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Introduction

Fast estimating and system state prediction are indispensable in a rapidly changing environment characterized by an economic context unstable with hard competition. The resource allocation problem is among the top challenging problem in project management. In the literature, many approaches are proposed to resolve such problem.

Among them, divers methods and methodologies based on the Minimum Initial Marking (MIM) Estimation in Labeled Petri Net (L-PN) [START_REF] Watanabe | Legal firing sequences and minimum initial markings for petri nets[END_REF][START_REF] Giua | Marking estimation of Petri nets with silent transitions[END_REF][START_REF] Cabasino | Marking estimation of petri nets with arbitrary transition labeling[END_REF][START_REF] Cabasino | Decentralized diagnosis of discrete event systems using labeled Petri nets[END_REF].

In [START_REF] Giua | Marking estimation of Ppetri nets based on partial observation[END_REF], marking estimation problem of L-PN under a label sequence observation constraint is developed. Authors of this work prove that the determination of the feasible markings set is possible under some conditions on the L-PN structure when the size of the linear system does not depend on the size of the observed label sequence. Basile et al. propose an algorithm for estimating the marking of a Timed Petri Net (T-PN) with unobservable transitions [START_REF] Basile | Marking estimation of time Petri nets with unobservable transitions[END_REF]. In this work, due to the "modified state class graph" (MSCG), the behavior and possible evolutions of the examined system can be obtained. In the same context, Abdellatif et al. [START_REF] Abdellatif | Towards a Minimum Initial Marking Estimation Procedure for P-Time Labelled Petri net Systems[END_REF] develop a technique for estimating the MIM of a real-time system under partial observation modeled by a P-Time labeled PN. Li et al., in [START_REF] Li | Least-cost planning sequence estimation in labelled Petri nets[END_REF], estimated via a labeled Petri net the least-cost planning sequences of a manufacturing system. The evolution of possible marking(s) is determined through the observation of labels sequences. Indeed, the marking evolution is obtained by following the low cost Transition Firing Sequence(s) (TFS).

The work, in [START_REF] Li | Minimum initial marking estimation in labeled petri nets[END_REF], develops a recursive algorithm able to find the MIM in L-PN.

Authors propose also two heuristics to obtain an approximated subset of MIMs. The disadvantage of this approach is that the execution of the algorithm takes a long time. In order to reduce complexity and give a better solution in less running time, other published researches, with the same problem such [START_REF] Yamauchi | A heuristic algorithm for the minimum initial marking problem of petri nets[END_REF], [START_REF] Kmimech | Genetic-based Approach for Minimum Initial Marking Estimation in Labeled Petri Nets[END_REF], have proposed solutions based on heuristics and metaheuristics. In fact, the problem of running time was solved with genetic algorithm metaheuristic to compute the MIMs in short time [START_REF] Kmimech | Genetic-based Approach for Minimum Initial Marking Estimation in Labeled Petri Nets[END_REF]. However, there are different limitations to these approaches, among them, producing much smaller solutions against exact methods.

The presented work is motivated by real time problems dealing with control, monitoring and minimum resource allocation in complex and cyber systems. In fact, we search to determine the better solution in less running time. The principal aim of this paper is to propose a new perspective in the field of estimating the initial marking (considered unknown) of L-PN. Compared to the state of the art, the proposed approach in this work is based on the GMIM method inspired from the multi-start metaheuristic GRASP used generally for combinatorial problems [START_REF] Feo | Greedy randomized adaptive search procedures[END_REF].

The following four basic assumptions will be considered during the reasoning:

(i)
The PN structure is known;

(ii) For each transition of L-PN, a label is associated;

(iii) The label sequence is known;

(iv) All transitions of L-PN are observable.

In the next section, backgrounds on PN and L-PN notations will be presented. Section 3 provides the definition of the considered problem. The GMIM method proposed for obtaining the MIM(s) is presented in section 4. In section 5, a validation will be achieved through two problems.

A. Petri Net Notation

In this section, we assume that readers know the Petri Nets. We will present only basic notions that will be used all over this paper. Further details on PNs are available in [START_REF] Murata | Petri nets, properties, analysis and applications[END_REF], [START_REF] Cassandras | Discrete event systems: The state of the art and new directions[END_REF].

The PN is a structure formed by Place/Transition (P/T net) and arcs, such as PN= (P,T,Pre,Post); where:

P is a set of m places; T is a set of n transitions. Let y be the firing vector that corresponds to 𝜎 and 𝑦 𝑡 is the total number of occurrences of transition t in σ. For a TFS that contains a single transition t, we use 𝑡 ̅ to denote its firing vector (i.e. 𝑡 ̅ is a unit vector).

B. Labeled Petri Net

A Labeled Petri Nets (L-PN) is a t-uple 〈𝑃𝑁; 𝑀 ; ℒℳ〉; where:

〈𝑃𝑁; 𝑀 〉 is a PN with an initial marking 𝑀 , ℒℳ is the labels mapping.

A labels mapping ℒℳ is associated with all transitions of the PN: The extension of the label mapping can be realized over sequences, Lℳ: 𝑇 * → Ω * , recursively as follows: In this example, it is easily to calculate the initial marking and find its all results with respect to L: 00012 ; 00001 ; 11101 ; 11100 . Without difficulty, we can notice that the MIM is the following 00001 because it admits the lowest cumulative number (=1) of token(s) summed over all places. Obviously, the problem is upper bounded by a polynomial function in terms of the total number of possible firing vector. In this work, our aim is to propose a novel efficiency method reducing the complexity and the state explosion problem. In the next section, the proposed GMIM metaheuristic inspired from the GRASP method will be presented.

ℒℳ: 𝑇 → Ω With,
1. Lℳ 𝑡 𝜁 ∈ Ω if𝑡 ∈ T, 2 
Further details on the principle of GRASP (Greedy Randomized Adaptive Search Procedure) method are available in [START_REF] Feo | Greedy randomized adaptive search procedures[END_REF].

GMIM metaheuristic for MIM estimation

The objective is to have a consistent set of potential solutions (a couple of TFS and MIM) respecting the behaviour of real time cyber systems. The proposal of GMIM algorithm is based on the knowledge of the problem studied in order to generate and ameliorate iteratively the alternative solutions resulting from combinations of existing sequences.

The principle of this method is based on two main functions: the initial marking computation (fitness function) and the mutation operator to generating new TFS.

A. Fitness Function

In the literature various methods are proposed to compute the initial marking of TFS in PN. In the sequel we use the exact method proposed by Giua et al. (in [START_REF] Giua | Petri net state estimators based on event observation[END_REF] and [START_REF] Giua | Observability of place/transition nets[END_REF]) to compute the MIM for a given TFS.

We consider this problem as the following triple (R,TFS,MIM); where:

1. R=(P,T,Pre,Post) is a PN.

2. TFS: σ 𝑡 𝑡 . . . 𝑡 (where σ ∈ TFS for i= {1,..., h}and (𝑡 ∈ 𝑇) for j = {1,..., k}).

3. MIM is the smallest total number of tokens that can have a TFS.

Inspired from the famous method proposed in [START_REF] Giua | Petri net state estimators based on event observation[END_REF] and [START_REF] Giua | Observability of place/transition nets[END_REF] to compute recursively the MIM of a PN, Li & Hadjicostisin (in [START_REF] Li | Minimum initial marking estimation in labeled petri nets[END_REF]) proposed the following formula to resolve the same problem in a L-PN:

𝑀 𝑚𝑎𝑥 𝑀 𝐶. 𝑦 , 𝑃𝑟𝑒 : , 𝑡 𝐶. 𝑦 (1) 
Where:

𝑦 𝑗 1 is the vector of the first 𝑗 1 elements of 𝜎 , 𝑀 0 1 is an 0 𝑛 ⃗ (i.e., n-dimensional vector of zeros),

𝑦 is an 0 𝑛 ⃗ (i.e., m-dimensional vector of zeros),

In the GMIM algorithm, equation (1) will be used as the fitness function to calculate the MIM of each generated σ .

B. Mutation operator

Considering the L-PN of figure 1 and the following label sequence L=abaca, figure 3 presents the evolution of the steps performed in one cycle of the mutation function.

In the beginning, we create a random population (of size ofTFS coherent with L and we put them in the first table (in the left of figure 3). The last column calculates the MIM corresponding to 𝜎 by using the equation (1).

After that, each sequence presented in the left table undergoes a mutation on only one random transition by another transition having the same label. Then, we place the new firing sequence 𝜎 in the line i of the second table (in the right of the figure) and we apply the same equation to compute 𝑀𝐼𝑀 .

The table of selection step will be completed by (Best { i , i '}, Min{𝑖𝑚 ,𝑖𝑚 }). 𝐼𝑀𝑃𝑅𝑂𝑉𝐸𝑀𝐸𝑁𝑇 is a Boolean variable initialized at 𝑇𝑅𝑈𝐸 in step 1, it will be set to 𝐹𝐴𝐿𝑆𝐸 in step 18 when no improvement appears all over the population. The while loop continuing, through a randomly mechanism of mutation, running as long as 𝐼𝑀𝑃𝑅𝑂𝑉𝐸𝑀𝐸𝑁𝑇 is performed. That means, when the current solution 𝑖𝑚 (in terms of marking) it become better than the previous one 𝑖𝑚 (i.e., at the current step (say, 𝑖),a new marking is obtained with 𝑖𝑚 𝑖𝑚 ; 𝑖𝑚 is stored at the previous step (say, 𝑖 1)).

At step 10, each individual 𝜎 undergo a mutation operation performed to indistinguishable transition (i.e. we look for label that have more than associated with it, and then we do a random permutation between transitions). The principle of mutation and selection of best solution (Best { i , i '}, Min{𝑖𝑚 ,𝑖𝑚 }) is described in the previews subsection.

With:

IMPROVEMENT is a Boolean variable initialized at 𝑇𝑅𝑈𝐸 in step 1. It will be set to 𝐹𝐴𝐿𝑆𝐸 in step 18 when no improvement accrues all over the population. NO IMP will be incremented when no improvement performed to the new firing sequence marking.

MIM variable is initialized to ∞, and V_sol is empty befor we start looking for MIM.

Validation examples

The efficiency estimation properties of the proposed GMIM metaheuristic were tested 

A. Application 1: Initialization of two parallel machines

The figure 5 represents the L-PN model of two parallel working machines [17, p. 132].

All transitions of L-PN are observable. We maintain the same label sequence of length 40, generated randomly in [START_REF] Li | Minimum initial marking estimation in labeled petri nets[END_REF], L=eeffababcddcbabbccaaddgghhdcbaabcdabcdha.

Then, the aim is to estimate the set of minimum initial marking using GMIM and making a comparison with the results of generated solutions provided by the proposed methods of (Li & Hadjicostis, 2013) in [START_REF] Li | Minimum initial marking estimation in labeled petri nets[END_REF]. The execution of GMIM is performed with a simulation strategy based on the increment of the size  of the initial set 𝑅 of TFS(generated randomly). In fact, the first simulation begins with 10 initial marking with respect to L, (i.e.,   =10). In the second simulation, we increase to 20 (i.e.,   =20); the set of new initial marking R 2 is generated independently of R 1 .We continue to increase  i until the number of MIM will be remarkably stable. For each level (i.e.,  i ) we accrue twenty simultaneous executions, each one with new randomly input sequences. The simulation results are given by Table 1 and Figure 6.  "R_Size" is the size of randomly generated sequences set,  "N_ DMIM" is the average of the number of different output sequences of MIMs at each R_Size level after 20 simulations. For example, for R_Size=100, we  "Time" is the running time. Figure 7: All possible MIMs obtained in [START_REF] Li | Minimum initial marking estimation in labeled petri nets[END_REF] According to results shown in table 1 and figure 6, it is clear that when we increase the size of the initial population (R_Size), the effectiveness of the proposed metaheuristic becomes more improved in terms of the number of MIMs solutions. Indeed, moving from the first simulation (R_size=50) to the simulation with R_size=250 a concrete improvement is shown. In fact, the N_ DMIM and N_MIM increase, respectively, from 2.1 to 5 and from 4.8 to 81.5. Despite that, we can remark that the running time (Time =2.24 s) is always applicable for real time systems. In figure 6, from the simulation with R_size=250 to the one with R_size=2000, we observe easily that there is a stability In terms of the number of N_ DMIM(=5); i.e., the N_ DMIM provided by the Algorithm of Li& Hadjicostis [START_REF] Li | Minimum initial marking estimation in labeled petri nets[END_REF]. Also, the efficiency of our GMIM metaheuristic appears in the higher number of possible estimated MIM; it was increased to provide more possible MIM solutions than the proposed Heuristic A-B and Algorithm of Li & Hadjicostis [START_REF] Li | Minimum initial marking estimation in labeled petri nets[END_REF].

In terms of fast estimation, it is clear that running time increases when we amplify the size of R. despite that, the running time in all simulations remains so much lower than that of Algorithm and Heuristic of Li & Hadjicostis [START_REF] Li | Minimum initial marking estimation in labeled petri nets[END_REF] (respectively, 149 s and 110 s).

The major advantage of our approach is that even with a small size of initial number of sequences, we can obtain the 5 different MIMs solutions provided in figure 7. For example, four sub-results with five possible sequences of MIMs were obtained for R_Size=100 after 20 simulations (i.e., in 20% of all simulations with R_Size=100).

A. Application 2: problem of monitoring by mobile robot network

A complex system application is required to prove the performance of the proposed metaheuristic. In this section, we propose to resolve a surface monitoring problem based on mobile robot network.

Let a surface divided on finite number n of sub-surfaces. For each sub-surface, a physical parameter 𝛷 should be monitored; 𝛷: 𝛷 , 𝛷 , … , 𝛷 is a set of finite alphabet, when 𝛷 is the alphabet affected to j th parameter of the set 𝛷. Each mobile robot have the ability to move in its environment with not attachment to a physical location.

The goal is to know the minimum number of mobile robots as well as their ideal location at t=0; to ensure the monitoring of the total surface with respect to a label sequence L.

As application, we consider a square divided on 9 sub-surfaces (figure 8). Each subsquare is characterized by one parameter belonging to 𝛷, where 𝛷: 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 .

The aim of this application example is to monitoring the square surface, via mobile robot network, according to a global constraint presented by the label sequence L 𝑓𝑏𝑒𝑏𝑎𝑒𝑑𝑓𝑐𝑏𝑑𝑏𝑐𝑏𝑎𝑏𝑐𝑏𝑐𝑑, of size 20 (SS ≃ 1,347 10 possible solutions).

The following assumption is considered for this example:

A robot can supervise all parameters, and must always be in monitoring state. The objective is to minimize the number of robots (tokens) in the initial state as well as their positions (places). We execute the GMIM metaheuristic with the same simulation strategy described in the first application. Indeed, we begin the first simulation with 100 initial marking with respect to L, (i.e.,   =100). We continue the increase (with a  i =100) until the number of MIM will be stable. For each  i we accumulate 20 successive executions with new randomly input sequences.

The simulation results are presented in the table2 and figure 10. 

Conclusion

In this paper, a GMIM metaheuristic was developed for MIM estimation in L-PN. The proposed approach is inspired on the principle of the GRASP multi-start metaheuristic.

Parting from an initial phase based on the creation of a randomly feasible TFS respecting a given label sequence, an algorithm with two principal functions (mutation and fitness) is implemented until a local minimum solutions will be found during a local search phase. The complexity of GMIM depends on the L-PN model structure.

The proposed GMIM metaheuristic was applied on two problems: Initialization of two parallel machines and resources allocation in a monitoring mobile robots platform. With comparison to the state-of-the-art approaches, the simulation results show major improvement of our proposed GMIM metaheuristic mainly in faster running time.
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 4 . Let σ ∈ 𝑇 * and 𝑡 ∈ T then Lℳ 𝜎𝑡 Lℳ 𝜎 Lℳ 𝑡 , 3. Lℳ(λ)=ε where λ is the empty sequence and ε is the empty word. L= Lℳ 𝑡 Lℳ 𝑡 …Lℳ 𝑡 (where, 𝑡 , 𝑡 , … 𝑡 ∈ 𝑇) an observed label sequence that can give us a finite number of TFS,3 Problem formulationThe considered problem is a L-PN with unknown initial marking and an observed label sequence L. The observed label sequence L may generate a finite set of transition firing sequence, where 𝜎 𝑡 𝑡 . . . 𝑡 (where, Lℳ 𝑡 𝑙 ∈ ℒ and j is the index of the j th transition of 𝜎 ). The objective is to find the set of minimum initial marking(s) that: (i)enable the firing of at least one sequence of transitions that is coherent with both 𝛺 and the L-PN structure, and (ii) is (are) minimum (i.e., the marking(s) has (have) the lowest cumulative number of tokens). It is possible to find more than one MIM for the same given observation.Example:Consider the L-PN represented in figure1with a unit weight in all arcs, such that 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 is the places set and 𝑡 , 𝑡 , 𝑡 , 𝑡 is the transitions set. A labeling function is defined such that Lℳ 𝑡 1 Lℳ 𝑡 3 𝑎, Lℳ 𝑡 2 𝑏, Lℳ 𝑡 4 𝑐.

Figure 1 :

 1 Figure 1: Simple L-PN used to demonstrate basic concepts Given the following label sequence L=abac. The determination of MIM(s) is done through the enumeration of all TFS which is demonstrated in figure 2. According to this sequence, there are four possible TFS: 𝑡 𝑡 𝑡 𝑡 ; 𝑡 𝑡 𝑡 𝑡 ; 𝑡 𝑡 𝑡 𝑡 ; 𝑡 𝑡 𝑡 𝑡 . The number of TFS is equal to the number of leaves in the tree shown in figure 2. This number increases exponentially compared to the size of the label sequence, and we call it the solution space (SS). More precisely, the number of TFS is SS = ∏ 𝑇 (where 𝑇 denotes the transitions set associated with label ζ , and 𝑇 is the cardinality of this set); for more detail see [18]. Let's take the label sequence of the first example L=abac; SS=|𝑇 | |𝑇 | |𝑇 | |𝑇 | 2 1 2 1 4. The exponential growth is related to labels that have more than one transition associated with them 𝑇 2.

Figure 2 :

 2 Figure 2: Enumeration of all firing sequences

Figure 3 :

 3 Figure 3: Mutation operator and selection of best MIMs

  on two examples: initialization of two parallel machines and resources allocation in a monitoring platform via mobile robot network. The required goal is to affirm the performance of the GRASM inspired metaheuristic by referring to the evolutionary strategies proposed in[START_REF] Li | Minimum initial marking estimation in labeled petri nets[END_REF] (Algorithm Li & Hadjicostis, 2013 and Heuristic A-BLi & Hadjicostis, 2013). Simulations were performed on a computer with an Intel Core i7 processor, 8 GB of RAM, and running under a Windows 10.

Figure 5 :

 5 Figure 5: L-PN Model of two parallel working machines



  obtained as solutions: 4 sub-results with 5 possible sequences of MIMs, 7 subresults with 4 possible sequences of MIMs, 6 sub-results with 3 possible sequences of MIMs, 2 sub-results with 2 possible sequences of MIMs, and one sub-result with one possible sequence of MIM; so, N_ DMIM is calculated as follow: "N_MIME" is the number of the MIMs estimated after 20 simulations in each R_Size, is the average of the MIMs obtained after 20 simulations. It is computed with same calculation principle of N_ DMIM.

Figure 6 :

 6 Figure 6: GMIM simulation (application 1) -R_size vs. N_ DMIM Before discuss the results of our proposed GMIM metaheuritic, we provide in Figure 7 all possible MIMs obtained by the Algorithm of Li & Hadjicostis in [11].

  I.e., a robot can only move from a sub-surface to another having direct borders with it. For example: a robot in S 1 can move only to S 2 and S 4 ; a robot in S 5 can move only to S 2 , S 4 , S 6 and S 8 .

Figure 8 :Figure 9 :

 89 Figure 8: Surface to be monitored

Figure 10 :

 10 Figure 10: Figure 6: GMIM simulation (application 1) -R_size vs. N_ DMIM We note that we can't reach a final result by running the Algorithm of Li & Hadjicostis with a simple computer. On the other hand, the running time to simulate Heuristic A-B

Figure 11

 11 Figure 11 presents the set of all possible MIMs obtained science the simulation with   =800. In fact, the optimal number of mobile robots needed to monitoring this surface is 7 (= tokens in one MIM) with 14 possibilities of emplacement in the initial sate.

Figure 11 :

 11 Figure 11: All possible MIMs obtained of GMIM In fact, it is clear to interpret, from the table 2, the major advantage of our metaheuristic in terms of running time. By applying GMIM with initial population of 200 TFS the running time represents only 0,0074% compared to the running time of the Heuristic A-B of Li & Hadjicostis.

  ). 𝑖𝑚 is the minimum initial marking of 𝜎 . The solution of the first execution of this equation provides only the necessary tokens allowing the firing of TFS Generate randomly a set '𝑅'(of sizeof 𝜎coherent with L 6. For each transition firing sequence 𝜎 ∈ 𝑅 Do 7.At step 9, a while loop controlled by the variable 𝐼𝑀𝑃𝑅𝑂𝑉𝐸𝑀𝐸𝑁𝑇 is introduced.

	created in R.	
	Algorithm: GRASP Minimum Initial Marking (GMIM)
	Input: A free labeled Petri net PN and an observable label sequence L 𝑙 𝑙 . . . 𝑙 of
	length 𝑞,	
	Output: The MIM that has (have) the lowest cumulative number of tokens over all
	places.		
	1. Var 𝐼𝑀𝑃𝑅𝑂𝑉𝐸𝑀𝐸𝑁𝑇=TRUE
	2. Var NO	0
	3. MIM = ∞	
	4. V_sol = ∅	
	5. Compute 𝑖𝑚′using Equation (1) (𝑖𝑚′ : initial marking belonging to 𝜎′ )
	14.	If 𝑖𝑚′≥ 𝑖𝑚 Then NO	= NO +1
	15.	End
	16.	End	
	17.	If 𝑁𝑂		|𝑅|
	18.	𝐼𝑀𝑃𝑅𝑂𝑉𝐸𝑀𝐸𝑁𝑇	FALSE
	19.	End	
	20. End		
	21. For all marking in 𝑅
	22.	If 𝑖𝑚	MIM
	23.	V_sol = V_sol ∪ 𝑖𝑚
	24.	Else if 𝑖𝑚	MIM
	25.	V_sol = ∅
	26.	V_sol = MIM = 𝑖𝑚
	27.	End	
	28. End		

Compute 𝑖𝑚using Equation (1) (𝑖𝑚 : initial marking belonging to 𝜎 ) 8. End 9. While 𝐼𝑀𝑃𝑅𝑂𝑉𝐸𝑀𝐸𝑁𝑇 Do 10.

For each transition firing sequence 𝜎 ∈ 𝑅 Do 11.

Look for any 𝑇 and apply a random mutation for 𝜎: 12.

𝜎 → 𝜎 (i.e., 𝜎′ is the new firing sequence after mutation) 13.

Table 1 :

 1 Comparative table

		R_size	N_ DMIM	N_MIME	N_MIM	Time
	Algorithm of Li & Hadjicostis	-	5	12679	276	149(s)
	Heuristic A-B of Li & Hadjicostis	-	3	5760	106	110(s)
		50	2.1	50	4.8	0.25(s)
		100	3.5	100	16.5	0.6(s)
		150	4.6	150	32.9	1(s)
	GMIM Algorithm	200 250	4.8 5	200 250	53.9 81.5	1.5(s) 2.24(s)
		500	5	500	236.7	6.5(s)
		1000	5	1000	684.8	15.82(s)
		2000	5	2000	1579.4	47.8(s)

Table 2 :

 2 Comparative table

		R_size	N_ DMIM	N_MIME	N_MIM	Time
	Algorithm of Li & Hadjicostis	-	-	-	-	-
	Heuristic A-B of Li & Hadjicostis	-	8	28622	875	382(min)
		100	3.4	100	4.8	0.43(s)
		200	8.7	200	34	1.7(s)
		300	10.7	300	68.4	2.8(s)
		400	12.6	400	145.8	4.6(s)
	GMIM Algorithm	600 800	13.9 14	600 800	286 493.4	7.5(s) 12.3(s)
		1000	14	1000	600.8	20.1(s)
		1500	14	1500	1107.3	41(s)
		2000	14	2000	1470.7	55.9(s)
		4000	14	4000	3200	2.34(min)