 , respectively.

After lifting the extended G wrt. τ 1 , τ 2 , we obtain the grammar G 12 from Fig. 3 (bottom), extended by some rules like N 0 0,0 1 ::= (N 00 N 01). By Thm. 18, each element of H 18 (F + , F -) = L G 12 (N 0 0,0 1) is a hypothesis satisfying the Sufficiency and the Strong Consistency requirement. Using the variable naming convention from Ex. 10, members of H 18 are, e.g.:

1. v 00 v 01 3. v 00 * v 00 v 01 5. 0 v 01 2. v 00 v 01 * v 01 4. v 00 * v 01 v 11 * v 01 6. v 00 v 00 + v 01
Hypothesis 1 intuitively means that () relates every possible pair of terms.

Hypotheses 2 and 3 indicate that F + was chosen too specifically, viz. all examples had quadratic numbers as the right or left argument of (). Similarly, hypothesis 5 reflects the fact that all left arguments are actually zero. While 0 x is a valid law , x y ⇔ x = E 0 is not a valid definition. Similarly, no variant of x x can be found in H 18 because it does not cover the second example from F + . Hypothesis 6 is an acceptable defintion of the () relation on natural numbers; it corresponds to x y ⇔ ∃z ∈ IN : y = E x + z.

If we take F + as above, but F -⇔ s(0) 0, we get S as the set of all 2 4 substitutions with domain {v 00 , . . . , v 11 } and range {0, s(0)}. The resulting grammar for H 18 is too large to be shown here. H 18 will no longer contain hypotheses 1 to 4 from above; they are subtracted as members of the union σ∈S [s(0) 0] σ E : choose σ = {v 00 → s(0), v 01 → 0} for 1 to 3, and σ = {v 00 → s(0), v 01 → s(0), v 11 → 0} for 4.

(v 00 v 01) {v 00 → s(0), v 01 → 0} = E (s(0) 0) (v 00 v 01 * v 01) {v 00 → s(0), v 01 → 0} = E (s(0) 0) (v 00 * v 00 v 01) {v 00 → s(0), v 01 → 0} = E (s(0) 0) (v 00 * v 01 v 11 * v 01) {v 00 → s(0), v 01 → s(0), v 11 → 0} = E (s(0) 0)
None of the hypotheses 5 and 6 is eliminated, since

(0 v 01) σ = E (s(0) 0) ⇒ 0 = E s(0) (v 00 (v 00 + v 01)) σ = E (s(0) 0) ⇒ v 00 σ = E s(0) ⇒ (v 00 + v 01) σ = E 0.

Clausal Definitions

We now demonstrate how E-generalization can be incorporated into an existing Inductive Logic Programming method to learn clauses. To be concrete, we chose the method of relative least general generalization (r-lgg), which originates from [START_REF] Plotkin | A note on inductive generalization[END_REF] and forms the basis of the Golem system [START_REF] Muggleton | Efficient induction of logic programs[END_REF]. We show how to extend it to deal with a given equational background theory E.

Theorem 19 (Clausal Definitions) Let two ground clauses C 1 and C 2 be given. We can compute a regular set H = lgg E (C 1 , C 2) such that:

• each C ∈ H is a clause that E-subsumes C 1 and C 2 ; and • each clause E-subsuming both C 1 and C 2 also subsumes an element of H.

PROOF. Let M = { L 1 , L 2 | L 1 ∈ C 1 ∧ L 2 ∈ C 2 ∧ L 1 fits L 2 }. Assuming M = { p i (t 1i), p i (t 2i) | i = 1, . . . , m}, let T + = { t 11 , . . . , t 1m , t 21 , . . . , t 2m } and T -= {}. Let H = {{p i (t i) | i = 1, . . . , m} | t 1 , . . . , t m ∈ H 17 (T + , T -)}.
H is again a regular tree language, because the regular H 17 (T + , T -) is the image of H under the tree homomorphism that maps {p 1 (x 1), . . . , p m (x m)} to x 1 , . . . , x m , cf. [CDG + 99, Thm. 7 in Sect. 1.4].

If {p 1 (t 1), . . . , p m (t m)} ∈ H, i.e. h + (t 1 , . . . , t m , T + , T -), then {p 1 (t 1 χ i), . . . , p m (t m χ i)} ⊆ E C i for i = 1, 2, where χ i are the substitutions from the definition of h + . Conversely, let some clause C E-subsume both C 1 and C 2 . We assume w.l.o.g. C = {p 1 (t 1), . . . , p n (t n)} and t j σ i = E t ij for some σ i for i = 1, 2 and j = 1, . . . , n. By Lem. 7, some σ exists such that t j στ i = E t ij . Choosing t j = t j σ for j = 1, . . . , n and t j = v(N(t 1j), N(t 2j)) for j = n + 1, . . . , m, we obtain t j τ i = E t ij for j = 1, . . . , m. Hence, h + (t 1 , . . . , t m , T + , T -) holds, i.e. Cσ ⊆ {p 1 (t 1), . . . , p m (t m)} ∈ H.

To compute H, the grammar defining all [t ij] E must be extended to also define [t i1 , . . . , t im] E . Since only nonterminals for congruence classes are added, no additional language intersections are necessary to compute the extended τ i . 2

For an empty E, we have lgg E (C 1 , C 2) = {lgg(C 1 , C 2)}, and Thm. 19 implies Plotkin's lgg theorem [Plo70, Thm. 3] as a special case. In the terminology of Fig. 4, we have F + ⇔ C 1 ∧C 2 and F -⇔ true. The Consistency requirement is satisfied if some predicate symbol p different from (= E) occurs in both C 1 and C 2 but not in B, except for p's congruence axiom. In this case, each hypothesis h will have the form p(. . .) ∨ . . ., hence B ∧ h cannot be contradictory. The set lgg E (C 1 , C 2) is a subset of, but is not equal to, the set of all hypothesis clauses satisfying Sufficiency. Usually, there are other clauses that imply both C 1 and C 2 but do not E-subsume both. The same limitation applies to Plotkin's syntactical lgg.

Theorems 19 and 18 share a special case: lgg E ({p(t 1)}, {p(t 2)}) from Thm. 19 equals H 18 (p(t 1) ∧ p(t 2), true) from Thm. 18. In this case, Thm. 18 is stronger because it ensures that the result set contains all sufficient hypotheses. On the other hand, Thm. 19 allows a more general form of both hypotheses and examples.

However, even Thm. 19 cannot generate all sufficient and strongly consistent hypotheses that can be expressed in first order predicate logic. For example, F = {p(a, b), p(a, c)} can be explained wrt. an empty E either by:

(1) q ∧ (q → p(a, b) ∧ p(a, c)), (2) p(a, b) ∧ p(a, c), (3) p(a, b) ∧ b = E c, or (4) p(a, x) ∨ x = E d.
None of these hypotheses has a form that can be generated by Thm. 18. Only hypothesis 4 has a form admitted by Thm. 19; however, it does not E-subsume any member of F , although it implies both of them.

To illustrate Thm. 19, consider a well-known example about learning family relations. We use the abbreviations d-daughter, p-parent, f-female, e-eve, ggeorge, h-helen, m-mary, n-nancy, and t-tom. Let the background knowledge By generalizing relative to K, i.e. by computing lgg((

K ⇔ p(h, m) ∧ p(h, t) ∧ p(g, m) ∧ p(t, e) ∧ P (n, e) ∧ f (h) ∧ f (m) ∧ f (n) ∧ f (e) helen d d •••••••••george nancy d d •••••••••••tom mary eve
F 1 ← K), (F 2 ← K)),
and by eliminating all body literals containing a variable not occurring in the head literal, the clausal definition of the daughter relation

d(v me , v ht) ← p(v ht , v me) ∧ f (v me) ∧ K results.
In addition, using the abbreviation s-spouse, let the equations

E = {s(g) = h, s(h) = g, s(n) = t,
[h] τ 1 E ∩ [t] τ 2 E and t gn ∈ [g] τ 1 E ∩ [n] τ 2 E .
In order to obtain a constrained clause as before, we first choose some t ht for the head literal, and then choose t ht and t gn from the filtered sets

[h] τ 1 E ∩ [t] τ 2 E ∩ T var(t ht) and [g] τ 1 E ∩ [n] τ 2 E ∩ T var(t ht)
, respectively. We use the standard intersection algorithm for tree grammars mentioned in Sect. 3.1 for filtering, which in this case requires linear time in the grammar size for

[h] τ 1 E ∩ [t] τ 2 E and [g] τ 1 E ∩ [n] τ 2 E .
Choosing the smallest solutions for t ht , t ht , and t gn , we obtain d(v me , v ht) ← p(v ht , v me) ∧ p(s(v ht), v me) ∧ f (v me), which reflects the fact that our background knowledge did not describe any concubinages.

If p(h, m) is removed from K, we still get d(v me , v ht) ← p(s(v ht), v me) ∧ f (v me) in a similar way, while the classical relative lgg, not considering E, does not yield a meaningful clause.

Although the knowledge about spouses could be encoded by additional clauses s(g, h) ∧ s(h, g) ∧ s(n, t) ∧ s(t, n) in K, rather than in E, it would require a weaker literal selection strategy to get a clause like d(v me , v ht) ← s(v ht , v gn) ∧ p(v gn , v me) ∧ f (v me). The latter clause is determinate, but not constrained.

Atomic Determinate Definitions

Below, we prove a learning theorem similar to Thm. 18, but that yields only those atomic hypotheses p(s, t) that define a determinate predicate p. For-mally, we are looking for those p(s, t) that satisfy

∀s 1 , s 2 , t 1 , t 2 : (B ∧ p(s, t) ∧ s 1 = E s 2 |= p(s 1 , t 1) ∧ p(s 1 , t 2)) ⇒ (B |= t 1 = E t 2).
In such cases, we say that the hypothesis p(s, t) is determinate. Determinacy of a hypothesis is essentially a semantic property [LD94, Sect. 5.6.1]; it is even undecidable for certain background theories. Let

f (a, 1, i 2 , . . . , i m) = E a 1 • a i 2 • . . . • a im , 1, i 2 , . . . , i m and f (b, 1, i 2 , . . . , i m) = E b 1 • b i 2 • . . . • b im , 1, i 2 , . . . , i m , then p(x, y, z) ⇔ f (y, z) = E x
defines a determinate p if Post's correspondence problem from Lem. 15 has no solution, although E admits regular congruence classes. In order to compute the set of all determinate hypotheses, we have to make a little detour by defining a notion of weak determinacy, which is equivalent to a simple syntactic criterion (Lem. 21).

Since B does not imply anything about p except its congruence property, we assume B ⇔ B ∧ (∀x, y, x , y : x = E x ∧ y = E y ∧ p(x, y) → p(x , y)), where p does not occur in B . We replace the full congruence axiom about p by a partial one: B ⇔ B ∧ (∀x, y, y : y = E y ∧ p(x, y) → p(x, y)). We call a hypothesis p(s, t) weakly determinate if We define for sets T + , T -of ground-term pairs and arbitrary terms s, t:

∀s , t 1 , t 2 : (B ∧ p(s, t) |= p(s , t 1) ∧ p(s , t 2)) ⇒ (B |= t 1 = E t 2).
h + (s, t, T +) ⇔ ∀ s , t ∈ T + ∃σ : sσ = s ∧ tσ = E t and h -(s, t, T -) ⇔ ∀ s , t ∈ T -∀σ : sσ = s ∨ tσ = E t .
We have a lemma similar to Lem. 16, with a simlar proof, which is omitted here.

Lemma 20 (Weak Requirements) Let s i , t i , s i , t i be ground terms and s, t arbitrary terms. Let F + ⇔ n i=1 p(s i , t i) and F -⇔ m i=n+1 ¬p(s i , t i). Let T + = { s 1 , t 1 , . . . , s n , t n } and T -= { s n+1 , t n+1 , . . . , s m , t m }. Then:

(1) B ∧ p(s, t) |= p(s 1 , t 1)∨. . .∨p(s n , t n) iff sσ = s i ∧ tσ = E t i for some i, σ. (2) B ∧ p(s, t) |= F + iff h + (s, t, T +). (3) B ∧ p(s, t) ∧ F -|= false iff h -(s,
                      cstr.
Fig. 6. Possible cases wrt. weak and ordinary determinacy hypothesis for each possible case. Lemma 22 ends our little detour. It ensures that weak and ordinary determinacy coincide if we supply only constructor terms to the input argument of a hypothesis p. On the one hand, this is a restriction because we cannot learn a hypothesis like p(x * x, x), which defines a partial function realizing the integer square root. On the other hand, it is often desirable that a hypothesis correspond to an explicit definition, i.e. that it can be applied like a rewrite rule to a term s by purely syntactical pattern matching. Tuples built using the operator . . . are the most frequently occurring special cases of constructor terms. For example, a hypothesis p(x, y , x+2 * y) may be preferred to p(2 * x, y , 2 * (x + y)) because the former is explicit and implies the latter wrt. E from Fig. 1 (left). Lemma 22.2 allows us to instantiate x, y from the former hypothesis arbitrarily, even with non-constructor terms like 2 * 1, z 1 + z 2 .

The following lemma corresponds to Lem. 17, but leads to reduced algorithmic time complexity. It does not need to compute universal substitutions because it uses constrained E-generalization from Def. 3. It still permits negative examples, handling them more efficiently than Lem. 17. They may make sense even if only determinate predicates are to be learned because they allow us to exclude certain undesirable hypotheses without committing to a fixed function behavior.

Lemma 23 (Weakly Determinate Hypotheses) For each finite set of ground term pairs T + ∪ T -, we can compute a regular set H = H 23 (T + , T -) such that for all s, t ∈ T V :

s, t ∈ H ⇒ h + (s, t, T +) ∧ h -(s, t, T -) ∧ var(s) ⊇ var(t) , and ∃σ : sσ, tσ ∈ H ⇐ h + (s, t, T +) ∧ h -(s, t, T -) ∧ var(s) ⊇ var(t) . PROOF. Assume T + = { s i , t i | i = 1, . . . , n} and T -= { s i , t i | i = n+1, .
. . , m}. For {1, . . . , n} ⊆ I ⊆ {1, . . . , m}, let s I be the most specific syntactical generalization of {s i | i ∈ I}, with s I σ I,i = s i for each i ∈ I. Such an I is called maximal if ∀{1, . . . , n} ⊆ I ⊆ {1, . . . , m} : s I = s I ⇒ I ⊆ I, where (=) denotes term equality up to renaming.

For example, if T + = { a + a, t a } and T -= { b + b, t b , b + c, t c }, then {1, 2} and {1, 2, 3} are maximal, but {1, 3} is not. Since s {1,2} = x + x can be instantiated to a+a and b+b, we must merely ensure that t {1,2} {x → a} = E t a and t {1,2} {x → b} = E t b in order to obtain h -(s {1,2} , t {1,2} , T -). However, for s {1,3} = x + y, it is not sufficient to ensure t {1,3} {x → a, y → a} = E t a and t {1,3} {x → b, y → c} = E t c . Since s {1,3} happens to be instantiable to b + b as well, h -(s {1,3} , t {1,3} , T -) could be violated if t {1,3} {x → b, y → b} = E t b . Therefore, only generalizations s I of maximal I should be considered.

Let I be the set of all maximal I. For I ∈ I, let

T I = n i=1 [t i] σ I,i E \ i∈I,i>n [t i] σ I,i
E . Each such set T I can be computed from [t 1] E , . . . , [t m] E by standard tree grammar algorithms. Given the grammar for each T I , it is easy to compute a grammar for their tagged union H = { s I , t I | I ∈ I ∧ t I ∈ T I }. To prove the properties of H, first observe the following:

(1) We always have var(t I) ⊆ dom σ I,1 ⊆ var(s I). The first inclusion follows from

t I ∈ T I ⊆ [t 1] σ I,1
E , the second from the definition of σ I,1 . (2) If I is maximal and s I σ = s i for some i ∈ {1, . . . , m} and σ, then i ∈ I:

Since s I σ I,j = s j for j ∈ I and s I σ = s i , the term s I is a common generalization of the set {s j | j ∈ I} ∪ {s i }. Hence, its most special generalization, viz. s I∪{i} , is an instance of s I . Conversely, s I∪{i} is trivially a common generalization of {s j | j ∈ I}; hence s I is an instance of s I∪{i} . Therefore, s I∪{i} = s I , which implies i ∈ I because I is maximal.

• If I ∈ I and t I ∈ T I , then trivially s I σ I,i = s i and t I σ I,i = E t i for each i n. Assume s I σ = s i and t I σ = E t i for some σ and some i > n. By (2), we have i ∈ I, and therefore s I σ I,i = s i . Hence, σ I,i and σ coincide on var(s I) ⊇ var(t I), using (1). We get t I σ I,i = t I σ = E t i , which contradicts

t I ∈ [t i] σ I,i E . • If s, t are given such that h + (s, t, T +) and h -(s, t, T -) hold, let I = {1, . . . , n} ∪ {i | n < i m ∧ ∃σ i : sσ i = s i }.
Then, s is a common generalization of {s i | i ∈ I}, and we have sσ = s I for some σ.

We show I ∈ I: Let I be such that s I = s I and let i ∈ I , then sσσ I ,i = s I σ I ,i = s I σ I ,i = s i , hence i ∈ I. Since i was arbitrary, we have I ⊆ I, i.e. I is maximal.

For i n, we have sσσ I,i = s I σ I,i = s i = sσ i . In other words, σσ I,i and the σ i obtained from h + (s, t, T +) coincide on var(s) ⊇ var(t). Hence, tσσ I,i = tσ i = E t i , i.e. tσ ∈ [t i] σ I,i E . For i > n and i ∈ I, we still have sσσ I,i = s i , as above. Hence tσ cannot be a member of [t i] σ I,i E . Therefore, sσ, tσ ∈ H. 2 Theorem 24 (Atomic Determinate Definitions) Let F + ⇔ n i=1 p(s i , t i) and F -⇔ m i=n+1 ¬p(s i , t i) be given such that each t i is ground and each s i is a ground constructor term. Then, we can compute a regular set H = H 24 (F + , F -) such that

• each p(s, t) ∈ H is a determinate hypothesis satisfying the Sufficiency and the Strong Consistency requirement wrt. F + , F -; and • for each determinate hypothesis satisfying these requirements and having the form p(s, t) with s constructor term, we have p(sσ, tσ) ∈ H for some σ. To compute H, the union of up to (m -n) • 2 m-n , the intersection of n and the difference between two grammars are needed. No additional grammar intersection is necessary to compute any universal substitution. 2

PROOF. Let T + = { s i , t i | i = 1, . . . , n} and T -= { s i , t i | i = n + 1, . . . , m}. Define H = {p(s, t) | s, t ∈ H 23 (T + , T -)},
From a theoretical point of view, learning relations by classical ILP can be simulated by learning functions into a set bool by E-generalization. This is similar to the simulation of theorem proving by a rewrite system defining appropriate rules for each junctor, and faced with similar efficiency problems in practice. Nevertheless, we can simulate a small example to illustrate the use of Thm. 24 here.

In [LD94, Sect. 5. (right). Using Thm. 24, both above descriptions appear in the hypotheses set H 24 . In contrast to the attribute-value learner approach, it is not necessary to provide sameShape explicitely as an additional attribute. Since E defines (=) anyway, the second description from above appears in the form p(. . . , v hd , v bd , (v hd = v bd)).

Further examples of the application of Thm. 24 are given in Sect. 5.

Clausal Determinate Definitions

We now show that learning a semi-determinate clause by lgg can be simulated by learning an equivalent constrained clause using E-generalization. By analogy to the above, obtain the background theory B from B by replacing the full congruence axiom for p 0 with a partial one. Lemma 25 shows how a semi-determinate clause C can be transformed into an equivalent constrained clause dlr (C). Theorem 26 simulates lgg-learning of C by lgg c E -learning of dlr (C).

Lemma 25 (Determinate Literal Removal) Let a semi-determinate clause C ⇔ (p 0 (s 0 , t 0) ← n i=1 p i (s i , x i) ∧ m i=1 q i (t i)) be given such that p i (s i , x i) ⇔ g i (s i) = E x i . Let σ = {x n → g n (s n)} . . . {x 1 → g 1 (s 1)}. Then, dlr (C) ⇔ (p 0 (s 0 σ, t 0 σ) ← m i=1 q i (t i σ)
) is a constrained clause that defines the same re-lation for p 0 wrt. B , and hence also wrt. B.

PROOF.

From the properties of semi-determinacy, we have s 0 σ = s 0 . Since p 0 does not occur in B outside its partial congruence axiom, we can use the following property of SLD resolution [START_REF] Clark | Predicate logic as a computational formalism[END_REF]: • each member C ∈ H is a constrained clause that E-subsumes C 1 and C 2 ;

B ∧ (p 0 (s 0 , t 0) ← C) |= p 0 (s, t) iff s 0 σ = s ∧ t 0 σ = E t
• and for each semi-determinate clause

C ⊆ lgg(C 1 ∪ C 1 , C 2 ∪ C 2) with C 1 , C 2 ⊆ D, dlr (
C) subsumes some member of H.

PROOF. For i = 1, 2, let p 0 (s 0i , t 0i) be the head literal of C i . Let M be the set of all pairs L 1 , L 2 of body literals L 1 from C 1 and L 2 from C 2 such that L 1 fits L 2 . Assuming M = { q j (t j1), q j (t j2) | j = 1, . . . , k}, define

T + = { s 01 ,
-= {}. Define H = {p 0 (s 0 , t 0) ← q 1 (t 1) ∧ . . . ∧ q k (t k) | s 0 , t 0 , t 1 , . . . , t k ∈ H 23 (T + , T -)}.
H is again a regular tree language because H 23 (T + , T -) is the image of H under the tree homomorphism that maps the term p 0 (x 0 , y 0) ← q 1 (y 1) ∧ . . . ∧ q k (y k) to x 0 , y 0 , y 1 , . . . , y k . Since T -= {}, the set H 23 (T + , T -) contains at least one element s 0 , t 0 , t 1 , . . . , t k , and the left component of an element of H 23 (T + , T -) is always s 0 .

• For each clause p 0 (s 0 , t 0) ← q 1 (t 1) ∧ . . . ∧ q k (t k) in H, we have var(s 0) ⊇ var(t 0 , t 1 , . . . , t k) and h + (s 0 , t 0 , t 1 , . . . , t k , T + , T -) by Thm. 23. Hence, {p 0 (s 0 , t 0), ¬q 1 (t 1), . . . ,

¬q k (t k)} χ i ⊆ E C i . • Assume (p 0 (s 0 , t 0) ← p 1 (s 1 , x 1) ∧ . . . ∧ p n (s n , x n) ∧ q 1 (t 1) ∧ . . . ∧ q m (t m)) ⊆ lgg(C 1 ∪ C 1 , C 2 ∪ C 2) is a semi-determinate clause.
Then, (¬q j (t j σ i)) ∈ C i for some σ i -we assume w.l.o.g. t j σ i = E t ji . Moreover, ¬p j (s j σ i , x j σ i) is a member of C i ⊆ D, implying that x j σ i = E g j (s j σ i) = x j σσ i is entailed by B , where σ denotes the substitution from dlr (C) computation by Lem. 25. Since dom σ = {x 1 , . . . , x n }, we have xσσ i = E xσ i for all variables x. Therefore, t j σσ i = E t j σ i = E t ji , and s 0 σσ i = s 0 σ i = s 0i because var(s 0) is disjoint from the domain of σ. Hence, we can extend the clause dlr (C) = {p 0 (s 0 σ, t 0 σ), ¬q 1 (t 1 σ), . . . , ¬q m (t m σ)} to some superset {p 0 (s 0 σ, t 0 σ), ¬q 1 (t 1 σ), . . . , ¬q m (t m σ), ¬q m+1 (t m+1), . . . , ¬q k (t k)} that satisfies h + and var(s 0 σ) ⊇ var(t j σ) ∪ var(t j) and is therefore a member of H.

To compute lgg c E , the grammar defining [t ji] E must be extended by two rules to define [s 0i , t 0i , t 1i , . . . , t ki] E as well. One intersection of the two extended grammars is needed; no universal substitution needs to be computed. 2

The form of Thm. 26 differs from that of Thm. 19 because neither C nor dlr (C) need E-subsume the other. To establish some similarity between the second assertion of the two theorems, note that a subsumed clause defining a predicate leads to a more specific definition that its subsuming clause. Let C subsume C 1 and C 2 and contain a nontrivial head literal p 0 (. . .). Then C also subsumes C = lgg(C 1 , C 2). By Thm. 26, dlr (C) subsumes some member of lgg c E (C 1 , C 2). That member thus leads to a more specific definition of p 0 than C .

In order to duplicate a most flexible lgg approach, Thm. 26 allows a literal pre-and postselection strategy, to be applied before and after lgg computation, respectively. Both may serve to eliminate undesirable body literals from the lgg result clause. Preselection can be modeled using the C i and C i , while postselection is enabled by choosing C lgg(C 1 ∪ C 1 , C 2 ∪ C 2). In all cases, Thm. 26 provides a corresponding constrained clause from lgg c E (C 1 , C 2), which is equivalent to, or more specific than, C.

Similar to Thm. 19, each C ∈ lgg c E (C 1 , C 2) is sufficient wrt. F + ⇔ C 1 ∧ C 2 and F -⇔ true.
Each such C is consistent if some predicate symbol q occurs in both C 1 and C 2 , but not in B, except for its congruence axiom.

Again similar to the nondeterminate case, H 24 (p 0 (s 01 , t 01) ∧ p 0 (s 02 , t 02), true) equals lgg c E ({p 0 (s 01 , t 01)}, {p 0 (s 02 , t 02)}) from Thm. 26. In this common special case, Thm. 24, but not Thm. 26, ensures that the result set contains all sufficient hypotheses.

On the other hand, Thm. 26 ensures that for each purely determinate clause, i.e. a clause without any nondeterminate q i in its body, lgg c E (C 1 , C 2) contains a clause leading to an equivalent, or more specific, definition of p 0 . In other words, lgg-learning of purely determinate clauses can be simulated by lgg c Elearning of atoms.

Let us compare the ILP methods using lgg and lgg c E in an example. Assume part of the background knowledge describes lists with an associative append

F p 0 (b, bbb) ∧ p 0 (ε, b) P a(ε, y, y) a(ε, y) = y a(x, ε) = x E a([v | x], y, [v | z]
) ← a(x, y, z) a(a(x, y), z) = a(x, a(y, z)) K q q(ε, d) ∧ q(b, d) ∧ q(c, e) ∧ q(bb, d) ∧ q(bc, e) ∧ q(bcb, e) operator and a neutral element ε (nil). The topmost two lines of Fig. 8 show a Horn program P and an equational theory E, each of which formalizes that knowledge, where v, x, y, z denote variables, a denotes append and b, c, d, e below will denote some constants.

K a a(ε, ε, ε) ∧ a(ε, b, b) ∧a(b, ε, b) ∧ a(ε, bb, bb) ∧a(b, b, bb) ∧. . . a(ε, bbb, bbb)∧a(b, bb, bbb)∧. . . N ε ::= ε | a(N ε , N ε) N b ::= b | a(N ε , N b) | a(N b , N ε) N bb ::= a(N ε , N bb) | a(N b , N b) . . . N bbb ::= a(N ε , N bbb) | a(N b , N bb). . . G lgg p 0 (v b,ε , v bbb,b) ← a(v b,ε , v b,ε , v bb,ε) ∧ a(v bb,ε , b, v bbb,b) ∧ q(v bb,ε , d) p 0 (v b,ε , a(a(v b,ε , v b,ε), b)) ← q(a(v b,ε , v b,ε), d)
Moreover, let a conjunction K q of facts about a predicate q be given, as shown in the third line of Fig. 8. We abbreviated, e.g., q([b, c, b], [e]) to q(bcb, e). Let F ⇔ p 0 (b, bbb) ∧ p 0 (ε, b) be given. Let us assume for now that a preselection strategy chose K q ⇔ q(ε, d) ∧ q(bb, d).

Neither lgg nor lgg c E can use the first part of background knowledge directly. Most ILP systems, including Golem, restrict background theories to sets of ground literals. Hence, they cannot directly use equality as background knowledge because this would require formulas like p 0 (x, y) ← eq(y, y) ∧ p 0 (x, y) in the background theory. While Plotkin's lgg is also defined for nonground clauses, it has not been defined for clause sets like P . Moreover, since F contains only ground literals, all relevant arguments of body literals must be ground to obtain the necessary variable bindings in the generalized clause. For example, a clause like

(p 0 (v b,ε ,v bcb,c) ← a(v x,ε ,c,v xc,c) ∧ a(v xy,x ,v x,ε ,v xyx,x) ∧ . . .) = lgg((p 0 (b, bcb) ← a(x, c, xc) ∧ a(xy, x, xyx) ∧ . . .), (p 0 (ε, c) ← a(ε, c, c) ∧ a(x, ε, x) ∧ . . .))
would lack bindings like v b,ε = v x,ε and v bcb,c = v xyx,x . Thus, we have to derive the conjunction K a of all ground facts implied by P that could be relevant in any respect.

On the other hand, E has to be transformed into a grammar G in order to compute lgg c E . We can do this by Thm. 13 with (≺) as the lexicographic path ordering, which is commonly used to prove termination of the rewrite system associated with E [DJ90, Sect. 5.3]. Alternatively, we could instantiate a predefined grammar scheme like

N x 1 ...xn ::= n=0 ε | n=1 x 1 | n i=0 a(N x 1 ...x i , N x i+1 ...xn).
At least we do not have to rack our brains over the question of which terms might be relevant -it is sufficient to define the congruence classes of all terms occurring in F or K q .

Lines 4 to 8 of Fig. 8 show the preprocessed form K a and G of P and E, respectively. Observe that a ground literal a(s, t, u) in the left column corresponds to a grammar alternative N u ::= . . . a(N s , N t) in the right one. It is plausible to assume that there are at least as many literals in K a as there are alternatives in G. Next, we compute

lgg((p 0 (b, bbb) ← K a ∧ K q), (p 0 (ε, b) ← K a ∧ K q)) and lgg c E ((p 0 (b, bbb) ← K q), (p 0 (ε, b) ← K q))
and apply some literal postselection strategy. A sample result is shown in the bottom part of Fig. 8. More precisely, lgg c E results in the set of all terms p 0 (v b,ε , t bbb,b) ← q(t bb,ε , d) for any

t bbb,b ∈ [bbb] {v b,ε →b} E ∩ [b] {v b,ε →ε} E and t bb,ε ∈ [bb] {v b,ε →b} E ∩ [ε] {v b,ε →ε} E .
The choice of t bbb,b and t bb,ε on the right-hand side in Fig. 8 corresponds to the choice of body literals about a on the left; both sides are equivalent definitions of p 0 . If the postselection strategy chooses a

(v b,ε , b, v bb,b) ∧ a(v bb,b , v b,ε , v bbb,b) ∧ a(v b,ε , v b,ε , v bb,ε) on the left, we need only to choose t bbb,b = a(a(v b,ε , b), v b,ε)
on the right to duplicate that result. However, if preselection chooses different literals about q, e.g. K q ⇔ q(bc, e)∧q(c, e), we have to recompute the grammar G to include definitions for [bc] E and [c] E .

The lgg c E result clause is always a constrained one, whereas lgg yields a determinate clause. The reason for the latter is that function calls have to be simulated by predicate calls, requiring extra variables for intermediate results.

The deeper a term in the lgg c E clause is nested, the longer the extra variable chains are in the corresponding lgg clause. If K q ⇔ true is chosen, lgg c E yields an atom rather than a proper clause.

When the lgg c E approach is used, the hypotheses search space is split. Literal pre-and postselection strategies need to handle nondeterminate predicates only. The preselected literals, i.e. K q , control the size and form of the grammar G. Choices of, e.g., t bbb,b ∈ L G (N bbb,b) can be made independently of preand postselection, each choice leading to the condensed equivalent of a semideterminate clause.

Filtering of, e.g., L G (N bbb,b) allows us to ensure additional properties of the result clause if they can be expressed by regular tree languages. For example, orienting each equation from E in Fig. 8 left to right generates a canonical term-rewriting system R. Since all terms in E are linear, a grammar G NF for the set of normal forms wrt. R can be obtained automatically from E. Choosing, e.g.,

t bbb,b ∈ L G (N bbb,b) ∩ L G NF (N NF) ensures that no redundant clause like p 0 (v b,ε , a(v b,ε , a(v b,ε , b)) ← q(a(v b,ε , v b,ε), d) can result.
In classical ILP, there is no corresponding filtering method of similar simplicity.

Applications

In this section, we apply E-generalization in three different application areas. In all cases, we use the paradigm of learning a determinate atomic definition from positive examples only. We intend to demonstrate that the notion of E-generalization can help to solve even comparatively ambitious tasks in Artificial Intelligence at the first attempt. We make no claim to develop a single application to full maturity. Instead, we cover a variety of different areas in order to illustrate the flexibility of E-generalization.

Candidate Lemmas in Inductive Proofs

Auxiliary lemmas play an important role in automated theorem proving. Even in pure first-order logic, where lemmas are not strictly necessary [START_REF] Gentzen | Untersuchungen ber das logische Schlieen[END_REF], proofs may become exponentially longer without them and are consequently harder to find. In induction proofs, which exceed first-order logic owing to the induction axiom(s), using lemmas may be unavoidable to demonstrate a certain theorem.

By way of a simple example, consider the induction proof in Fig. 9, which uses the equational theory from Fig. 1 (left). At the position marked "?", the distributivity law is needed as a lemma in order to continue the proof. While this is obvious to a mathematically experienced reader, an automated prover that does not yet know the law will get stuck at this point and require a user interaction because the actual term cannot be rewritten any further. In this simple example, where only one lemma is required, the cross-fertilization technique of [START_REF] Boyer | A Computational Logic[END_REF] would suffice to generate it automatically. However, this technique generally fails if several lemmas are needed.

In such cases, we try to simulate mathematical intuition by E-generalization in order to find a useful lemma and allow the prover to continue; i.e. to increase its level of automation. We consider the last term t 1 obtained in the proof so far (the surrounded term x * (y * z) + x * y in the example) and try to find a new lemma that could be applied next by the prover. We are looking for a lemma of the form t 1 ≡ E t 2 for some t 2 such that ∀σ ground : t 1 σ = E t 2 σ holds. Using Thm. 24, we are able to compute the set of all terms t 2 such that t 1 σ = E t 2 σ holds at least for finitely many given σ.

We therefore choose some ground substitutions σ 1 , . . . , σ n with var(t 1) = {x, y, z } as their domain, and let F + ⇔ n i=1 p(xσ i , yσ i , z σ i , t 1 σ i). We then apply Thm. 24 to this F + and F -⇔ true. (See Fig. 10, where the partial congruence property of p was used to simplify the examples in F + .) Using the notation from Lem. 23, we have just one I in I, viz. I = {1, . . . , n}, since we do not supply negative examples. Therefore, we only have to compute

T I = n i=1 [t 1 σ i] σ i E .
The most specific syntactical generalization s I of { x, y, z σ 1 , . . . , x, y, z σ n } need not be x, y, z again. However, we always have x, y, z σ = s I for some σ . If we choose σ i that are sufficiently different, we can ensure that σ has an inverse. This is the case in Fig. 10, where σ = {x → v 021 , y → v 310 , z → v 201 }. By Thm. 24, B ∧ p(x, y, z , t I σ -1) implies p(x, y, z σ i , t 1 σ i) for each t I ∈ T I and i = 1, . . . , n. Since it trivially also implies p(x, y, z σ i , t I σ -1 σ i), we obtain t 1 σ i = E t I σ -1 σ i using determinacy.

Therefore, defining t 2 = t I σ -1 ensures that t 1 and t 2 have the same value under each sample substitution σ i . This is a necessary condition for t 1 ≡ E t 2 , but not sufficient. Before using a lemma suggestion t 1 ≡ E t 2 to continue the original proof, it must be checked for validity by a recursive call to the induction prover itself. Two simple restrictions can help to eliminate unsuccessful hypotheses:

• Usually, only those equations t 1 ≡ E t 2 are desired that satisfy var(t 2) ⊆ var(t 1). For example, it is obvious that x * (y * z) + x * y ≡ E x + v 123 is not universally valid. This restriction of the result set is already built into Thm. 24. Any lemma contradicting this restriction will not appear in the grammar language. However, all its instances that satisfy the restriction will appear. • Moreover, if E was given by a ground-convergent term-rewriting system R [DJ90, Sect. 2.4], it makes sense to require t 2 to be in normal form wrt. R. For example, x * (y * z) + x * y ≡ E (x + 0) * (y * z + y * s(0)) is a valid lemma, but redundant, compared with x * (y * z) + x * y ≡ E x * (y * z + y).

The closed representation of the set T I as a regular tree language allows us to easily eliminate such undesired terms t 2 . For left-linear term-rewriting systems [DJ90, Sect. 2.3], the set of all normal-form terms is always representable as a regular tree language; hence terms in non-normal form can be eliminated by intersection. For rewriting systems that are not left-linear, we may still filter out a subset of all non-normal-form terms.

If desired by some application, T I could also be restricted to those terms t I that satisfy V ⊆ var(t I) ⊆ V for arbitrarily given variable sets V , V .

The more sample instances are used, the more of the enumerated lemma candidates will be valid. However, our method does not lead to learnability in the limit [START_REF] Gold | Language identification in the limit[END_REF] because normally any result language will still contain invalid equations -regardless of the number of sample substitutions. It does not even lead to PAC-learnability [START_REF] Valiant | A theory of the learnable[END_REF], there currently being no way to compute the number of sample substitutions depending on the required δ and accuracies.

In the example from Fig. 9, we get, among other equations, the lemma suggestion x * (y * z) + x * y ≡ E x * (y * z + y), which allows the prover to continue successfully. This suggestion appears among the first ten, if T I is enumerated by increasing term size. Most of the earlier terms are variants wrt. commutativity, like x * (y * z) + x * y ≡ E (y + y * z) * x.

Figure 11 shows some examples of lemma candidates generated by our prototypical implementation (see Sect. 5.4). The column Theory shows the equational theory used. We distinguish between the truncating integer division (//) and the true division (/). For example, 7 // 3 = E 2, while 7/3 is not defined. The grammar rules that realize these partial functions are something like N 2 ::= . . . | N 6 // N 3 | N 7 // N 3 . . . | N 6 /N 3 . The integer remainder is denoted by (%).

We embedded the two-element Boolean algebra {0, 1} into the natural numbers, with 1 corresponding to true. This allows us to model relations like (<) and logical junctors. The functions (↑) and (↓) compute the maximum and minimum of two numbers, respectively. The function dp doubles a natural number in 0-s representation, ap concatenates two lists in cons-nil representation, rv reverses a list, and ln computes its length as a natural number. The cube theory formalizes the six possible three-dimensional 90 • -degree rotations of a cube, viz. left, right, up, down, clockwise and counter-clockwise, as shown in Fig. 12 (right).

The column Lemma shows the corresponding lemma, its right-hand side having been supplied, its left-hand side generated by the above method. Note, for example, the difference between the lemmas x = rv (rv (x)) and rv (rv (x)) = x. The column Rhs indicates the size of t 1 σ i for i = 1, . . . , n, which is a measure of the size of grammars to be intersected. For arithmetic and list theories, the value of each number t 1 σ i and the length of each list t 1 σ i is given, respectively.

The column No shows the place in which the lemma's right-hand side appeared in the enumeration sequence, while the column Time shows the required runtime in milliseconds (compiled Prolog on a 933 MHz PC). Both depend strongly on the number and size of the example ground instances. The dependence of No can be seen in lines 4 and 5.

The runtime also depends on the grammar connectivity. In a grammar that includes, e.g., (-) or (<), each nonterminal can be reached from any other, while in a grammar considering, e.g., only (+) and (*), only nonterminals for smaller values and N t can be reached. If the grammar defines N t , N 0 , . . . , N 6 , computing Given: series 0, 1, 4, 9, . . ., and k = 3 Lgth Suffix Next p(s 3 (0).s 4 (0).s(0).0.nil , s 9 (0)) p(s 2 (0). s(0) . 0.nil , s 4 (0)) p(s(0) . 0 . nil , s(0))

[0] σ 1 E ∩[1] σ 2 E ∩[1]
p(s(v p). v 1 . v 2 , s(v p) * s(v p)) ¡ ¡ ¡ ¡ ¡ ¡ T cl T cc ¡ ¡ ! lf ¡ ¡ ! rg ¡ ¡ T up ¡ ¡ c
dn Fig. 12. Law Computation by Thm. 24 Cube Rotations independent of the Rhs sizes for the 2nd to 4th theory. The exception in line 6 is due to a larger input grammar, which defined nonterminals up to N 10 rather than N 6 .

Construction Laws of Series

A second application of E-generalization consists in the computation of construction laws for term series, as in ordinary intelligence tests. The method is also based on Thm. 24 and is explained below.

For technical reasons, we write a series in reverse order as a cons-nil list, using an infix "." for the reversed cons to enhance readability. We consider suffixes of this list and append a number denoting its length to each of them. We use a binary predicate p(l.s, n) to denote that the suffix s of length l leads to n as the next series element.

We apply Thm. 24 to the k last leads to relations obtained from the given series, see Fig. 12 (left), where k must be given by the user. Each result has the form p(l.s, n) and corresponds to a rewrite rule l.s n that computes the next term from a series suffix and its length. By construction, the rewrite rule is guaranteed to compute at least the input terms correctly. A notion of correctness is not formally defined for later terms, anyway.

Figure 13 shows some computed construction laws. Its first line exactly corresponds to the example in Fig. 12 (left). The column Theory indicates the equational theory used. The ternary function if realizes if • then • else, with the defining equations if (s(x), y, z) = y and if (0, y, z) = z, and the unary function ev returns s(0) for even and 0 for odd natural numbers. Using if and ev , two series can be interleaved (cf. line 5).

The column Series shows the given term series, s n (0) being abbreviated to n. The number k of suffixes supplied to our procedure corresponds to the number of series terms to the right of the semi-colon. Any computed hypothesis must explain all these series terms, but none of the earlier ones. The column Law shows the computed hypothesis. The place within the series is denoted by v p , the first term having place 0, the second place 1, and so on. The previous series term and the last but one are denoted by v 1 and v 2 , respectively.

¡ ¡ ¡ ¡ ¡ ¡ , ¡ ¡ ¡ ¡ ¡ ¡ ; ¡ ¡ ¡ ¡ ¡ ¡ , ¡ ¡ ¡ ¡ ¡ ¡ , ¡ ¡ ¡ ¡ ¡ ¡ rg(if (ev (v p), v 1 , ¡ ¡ ¡ ¡ ¡ ¡)) 1. 14713 cube,if ,ev ¡ ¡ ¡ ¡ ¡ ¡ ; ¡ ¡ ¡ ¡ ¡ ¡ , ¡ ¡ ¡ ¡ ¡ ¡ , ¡ ¡ ¡ ¡ ¡ ¡ , ¡ ¡ ¡ ¡ ¡ ¡ cl (if (ev (v p), up(v 1), dn(v 1))) 1. 604234
The column No shows the place in which the law appeared in the enumeration sequence. In line 5, some formally smaller (wrt. height) terms are enumerated before the term shown in Fig. 13, but are nevertheless equivalent to it. The column Time shows the required runtime in milliseconds on a 933 MHz machine, again strongly depending on k and the size of series terms.

The strength of our approach does not lie in its finding a plausible continuation of a given series, but rather in building, from a precisely limited set of operators, a nonrecursive algorithm for computing the next series terms. Human superiority in the former area is demonstrated in line 9, where no construction law was found. The strength of the approach in the latter area became clear by the series 0, 0; 1, 0, 0, 1, shown in line 7. We had not expected any construction law to exist at all, because the series has a period relative prime to 2 and the trivial solution v 3 had been eliminated by the choice of k (a construction law must compute the first 1 from the preceding 0s).

It is decidable whether the result language H 24 is finite; in such cases, we can make precise propositions about all construction laws that can be expressed using the given signature and equational theory. For example, from line 9 we can conclude that no construction law can be built from the given operators.

Generalizing Screen Editor Commands

By way of another application, we employed E-generalization for learning complex cursor-movement commands of a screen-oriented editor like Unix vi. For each i, j ∈ IN , let p i,j be a distinct constant denoting the position of a given file at column i and line j; let P = {p i,j | i, j ∈ IN }. For the sake of simplicity, we assume that the screen is large enough to display the entire contents of the file, so, we do not deal with scrolling commands for the present.

Assuming the file contents to be given, cursor-movement commands can be modeled as partial functions from P to itself. For example, d(p i,j) = p i,j+1 if j+ 1 li , undefined otherwise, models the down command, where li denotes the number of lines in the file. The constant H = p 1,1 models the home command.

Commands may depend on the file contents. For example,

W (p i,j) = min{i | i < i co(j) ∧ ch(p i -1,j) ∈ SP ∧ ch(p i ,j) ∈ SP },
if the minimum is defined, models the next word command, where co(j), ch(p), and SP denote the number of columns of line j, the character at position p, and the set of space characters, respectively.

From a given file contents, it is easy to compute a regular tree grammar G that describes the congruence classes of all its positions in time linear to the file size and the number of movement commands. Figure 14 gives an example. For the sake of brevity, columns are "numbered" by lower-case letters, and, e.g., L(b2) = [p b,2] E . Note that the file contents happen to explain some movement commands.

Using E-generalization, two or more cursor movements can easily be generalized to obtain a common scheme. Given the start and end positions, s 1 , . . . , s n and e 1 , . . . , e n , we apply Thm. 24 to F + ⇔ p(s 1 , e 1) ∧ . . . ∧ p(s n , e n) and get a rule of the form p(x, t), where t ∈ T {x} is a term describing a command sequence that achieves each of these movements.

For n = 1, we can compute the simplest term that transforms a given starting position into a given end position. This is useful to advise a novice user about advanced cursor-movement commands. Imagine, for example, that a user had typed the commands l, l, l, l, l, l, l, l, l to get from position p k,2 to p b,2 . The term of least height obtained from Thm. 24, viz. p(x, l(B(x))), indicates that the same movement could have been achieved by simply typing the commands B, l.

Each command could also be assigned its own degree of simplicity, reflecting, for example, the number of modifier keys (like shift) involved, or distinguishing between simple and advanced commands. In the former case, the simplest term minimized the overall numbers of keys to be pressed.

No grammar intersection is needed if n = 1. Moreover, the lifting of G can be done in constant time in this case. In the example, it is sufficient to include an alternative . . . x . . . into the right-hand side of the rule for k2. Therefore, a simplest term can be computed in an overall time of O(# G • log # G). Changes in the file content require recomputation of the grammar and the minimum term sizes. In many cases, but not if, for example, a parenthesis is changed, local content changes require local grammar changes only. It thus seems worthwhile to investigate an incremental approach, which should also cover weight recomputation.

For n > 1, the smallest term(s) in the result language may be used to implement an intelligent approach to repeat the last n movement command sequences. For example, the simplest scheme common to the movements p(p m,2 , p o,2) and p(p n,4 , p v,4) wrt. the file content of Fig. 14 is computed as p(x, d(W (u(x)))). Since the computation time grows exponentially with n, it should be small.

In our prototypical implementation, we considered in all the vi commands h, j, k, l, H, M, L, +, -, w, b, e, W, B, E, 0, $, f, F, %, {, and } and renamed some of them to give them more suggestive identifiers. We allow search for single characters only. In order to consider nontrivial string search commands as well, the above approach should be combined with (string) grammar inference [START_REF] Sakakibara | Recent advances of grammatical inference[END_REF][START_REF] Honavar | Grammar Inference, Automata Induction, and Language Acquisition[END_REF] to learn regular search expressions. Moreover, commands that change the file content should be included in the learning mechanism. And last but not least, a satisfactory user interface for these learning features is desirable, e.g. allowing us to define command macros from examples.

Prototypical Implementation

We built a prototypical implementation realizing the E-generalization method from Sect. 3.1 and the applications from Sect. 5. It comprises about 4,000 lines of Prolog code. Figure 15 shows its architecture, an arrow meaning that its

% G c s c q % C c ¡ ¡ ¡ ¡ ¡ ¡ c c s d d d d d
@ 2 The application module allows us to learn series laws, candidate lemmas, and editor cursor commands (edt cmds). The anti-unification module contains algorithms for syntactic (synt au), constrained (cs e-au) and unconstrained (uc e-au) E-anti-unification. The grammar-generation module can compute grammars for a given file content (edt grm), for any set {t ∈ T | V ⊆ var(t) ⊆ W } (var grm), and for the set of normal forms wrt. E (nf grm). The grammar algorithms module allows us to test an L(N) for finiteness, emptiness, and a given member t, to compute intersection and complement of two languages, to simplify a grammar, and to generate N max from Lem. 7 (max nt s) and a grammar for T {} (top nt). For the sake of clarity, we omitted the dashed lines around the pre-and postprocessing module. The former merely contains code to choose exm instances for lemma generation. The latter does term evaluation to normal form, and enumeration and minimal weight computation for L(N).

2 $ $ $ $ $ $ $ $ $ $ $ % ¡ ¡ ¡ c) c ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ C A ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡
The prototype still uses monolithic, specially tailored algorithms for E-antiunification, as originally given in [START_REF] Heinz | Anti-Unifikation modulo Gleichungstheorie und deren Anwendung zur Lemmagenerierung[END_REF], rather than the combination of standard grammar algorithms described in Sect. 3.1. For this reason, function intersect uses cs e-au as a special case, viz. σ i = {}, rather than vice versa. However, all other uses relations would remain unchanged in an implementation strictly based on this paper. All runtime figures given in this paper are taken from the prototype. Currently, an efficiency-oriented re-implementation in C is planned. We expect it to provide a speed-up factor of between 10 and 100. Moreover, it will use the available memory more efficiently, thus allowing us to run larger examples than when using Prolog. The Prolog prototypical implementation and, in future, the C implementation can be downloaded from the web page http://swt.cs.tu-berlin.de/ ~jochen/e-au.

Conclusions and Future Work

We presented a method for computing a finite representation of the set of Egeneralizations of given terms and showed some applications. E-generalization is able to cope with representation change in abstraction, making it a promising approach to an old but not yet satisfactorily solved problem of Artificial Intelligence.

Our approach is based on standard algorithms for regular tree grammars. It thus allows us to add filtering components in a modular fashion, as needed by the surrounding application software. The closed form of an E-generalization set as a grammar and its simple mathematical characterization make it easy to prove formal quality properties if needed for an application. Using a standard grammar language enumeration algorithm, the closed form can be converted to a succession form.

Our method cannot handle every equational theory E. To use the analogy with E-deduction, our method corresponds to something between E-unification (concerned with a particular E in each case) and paramodulation (concerned with the large class of canonical E). On the other hand, neither partial functions nor conditional equations basically prevent our method from being applicable.

In order to demonstrate that E-generalization can be integrated into ILP learning methods, we proved several ways of combining lgg-based ILP and E-generalization. Predicate definitions by atoms or clauses can be learned.

If desired, the hypotheses space can be restricted to determinate hypotheses, resulting in faster algorithms.

Learning of purely determinate clauses can be reduced to learning of atoms by E-generalization. An lgg-learner for constrained clauses with built-in Egeneralization can learn a proper superclass, called semi-determinate predicates here. We provide completeness properties for all our hypotheses sets.

Using E-generalization, the search space is split into two parts, one concerned with selection of nondeterminate literals, the other with selection of their argument terms. While the first part is best handled by an elaborate strategy from classical ILP, the second can be left to a grammar language enumeration strategy. For example, the O(# G • log # G) algorithm to find a term of minimal complexity within a tree language apparently has no corresponding selection algorithm for determinate literals in classical ILP. Separating both search space parts allows us to modularize the strategy algorithms and to use for each part one that best fits the needs of the surrounding application.

Experiments with our prototypical implementation showed that comparatively ambitious AI tasks are solvable at the first attempt using E-generalization. We focus on sketching applications in a number of different areas rather than on perfectly elaborating a single application. By doing so, we seek to demonstrate the flexibility of E-generalization, which is a necessary feature for any approach to be related to intelligence.

In [BH96, Sect. 8], further applications were sketched, including divergence handling in Knuth-Bendix completion, guessing of Hoare invariants, reengineering of functional programs, and strengthening of induction hypotheses. The method given in [START_REF] Burghardt | Axiomatization of finite algebras[END_REF] to compute a finite representation of the complete equational theory describing a given set of finite algebras is essentially based on E-generalization, too. It is shown there that the complete theory can be used to implement fast special-purpose theorem provers for particular theories.

Based on this experience, we venture to suggest that E-generalization is able to simulate an important aspect of human intelligence, and that it is worth investigating further. In particular, the restrictions regular tree grammars impose on the background equational theory E should be relaxed. In this paper, we briefly looked at some well-known representation formalisms that are more expressive than regular tree grammars but with negative results. It remains to be seen whether there are other more expressive formalisms that can be used for E-generalization.

The attempt should also be made to combine it with higher-order antiunification [START_REF] Hasker | The Replay of Program Derivations[END_REF][START_REF] Wagner | Combinatorically restricted higher order anti-unification[END_REF]. Such a combination is expected to allow recursive functions to be learned from examples.

As indicated above, the applications of E-generalization could certainly be improved. Lemma generation should be integrated into a real induction prover, in particular to test its behavior in combination with the rippling method [START_REF] Bundy | Extensions to the rippling-out tactic for guiding inductive proofs[END_REF]. While rippling suggests checking homomorphic laws like f (g(t 1), . . . , g(t n)) = E g (f (t 1 , . . . , t n)) for validity, E-generalization is able to suggest lemmas of arbitrary forms. Empirical studies on series-based intelligence tests, e.g. using geometrical theories about mirror , shift, rotate, etc., should look for a saturation effect: Is there one single reasonable equational background theory that can solve a sufficiently large number of common tests? And can a reasonable intelligence quotient be achieved by that theory?

Currently, we are investigating the use of E-generalization in analogical reasoning [START_REF] Dastani | An Algebraic Method for Solving Proportional Analogy Problems[END_REF], a new application that does not fit into the schemas described in Sect. 4. The aim is to allow problems in intelligence tests to be stated in other ways than mere linear series, e.g. to solve (A : B) = (C : X), where A, B, C are given terms and X is a term which should result from applying a rule to C that at the same time transforms A into B.

Fig. 1 .

 1 Fig. 1. Equations Defining (+) and (*) E-Generalization of 0 and s 4 (0)

Fig. 1 (

 1 Fig. 1 (left), we have [0]E = {0, 0 * s(0), 0 + 0 * 0, . . .}. Let [t] σ E = {t ∈ T dom σ | t σ = E t}denote the set of all terms congruent to t under σ.

Fig. 3 .

 3 Fig. 3. Grammars G (Top), G τ 1 , G τ 2 and G 12 (Bottom) in Exs. 10 and 12

 and L G d (N c) = C. The equations' ground instances, and thus G d , can be built automatically. The grammar G d is equivalent to G from Fig. 3 (top), which we used in Ex. 10. The latter is nondeterministic for the sake of brevity. It describes [0] E and [s(0)] E by N 0 and N 1 , respectively, while

Fig. 4 .

 4 Fig.4. Requirements for Hypothesis Generation According to[START_REF] Muggleton | Inductive logic programming: Issues, results and the challenge of learning language in logic[END_REF] where x, y, and z are variables. Then, the congruence class [f (a, 1, a 1)] E and [f (b, 1, b 1)] E equals the set of all admitted Post sequences of a i and b i , respectively. Let σ 1 = {x → a} and σ 2 = {x → b}, then the set of constrainedE-generalizations [f (a, 1, a 1)] σ 1 E ∩ [f (b, 1, b 1)] σ 2E is nonempty iff the given correspondence problem has a solution. 2

Fig. 5 .

 5 Fig. 5. Background knowledge in family relations example

 For example, using E from Fig. 1 (left), p(x * y, x + y) is a weakly, but not ordinarily, determinate hypothesis. Abbreviating s n (0) by n, we have B 1 ∧ p(x * y, x + y) |= p(4 * 3, 7) ∧ p(4 * 3, 8), since 4 * 3 = E 2 * 6 and 8 = E 2 + 6 = E 7. However, B 3 ∧ p(x * y, x + y) |= p(4 * 3, t) implies xσ = 4, yσ = 3, and xσ + yσ = E t by Lem. 20.2. Hence, only t = E 3 + 4 = E 7 is possible.

Fig. 7 .

 7 Fig. 7. Training data in robot example an improvement, in [LD94, Sect. 5.3.1] a derived attribute sameShape, defined by sameShape ⇔ (headShape = bodyShape), is added manually for each robot from the training set. This results in a simpler description of a friendly robot, viz. friendly ⇔ sameShape.

Fig. 8 .

 8 Fig. 8. Comparison of ILP Using lgg and lgg c E

=

 Claim: (x * y) * z ≡ E x * (y * z) E x * (y * 0) by 3. z = s(z): (x * y) * s(z) = E (x * y) * z + x * y by 4. ≡ E x * (y * z) + x * y by I.H. ≡ E x * (y * z + y) by ? ? ? = E x * (y * s(z)) by 4.

Fig. 9 .

 9 Fig. 9. Induction Proof Using Fig. 1 (Left)

 Fig. 10. Generation of Lemma Candidates by Thm. 24

Fig. 11 .

 11 Fig. 11. Generated Lemma Candidates

Fig. 13 .

 13 Fig. 13. Computed Construction Laws

abcde f gh i j k l mnopq r s t

 = l(c2) | r(a2) | u(b3) | d(b1) . c2 ::= l(d2) | r(b2) | u(c3) | d(c1) | W(a2)|W(b2)| B(d2)...B(k2) . k2 ::= l(l2) | r(j2) | u(k3) | d(k1) | B(l2) |B(m2)| W(c2)...W(j2) .

Fig. 14 .

 14 Fig. 14. Example File ContentsCorresponding Grammar Excerpt

Fig

 Fig. 15. Prototype Architecture source function uses its destination function.

Figure 16

 16 Figure 16 shows some measured runtimes for i-fold simultaneous E-antiunification of arithmetic congruence classes. The horizontal position indicates which classes were used as input, ranging from [0] E to [20] E . A digit indicates the value of i; its index indicates E, where + means that E just defines sum, while * means that E defines sum and product. The vertical position -loga-

•

 From t i and E, obtain a grammar for the congruence class [t i] E , if one exists; the discussion of this issue is postponed to Sect. 3.2 below. • Apply the inverse substitution σ i to the grammar for [t i] E to get a grammar for [t i] σ i E , using some standard algorithm, e.g. that from [CDG + 99, Thm.7 in Sect.1.4]. This algorithm takes time O(# N • size(σ i)) for inverse substitution application, where size(σ i) = x∈dom σ i size(xσ i) is the total number of function symbols occurring in σ i . See Thm. 4 below. • Compute a grammar for the intersection [t 1] σ 1 E ∩ [t 2] σ 2 E , using the productautomaton construction, e.g., from [CDG + 99, Sect. 1.3], which takes time

 +N 00 | N 00 * N tt |N 0t * N t0 |N t0 * N 0t | N tt * N 00 N 01 ::= v 01 |N 00 +N 01 |N 01 +N 00 |N 01 * N t1 |N t1 * N 01

					N t
	N 0 * ::=v 00 |v 01	|0	|N 0 * +N 0 *	|N 0 * * N t * |N t * * N 0 *
	N 1 * ::=	v 10 |v 11 |s(N 0 *)|N 0 * +N 1 * |N 1 * +N 0 *	|N 1 * * N 1 *
	N t * ::=v 00 |v 01 |v 10 |v 11 |0|s(N t *)| N t * +N t *	| N t * * N t *
	N * 0 ::=v 00	|v 10	|0	|N * 0 +N * 0	|N * 0 * N * t |N * t * N * 0
	N * 1 ::=	v 01	|v 11 |s(N * 0)|N * 0 +N * 1 |N * 1 +N * 0	|N * 1 * N * 1
	N * t ::=v 00 |v 01 |v 10 |v 11 |0|s(N * t)| N * t +N * t	| N * t * N * t
	N 00 ::=v 00		|0	|N 00	

 To prove the only if direction, observe that B has a Herbrand model containing no instances of p. If we add the set In this model, p(t 1) ∨ . . . ∨ p(t n) holds only if some p(t i) holds, since they are all ground. This implies in turn that p(t i) is among the p(t), i.e. tσ = E t i for some ground substitution σ.(2) Follows from 1. for n = 1.(3) Follows from 1. for ¬F -⇔ p(t 1) ∨ . . . ∨ p(t n), paraphrasing Strong Consistency as B ∧ p(t) |= ¬F -. 2

{p(t) | ∃σ ground : tσ = E t } to that model, we get a Herbrand model of B ∧ p(t).

 n} and T -= {t i | i = n+1, . . . , m}. By Lem. 16.2 and 3, p(t) is a hypothesis satisfying the Sufficiency and the Strong Consistency requirement iff h + (t, T +) and h -(t, T -), respectively. By Lem. 17, we may thus choose H = {p(t) | t ∈ H 17 (T + , T -)}, which is again a regular tree language. 2 The time requirement of the computation from Thm. 18 grows very quickly if negative examples are given. Even for deterministic grammars, up to (m -n) • # N # N n inverse substitution applications are needed, each requiring a renamed copy of the original grammar. If only positive examples are given, the time complexity is O(#

 t, T -). 2

				weak det.
	Lem.17 p(x * y, z)	Lem.21.1	p(x * y, x+y)	Lem.21.2 p(x * y, x+y+z * 0)
	p(x, z)	Lem.23		Lem.22.1
	Lem.22.1		p(x, x * x)	p(x, x * x+z * 0)
	det.			
			p(x * x, x)	p(x * x, x+z * 0)
		var(s) ⊇ var(t)	

 and B |= Cσ for some σ . A similar property holds for dlr (C).The proofs of both directions are based on establishing x i σσ = E x i σ . This property follows from p i (s i σ , x i σ) and the definitions of g i and σ, when(B ∧ C |= p 0 (s, t)) ⇒ (B ∧dlr (C) |= p 0 (s, t)) is proved. When the converse direction is shown, it is established by extending σ to var(dlr (C))∪{x 1 , . . . , x n } defining x i σ = x i σσ . 2Theorem 26 (Clausal Determinate Definitions) We use the abbreviationD = {¬p i (s, t) | s, t ∈ T {} ∧ p i determinate ∧ B |= p i (s, t)}.Let two ground Horn clauses C 1 and C 2 be given, such that each body literal of each C i is entailed by B and is not an element of D. We can compute a regular tree language H = lgg c E (C 1 , C 2) such that:

 σ 3 E leads to 8 3 intersection nonterminals in the former case, compared with 2•3 2 in the latter. For this reason, runtimes are essentially

	Theory	Lemma	Rhs	No	Time
	+, *	(x + y) + z = x + (y + z)	1,1,3	6.	21
	+, *	x * (y + z) = x * y + x * z	0,2,2	10.	17
	+, *	x * y = y * x	0,0	3.	0
	+, *	(x * y) * z = x * (y * z)	0,0,2	31.	7
	+, *	(x * y) * z = x * (y * z)	0,0,2,4 3.	22
	+,-, * ,/,//,%	x/z + y/z = (x + y)/z	5,1,3	2. 263324
	+,-, * ,/,//,% ((x % z)+(y % z)) % z = (x + y) % z	0,1,1	1. 19206
	+,-, * ,/,//,%	(x // y) * y = x -(x % y)	6,0,3	1. 17304
	+,-, * ,/,//,%	x = (x * y) // y	2,1,3	4. 17014
	+, * ,<	x < y ⇔ x * z < y * z	0,1,1	3. 174958
	+, * ,<	x < y ⇔ x + z < y + z	0,1,1	20. 174958
	+, * ,<,↑,↓	x < y ⇔ x < x ↑ y	0,1,1	6. 47128
	+, * ,<,↑,↓	x = x ↓(x ↑ y)	3,0,3	7. 45678
	+, * ,<,↑,↓	(x ↑ y) + (x ↓ y) = x + y	5,1,5	2. 42670
	+, * ,dp	dp(x) + dp(y) = dp(x + y)	2,4	2.	6
	+, * ,dp	dp(x) = x + x	0,4	4.	1
	+, * ,dp	x * dp(y) = dp(x * y)	0,0	13.	1
	¬,∧,∨,→	¬(x ∧ y) ⇔ y → ¬x	1,1,1,0 1.	308
	¬,∧,∨,→	¬(x ∧ y) ⇔ ¬x ∨ ¬y	1,1,1,0 6.	308
	ap,rv	ap(rv (x), rv (y)) = rv (ap(y, x))	2,2,2	1.	89
	ap,rv	ap(x, ap(y, z)) = ap(ap(x, y), z) 3,3,2	1.	296
	ap,rv	x = rv (rv (x))	0,2	4.	1
	ap,rv	rv (rv (x)) = x	0,2	1.	1
	ap,rv ,ln	ln(ap(x, y)) = ln(x) + ln(y)	1,2	4.	4
	ap,rv ,ln	ln(cons(x, ap(y, z))) = s(ln(y)+ln(z)) 2,3	10.	21
	cube	lf (cc(x)) = up(lf (x))	1,1	1.	18
	cube	lf (cc(x)) = cc(up(x))	1,1	2.	

 Fig. 16. E-Anti-Unification runtime vs. size and number of grammars rithmically scaled -indicates the required computation time in seconds on a 933 MHz PC under compiled Prolog. For examples, the "5 * " near the upper left corner means that it took 113 seconds to generalize 3, 3, 3, 3, 3 wrt. sum and product.

						4 +				3 + 3 *											
	5 *	5 + 4 * 5 *	3 * 4 + 5 + 4 * 5	3 + 4 + 5 + 3 * 4 *	2 * 3 + 4 + 3 * 4 *	2 + 2 * 3 + 3 *	2 + 2 * 3 + 3 *	2 + 3 + 2 * 3 *	2 + 3 + 2 * 3 *	2 + 2 *	2 + 2 *	2 + 2 *	2 + 2 *	2 + 2 *	2 + 2 *	2 + 2 *	2 + 2 *	2 + 2 *	2 + 2 *	2 + 2 *	2 + 2 *

* 5 *

Acknowledgements

Ute Schmid, Holger Schlingloff and Ulrich Geske provided valuable advice on presentation.

Lemma 21 (Syntactic Criterion)

(1) If var(t) ⊆ var(s), then the hypothesis p(s, t) is weakly determinate.

(2) Each weakly determinate hypothesis p(s, t) has a weakly determinate instance p(sσ, tσ) with var(tσ) ⊆ var(sσ) and B |= p(s, t) ↔ p(sσ, tσ).

PROOF.

(1) If B ∧ p(s, t) |= p(s , t 1) ∧ p(s , t 2), we have

(2) Obtain sχ = E s and tχ = E t for some χ from Lem. 16.2 and the Def. of h + . Since sσ = s for some σ , we have sσ = E sχ. Since s is a constructor term, we have xσ = E xχ for all x ∈ var(s) ⊇ var(t). Hence, tσ = E tχ = E t . By Lem. 20.2, this implies B ∧ p(s, t) |= p(s , t). (3) Follows from 2, since sχ = E s implies that s is an instance of s. 2

The Karnaugh diagram in Fig. 6 summarizes the relations between the criteria from Lem. 21 and 22, weak and ordinary determinacy. It gives an example