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Abstract: We propose lifted versions of the Miller-Tucker-Zemlin subtour elimination constraints

for routing problems with time windows (TW). The constraints are valid for problems such as the

travelling salesman problem with TW, the vehicle routing problem with TW, the generalized travelling

salesman problem with TW, and the general vehicle routing problem with TW. They are corrected

versions of the constraints proposed by Desrochers and Laporte (1991).

Keywords: Miller-Tucker-Zemlin; subtour elimination constraints; routing problems; time win-

dows.

1 Introduction

The travelling salesman problem with time windows (TSPTW) is defined on a graph G = (V,A), where

V = {v1, v2, ..., vn} is the vertex set and A = {(vi, vj) : vi, vj ∈ V, i 6= j} is the arc set. v1 is the depot,

from where the salesman starts and ends the visiting tour.

Each vertex vi ∈ V \ {v1} must be visited within a specified time window [ai, bi] and waiting time

is allowed, i.e., the salesman can arrive at vi before ai and wait until ai to visit vertex vi. The time

window of the depot is [a1, b1]: the salesman leaves the depot after a1 and returns to the depot before

b1. Each arc (vi, vj) is associated with a travel cost cij ≥ 0 and a travel time tij ≥ 0. The TSPTW

consists of determining a tour such that the total travel cost is minimized and every vertex vi ∈ V is

visited exactly once within its time window [ai, bi] (Dumas et al. (1995), Gendreau et al. (1998)).

The TSPTW can be formulated using two types of variables. xij is a binary variable that equals

to 1 if and only if arc (vi, vj) ∈ A is used in the solution. ui specifies the service time at vertex

vi ∈ V \ {v1}, and u1 is the departure time from the depot v1. Let N = {1, · · · , n} be the set of vertex

indices. The TSPTW can be formulated as follows:

minimize
∑
i∈N

∑
j∈N
j 6=i

cijxij (1)

s.t.
∑
j∈N
j 6=i

xij = 1, ∀i ∈ N , (2)
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∑
i∈N
j 6=i

xij = 1, ∀j ∈ N , (3)

ui − uj +Mxij ≤M − tij , ∀i ∈ N , j ∈ N \ {1}, i 6= j, (4)

ai ≤ ui ≤ bi, ∀i ∈ N , (5)

ui + ti1xi1 ≤ b1, ∀i ∈ N \ {1}, (6)

xij ∈ {0, 1}, ∀i, j ∈ N , i 6= j, (7)

ui ≥ 0, ∀i ∈ N . (8)

The formulation adapts the formulation proposed by Dantzig et al. (1954) for the travelling salesman

problem where the subtour elimination constraints are written in a Miller-Tucker-Zemlin (MTZ) fash-

ion. The objective function (1) minimizes the total cost. Constraints (2) ensure that each vertex is

visited exactly once. Constraints (3) are flow conservation constraints. Constraints (4) guarantee the

feasibility of the tour with respect to timing constraints. These constraints are also known as MTZ

subtour elimination constraints since they ensure that the solution does not contain subtours discon-

nected from the depot. M is a large constant such that M ≥ maxi,j∈N {bi − aj + tij}. Constraints (5)

ensure that each vertex is visited during its time window, and the salesman leaves the depot during

its time window. Constraints (6) ensure that the salesman is back at the depot before b1. Constraints

(7) and (8) define the variables.

In this note, we discuss on the lifting of the Constraints (4) for the TSPTW. In the paper

by Desrochers and Laporte (1991), the authors proposed a lifted version of these constraints, which

we find and prove is wrong.

The remainder of this note is organized as follows. In Section 2, we propose two lifted versions

of the MTZ subtour elimination constraints, where we correct the ones proposed by Desrochers and

Laporte (1991). Conclusions are drawn in Section 3.

2 Lifting the MTZ subtour elimination constraints for the TSPTW

In the TSPTW, because of time window constraints, some arcs (vi, vj) are infeasible. Indeed, if

bj < ai + tij , then it is not possible to visit vertex vj right after visiting vertex vi. According

to Desrochers and Laporte (1991), if arcs (vi, vj) and (vj , vi) are both feasible, by taking into account

the inverse arcs (vj , vi), Constraints (4) can be strengthened as:

ui − uj +Mxij + (M − tij + min{−tji, bj − ai})xji ≤M − tij , ∀i ∈ N , j ∈ N \ {1}, i 6= j. (9)

However, we found that these valid inequalities are incorrectly written since they can eliminate

feasible or optimal solutions.

First, we provide an example, depicted in Figure 1, to illustrate the situation. Let us consider an

instance with four vertices v1, v2, v3, and v4 in the graph and vertex v1 represents the depot. Vertices

v1, v2, v3 and v4 are associated with time windows [0, 60], [20, 25], [10, 45], and [40, 50] respectively.

Vertices v1, v2, v3, and v4 are located at coordinates (0, 0), (5, 0), (5, 5) and (0, 5) respectively. For each
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arc (vi, vj), we consider that cij and tij are equal to the Euclidean distance between vi and vj . It is

clear that the tour v1 − v2 − v3 − v4 − v1 is feasible and optimal. Feasible values for u variables are:

u1 = 15, u2 = 20, u3 = 25, u4 = 40.

When i = 3 and j = 2, Constraints (9) are:

u3 − u2 +Mx32 + (M − t32 + min {−t23, b2 − a3})x23 ≤M − t32.

Thus, when Constraints (9) for i = 3 and j = 2 are applied to this solution they will provide the

following equation:

u3 − u2 + 0 + (M − 5 + min {−5, 25− 10}) ≤M − 5;

u3 ≤ u2 + 5.

Thus, the constraint u3 ≤ u2 + 5 is imposed. Similarly, when i = 4 and j = 3, Constraints (9) are

u4 ≤ u3 + 5. These two constraints lead to u4 ≤ u2 + 10. However, u2 ≤ 25 and u4 ≥ 40. Hence, route

v1 − v2 − v3 − v4 − v1 is not feasible when considering Constraints (9).

v1 [20,25]

[40,50] [10,45]

5

5

5

5

u2 = 20

u3 = 25u4 = 40

v4

v2

v3

[0,60]

u1 = 15

Figure 1: Example where the optimal solution is cut off by Constraints (9).

Therefore, we correct the Constraints (9) as follows.

Proposition 1. The constraints

ui − uj +Mxij + (M − tij + aj − bi)xji ≤M − tij ∀i ∈ N , j ∈ N \ {1}, i 6= j (10)

are valid inequalities for the TSPTW.

Proof. Consider the general constraints:

ui − uj +Mxij + (M − tij + αji)xji ≤M − tij ∀i ∈ N , j ∈ N \ {1}, i 6= j. (11)

We seek for the largest value of αji such that Constraints (11) are valid.

If xji = 0, these constraints are obviously satisfied for any value of αji. If xji = 1, (vertex vi is

visited right after visiting vertex vj), then xij = 0, and we obtain the following constraints:

ui − uj + αji ≤ 0. (12)
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We are thus seeking for a value of αji such that αji ≤ uj − ui. From Constraints (5), we have:

ui ≤ bi and uj ≥ aj . Thus, we obtain:

aj − bi ≤ uj − ui. (13)

Hence, we set αji = aj − bi.

Let us continue to consider the example discussed above in Figure 1. When i = 3 and j = 2,

Constraints (10) impose u3 ≤ u2 + 25. When i = 4 and j = 3, Constraints (10) impose u4 ≤ u3 + 40.

These two constraints lead to u4 ≤ u2 + 65, which means route v1 − v2 − v3 − v4 − v1 is feasible.

Moreover, it can be noticed that when the optimal solution contains waiting times, the formulation

(1)-(8) may have multiple optimal solutions because of the timing variables ui. Indeed, given optimal

values for the xij variables, there may be several values for the ui variables that satisfy Constraints (4)

and (5). Moreover, given optimal values for the xij variables, there are always feasible values for the

ui variables such that each vertex (except the depot) is visited as early as possible, namely minimizing

waiting times (see for example the solution in Figure 1).

Thus, in the following, we propose supervalid inequalities for the TSPTW. An inequality is super-

valid if it does not cut off all optimal solutions. This concept is a generalization of the concept of valid

inequalities and has been introduced by Israeli and Wood (2002).

Proposition 2. The constraints

ui − uj +Mxij + (M − tij + min{−tji, aj − ai})xji ≤M − tij ∀i ∈ N , j ∈ N \ {1}, i 6= j (14)

are supervalid inequalities for the TSPTW.

Proof. Consider the general constraints:

ui − uj +Mxij + (M − tij + αji)xji ≤M − tij ∀i ∈ N , j ∈ N \ {1}, i 6= j. (15)

We seek for the largest value of αji such that Constraints (15) are supervalid.

If xji = 0, these constraints are obviously satisfied for any value of αji. If xji = 1 (vertex vi is

visited right after visiting vertex vj), then xij = 0, and we obtain the following constraints:

ui − uj + αji ≤ 0 ∀i ∈ N , j ∈ N \ {1}, i 6= j. (16)

Thus, we seek for a value of αji such that αji ≤ uj − ui. In order to provide such a value, we

consider an optimal solution where each vertex is visited as soon as possible.

Two cases may be considered. In the first case, aj + tji ≥ ai. This means that vertex vi can be

visited right after vertex vj without any waiting time. Hence, we have ui = uj + tji. We then obtain:

− tji = uj − ui (17)

Hence, αji = −tji is valid for this first case.

In the second case, aj + tji < ai. This means that a waiting time may be required before visiting

vertex vi. Let us suppose that the value of uj has been fixed. The value of ui will then be chosen such
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that vertex vi is visited as soon as possible. If uj + tji ≥ ai, then vi can be visited right after vj without

waiting time. Then, similarly to the first case, αji = −tji is valid. If uj + tji < ai, then a waiting time

is required, and vertex vi is visited as soon as possible, i.e. ui = ai. From Constraints (5), we have

uj ≥ aj . We then obtain:

aj − ai ≤ uj − ui (18)

Hence, αji = aj − ai is valid in this case.

In all cases, we can set αji = min {−tji, aj − ai}.

Using the example introduced previously and depicted in Figure 1, it can be observed that Con-

straints (14) do not cut the solution proposed in Figure 1. However, other optimal solutions are

eliminated. Let us consider another solution s′ with the same values for xij variables and u1 =

15, u2 = 20, u3 = 35, and u4 = 40. This solution is valid and optimal with respect to the formulation

of the TSPTW. However, Constraints (14) applied to i = 3 and j = 2 give u3 − u2 + 0 + (M − 5 +

min {−5, 20− 10}) ≤M − 5. Thus the constraint is u3 ≤ u2 + 5, and the solution s′ would be cut off

by Constraints (14).

Note that this result can be extended to routing problems with time windows (TW) as the gen-

eralized TSPTW (Yuan et al. (2018)), the vehicle routing problem with TW (VRPTW) (Pecin et al.

(2017)), the generalized VRPTW (Yuan et al. (2019)). Readers are referred to Toth and Vigo (2014)

for an overview on routing problems.

3 Conclusions

In this note we provide two lifted inequalities from the Miller-Tucker-Zemlin subtour elimination con-

straints for routing problems with time windows. We provide an example on which the constraints

proposed by Desrochers and Laporte (1991) cut off the optimal solution, and we propose a correct

lifting of Miller-Tucker-Zemlin constraints. We also propose a family of supervalid inequalities in the

sense that they cut off some feasible solutions but guarantee to not cut off at least one optimal solution.
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