
HAL Id: hal-02947070
https://hal.science/hal-02947070

Submitted on 23 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A branch-and-cut algorithm for the generalized traveling
salesman problem with time windows

Yuan Yuan, Diego Cattaruzza, Maxime Ogier, Frédéric Semet

To cite this version:
Yuan Yuan, Diego Cattaruzza, Maxime Ogier, Frédéric Semet. A branch-and-cut algorithm for the
generalized traveling salesman problem with time windows. European Journal of Operational Re-
search, 2020, 286 (3), �10.1016/j.ejor.2020.04.024�. �hal-02947070�

https://hal.science/hal-02947070
https://hal.archives-ouvertes.fr

A branch-and-cut algorithm for the generalized traveling

salesman problem with time windows

Yuan Yuan, Diego Cattaruzza, Maxime Ogier, Frédéric Semet

Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL Lille, France

yyuaninria@gmail.com, {diego.cattaruzza, maxime.ogier, frederic.semet}@centralelille.fr

Abstract: The generalized traveling salesman problem with time windows (GTSPTW) is defined on

a directed graph where the vertex set is partitioned into clusters. One cluster contains only the depot.

Each vertex is associated with a time interval, the time window, during which the visit must take place

if the vertex is visited. The objective is to find a minimum cost tour starting and ending at the depot

such that each cluster is visited exactly once and time constraints are respected, i.e., for each cluster, one

vertex is visited during its time window. In this paper, two integer linear programming formulations for

GTSPTW are provided as well as several problem-specific valid inequalities. A branch-and-cut algorithm

is developed in which the inequalities are separated dynamically. To reduce the computation times, an

initial upper bound is provided by a simple and fast heuristic. We propose different sets of instances

characterized by their time window structures. Experimental results show that our algorithm is effective

and instances including up to 30 clusters can be solved to optimality within one hour.

Keywords: generalized traveling salesman problem; time-windows; branch-and-cut; trunk delivery.

1 Introduction

E-commerce is a thriving market around the world and is very well suited to the busy lifestyle of today’s

customers. An annual survey conducted by the analytics firm comScore and UPS revealed that American

consumers purchased more things online than in stores in 2016 (Farber, 2016). eMarketer estimated

that e-commerce sales would reach $4 trillion in 2020 (eMarketer, 2018). It is clear that this growing

e-commerce poses a major challenge to transportation companies, especially with regard to last mile

delivery. Nowadays, the most common delivery service is home/workplace delivery (Lowe and Rigby,

2014). Customers wait at home or at work to get their online orders. Besides, companies like Amazon

and FedEx are developing locker delivery. When customers shop online, they can choose a nearby locker

as their pickup location. In the past two years, a new concept called trunk delivery has been introduced.

Here, customers’ orders can be delivered to the trunks of their cars. Volvo launched its world-first in-car

delivery service in Sweden in 2016. The courier has a one-time digital code to get access to the trunk of

the car. Trunk delivery is different from home delivery and locker delivery since the car moves during the

day and may be in different locations during different periods of time. As a consequence, synchronization

1

between the car and the courier is required to perform the delivery. In this article, we provide two

mathematical programming models, and we develop an efficient exact method for the last mile delivery

problem that combines all these delivery services: home/workplace, locker, and car trunk. We focus on

the one vehicle case, i.e., we assume that a single vehicle can deliver all the customers on the same route.

In Figure 1, we give an example of the real-life case. Four customers are represented with their associated

locations into a dotted circle. Every possible delivery location has a time interval that represents the time

window (TW). In the case of a home or trunk delivery, the TW represents when the customer or his/her

car would be present at that location. In the case of a locker, the TW represents the period the courier

can deliver the parcel before the customer picks it up. The problem consists in determining jointly the

location visited for each customer and the sequence of visits while satisfying the TW restrictions.

[8,9]

[10,15]

[16,17]

[9,15]

[18,21]

[9,12]

1

Depot

Car locations of customer 1, 2, 3, 4

Locker

Home locations of customer 1, 2, 3, 4

2

3

4

1

2

1

2
3

5

1
2

3

5

4

[13,18]

[8,10]

[8,13]
[14,16]

[17,20]

[11,13]
[16,17]

[10,15]

[18,20]

11

14
15

17

Figure 1: An example of GTSPTW instance.

The problem addressed in this paper is the generalized traveling salesman problem with time windows

(GTSPTW). To the best of our knowledge, this problem has not been studied yet. It is related to the

generalized traveling salesman problem (GTSP) (Fischetti et al., 1997) where TWs are not present, and

to the traveling salesman problem with time windows (TSPTW) where all clusters contain a single vertex.

This article aims to provide an efficient exact solution method for the GTSPTW. The main contri-

butions of the paper are as follows: 1) we study a new problem and present two formulations for the

GTSPTW. This problem is of great interest in the context of last mile delivery, 2) we propose several

valid inequalities for GTSPTW, 3) we develop procedures to separate these inequalities within a branch-

and-cut algorithm, 4) we present a simple and fast heuristic for GTSPTW to get an initial solution, 5) we

assess the efficiency of our algorithm on different sets of instances that we generated for the GTSPTW.

The remainder of this paper is organized as follows. A formal description of the problem and two

mathematical models are provided in Section 2. Section 3 presents the related literature. Section 4 de-

2

scribes some valid inequalities for the GTSPTW. A general framework of the branch-and-cut algorithm is

given in Section 5, including preprocessing, an initial heuristic to compute an upper bound, and separa-

tion procedures for the proposed valid inequalities. Section 6 gives details about the generation of three

groups of instances and reports the computational results. Finally, conclusions are drawn in Section 7.

2 Problem definition and mathematical modeling

The GTSPTW can be formally defined as follows: given a directed graph G = (V,A), the set of vertices

V = {0, 1, ..., N} is partitioned into C0 = {0}, C1, ..., CK clusters. K = {0, 1, ...,K} denotes the cluster

index set. Cluster C0 contains only the starting and ending vertex, i.e. the depot. A TW [Ei, Li], is

associated with each vertex i ∈ {0, 1, ..., N} with [E0, L0] = [0, T] representing the optimization time

horizon. A visit can only be made to a vertex during its TW, and an early arrival leads to waiting time

while a late arrival causes infeasibility. There is no assumption on the TWs for a given cluster, i.e., TWs

can overlap or be disjointed. Arcs are only defined between vertices belonging to different clusters, that

is, A ⊆ {(i, j)|i ∈ Ck, j ∈ Cl, k 6= l, k, l ∈ K}. A traveling cost Cij and a traveling time Tij are associated

with each arc (i, j) ∈ A. We call an arc (i, j) feasible if Ei + Tij ≤ Lj , which means that vertex j can

be reached from vertex i through arc (i, j). A is defined as the set of feasible arcs, which is a subset of

{(i, j)|i ∈ Ck, j ∈ Cl, k 6= l, k, l ∈ K}.
The objective of the GTSPTW is to find a minimum cost tour starting and ending at the depot such

that each cluster is visited exactly once and the TW constraints are respected, i.e., one vertex of each

cluster is visited during its time window.

Let us introduce the following notation. For any set S ⊂ V, δ+(S) = {(i, j) ∈ A|i ∈ S, j /∈ S},
δ−(S) = {(i, j) ∈ A|i /∈ S, j ∈ S}. For simplicity, when S = {i}, we use δ+(i) and δ−(i) as opposed to

δ+({i}) and δ−({i}).
To model the GTSPTW, we define three set of variables. For all (i, j) ∈ A, let xij be a binary variable

equal to one if and only if arc (i, j) ∈ A belongs to the tour. For all i ∈ V, let yi be a binary variable

equal to one if i ∈ V belongs to the tour, and ti be the service time at vertex i ∈ V. For the depot,

the service time actually corresponds to the departure time. A first compact mathematical programming

formulation F1 is as follows:

(F1) minimize
∑

(i,j)∈A

Cijxij (1)

s.t.
∑
i∈Ck

yi = 1 ∀k ∈ K, (2)

∑
(i,j)∈δ+(i)

xij = yi ∀i ∈ V, (3)

∑
(j,i)∈δ−(i)

xji = yi ∀i ∈ V, (4)

Eiyi ≤ ti ≤ Liyi ∀i ∈ V, (5)

ti − tj + Tijxij ≤ Liyi − Ejyj − (Li − Ej)xij ∀(i, j) ∈ A, j 6= 0, (6)

ti + Ti0xi0 ≤ L0 ∀i ∈ V \ {0}, (7)

3

yi ∈ {0, 1} ∀i ∈ V, (8)

xij ∈ {0, 1} ∀(i, j) ∈ A, (9)

ti ≥ 0 ∀i ∈ V. (10)

The objective function (1) minimizes the total traveling cost. Constraints (2) ensure that exactly

one vertex from each cluster is visited. Constraints (3) and (4) are flow conservation constraints. Con-

straints (5) ensure that each vertex is visited during its TW. Constraints (6) ensure that the service times

are consistent. If vertex j is visited just after vertex i, then constraint (6) will ensure tj ≥ ti + Tij . In

addition, constraints (6) eliminate subtours since they generalize the subtour elimination constraints of

Miller, Tucker and Zemlin for the traveling salesman problem (Miller et al., 1960). Constraints (7) ensure

that the tour ends at the depot before its TW closes. Constraints (8) ∼ (10) are related to variable

definitions.

The second formulation is based on the following observation. Since only one vertex is selected in each

cluster, we can define one time variable per cluster instead of defining a time variable for every vertex as

above. Let τk ≥ 0, k ∈ K be the service time at cluster k.

In the second formulation F2, the objective function and constraints (2)∼(4), (8)∼(9) are as in F1.

Constraints (5)∼(7), (10) are replaced by (11)∼(13), (14) respectively. We obtain the following compact

model:

(F2) minimize (1)

s.t. (2) ∼ (4)

(8) ∼ (9)∑
i∈Ck

Eiyi ≤ τk ≤
∑
i∈Ck

Liyi ∀k ∈ K, (11)

τh − τk +
∑
i∈Ch
j∈Ck

Tijxij

≤
∑
i∈Ch

Liyi −
∑
j∈Ck

Ejyj −
∑
i∈Ch
j∈Ck

(Li − Ej)xij ∀h ∈ K, k ∈ K \ {0}, (12)

τk +
∑
i∈Ck

Ti0xi0 ≤ L0 ∀k ∈ K \ {0}, (13)

τk ≥ 0 ∀k ∈ K. (14)

3 Literature review

To the best of our knowledge, there is no existing literature on the GTSPTW. However, there exist works

addressing the GTSP. The GTSP is defined on a graph where the vertex set is partitioned into clusters.

The problem consists in finding a minimum cost tour which visits exactly one vertex of each cluster. In

the GTSP, TWs are not present. In the literature, there are various approaches to solve the GTSP.

One approach is to transform an instance of the GTSP into an instance of the well-studied Traveling

Salesman Problem (TSP), and then solve it by applying algorithms for the TSP (Noon and Bean, 1993;

4

Dimitrijević and Šarić, 1997; Laporte and Semet, 1999). At first glance, this approach seems promising.

However, the resulting instances are difficult to solve for the existing TSP solvers since the produced in-

stances have a rather unusual structure, and a near-optimal solution for the TSP instance may correspond

to an infeasible solution for the related GTSP instance (Karapetyan and Gutin, 2012).

Another approach consists in developing exact algorithms. However, the existing literature is quite lim-

ited. Noon and Bean (1991) presented a branch-and-bound approach for the asymmetric GTSP (AGTSP).

They proposed a Lagrangian relaxation to compute a lower bound and a heuristic to compute an upper

bound. Non-optimal arcs and nodes were identified and eliminated based on the reduced costs. This

method was tested on a set of randomly generated instances, and the results showed that they could solve

instances with up to 104 nodes and 8 clusters. Fischetti et al. (1997) proposed an efficient branch-and-

cut algorithm to solve the AGTSP. They developed exact and heuristic separation procedures for some

classes of facet-defining inequalities. They also generated a library of GTSP instances called GTSP-LIB

by taking TSP-LIB instances and performing a clustering procedure on the nodes. Their algorithm could

solve instances with up to 89 clusters and 442 nodes.

A different approach to solve the GTSP is to develop heuristics. Gutin and Karapetyan (2010) proposed

a memetic algorithm combining genetic and powerful local search algorithms. They reported excellent

results on the GTSP-LIB instances, with computation times less than 60 seconds and most of the solu-

tions within 0.2% of the best-known values. Helsgaun (2015) extended the Lin-Kernighan-Helsgaun TSP

heuristic (Helsgaun, 2000, 2009) to the GTSP. The resulting algorithm improved the solution quality on

GTSP-LIB instances compared with the memetic algorithm proposed in Gutin and Karapetyan (2010),

at the expense of more computation time. Smith and Imeson (2017) presented an algorithm solver based

on adaptive large neighborhood search. Their results showed that given the same amount of computation

time, their algorithm was competitive on instances from the GTSP-LIB and other libraries.

The GTSPTW is also related to the TSPTW. When all the clusters of the GTSPTW are singletons, i.e.,

they contain only one vertex, the problem reduces to the TSPTW. Ascheuer et al. (2001) proposed several

formulations for the asymmetric TSPTW and compared them within a branch-and-cut scheme. They

incorporated techniques such as data pre-processing, primal heuristics, local search and variable fixing, in

addition to separation algorithms. Dash et al. (2012) presented an extended formulation for the TSPTW

based on the partitioning of the TW into sub-windows, which they called buckets. The LP relaxation

of this formulation provided strong lower bounds. Strong valid inequalities (bucket sequential ordering

polytope inequalities) were generated and incorporated in a branch-and-cut framework. Their results

showed that the proposed formulation was effective and solved several previously unsolved benchmark

instances.

Although there is no article related to the GTSPTW, one can find related papers in the multi-vehicle

case. Ghiani and Improta (2000) extended the GTSP to the generalized vehicle routing problem (GVRP)

by introducing quantities to be delivered to customers and considering vehicles with limited capacity. Only

a few works address the multi-vehicle case with TWs, but with some restrictions on the TWs. Moccia

et al. (2012) proposed a tabu search method for what they called the Generalized-VRPTW. However, they

define a TW for each cluster while a TW is associated with every vertex in the GTSPTW. They proved

the effectiveness of the method by testing it on GVRP instances and multi-depot VRPTW instances.

5

Recently, Reyes et al. (2017) examined the special case where TWs within the same cluster do not

overlap. They were inspired by the trunk delivery system we mentioned in Section 1 and considered what

they called the VRP with Roaming Delivery Locations (VRPRDL). The authors developed construction

and improvement heuristics for the problem, and their results illustrated the advantage of applying the

trunk delivery over the traditional home delivery. Following this work, Ozbaygin et al. (2017) formulated

VRPRDL as a set-partitioning problem and proposed a branch-and-price algorithm. Moreover, they came

up with a hybrid delivery strategy combining trunk delivery and home delivery, in which case the TWs

within a cluster are no longer non-overlapping. Their results revealed that employing this strategy led to

an average savings of nearly 20% compared with the standard delivery system when only home delivery

is used.

4 Valid inequalities for the GTSPTW

In this section, we present some inequalities we developed for GTSPTW, mainly adapted from valid

inequalities for the Steiner tree problem, the GTSP or the TSPTW. Some of these inequalities are defined

on x variables only, other inequalities also involve y variables. We also present lifted versions of some valid

inequalities. Section 4.1 proposes a lifted version of the Miller-Tucker-Zemlin (MTZ) inequalities provided

in formulations F1 and F2. Sections 4.2 and 4.3 propose polynomial-size families of valid inequalities

while sections 4.4 to 4.7 provide exponential-size families of valid inequalities.

4.1 Strengthened MTZ-inequalities

Desrochers and Laporte (1991) observed that the subtour elimination constraints presented in the MTZ

version as in (6) can be lifted by taking the reverse arcs (j, i) ∈ A into account.

Proposition 4.1. In formulation F1, for all i, j ∈ V \ {0} such that arcs (i, j) and (j, i) ∈ A, time

constraints (6) can be lifted as follows:

ti − tj + Tijxij +min{−Tji, Ej − Ei}xji ≤ Liyi − Ejyj − (Li − Ej)(xij + xji) (15)

Proof. Consider the general constraints

ti − tj + Tijxij + αjixji ≤ Liyi − Ejyj − (Li − Ej)(xij + xji).

If xji = 0, then the constraints is the classical MTZ constraint. Otherwise, we have xji = 1, and

xij = 0, yi = 1, yj = 1. Hence the constraint can be written as:

ti − tj + αji ≤ 0.

Only two cases need to be considered.

Case 1: Ej +Tji ≥ Ei. This means whenever vertex j is left, there will be no waiting time at i. Hence,

ti = tj + Tji. Since αji ≤ tj − ti, then αji ≤ −Tji.
Case 2: Ej + Tji < Ei. If j is left at the beginning of its TW, the service at i will be after Ej + Tji.

Services at i and j can be spaced with a maximum value of Ei − Ej , i.e., ti ≤ tj + (Ei − Ej). Since

ti ≤ tj − αji, then αji ≤ Ej − Ei.

6

Note that by definition of case 1, we have −Tji ≤ Ej − Ei, and by definition of case 2, we have

Ej − Ei < −Tji. Thus in general, αji ≤ min{−Tji, Ej − Ei}.

Similarly, for formulation F2 in which the time variables are defined for clusters, we can lift constraints

(12) and we have:

Proposition 4.2. In formulation F2, for all h, k ∈ K \ {0} such that there exists at least a pair of arcs

(i, j) and (j, i) ∈ A with i ∈ Ch and j ∈ Ck, time constraints (12) can be lifted as:

τh − τk +
∑
i∈Ch
j∈Ck

Tijxij +
∑
i∈Ch
j∈Ck

min{−Tji, Ej − Ei}xji

≤
∑
i∈Ch

Liyi −
∑
j∈Ck

Ejyj −
∑
i∈Ch
j∈Ck

(Li − Ej)(xij + xji)
(16)

4.2 Arc selection inequalities

It is obvious that in any feasible solution at most one arc (i, j) or (j, i) is selected. Therefore, we have:

xij + xji ≤ yi ∀i, j ∈ V such that (i, j), (j, i) ∈ A. (17)

Since only one vertex is selected from each cluster, we can lift inequalities (17) and obtain:

Proposition 4.3. The following constraints are valid inequalities for the GTSPTW:∑
j∈Ck

xij +
∑
j∈Ck

xji ≤ yi ∀i ∈ V, k ∈ K, i /∈ Ck and ∃j ∈ Ck such that (i, j), (j, i) ∈ A. (18)

Note that summing up constraints (18) over all vertices of cluster Cl, l 6= k provides a special case of

the generalized subtour elimination constraints (GSEC) restricted to tours of length 2.

4.3 Arc-or-vertex inequalities

In a feasible solution, a vertex and an arc may not be simultaneously present due to TW constraints. We

introduce arc-or-vertex inequalities to exploit this property and these inequalities impose that at most

one of the vertex or the arc is chosen. Let Cijk be the subset of Ck containing vertices that cannot be

visited before or after arc (i, j). A vertex h ∈ Ck belongs to Cijk if there is no feasible path going from h

to j including (i, j) and there is no feasible path going from i to h traversing (i, j). Figure 2 depicts this

situation. Formally, a vertex h belongs to Cijk if and only if:

1. h ∈ Ck,

2. Eh + SPhi > Li, or Eh + SPhi + Tij > Lj ,

3. Ej + SPjh > Lh, or Ei + Tij + SPjh > Lh.

where SPij is the shortest traveling time between vertices i and j. When the triangle inequality is not

satisfied, the shortest traveling time SPij going from vertex i to vertex j can include the visit of other

vertices and can be lower than Tij .

7

Proposition 4.4. The following constraints are valid inequalities for the GTSPTW:

xij +
∑
h∈Cijk

yh ≤ 1 ∀(i, j) ∈ A, i, j 6= 0,∀k ∈ K, i, j /∈ Ck. (19)

Cij
k

h Ck

i j

infeasible path hij

infeasible path ijh

Figure 2: Arc-or-vertex inequalities example.

We can lift the arc-or-vertex inequalities in two different ways as depicted in Figure 3. First, given

an arc (i, j) ∈ A and a cluster k ∈ K with a set of incompatible vertices Cijk , other arcs (i, j′) may lead to

the same set of incompatible vertices: Cij
′

k = Cijk . In this case, constraints (19) can be lifted by summing

up over such variables xi,j′ since at most one of these arcs can be present in a feasible solution. Thus,

inequalities (19) can be strengthened as follows:

Proposition 4.5. For all (i, j) ∈ A, i, j 6= 0 and for all k ∈ K such that i, j /∈ Ck, consider V ijk = {j′ ∈
V \ Ck | Cij

′

k = Cijk }, then constraints (19) can be lifted as:∑
j′∈Vij

k

xij′ +
∑
h∈Cijk

yh ≤ 1 (20)

...
j

j′

i

h Ck
Cij
k

(a) Lift 1

...
...

Ck

C(i) C(j)

h

Cij
k

i j

i′ j′

(b) Lift 2

Figure 3: Lifting of arc-or-vertex inequalities.

Second, given an arc (i, j) ∈ A and a cluster k ∈ K with a set of incompatible vertices Cijk , other arcs

(i′, j′) may lead to the exactly same set of incompatible vertices: Ci
′j′

k = Cijk . When i and i′ belong to

the same cluster, respectively j and j′ belong to the same cluster, then constraints (19) can be lifted by

summing up over such variables xi′,j′ since such arcs are defined between the same pair of clusters and at

most one appears in any feasible solution.

8

Proposition 4.6. Let C(i) be the cluster containing vertex i. For all (i, j) ∈ A, i, j 6= 0 and for all k ∈ K
such that i, j /∈ Ck, consider Aijk = {(i′, j′) ∈ A | i′ ∈ C(i), j′ ∈ C(j), C

i′j′

k = Cijk }, then inequalities (19) can

be strengthened as: ∑
(i′,j′)∈Aij

k

xi′j′ +
∑
h∈Cijk

yh ≤ 1 (21)

4.4 Generalized subtour elimination constraints (GSEC)

Although constraints (6) eliminate tours not including the depot in any feasible integer solution, subtours

may be present when the integer requirement on variables x and y is relaxed. Thus, the subtour elimination

constraints (SEC) defined by Dantzig et al. (1954) for the TSP can increase the linear relaxation value.

These constraints can be generalized to take into account the presence of clusters (Fischetti et al., 1997).

For subsets of clusters, they can be expressed as follows:

Proposition 4.7. The constraints∑
(i,j)∈δ+(S)

xij ≥ 1 ∀S = ∪h∈HCh, H ⊂ K, 2 ≤ |H| ≤ K − 1. (22)

are valid for the GTSPTW.

4.5 SOP inequalities

SOP inequalities are based on the notion of precedence between pairs of vertices and were introduced

by Balas et al. (1995) in the context of the precedence-constrained Asymmetric Traveling Salesman

Problem (ATSP), also known as the Sequential Ordering Problem (SOP). These inequalities are also

effective for TSPTW where precedences between nodes are inferred based on the TW restrictions (Dash

et al., 2012; Ascheuer et al., 2001). Here we extend the SOP inequalities to the GTSPTW.

Recall that C(i) denotes the cluster containing vertex i. We say that a vertex i ∈ V precedes vertex

j ∈ V \ C(i) if i has to be visited before j in any feasible solution. We denote this relation as i ≺ j. When

the triangle inequality is satisfied, the precedence between two vertices i and j is defined as:

i ≺ j if Ei + Tij ≤ Lj and Ej + Tji > Li. (23)

The relation (23) can be extended to the case where the triangle inequality is not satisfied. Then, we

consider SPij the shortest traveling time from vertex i to vertex j. The path with the shortest traveling

time may include other vertices since the triangle inequality is not satisfied. Thus, the precedence relation

becomes:

i ≺ j if Ei + SPij ≤ Lj and Ej + SPji > Li. (24)

If the triangle inequality is satisfied, both relations (24) and (23) are equivalent since SPij = Tij .

For any given i ∈ V \ {0}, we define π(i) = {j ∈ V \ C(i) : j ≺ i} the set of vertices that precede vertex

i, and σ(i) = {j ∈ V \C(i) : i ≺ j} the set of vertices that succeed vertex i. In the following, we summarize

the classes of SOP inequalities we used in our implementation. For the ease of explanation, we introduce

9

the following notations. For any two vertex sets U ,W ⊆ V, let (U :W) = {(i, j) ∈ A|i ∈ U , j ∈ W}. This

set correspond to the cut between the two vertex sets U and W. For any set of vertices S ⊆ V, we note

S̄ = V \ S its complement.

Proposition 4.8. For S ⊆ V \{0}, i ∈ S such that π(i) 6= ∅, the predecessor inequalities (π-inequalities):

x((S \ π(i)) : (S̄ \ π(i))) ≥ yi (25)

are valid for GTSPTW. The π-inequalities (25) can be strengthened as:

x((S \ Pi) : (S̄ \ Pi)) ≥ yi (26)

where Pi = π(i) ∪ C(i) \ {i}.

Proof. If yi = 0, then the inequality is obviously verified. When yi = 1, vertex i is visited in tour T
representing a feasible solution. Let ŝ be the last vertex of S visited by T . Since i ∈ S, ŝ /∈ π(i), so

ŝ ∈ S\π(i). Moreover, the successor t̂ of ŝ in tour T cannot be in π(i), so t̂ ∈ S̄ \π(i). Clearly, any feasible

tour T contains at least one arc going from S \ π(i) to S̄ \ π(i). The strengthening can be deduced from

the observation that only one vertex per cluster is visited in any feasible solution of the GTSPTW.

Proposition 4.9. For S ⊆ V \ {0}, j ∈ S such that σ(j) 6= ∅, the σ-inequalities:

x((S̄ \ σ(j)) : (S \ σ(j))) ≥ yj . (27)

are valid for GTSPTW. The σ-inequalities (27) can be strengthened as:

x((S̄ \ Qj) : (S \ Qj)) ≥ yj (28)

where Qj = σ(j) ∪ C(j) \ {j}.

Proposition 4.10. For S ⊆ V \ {0}, i ∈ S, j ∈ S̄ such that i ≺ j, π(i) 6= ∅ and σ(j) 6= ∅, the

(π, σ)-inequalities:

x((S \ (π(i) ∪ σ(j))) : (S̄ \ (π(i) ∪ σ(j)))) ≥ yi + yj − 1. (29)

are valid for GTSPTW. The (π, σ)-inequalities (29) can be strengthened as:

x((S \Wij) : (S̄ \ Wij)) ≥ yi + yj − 1 (30)

where Wij = π(i) ∪ σ(j) ∪ C(i) ∪ C(j) \ {i, j}.

Proof. If yi + yj ≤ 1, then the inequality is obviously verified. When yi = yj = 1, vertex i and j are

present in tour T representing a feasible solution. Since i ≺ j, i ∈ S, j ∈ S̄, then i ∈ S \ (π(i) ∪ σ(j)) and

j ∈ S̄ \ (π(i) ∪ σ(j)). Since i ≺ j, it is obvious that any feasible tour T contains at least one arc going

from S \ (π(i) ∪ σ(j)) to S̄ \ (π(i) ∪ σ(j)).

10

4.6 SOP inequalities defined on clusters

In Section 4.5 we presented the SOP inequalities based on the precedence relationship between vertices.

We can also define the precedence between a vertex and a cluster.

Let us denote by i ≺ Ck (resp. Ck ≺ i) the precedence relation between a vertex and a cluster, i.e.,

i ≺ Ck if and only if i ≺ j,∀j ∈ Ck (resp. Ck ≺ i if and only if j ≺ i,∀j ∈ Ck). It follows that, if vertex i

belongs to a solution, then it has to be visited before (resp. after) any vertex of cluster Ck. Let us indicate

by Ch ≺ Ck the precedence relation between two clusters, i.e., Ch ≺ Ck if and only i i ≺ j,∀i ∈ Ch, j ∈ Ck.
We define π(Ck) = {i ∈ V \ Ck : i ≺ Ck}, σ(Ck) = {i ∈ V \ Ck : Ck ≺ i}. Then we can extend the SOP

inequalities as follows.

Proposition 4.11. Let S ⊆ V \ {0}, Ck ⊆ S, π(Ck) 6= ∅, the πCk-inequalities:

x((S \ π(Ck)) : (S̄ \ π(Ck))) ≥ 1. (31)

are valid for the GTSPTW.

Let S ⊆ V \ {0}, Ck ⊆ S, σ(Ck) 6= ∅, the σCk-inequalities:

x((S̄ \ σ(Ck)) : (S \ σ(Ck))) ≥ 1. (32)

are valid for the GTSPTW.

Let S ⊆ V \ {0}, Ch ≺ Ck, Ch ⊆ S, Ck ⊆ S̄, π(Ch) 6= ∅, σ(Ck) 6= ∅, the (πCh , σCk)-inequalities:

x((S \ (π(Ch) ∪ σ(Ck))) : (S̄ \ (π(Ch) ∪ σ(Ck)))) ≥ 1. (33)

are valid for the GTSPTW.

4.7 Clique inequalities

Let S ⊂ V be a subset of vertices belonging to different clusters, i.e., |S ∩ Ck| ≤ 1, ∀k ∈ K. Such set S is

said infeasible if due to the presence of TWs, there exists no feasible path visiting all vertices of S. Then

the number of vertices in S in any feasible solution must be strictly less than |S| (Padberg, 1973). The

clique inequalities can be expressed as follows:∑
i∈S

yi ≤ |S| − 1. (34)

These inequalities can also be lifted.

Proposition 4.12. For S ⊂ V such that S is infeasible and |S ∩ Ck| ≤ 1,∀k ∈ K. For all j ∈ S,
S(j) = {i ∈ C(j) \ {j}|S ′ = (S \ {j}) ∪ {i} is infeasible}. If |S(j)| 6= 0, the clique inequality (34) can be

strengthened as: ∑
i∈S

yi +
∑
i∈S(j)

yi ≤ |S| − 1 ∀j ∈ S. (35)

For all h ∈ S \ {j}, Sj(h) = {i ∈ C(h) \ {h}|(S ∪ {j∗, i}) \ {j, h} is infeasible, ∀j∗ ∈ S(j) ∪ {j}}. If

|Sj(h)| 6= 0, inequality (35) can be lifted as:∑
i∈S

yi +
∑
i∈S(j)

yi +
∑

i∈Sj(h)

yi ≤ |S| − 1 ∀j, h ∈ S. (36)

11

5 The branch-and-cut algorithm

In this section, we describe the branch-and-cut algorithm we propose to solve the GTSPTW. The al-

gorithm consists of three main phases. The first phase is the preprocessing step that is invoked before

starting the optimization procedure. It is presented in Section 5.1. Then we apply a quick heuristic

to obtain a feasible solution and to provide an upper bound of the optimal value. Details are given in

Section 5.2. Finally, the main phase consists in solving the problem by using a branch-and-cut algorithm,

based on the standard branch-and-cut scheme provided by the commercial solver CPLEX 12.6. The

initial model is built based on the mixed integer linear programming formulations F1 or F2 with the

strengthened MTZ-inequalities proposed in Section 4.1. The initial solution obtained by the heuristic is

used as a warm start for the branch-and-cut procedure. Inside the branch-and-bound tree, each time a

fractional solution is obtained, valid inequalities proposed in Section 4 are checked, and the ones violated

by the current solution are added to the model. Details are given in Section 5.3. For valid inequalities

with a polynomial number of constraints, we memorize all of them and scan the entire set to seek for

those that are violated (see Section 5.3.3). For exponential-size families of constraints (GSEC and SOP

inequalities), separation algorithms are applied to efficiently detect the violated inequalities (see Sections

5.3.1 and 5.3.2), and the number of the inequalities we choose to separate is limited (see Section 5.3.4).

5.1 Data preprocessing

As with many other combinatorial optimization problems, preprocessing is an important feature to en-

hance the resolution of the problem. In our case, preprocessing step consists in tightening the TWs and

eliminating arcs that cannot be part of a feasible solution.

The TW width can be reduced by taking into account the earliest and the latest arrival and departure

times at each vertex of the graph from or to another vertex. In particular, we consider the following

conditions proposed by Desrochers et al. (1992):

• earliest arrival time from predecessors: Ei = max{Ei,min{Li,min(j,i)∈A(Ej + Tji)}};

• earliest departure time to successors: Ei = max{Ei,min{Li,min(i,j)∈A(Ej − Tij)}};

• latest arrival time from predecessors: Li = min{Li,max{Ei,max(j,i)∈A(Li + Tji)}};

• latest departure time to successors: Li = min{Li,max{Ei,max(i,j)∈A(Lj − Tij)}}.

These conditions are applied iteratively to all vertices until no TW can be reduced. After applying the

TW reduction, we sparsify the graph by eliminating the arcs that cannot be part of a feasible solution.

In particular, we remove:

• arcs (i, j) ∈ A such that Ei + Tij > Lj ;

• arcs (i, j) ∈ A, i, j 6= 0 such that ∃ k ∈ K, ∀h ∈ Ck, both Eh+SPhi+Tij > Lj and Ei+Tij+SPjh > Lh

hold, i.e., arc (i, j) can be traversed neither before nor after visiting one cluster Ck.

This results in the elimination of the corresponding x variables in the formulation.

12

5.2 Initial heuristic

We develop a simple and fast heuristic to identify a feasible solution for the GTSPTW. The solution

obtained is used as a warm start in the branch-and-cut procedure.

First, we extend the refinement procedure for GTSP proposed by Fischetti et al. (1997) to GTSPTW

case. Suppose we have a visiting sequence (h1, . . . , hp) of p different clusters in K \ {0}. Based on this

sequence we construct a layered network (LN) as depicted in Figure 4. This network has p + 2 layers

corresponding to clusters Ch0 = C0, Ch1 , . . . , Chp , Chp+1 = C0, with their respective vertices. Clusters Ch0
and Chp+1 both represent the depot. The LN contains arcs (i, j) ∈ A such that i ∈ Chf , j ∈ Chf+1

, f =

0, . . . , p. The objective is to find a path in the LN that starts at Ch0 and ends at Chp+1 visiting exactly one

vertex of each layer, that is, one vertex from each cluster. The solution can be found by determining the

shortest path with TWs from Ch0 to Chp+1 . If p = K, the resulting path (if it exists) provides a feasible

GTSPTW solution.

.

Ch0

Ch1 Chp

Chp+1

C0 C0

Figure 4: The layered network.

A labeling algorithm is applied to determine the shortest path with TWs on the LN. A label Li

associated with a vertex i consists of a pair (Ci, Ti) representing respectively the cost and service time of

a feasible partial path that starts at Ch0 and arrives at vertex i. Let L(i) be the set containing all the

labels associated with vertex i. Suppose that Ccur is the current cluster and Cpre is the previous one. First

we compute the label set L(i), for all i ∈ Ccur by extending labels in L(j), for all j ∈ Cpre. Extending a

label Lj ∈ L(j) towards a vertex i ∈ Ccur consists in creating another label Li ∈ L(i) such that:

Ci = Cj + Cij ; (37)

Ti = max{Ei, Tj + Tji}. (38)

If Ti > Li, the partial path associated with the label is infeasible and this label is disregarded.

To make the algorithm efficient, we only keep non-dominated labels. A label L1
i dominates a label L2

i

if and only if C1
i ≤ C2

i and T 1
i ≤ T 2

i . It is easy to see that extending L1
i on the same arcs to the last

vertex of the LN would always produce a better solution than extending L2
i in the same way.

To generate good sequences of clusters, we develop the following constructive procedure. The initial

sequence of clusters is empty, hence the corresponding LN contains two layers: Ch0 = Ch1 = C0. Then, at

each step, we randomly select a cluster from those that are not yet inserted into the sequence. Suppose

that the current sequence is (h1, . . . , hp), and cluster Chl is chosen to be inserted next. It is obvious that

there are p+1 possible insertion positions for index hl into the sequence. The labeling algorithm described

13

above is invoked p + 1 times, one for each candidate insertion, to determine the best insertion position.

We record the sequence that provides the shortest path with TWs if such a sequence exists. If this is

not the case, the sequence construction procedure is stopped. The cluster insertion procedure is repeated

until p = K to obtain a feasible solution for GTSPTW.

The sequence construction procedure is repeated R times, and the best solution is recorded. After

preliminary experiments, we set R = 2500. A general description of the initial heuristic is provided in

Algorithm 1. Note that when K < 7, there are only 720 possible cluster sequences. It is more efficient

to enumerate all the sequences and to compute the shortest path with TWs for all of them. Since the

labeling procedure is an exact procedure (given a sequence it finds the optimal path for that sequence), the

optimal solution for the instance is found without calling the Branch-and-cut procedure. Therefore, the

branch-and-cut algorithm is only applied for instances with K ≥ 7 when applying the labeling procedure

on all the sequences of size K becomes ineffective.

Algorithm 1 Heuristic to provide an initial solution.

1: R← 2500

2: bestSol: best solution found

3: for h = 1 to h = R do

4: H ← K \ {0} (the set of cluster index)

5: feas← true

6: S ← ∅ (the sequence of clusters)

7: while feas = true and H is not empty do

8: l← an index randomly chosen in set H
9: Remove l from H

10: Try to insert l at its best position in sequence S

11: if the insertion of l is not feasible then

12: feas← false

13: if feas = true then

14: Update bestSol if S provides a better solution than the current bestSol

15: return bestSol

5.3 Separation techniques

At each node of the branch-and-cut tree, a relaxation of the model F1 or F2 is solved. Let us denote by

RF1 and RF2 these relaxations. When solving a relaxed model, the binary requirement on the variables

x and y is relaxed. Therefore, a fractional solution can be obtained where some values of the x or y

variables are in the interval]0, 1[. Then, a separation algorithm is used to detect violated inequalities

Since F1 and F2 are compact formulations of the GTSPTW, the valid inequalities proposed in Section 4

are not needed to define the problem but can help to strengthen the relaxed model. In the subsequent

sections, we describe the separation algorithms that we implemented for the different families of valid

inequalities. We indicate by (x∗, y∗) the current fractional solution.

14

5.3.1 Separation of the GSEC inequalities

It is well known that the separation of the SEC for the ATSP can be done by computing the maximum

flow between the depot and each node j in the support graph G∗ which corresponds to the undirected

version of the original graph G where the capacity ce of edge e = {i, j} is equal to x∗ij + x∗ji. If each

maximum flow is greater or equal than 2, the associated SEC is not violated by x∗. Otherwise, the

minimum (0− j) cut induces a violated SEC inequality (Nemhauser and Wolsey, 1999).

To separate the GSEC (22), we consider a capacitated graph G∗ = (V∗, E∗) where V∗ = K∗ =

{0, 1, . . . ,K}, and E∗ = {{k, l}|k, l ∈ V∗, k 6= l}. A capacity ce is associated with each edge e = {k, l} ∈ E∗,
and defined as ce =

∑
i∈Ck,j∈Cl (x∗ij + x∗ji). If the maximum flows in this graph G∗ have a value lower than

2, then some of the GSEC (22) are violated, and the corresponding constraints are added into the model.

To compute the maximum flow in G∗ and detect all violated inequalities, the Gomory-Hu algorithm is

applied, with a O(K4) time complexity (Gomory and Hu, 1961). By using Gomory-Hu algorithm, we

obtain the maximum flow and the corresponding minimum cut between each pair of distinct vertices in

V∗. Thus, all the minimum cuts in G∗ with a value lower than 2 are detected, and the related GSEC (22)

are added into the model.

5.3.2 Separation of the SOP inequalities

π-inequalities

We adapt the procedure used by Balas et al. (1995) to separate this family of inequalities. For any vertex

i with π(i) 6= ∅ and y∗i > 0, we consider a graph G∗ = (V∗,A∗), such that V∗ = V \{π(i)∪{C(i) \{i}}} and

A∗ = {(i, j)|i, j ∈ V∗, x∗ij > 0}. We associate with each arc in A∗ a capacity equal to the corresponding

x∗ values and we compute the maximum flow from vertex i to the depot 0 in G∗. If this flow is less than

yi, then the minimum (i, 0) cut identifies a violated π-inequality.

σ-inequalities

To detect violated σ-inequalities we apply a procedure similar to the one described for the π-inequalities

except that V∗ = V \{σ(i)∪{C(i)\{i}}} and we compute the maximum from the depot 0 to vertex i in the

graph G∗. If this flow is lower than yi, the corresponding minimum cut identifies a violated σ-inequality.

(π, σ)-inequalities

To detect violated (π, σ)-inequalities we consider each pair of vertices i, j such that i ≺ j, π(i) 6= ∅, σ(j) 6= ∅
and y∗i + y∗j − 1 > 0. We then apply a procedure similar to the one described for the π-inequalities except

that V∗ = V \Wij where Wij = {0}
⋃
π(i)

⋃
σ(j)

⋃
C(i)

⋃
C(j) \ {i, j} and we compute the maximum from

vertex i to vertex j in the graph G∗. If this flow is lower than (yi + yj − 1), the corresponding minimum

cut identifies a violated (π, σ)-inequality.

Note that the graph G∗ can be sparsified by deleting: i) all vertices k such that path (i, k, j) is

infeasible, i.e., Ei + SPik + SPkj > Lj ; ii) all arcs (u, v) such that path (i, u, v, j) is infeasible, e.g.,

Ei + SPiu + Tuv + SPvj > Lj .

15

πCk-inequalities

To separate πCk -inequalities, we consider any cluster Ck such that π(Ck) 6= ∅, |Ck| > 1. G∗ = (V∗,A∗)
is such that V∗ = {sk} ∪ V \ π(Ck) where sk is an additional vertex and A∗ = A∗1 ∪ A∗2 = {(i, j)|i, j ∈
V∗, x∗ij > 0}∪{(sk, j)|j ∈ Ck}. We associate with each arc in A∗1 a capacity equal to the corresponding x∗

value and with each arc in A∗2 a very large capacity. In the resulting graph G∗, we compute the maximum

flow from vertex sk to the depot 0. If it is strictly less than 1, a violated πCk inequality is identified.

σCk-inequalities

These inequalities are detected by adapting the explained procedure to identify violated πCk -inequalities.

(πCk , σCk)-inequalities

To detect violated (πCh , σCk)-inequalities we consider each pair of clusters Ch, Ck such that Ch ≺ Ck,
|Ch| > 1, |Ck| > 1. G∗ = (V∗,A∗) is such that V∗ = {sh, sk} ∪ V \ {π(Ch)∪ σ(Ck)} where sh and sk are two

additional vertices and A∗ = A∗1 ∪A∗2 ∪A∗3 = {(i, j)|i, j ∈ V∗, x∗ij > 0}∪ {(sh, j)|j ∈ Ch}∪ {(j, sk)|j ∈ Ck}.
We associate with each arc in A∗1 a capacity equal to the corresponding x∗ value and with each arc in A∗2
and A∗3 a very large capacity. In the resulting graph G∗, we compute the maximum flow from vertex sh

to vertex sk. If it is strictly less than 1, a violated (πCh , σCk)-inequality is identified.

5.3.3 Separation of the arc selection inequalities, arc-or-vertex inequalities and clique in-

equalities

Arc orientation inequalities (18), arc-or-vertex inequalities (19) and their lifted versions (20) and (21) are

polynomial in the size of the input. The clique inequalities (34) and their lifted versions (35) and (36),

we consider, are restricted to S ⊂ V, |S ∩ Ck| ≤ 1 for all k ∈ K with |S| = 2, 3. Therefore, whenever

a fractional solution is obtained, we scan the entire set of these inequalities to seek for those that are

violated.

5.3.4 Separation strategy

During the branch-and-cut procedure, at each time a fractional solution is obtained, the separation

procedures for GSEC, SOP, clique, arc orientation and arc-or-vertex inequalities is called. GSEC (22) are

separated using Gomory-Hu algorithm. One call to the algorithm provides all the violated cuts. However,

SOP cuts and SOP cuts on clusters require repeated calls to maximum flow algorithm: O(N) times for

π and σ-inequalities, O(N2) times for (π, σ)-inequalities, O(K) times for πCk and σCk -inequalities, and

O(K2) times for (πCh , σCk)-inequalities.

Solving these maximum flow problems would be time-consuming. Therefore, we introduce a parameter

α to control the percentage of SOP inequalities that we choose to separate. For each class of SOP

inequalities, we first determine the eligible vertices or clusters (for example for π-inequalities, all the

vertices i such that π(i) 6= ∅ and y∗i > 0), and then α percent are randomly chosen to be separated.

16

In addition, to improve the influence of the cuts added to the relaxed model, they should be significantly

violated. Thus, we introduce a parameter ε to control the lowest violation of the cuts we add. For each

family of inequalities, after the call to the separation algorithm, only the cuts having a violation of at

least ε are added into the model.

Detailed results on the setting of these parameters α and ε are presented in section 6.2.

6 Computational experiments

The algorithms were implemented in C++ in Visual Studio environment and uses CPLEX 12.6 and the

Concert framework. Experiments were performed on a PC Intel(R) Core(TM) i5-6200U CPU 2.20GHz

and 64G RAM. The computation time limit (TL) was set to 3600 seconds.

6.1 Problem instances

Since no testbed is available for GTSPTW in the literature, we created three groups of instances to test

the proposed algorithm.

The first group indicated by G1 includes 47 instances. G1 is generated by performing suitable

modifications to the existing benchmark for the GTSP proposed by Karapetyan (2012). The GTSP does

not take time into account, so for each arc of the graph, the traveling time is set equal to the traveling cost.

The GTSP instances do not necessarily contain a cluster with a unique vertex that could be the depot.

Hence, based on a GTSP instance, a depot is added. As coordinates are not always available in GTSP

instances, the traveling time from the depot to other vertices is fixed to be 0. The TW of the depot is

[0, T], where T initially equals twice the best objective value of the original GTSP instance. Then, the TW

[Ei, Li] for each vertex i ∈ V\{0} is generated according to the method described by Solomon (1987). The

center of the TW, denoted as ci, is randomly generated from a uniform distribution in the interval [0, T].

For the width wi of the TW, a number ri is randomly generated from the standard normal distribution,

then wi = |ri|min {ci, T − ci}. Thus the TW [Ei, Li] can be obtained as Ei = ci − wi, Li = ci + wi.

Once the above procedure has been applied, we impose a modification procedure to ensure that a feasible

solution exists for the instance created. First, a sequence of clusters is randomly generated. Then, for

each cluster, one vertex is randomly selected in order to get a tour. Starting at time 0 from the depot,

we compute the service time at each vertex from its previous vertex in this tour. If the service time at

vertex i exceeds the upper bound Li, Li is then updated with the service time value. At the end of the

tour, if the arrival time at the depot is greater than T , then T is updated to the arrival time value. In this

way, we ensure that a feasible solution exists for the instance generated. The instance name is obtained

by adding TW before its original GTSP name, e.g., we create TW 3burma14 based on 3burma14. The

number in the middle of the name represents the number of clusters, and the number at the end represents

the number of vertices, both excluding the depot.

In GTSP instances, some clusters contain a large number of vertices. This does not correspond to the

last mile delivery application. Therefore, we generated a second group indicated by G2 which includes 39

instances. G2 is obtained in a similar way to the set G1, except that the maximum number of vertices

per cluster Nmax is fixed. In our experiments, we set Nmax = 5 which is reasonable in the case of last mile

17

delivery. Based on a GTSP instance, when the number of vertices in a cluster Ck is greater than Nmax,

we divide the corresponding cluster into M
′

clusters, where M
′

= d|Ck|/Nmaxe. The first Nmax vertices in

Ck constitute the first cluster, and so on. The following steps are as described above to create instances

in G1. The instance name is similar to G1, while the number in the middle of the name changes to the

number of clusters in the instance excluding the depot, e.g., TW 4burma14 is created based on 3burma14.

The third group with 72 instances, indicated by G3 is obtained from the instances proposed by Reyes

et al. (2017) for the VRPRDL. As mentioned above, the TWs in these instances have a particular structure,

i.e., the TWs associated with vertices in a same cluster do not overlap. Since the VRPRDL instances are

for the multi-vehicle case, we use only part of the instance information. Given one VRPRDL instance, we

consider the best corresponding solution, and define an instance for the GTSPTW by the clusters visited

along the longest route in the solution. The data about the distances, the traveling times and TWs are

not modified.

To create larger instances, we combine several routes belonging to a solution of one VRPRDL instance.

In this case, TWs need to be modified to obtain a set of customers that can be visited in a single route.

Notice that the vertices within the same cluster are ordered based on the earliest visit times. An example

is given in Figure 5 for the case with two routes. Suppose that S1 and S2 are the cluster sets which

include all the clusters visited in the routes r1 and r2, respectively. We note (Cr1,1, Cr1,2, . . . , Cr1,|S1|) the

sequence of clusters visited by route r1, and (ir1,1, ir1,2, . . . , ir1,|S1|) the sequence of vertices visited in route

r1. Obviously, ir1,k ∈ Cr1,k, ∀k = 1, . . . , |S1|. The same notation is used for route r2. The time horizon of

the original VRPRDL instances lasts ∆ = 12 hours. We then move forward the TWs of all the vertices

belonging to the clusters in S2 by ∆ plus the traveling time from ir1,|S1| the last visited vertex in r1 to

ir2,1 the first visited vertex in r2. Then for each cluster Cr1,k in S1, the TWs of vertices which are before

ir1,k the vertex visited in this cluster by r1 are moved forward by ∆ + δ(Cr1,k). δ(Cr1,k) corresponds to the

traveling time from the last vertex of Cr1,k to the first vertex of Cr1,k, where vertices are ordered based

on the earliest visit times. In the same way, for each cluster Cr2,k in S2, the TWs of vertices which are

after ir2,k the vertex visited in this cluster by r2 are moved backward by ∆ + δ(Cr2,k). In this way, we

inherit the property of non-overlapping TWs within a cluster and ensure that there is a feasible solution

r = [r1, r2] in the created instance. Similarly, we can use more than two routes of a solution to create

instances.

Step 1 Step 2Original 2 routes

Cr1,1
Cr1,2
Cr2,1
Cr2,2

S1

S2 r2

r1

r r

ir1,1

ir1,2ir2,1

ir2,2

Figure 5: Create G3 instances from 2 routes.

We use sequences a-b-c-d to name instances in G3, where a and b indicate the number of clusters

and vertices in the instance respectively, similar to G1 and G2, excluding the depot. c and d indicate

18

that the instance is created based on the dth VRPRDL instance using its c longest routes in the solution,

e.g., 14-41-2-6 means that using the two longest routes in the solution of the sixth VRPRDL instance, we

create a G3 instance with 14 clusters and 41 vertices.

6.2 Parameter tuning results

In the separation procedure described in Section 5.3.4 we introduced two parameters, α and ε, which

respectively control the percentage of SOP inequalities that we randomly choose to separate and the least

violation of all the cuts that we add. We limit the impact of α to the SOP inequalities due to their large

cardinality. Here we discuss the tuning phase of α and ε.

To observe significant differences between results obtained from different parameter settings, we choose

instances of comparatively medium and large size in sets G1 and G2. We do not consider instances of

G3 since preliminary results showed that they are the easiest to solve.

We choose 7 instances: 4 in G1 (TW 20kroA100, TW 25pr124, TW 26ch130, TW 35si175) and 3 in

G2 (TW 28rat99, TW 30eil101, TW 32gr120). We consider values of α in {40; 60; 80; 100} and values of

ε in {0.05; 0.1; 0.15} and perform experiments for all possible pairs (α, ε). The average optimality gaps

for the two formulations F1 and F2 are reported in Table 1. Computation time is limited to one hour

per execution.

Table 1: Tuning results on F1 and F2.

ε α Average gap F1 Average gap F2

0.05

40 1.54% 0.38%

60 2.06% 1.37%

80 2.65% 1.10%

100 2.13% 1.23%

0.1

40 1.79% 0.65%

60 1.77% 0.82%

80 2.22% 0.48%

100 2.21% 0.97%

0.15

40 1.69% 0.13%

60 1.88% 1.02%

80 2.14% 0.89%

100 2.19% 0.37%

Our results in Table 1 show that the average optimality gaps obtained from F2 are always smaller

than those obtained from F1. This indicates that formulation F2 turns to be superior to formulation F1.

It is also clear that the best parameter setting for F2 is (α, ε) = (40, 0.15) with the smallest average gap

of 0.13%. Therefore, we conduct the following experiments using formulation F2 with (α, ε) = (40, 0.15).

6.3 Computational results

We now present the results obtained with the branch-and-cut algorithm presented in this paper. The

algorithm was tested on the 158 instances in G1, G2 and G3 and, due to the results presented in

Section 6.2, experiments were carried out with formulation F2. Table 2 provides the column headings

19

used in the following tables. Detailed results on G1, G2 and G3 are presented in Table 3, 4 and 5

respectively.

Table 2: Column headings.

Column heading Description

Instance name of the problem instance

Obj value of the best solution obtained

initS value of initial heuristic solution

rLB lower bound at the root node

fLB lower bound at the termination/at the time limit

rGAP gap at the root node (%): rGAP = rUB−rLB
rUB

where rUB is the upper bound at the root node

fGAP gap at the termination/at the time limit (%): fGAP = Obj−fLB
Obj

nbNode number of nodes in the branch-and-cut tree

nbCuts number of generated cuts

sep-time time spent in separation procedure in seconds

time total computation time in seconds (equals to 1 hour if optimality is not achieved)

As mentioned in Section 5.2, the labeling algorithm can be executed on all sequences with less than

seven clusters within reasonable computation times. In this case, instead of searching for an initial

solution, we just enumerate all feasible sequences to get an optimal solution without calling the branch-

and-cut algorithm. For this reason, we report only the objective values and computation times for the

first ten lines of Table 3 and the first four lines of Table 4.

In Table 3, we report results on instances in G1. Our results indicate that our algorithm is able to solve

most instances up to 30 clusters and 150 vertices within one hour. However, one instance with 26 clusters

(TW 26bier127), one instance with 28 clusters (TW 28pr136) and one instance with 30 (TW 30kroB150)

clusters remain unsolved. Moreover, all instances with up to 24 clusters and 124 vertices are systematically

solved in less than three minutes. For all the instances solved to optimality, we calculate the average gap

between their initial solution obtained from the heuristic initS and the final optimal solution Obj, which

equals to 0.59%. This proves the efficiency of the heuristic.

When we consider instances in G2 (see Table 4), we can observe that the largest solved instance

within the given time frame involves 36 clusters and 130 vertices. Instances with up to 28 clusters and

100 vertices are systematically solved to optimality in one hour of computation time. Initial heuristic is

also very efficient on instance set G2. For all the instances solved to optimality, the average gap between

their initial solution obtained from the heuristic initS and the final optimal solution Obj equals to 0.10%.

Table 5 reports results on Instances in G3 (see Table 5). All the instances are solved to optimality

in very short computation times. Most instances are solved at the root node. The largest instance with

32 clusters and 125 vertices is solved to optimality in less than one minute. For most of the instances,

the initial solutions obtained from the heuristic turn out to be the optimal solutions, except instance 16-

51-2-38 with a gap 0.47% and instance 28-99-3-31 with a gap 0.71% from their optimal solutions. From

the results, we can conclude that the special non-overlapping TW structure that characterizes vertices in

clusters of instances in G3 makes the problem easier to solve.

The computational results on the three groups of instances show that the proposed branch-and-cut

20

Table 3: Results on G1 (F2).

Instance Obj initS rGAP(%) rLB fGAP(%) fLB nbNodes nbCuts sep-time time

TW 3burma14 908 908 0.01

TW 4br17 19 19 0.01

TW 4gr17 962 962 0.01

TW 4ulysses16 2392 2392 0.01

TW 5gr21 1165 1165 0.01

TW 5gr24 263 263 0.01

TW 5ulysses22 3287 3287 0.01

TW 6bayg29 476 476 0.02

TW 6bays29 628 628 0.02

TW 6fri26 354 354 0.03

TW 7ftv33 416 416 0.00 416.0 0.00 416.0 0 41 0.01 1.41

TW 8ftv36 538 554 6.11 520.2 0.00 538.0 5 207 0.19 2.70

TW 8ftv38 384 410 0.00 384.0 0.00 384.0 0 124 0.02 1.89

TW 9dantzig42 322 322 6.51 301.0 0.00 322.0 85 531 1.45 5.67

TW 10att48 4113 4113 0.00 4113.0 0.00 4113.0 0 95 0.04 5.31

TW 10gr48 1437 1515 2.64 1429.3 0.00 1437.0 6 164 0.26 6.13

TW 10hk48 5268 5268 4.34 5039.6 0.00 5268.0 49 560 0.70 5.90

TW 11berlin52 3632 3632 9.74 3278.4 0.00 3632.0 438 836 5.40 13.38

TW 11eil51 151 157 0.00 151.0 0.00 151.0 0 253 0.50 6.22

TW 12brazil58 13503 13503 2.82 13122.7 0.00 13503.0 18 416 0.47 7.96

TW 14st70 289 289 5.57 272.9 0.00 289.0 1326 1479 48.39 77.62

TW 16eil76 205 205 4.33 196.1 0.00 205.0 79 1931 4.38 24.26

TW 16pr76 57164 57164 0.84 56683.6 0.00 57164.0 19 1018 2.71 19.85

TW 20gr96 33128 33128 3.52 31960.9 0.00 33128.0 68 1538 22.17 65.98

TW 20kroA100 10209 10209 7.76 9417.2 0.00 10209.0 120 3525 56.17 131.33

TW 20kroB100 9862 9975 4.05 9570.9 0.00 9862.0 62 3131 24.01 76.71

TW 20kroC100 9728 9728 3.38 9399.1 0.00 9728.0 246 2944 29.43 76.21

TW 20kroD100 9210 9210 3.87 8854.0 0.00 9210.0 70 1494 22.92 66.75

TW 20kroE100 9514 9514 3.58 9173.5 0.00 9514.0 121 2761 13.85 55.17

TW 20rat99 478 478 6.11 448.8 0.00 478.0 206 3871 27.04 81.86

TW 20rd100 3446 3505 2.58 3357.0 0.00 3446.0 142 2535 16.50 61.51

TW 21eil101 247 247 5.59 233.2 0.00 247.0 144 3334 28.21 87.96

TW 21lin105 7582 7582 2.15 7419.1 0.00 7582.0 90 2740 25.26 77.53

TW 22pr107 21352 21481 1.27 21208.1 0.00 21352.0 9 1272 9.39 53.41

TW 24gr120 2811 2825 5.18 2678.6 0.00 2811.0 123 3384 51.69 157.79

TW 25pr124 36520 36520 7.29 33859.3 0.00 36520.0 6241 12716 875.16 2360.25

TW 26bier127 86761 86761 17.44 71627.8 14.86 73867.5 4716 12654 990.31 TL

TW 26ch130 2891 2896 5.17 2746.4 0.00 2891.0 4405 10393 903.71 1785.17

TW 28gr137 34123 34201 4.61 32625.9 0.00 34123.0 1777 6217 270.17 554.41

TW 28pr136 45998 45998 7.50 42549.9 1.63 45246.6 6124 16707 1788.74 TL

TW 29pr144 43639 43639 1.13 43143.7 0.00 43639.0 188 4910 174.72 356.05

TW 30ch150 2895 2895 6.29 2712.8 2.02 2836.6 4842 14537 1980.22 TL

TW 30kroA150 11475 11475 4.18 10995.1 0.00 11475.0 384 10779 201.97 495.47

TW 30kroB150 12759 12869 6.89 11981.7 2.52 12437.8 2129 15662 1728.91 TL

TW 31pr152 55128 55128 17.45 45506.3 15.80 46419.8 8600 15081 1548.08 TL

TW 32u159 22846 22846 6.99 21249.5 2.29 22323.0 2124 12451 1747.28 TL

TW 35si175 5521 5561 2.42 5426.7 0.91 5470.8 1180 13828 1865.05 TL

algorithm is very efficient and is able to solve instances with 30 clusters. This represents the maximal

number of deliveries that a courier can perform during a day in an urban context. Moreover, the initial

solutions provided by the heuristic are of high quality with respect to the best solutions obtained.

21

Table 4: Results on G2 (F2).

Instance Obj initS rGAP(%) rLB fGAP(%) fLB nbNodes nbCuts sep-time time

TW 4burma14 957 957 0.01

TW 5br17 19 19 0.01

TW 5gr17 766 766 0.01

TW 6ulysses16 2521 2521 0.02

TW 7gr21 1475 1475 0.00 1475.0 0.00 1475.0 0 55 0.02 0.88

TW 7gr24 365 365 0.00 365.0 0.00 365.0 0 60 0.01 0.93

TW 8ulysses22 3461 3461 0.00 3461.0 0.00 3461.0 0 78 0.01 1.15

TW 8bayg29 515 515 0.00 515.0 0.00 515.0 0 56 0.00 1.31

TW 8bays29 595 595 0.00 595.0 0.00 595.0 0 47 0.02 1.53

TW 9fri26 498 498 0.00 498.0 0.00 498.0 0 62 0.00 1.34

TW 10ftv33 467 467 0.00 467.0 0.00 467.0 0 113 0.06 2.33

TW 10ftv36 500 500 2.61 487.0 0.00 500.0 3 148 0.17 2.95

TW 10ftv38 469 469 8.50 429.1 0.00 469.0 48 490 0.5 4.05

TW 12dantzig42 364 364 0.00 364.0 0.00 364.0 0 204 0.41 4.66

TW 13gr48 2010 2010 1.77 1974.4 0.00 2010.0 7 611 0.25 5.23

TW 14att48 5415 5415 7.13 5028.7 0.00 5415.0 383 951 5.75 16.08

TW 14hk48 5989 5989 6.40 5605.9 0.00 5989.0 175 855 2.69 10.37

TW 15eil51 172 172 3.22 166.5 0.00 172.0 5 367 0.73 9.34

TW 16berlin52 3821 3821 3.88 3672.6 0.00 3821.0 253 914 3.97 15.45

TW 17brazil58 12665 12665 4.35 12114.5 0.00 12665.0 54 896 4.05 18.39

TW 20st70 329 329 5.21 311.9 0.00 329.0 255 1605 12.01 35.47

TW 21eil76 245 245 9.74 221.1 0.00 245.0 6718 3629 266.32 463.47

TW 22pr76 71098 71098 6.85 66229.7 0.00 71098.0 202 1969 28.09 67.67

TW 24kroC100 9932 9932 2.35 9698.9 0.00 9932.0 25 1404 13.23 68.43

TW 26kroA100 10515 10541 3.66 10130.6 0.00 10515.0 74 2569 25.33 88.10

TW 28rat99 618 628 10.91 559.5 0.00 618.0 10014 10811 1789.50 3418.14

TW 28kroB100 11937 11976 6.19 11234.7 0.00 11937.0 1245 4579 152.68 282.56

TW 28kroD100 10720 10720 8.71 9785.8 0.00 10720.0 347 3642 116.67 240.92

TW 29gr96 35064 35064 7.64 32383.6 0.00 35064.0 1698 5145 323.82 558.95

TW 29kroE100 11275 11275 5.97 10602.0 0.00 11275.0 16295 5457 726.72 1130.78

TW 29rd100 4380 4380 9.65 3957.5 0.85 4342.7 12627 9801 1585.25 TL

TW 30eil101 292 292 6.24 273.8 0.00 292.0 638 4078 142.63 272.15

TW 32lin105 9944 9965 10.36 8932.6 3.98 9548.7 9584 10072 2056.20 TL

TW 32gr120 3307 3307 9.34 2998.0 0.00 3307.0 9010 12733 1108.94 2788.73

TW 32pr124 37655 37655 7.19 34947.4 2.71 36635.4 4870 14028 1878.86 TL

TW 34pr107 34349 34349 19.42 27677.0 13.96 29554.6 8897 12852 1514.82 TL

TW 36ch130 3309 3345 3.71 3220.8 0.00 3309.0 7411 6138 1186.88 1756.03

TW 38ch150 3257 3288 7.30 3019.1 4.44 3112.5 2525 12398 2251.49 TL

TW 39gr137 40203 41177 7.73 37995.8 1.72 39512.6 4297 12894 2148.52 TL

The instances in G1 and G2 are derived from the same GTSP instances. Instances in G2 have the

maximum number of vertices per cluster set to Nmax = 5. This feature does not seem to make instance

resolution in G2 any easier than in G1. At first glance, one could say that slightly larger instances can

be solved in G2 than in G1 (36 clusters versus 30 clusters). On the other hand, a more in-depth analysis

shows that instances with the same number of vertices are solved faster when they belong to G1 rather

than to G2. This can be seen by considering the results on instances with 48 to 137 vertices, i.e., from

TW 13gr48 to TW 39gr137. The average computation time is 378.35 seconds for instances in G1 while it

increases to 1313.85 seconds for instances in G2. Note that if an instance is not solved to optimality, we

22

Table 5: Results on G3 (F2).

Instance Obj initS rGAP% rLB fGAP% fLB nbNodes nbCuts sep-time time

5-10-1-3 326 326 0.01

5-13-1-1 329 329 0.01

5-14-1-2 186 186 0.01

5-25-1-15 231 231 0.01

6-15-1-9 201 201 0.01

6-16-1-5 292 292 0.01

6-19-1-22 301 301 0.01

6-22-1-4 344 344 0.01

6-24-1-0 226 226 0.01

6-25-1-7 272 272 0.01

6-25-1-17 315 315 0.01

6-29-1-11 283 283 0.01

7-21-1-18 271 271 0.00 271.0 0.00 271.0 0 0 0.01 0.50

7-26-1-27 299 299 0.00 299.0 0.00 299.0 0 5 0.01 0.60

7-27-1-13 267 267 0.00 267.0 0.00 267.0 0 0 0.01 0.62

7-27-1-14 312 312 0.00 312.0 0.00 312.0 0 21 0.01 0.63

7-30-1-29 337 337 0.00 337.0 0.00 337.0 0 81 0.01 0.69

7-31-1-20 245 245 0.00 245.0 0.00 245.0 0 0 0.01 0.71

8-14-1-19 318 318 0.00 318.0 0.00 318.0 0 14 0.01 0.54

8-24-1-10 281 281 0.00 281.0 0.00 281.0 0 67 0.01 0.82

8-24-1-12 273 273 0.00 273.0 0.00 273.0 0 40 0.01 0.93

8-27-1-28 306 306 0.00 306.0 0.00 306.0 0 0 0.01 0.81

8-28-1-8 213 213 0.00 213.0 0.00 213.0 0 19 0.01 0.66

8-29-1-38 216 216 0.00 216.0 0.00 216.0 0 22 0.01 0.92

8-30-1-25 272 272 0.00 272.0 0.00 272.0 0 50 0.01 0.91

8-36-1-23 278 278 0.00 278.0 0.00 278.0 0 74 0.01 0.94

9-26-1-35 347 347 0.00 347.0 0.00 347.0 0 61 0.01 0.72

9-27-1-21 341 341 0.00 341.0 0.00 341.0 0 71 0.01 0.75

9-34-1-16 333 333 0.00 333.0 0.00 333.0 0 83 0.01 1.01

9-34-1-26 232 232 0.00 232.0 0.00 232.0 0 69 0.02 1.22

10-29-1-6 281 281 0.00 281.0 0.00 281.0 0 29 0.01 1.12

10-32-1-31 350 350 0.00 350.0 0.00 350.0 0 267 0.07 1.35

10-40-1-36 324 324 0.00 324.0 0.00 324.0 0 124 0.01 1.45

10-41-1-30 196 196 0.00 196.0 0.00 196.0 0 96 0.01 1.74

10-42-1-24 258 258 0.00 258.0 0.00 258.0 0 132 0.03 1.93

11-27-1-37 333 333 0.00 333.0 0.00 333.0 0 32 0.01 1.44

11-33-1-39 312 312 0.00 312.0 0.00 312.0 0 198 0.07 1.95

11-43-1-32 347 347 0.00 347.0 0.00 347.0 0 46 0.01 1.25

12-45-1-34 260 260 0.00 260.0 0.00 260.0 0 68 0.02 2.21

13-41-1-33 347 347 0.00 347.0 0.00 347.0 0 135 0.03 2.42

14-34-2-19 478 478 0.00 478.0 0.00 478.0 0 123 0.03 2.10

14-41-2-6 514 514 0.00 514.0 0.00 514.0 0 210 0.02 2.64

14-44-2-27 575 575 0.00 575.0 0.00 575.0 0 295 0.10 3.43

14-44-2-28 500 500 0.00 500.0 0.00 500.0 0 120 0.02 3.52

14-52-2-12 622 622 0.00 622.0 0.00 622.0 0 211 0.07 2.69

15-56-2-23 531 531 0.00 531.0 0.00 531.0 0 407 0.03 4.43

16-51-2-38 429 431 0.00 429.0 0.00 429.0 0 356 0.15 5.43

16-60-2-25 589 589 0.00 589.0 0.00 589.0 0 396 0.05 3.59

16-60-2-26 498 498 0.00 498.0 0.00 498.0 0 185 0.04 4.76

16-69-2-24 415 415 0.00 415.0 0.00 415.0 0 2502 0.07 5.57

17-48-2-35 606 606 10.23 544.0 0.00 606.0 7 697 0.78 5.09

23

Instance Obj initS rGAP% rLB fGAP% fLB nbNodes nbCuts sep-time time

17-50-2-21 563 563 0.00 563.0 0.00 563.0 0 190 0.03 2.69

19-61-2-31 564 564 11.07 501.6 0.00 564.0 21 2555 4.22 13.38

19-72-2-30 510 510 0.00 510.0 0.00 510.0 0 682 0.09 8.67

20-60-2-37 600 600 0.00 600.0 0.00 600.0 0 610 0.29 5.42

20-82-2-36 643 643 0.00 643.0 0.00 643.0 0 589 0.12 6.94

21-71-2-39 554 554 0.00 554.0 0.00 554.0 0 425 0.23 9.39

21-78-2-32 662 662 0.00 662.0 0.00 662.0 0 1305 0.24 10.47

23-83-2-34 448 448 0.00 448.0 0.00 448.0 0 508 0.18 12.38

23-91-2-33 532 532 0.00 532.0 0.00 532.0 0 448 0.20 11.70

24-76-3-21 835 835 0.00 835.0 0.00 835.0 0 1105 1.17 9.74

24-78-3-38 677 677 1.62 666.1 0.00 677.0 10 5470 2.66 13.32

24-86-3-25 850 850 0.00 850.0 0.00 850.0 0 1169 0.29 13.42

25-76-3-35 830 830 0.00 830.0 0.00 830.0 0 1320 1.13 8.71

28-99-3-31 844 850 3.34 815.8 0.00 844.0 41 6422 21.42 42.57

28-110-3-30 720 720 0.00 720.0 0.00 720.0 0 2087 1.29 27.51

29-95-3-37 850 850 3.45 820.6 0.00 850.0 6 7773 5.76 23.09

29-95-3-39 850 850 0.00 850.0 0.00 850.0 0 2521 0.66 19.54

30-114-3-36 929 929 0.00 929.0 0.00 929.0 0 2001 0.45 20.97

31-118-3-32 921 921 0.00 921.0 0.00 921.0 0 2567 0.57 20.04

31-128-3-33 856 856 0.00 856.0 0.00 856.0 0 1159 0.60 28.67

32-125-3-34 721 721 0.00 721.0 0.00 721.0 0 1875 0.62 36.48

consider the computation time as one hour. Therefore, it seems that instances with the same number of

vertices but a larger number of clusters are more difficult to solve. However, this is not always the case,

as, for example, TW 20kroA100 in G1 is solved in 131.33 seconds while TW 26kroA100 in G2 is solved

in 88.10 seconds.

7 Conclusions

In this paper, we have presented two formulations F1 and F2 for the Generalized Traveling Salesman

Problem with Time Windows, a new generalization of the classical TSPTW and GTSP. We proposed

several families of valid inequalities, which contain polynomial or exponential numbers of constraints.

They were incorporated in a branch-and-cut framework through dedicated separation procedures. A high

quality initial solution was constructed based on a heuristic and used as a warm start in the branch-and-

cut algorithm. We tested the algorithm on three groups of instances with different characteristics. The

results clearly demonstrate the efficiency of the proposed branch-and-cut algorithm and the quality of

formulation F2. The proposed branch-and-cut algorithm based on formulation F2 can solve instances

around 30 clusters within one hour of computation time.

8 Acknowledgment

This work is partially supported by the CSC (China Scholarship Council) and by the ELSAT 2020 project.

This support is gratefully acknowledged.

24

References

Ascheuer, N., Fischetti, M., and Grötschel, M. (2001). Solving the asymmetric travelling salesman problem

with time windows by branch-and-cut. Mathematical Programming, 90(3):475–506.

Balas, E., Fischetti, M., and Pulleyblank, W. R. (1995). The precedence-constrained asymmetric traveling

salesman polytope. Mathematical programming, 68(1-3):241–265.

Dantzig, G., Fulkerson, R., and Johnson, S. (1954). Solution of a large-scale traveling-salesman problem.

Journal of the operations research society of America, 2(4):393–410.

Dash, S., Günlük, O., Lodi, A., and Tramontani, A. (2012). A time bucket formulation for the traveling

salesman problem with time windows. INFORMS Journal on Computing, 24(1):132–147.

Desrochers, M., Desrosiers, J., and Solomon, M. (1992). A new optimization algorithm for the vehicle

routing problem with time windows. Operations research, 40(2):342–354.

Desrochers, M. and Laporte, G. (1991). Improvements and extensions to the miller-tucker-zemlin subtour

elimination constraints. Operations Research Letters, 10(1):27–36.

Dimitrijević, V. and Šarić, Z. (1997). An efficient transformation of the generalized traveling salesman

problem into the traveling salesman problem on digraphs. Information Sciences, 102(1-4):105–110.

eMarketer (2018). Retail ecommerce sales worldwide, 2016-2021 (trillions, % change and % of total

retail sales). http://www.emarketer.com/Chart/Retail-Ecommerce-Sales-Worldwide-2016-2021-

trillions-change-of-total-retail-sales/215138. Online, accessed February 2019.

Farber, M. (2016). Consumers are now doing most of their shopping online. http://fortune.com/2016/

06/08/online-shopping-increases/. Online, accessed March 2019.

Fischetti, M., Salazar González, J. J., and Toth, P. (1997). A branch-and-cut algorithm for the symmetric

generalized traveling salesman problem. Operations Research, 45(3):378–394.

Ghiani, G. and Improta, G. (2000). An efficient transformation of the generalized vehicle routing problem.

European Journal of Operational Research, 122(1):11–17.

Gomory, R. E. and Hu, T. C. (1961). Multi-terminal network flows. Journal of the Society for Industrial

and Applied Mathematics, 9(4):551–570.

Gutin, G. and Karapetyan, D. (2010). A memetic algorithm for the generalized traveling salesman

problem. Natural Computing, 9(1):47–60.

Helsgaun, K. (2000). An effective implementation of the lin–kernighan traveling salesman heuristic.

European Journal of Operational Research, 126(1):106–130.

Helsgaun, K. (2009). General k-opt submoves for the lin–kernighan tsp heuristic. Mathematical Program-

ming Computation, 1(2-3):119–163.

25

Helsgaun, K. (2015). Solving the equality generalized traveling salesman problem using the lin–kernighan–

helsgaun algorithm. Mathematical Programming Computation, 7(3):269–287.

Karapetyan, D. (2012). Gtsp instances library. http://www.cs.nott.ac.uk/~pszdk/gtsp.html. Online,

accessed August 2018.

Karapetyan, D. and Gutin, G. (2012). Efficient local search algorithms for known and new neighborhoods

for the generalized traveling salesman problem. European Journal of Operational Research, 219(2):234–

251.

Laporte, G. and Semet, F. (1999). Computational evaluation of a transformation procedure for the

symmetric generalized traveling salesman problem. INFOR: Information Systems and Operational

Research, 37(2):114–120.

Lowe, R. and Rigby, M. (2014). The last mile - exploring the online purchasing and delivery journey.

Technical report, Barclays.

Miller, C. E., Tucker, A. W., and Zemlin, R. A. (1960). Integer programming formulation of traveling

salesman problems. Journal of the ACM (JACM), 7(4):326–329.

Moccia, L., Cordeau, J. F., and Laporte, G. (2012). An incremental tabu search heuristic for the gen-

eralized vehicle routing problem with time windows. Journal of the Operational Research Society,

63(2):232–244.

Nemhauser, G. and Wolsey, L. (1999). Application of special-purpose algorithm. In Integer and combi-

natorial optimization. John Wiley & Sons.

Noon, C. E. and Bean, J. C. (1991). A lagrangian based approach for the asymmetric generalized traveling

salesman problem. Operations Research, 39(4):623–632.

Noon, C. E. and Bean, J. C. (1993). An efficient transformation of the generalized traveling salesman

problem. INFOR: Information Systems and Operational Research, 31(1):39–44.

Ozbaygin, G., Karasan, O. E., Savelsbergh, M., and Yaman, H. (2017). A branch-and-price algorithm

for the vehicle routing problem with roaming delivery locations. Transportation Research Part B:

Methodological, 100:115–137.

Padberg, M. W. (1973). On the facial structure of set packing polyhedra. Mathematical programming,

5(1):199–215.

Reyes, D., Savelsbergh, M., and Toriello, A. (2017). Vehicle routing with roaming delivery locations.

Transportation Research Part C: Emerging Technologies, 80:71–91.

Smith, S. L. and Imeson, F. (2017). Glns: An effective large neighborhood search heuristic for the

generalized traveling salesman problem. Computers & Operations Research, 87:1–19.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window

constraints. Operations research, 35(2):254–265.

26

