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On the complexity of Independent Dominant with Obligations in
graphs

Christian Laforest, Timothée Martinod1

Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes, Université Clermont
Auvergne, CNRS UMR 6158, 63178 Aubière, FRANCE

Abstract

A subset D ⊆ V of a graph G = (V,E) is an independent (or stable) dominant if D is
independent and dominates all the vertices of V . An instance of the Independent
Dominant with Obligation (IDO) problem is a graph G = (V,E) and a partition of V
denoted Π (each subset of Π is called an obligation). The distinction is that vertices can
only be added obligation by obligation, instead of one by one. In this context D is a
solution for (G,Π) if and only if D is an independent dominant respecting these
obligations Π. We show that determining if a solution exists for the IDO problem is
NP -complete, even if the graph is a path and all the obligations are stable and are all of
size λ ≥ 2, or if there are

√
N stable obligations each of size

√
N or if the properties of

obligations depend on the number N of vertices of the graph. We further introduce the
Partially Independent Dominant with Obligation problem in which we relax the
constraint of dominating every vertex. We show that determining if there is a stable set
respecting the obligations dominating at least 3

√
N − 2 vertices (with N the number of

vertices of the graph) is NP -complete even if the graph is a path and obligations are
stable. On the positive side, we construct in polynomial time a solution dominating at
least 2

√
N − 1 vertices if obligations are stable.

Keywords: Domination; NP -completeness; Non-approximation

1 Introduction

Let G be an undirected graph, with V its set of vertices and E its set of edges. We denote
N(V1) the open neighborhood of a set of vertices V1. N(V1) is the set of vertices sharing
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an edge with at least one vertex of V1. Let D ⊆ V be a subset of vertices. D is a stable
or independent set of G if there is no edge between vertices of D in G. D is a dominating
set of G if each vertex of V − D has at least one neighbor in D. D is an independent
dominating set of G if D is a stable and a dominating set of G.

There are many kinds of domination problems according to the properties, namely the
independent dominant, the total dominant, the connected dominant, among others (see
[7] and [6]). These problems occur in many distributed network applications. The goal
is to locate the smallest number of centers in networks such that every vertex is near at
least one center. The best known bound for time complexity of the minimum dominating
set is O(1.4969n), where n is the number of vertices in the graph, because of a measure
and conquer approach. Van Rooij and Bodlaender got this bound in [10]. The problem
of Independent Dominant was first formalized by Berge [2] and Ore [9] in 1962 and 1965.
Garey has shown that finding the smallest independent dominating set of a graph is NP -
complete [5]. But any graph has at least an independent dominating set. Independent
dominating sets have been studied considerably in the literature in the lasts decades.
In 1991 Irving [8] has shown that, unless P = NP , no polynomial-time approximation
algorithm for this problem can guarantee to find an independent dominating set with size
within a factor of K of the optimal, where K > 1 is any fixed constant, even in bipartite
graphs. In 2004 Chlebík and Chlebíková [3] have shown that it is NP -hard to approximate
the independent dominating set problem with a graph of maximal degree three within a
1+ 1/390 ratio even in bipartite graphs. In 2020 Akbari et al. [1] have provided a family
of connected cubic graphs of order n where the minimum cardinality of an independent
dominating set is 3n/8.

In this paper, we consider the independent dominant problem with an additional
constraint: the obligations. Obligations are a partition of V . If many vertices are part
of the same obligation, when one of them is in a solution all the other ones must also be
part of it. In our variant, we can only add vertices obligation by obligation, instead of one
by one. An independent Dominant with Obligation (IDO) of a graph is an independent
dominating set respecting each obligation. If all obligations have the same size, they are
denoted balanced. Independent obligations are denoted stable. Since each obligation can
contain edges between its elements, there are instances without solution. In all this paper
we consider stable obligations.
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Independent Dominant with Obligation (IDO)
Given: A graph G = (V,E), an obligation-set Π = {V1, . . . , Vl} (partition of

V ).
Objective: A set of vertices V ′ ⊆ V such that:

• V ′ ∪ NG(V
′) = V : V ′ is a dominating set of G;

• ∀v1, v2 ∈ V ′, (v1, v2) /∈ E: V ′ is a stable of G;
• ∀Vi ∈ Π ∀xj, xk ∈ Vi, xj ∈ V ′ =⇒ xk ∈ V ′: V ′ respects the

obligations.

The IDO problem was first introduced by Cornet and Laforest in [4]. They proved
that determining if a solution exists is NP -complete even with obligations of maximal
size two2. But they used non-stable obligations to forbid some vertices.

In this paper, we prove that determining if a solution exists is NP -complete in dif-
ferent cases according to the topology of the graph, the stability and the balance of the
obligation-set (see details in Table 1). We also introduce its maximization form in which
we relax only the constraint of dominating each vertex. This is the Partially Indepen-
dent Dominant with Obligation PIDO problem. We study this generalization of IDO to
approach the origin of difficulty of the problem in very restricted cases.

Each result shown in the Table 1 is followed by a reference to its theorem. The symbols
|o| and #o define respectively the size and the number of obligations. λ is a constant and
n is the number of vertices of the graph. In case of balanced obligations, we specify its size
or number between parentheses. We specify the minimum number of vertices to dominate
for the PIDO problem between parentheses.

The rest of this paper is organized as follows. In Section 2 we give important defini-
tions. In Section 3 we present a process to connect many connected components, without
changing the existence of a solution for the IDO problem. This technical preliminary
is then used to show that determining if a solution exists for the IDO problem is NP -
complete, even if the graph is a path and the obligations are stable and λ-balanced (all
the obligations have a size λ, with λ ≥ 2). In Section 4 we show that the IDO problem is
NP -complete even if there are

√
N obligations of size

√
N with N the number of vertices

of the graph. We also discuss the complexity if there are less or more stable and balanced
obligations. In Section 5 we study the Partially Independent Dominant with Obligation
problem, where we relax the constraint of dominating each vertex. We show that deter-
mining if there is a solution dominating at least 3

√
N − 2 vertices (with N the number

of vertices of the graph) is NP -complete even if the graph is a path and obligations are
stable. However, we construct a solution which can always dominate 2

√
N − 1 vertices if

obligations are stable. In Section 6 we conclude this paper.
2Note that when obligations are singletons, this matches the classical independent dominant problem.
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Problem Graph Obligation Complexity Theorem

IDO Path Stable + balanced
(|o| = λ ≥ 2) NPC Theorem 3

IDO Diameter 3 Stable + balanced
(|o| = λ ≥ 2) NPC Theorem 4

IDO Any Stable + balanced
(#o =

√
n) NPC Theorem 5

IDO Any Stable + balanced
(n > #o >

√
n) NPC Theorem 6

IDO Any Stable + balanced
(λ < #o <

√
n) NPC Theorem 7

PIDO
(3√n− 2) Collection of paths Stable NPC Theorem 8

PIDO
(2√n− 1) Any Stable P Theorem 9

Table 1: Synthesis of the results for the existence of a solution for IDO and PIDO.

2 Preliminaries

We use the standard notation G = (V,E) for graphs, with V its vertices and E its edges.
We consider only finite and undirected graphs. The open neighborhood of a vertex v of
G is NG(v) = {u ∈ V |(uv) ∈ E}. A path is a connected graph defined by a sequence of
distinct vertices joined by edges. So a collection of paths is a collection of sequences of
distinct vertices. It has many connected disjoint components. The distance between two
vertices u and v is the length of the shortest path between u and v. The diameter of a
graph is the largest distance between its vertices.

Each instance of IDO has two inputs: A graph and a partition of its vertices (called
an obligation-set).

Let (G,Π) be an instance of IDO with G = (V,E) its graph and Π = {V1, . . . , Vl} its
obligation-set. Let S be a solution. S respects the obligation Vi = {xj, . . . , xk} ∈ Π, if all
the vertices of obligation Vi either are in the solution S or are not in the solution S. For
each pair of vertices xj, xk ∈ Vi, if (xjxk) /∈ E the obligation is stable (or independent). If
all obligations are stable, the obligation-set is also stable. If |V1| = |V2| = . . . = |Vl| = l,
then the obligation-set is denoted balanced or l-balanced.

Our proofs of NP -completeness will be constructed from the Restricted Exact Cover
by 3-Sets problem, which is NP -complete (see [5]). Let X be a finite set of elements and
C a collection of triplets of X . Each element in X appears exactly in three subsets of C.
In this restriction of the X3C problem there are 3q elements and 3q triplets. The goal is
to decide if there is a subcollection C ′ ⊆ C such that each element in X occurs in exactly
one member of C ′. Such a subcollection has exactly q independent triplets.
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Restricted Exact Cover by three Sets (RX3C)
Given: A finite set of elements X , a collection C of triplets of X in which

each element of X appears exactly in three subsets.
Objective: A subcollection C ′ ⊆ C such that each element in X occurs in

exactly one member of C ′.

3 IDO in a path

In this section, we show that the IDO problem is NP -complete even in a path with stable
and λ-balanced obligations with λ ≥ 2. As we said above, we will do a reduction from the
RX3C problem. Since the construction requires using several gadgets, we will proceed
step by step. If the obligations have an identifier, their identifier will be useful for the
construction. They will referee to the same obligation through multiple constructions.
First, each element in RX3C is in exactly three triplets. To represent membership of the
elements and the intersection between triplets, we will create one gadget per element.

Construction 1. Let (X , C) be an instance of RX3C with X = {x1, . . . , x3q} and
C = {c1, . . . , c3q}. We construct Gelement = (Velement, Eelement) a graph and Πelement its
obligations as follows:

• For each xi ∈ X :

– Let cj, ck, cl ∈ C with j < k < l be the three triplets containing xi.
– We add 16 obligations denoted yTi , y

F
i , y

1
i , . . . , y

11
i , x1

i , x
2
i and x3

i each composed
by two independent vertices. In each obligation y and x we consider that there
is one left vertex and one right vertex respectively denoted by L(y) and R(y)
or L(x) and R(x) .

– We add the vertices Zj, Zk and Zl.
– We add the edges (R(yTi )L(y

F
i )), (R(yFi )L(y

1
i )), (R(yFi )L(y

2
i )), (L(y1i )R(y4i )),

(R(y1i )L(y
4
i )), (R(y1i )R(y2i )), (L(y2i )L(y3i )), (R(y3i )L(y

5
i )), (R(y3i )L(y

6
i )),

(R(y4i )L(y
9
i )), (L(y5i )R(y7i )), (R(y5i )R(y6i )), (R(y5i )L(y

7
i )), (L(y6i )R(y8i )),

(R(y6i )L(y
8
i )), (R(y7i )L(y

10
i )), (R(y8i )L(y

11
i )), (R(y9i )L(x

1
i )), (R(y10i )L(x2

i )),
(R(y11i )L(x3

i )), (R(x1
i )Zj), (R(x2

i )Zk) and (R(x3
i )Zl).

Note that Gelement is a collection of paths, with 48q stable 2-balanced (if we except the
Z-vertices) obligations. See an illustration on Figure 1. In Construction 1, each triplets
is represented by three vertices divided in the gadget of its three elements.
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yT1 yF1

y11

y21

y31

y41

y51

y61

y71

y81

y91

y101

y111

x1
1

x2
1

x3
1

Z1

Z3

Z4

Figure 1: Illustration of Construction 1 only for the element x1 of the instance (X , C)
of RX3C with X = {1, . . . , 6} and C = {{1, 2, 3}, {2, 3, 4}, {1, 2, 6}, {1, 5, 6}, {3, 4, 5},
{4, 5, 6}}.

Lemma 1. Let (X , C) be an instance of RX3C. Let H be the gadget of the element xi in
the graph following Construction 1 from (X , C). There is no solution for the IDO problem
in H which has neither Zj, Zk nor Zl.

Proof. Suppose there is a solution S which has neither Zj, Zk nor Zl. So obligations
x1
i , x2

i and x3
i must be in S and so must be y4i , y7i , y8i and y3i . Since yTi has an isolated

vertex, yTi is in S and the right vertex of yFi has to be dominated by y1i or y2i . However,
they cannot be in S because of the two edges (R(y1i )L(y

4
i )) and (L(y2i )L(y

3
i )), which is a

contradiction.

Lemma 2. Let (X , C) be an instance of RX3C. Let H be the gadget of the element xi

in the graph following Construction 1 from (X , C). For each vertex Zj, Zk or Zl, there
is a solution for the IDO problem in H which has it but not the two others. These
solutions are Sj = {Zj, y

9
i , y

1
i , y

3
i , y

7
i , y

8
i , x

2
i , x

3
i , y

T
i }, Sk = {Zk, y

10
i , y5i , y

8
i , y

2
i , y

4
i , x

1
i , x

3
i , y

T
i }

and Sl = {Zl, y
11
i , y6i , y

7
i , y

2
i , y

4
i , x

1
i , x

2
i , y

T
i }.

Lemma 3. Let (X , C) be an instance of RX3C. Let H be the gadget of the element xi in
the graph following Construction 1 from (X , C). There is no solution for the IDO problem
in H which has more than one vertex among Zj, Zk and Zl.

Proof. Suppose there is a solution S containing Zk and Zl. Since Zk and Zl are in S, y10i
and y11i must be in S. So, S must contain y5i and y6i which is a contradiction because of
the edge between R(y5i ) and R(y6i ).

Suppose there is a solution S containing Zj and one vertex among Zk and Zl. Since
Zk ∈ S or Zl ∈ S, either {y10i , y5i , y

2
i } ∈ S or {y11i , y6i , y

2
i } ∈ S. Since Zj ∈ S, y9i and y1i

must be in S, which is a contradiction because of the edge between R(y1i ) and R(y2i ).

We can conclude that each gadget representing an element xi admits a solution for
the IDO problem if and only if there is exactly one vertex in the solution representing the
triplets, which contain xi.
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Each triplet is represented by three vertices in Construction 1. However, if one copy
is in the solution, then all the other copies must also be in the solution. So, we connect
these copies in one gadget per triplet.

Construction 2. Let (X , C) be an instance of RX3C with X = {x1, . . . , x3q} and C =
{c1, . . . , c3q}. We construct G = (V,E) a graph and Π its obligations as follows:

• We follow Construction 1.

• For each three vertices Zi arbitrarily defined as Za
i , Zb

i and Zd
i :

– We add three 2-balanced obligations zai , zbi and zdi which contain respectively
Za

i , Zb
i , Zd

i and a new vertex in each, respectively denoted R(zai ), R(zbi ) and
R(zdi ).

– We add three 2-balanced obligations y12i , y13i and y14i composed of two indepen-
dent vertices. In each obligation y we consider that there is one left vertex and
one right vertex respectively represented by L(y) and R(y).

– We add the edges (R(zai )L(y
12
i )), (R(zbi )L(y

12
i )), (R(zdi )L(y

14
i )), (R(y12i )L(y13i ))

and (R(y13i )R(y14i )).

Note that G is a collection of paths, with 66q stable 2-balanced obligations. See two
illustrations on Figure 2 and Figure 3. Figure 2 shows the gadget used for each triplet
of C. In Figure 3 each ellipse represents the gadget of an element, and each pentagon
represents the gadget of a triplet.

Za
1za1

Zb
1zb1

Zd
1zd1

y121

y131

y141

Figure 2: Illustration of Construction 2 for the triplet c1 of the instance (X , C) of RX3C
with X = {1, . . . , 6} and C = {{1, 2, 3}, {2, 3, 4}, {1, 2, 6}, {1, 5, 6}, {3, 4, 5}, {4, 5, 6}}.

Lemma 4. Let (X , C) be an instance of RX3C. Let G be the graph following Construction
2 from (X , C). Let H be the gadget of the triplet ci from G. An obligation zi in H is in a
solution S for the IDO problem in G if and only if the two others are in the solution S.

Proof. We know that the Zi vertices can be dominated by a vertex in G\H. Let S be a
solution for G. Consider the two following cases: The obligation y13i ∈ S or y13i /∈ S.

Suppose that the obligation y13i is in S. The obligations y12i and y14i cannot be in S.
So, S have still one vertex to dominate in each. So, the obligations zai and zdi must be in

7



S. Since L(y12i ) cannot dominate R(zbi ), the obligation zdi must be in S. Thus, all the zi
obligations are in S.

Suppose now that the obligation y13i is not in S. The obligations y12i and y14i must be
in S. Thus, no zi obligations can be in S.

In both cases, either all the zi obligations are in S or none.

Za
1 Zb

1 Zd
1 Za

2 Zb
2 Zd

2 Za
3 Zb

3 Zd
3 Za

4 Zb
4 Zd

4 Za
5 Zb

5 Zd
5 Za

6 Zb
6 Zd

6

R
(x

1 1
)

R
(x

2 1
)

R
(x

3 1
)

R
(x

1 2
)

R
(x

2 2
)

R
(x

3 2
)

R
(x

1 3
)

R
(x

2 3
)

R
(x

3 3
)

R
(x

1 4
)

R
(x

2 4
)

R
(x

3 4
)

R
(x

1 5
)

R
(x

2 5
)

R
(x

3 5
)

R
(x

1 6
)

R
(x

2 6
)

R
(x

3 6
)

Figure 3: Illustration of Construction 2 for the instance (X , C) of RX3C with
X = {1, . . . , 6} and C = {{1, 2, 3}, {2, 3, 4}, {1, 2, 6}, {1, 5, 6}, {3, 4, 5}, {4, 5, 6}}. Pen-
tagons represent gadgets like in Figure 2. Ellipses represent gadgets like the ones in Figure
1.

Theorem 1. Determining if a solution exists for the IDO problem is NP -complete, even
if the graph is a collection of paths and the obligations are stable and 2-balanced.

Proof. The problem is clearly in NP .
Suppose there is a solution S for the instance (X , C) of RX3C . Let us construct a

solution S ′ for the IDO problem. For each ci ∈ S we put the obligations zai , zbi , zdi and y13i
in S ′. For each ci /∈ S we put the obligations y12i and y14i in S ′. For each Zi ∈ S ′, we add
in the solution the well-chosen vertices following Lemma 2. S ′ respects the obligations, is
stable and dominates all the vertices. S ′ is a solution for the IDO problem.

Suppose there is a solution S for the instance G,Π of IDO. Let us construct a solution
S ′ for the RX3C problem. For each Zi ∈ S, ci ∈ S ′. Since each element is covered by at
least one triplet (see Lemma 1) and at most one triplet (see Lemma 3), S ′ is a solution
for the RX3C problem.

We can extend Theorem 1 for λ-balanced obligations with λ ≥ 2 a constant integer.
The general idea is the following (details are given later): If λ is even, then we duplicate
all the instances (graph and obligations) λ−2

2
times and merge the copies. If λ is odd, the

following construction adds one vertex in each obligation while keeping the property of
the previous lemmas and theorem.
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Construction 3. Let (X , C) be an instance of RX3C with X = {x1, . . . , x3q} and C =
{c1, . . . , c3q}. We construct G = (V,E) a graph and its obligations Π as follows:

• We follow Construction 2.

• For each xi ∈ X :

– In each obligation yi (except y12i , y13i and y14i ) and xi we add a new vertex
denoted respectively N(yi) or N(xi).

– We add the edges (N(yTi )N(yFi )), (N(y1i )N(y2i )), (N(y1i )N(y4i )), (N(y3i )N(y5i )),
(N(y3i )N(y6i )), (N(y5i )N(y7i )), (N(y6i )N(y8i )), (N(y9i )N(x1

i )), (N(y10i )N(x2
i ))

and (N(y11i )N(x3
i )).

• For each ci ∈ C:

– In each obligation y12i , y13i , y14i or zi we add a new vertex denoted respectively
N(y12i ), N(y13i ), N(y14i ) or N(zi).

– We add the edges (N(y12i )N(zai )), (N(y12i )N(zbi )), (N(y14i )N(zdi )) and
(N(y14i )N(y13i )).

Note that G is a collection of paths, with 66q stable 3-balanced obligations. See two
illustrations on Figure 4 and Figure 5. The obligations represented on Figure 4 and
Figure 5 are the same than on Figure 1 and Figure 2, but only the vertices and edges
added by Construction 3 are shown. In other words, all the obligations has both vertices
of Construction 1 (respectively Construction 2) and vertices of Construction 3.

yTi yFi

y1i

y2i

y3i

y4i

y5i

y6i

y7i

y8i

y9i

y10i

y11i

x1
i

x2
i

x3
i

Figure 4: Illustration of Construction 3 only for the element xi of the instance (X , C)
of RX3C with X = {1, . . . , 6} and C = {{1, 2, 3}, {2, 3, 4}, {1, 2, 6}, {1, 5, 6}, {3, 4, 5},
{4, 5, 6}}.

In Construction 4 we ”merge” some instances with obligations which share the same
identifier (the same order) into one instance. Given Πk = V k

1 , . . . , V
k
l with 1 ≤ k ≤ i,

merge i-th instances (G1,Π1), . . . , (Gi,Πi) for the IDO problem in instance (G,Π) is to
construct the instance as follows:

• V (G) = ∪i
k=1(V (Gk)).
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zai

zbi

zdi

y121

y131

y141

Figure 5: Illustration of Construction 3 only for the triplet zi of the instance (X , C)
of RX3C with X = {1, . . . , 6} and C = {{1, 2, 3}, {2, 3, 4}, {1, 2, 6}, {1, 5, 6}, {3, 4, 5},
{4, 5, 6}}.

• E(G) = ∪i
k=1(E(Gk)).

• For each obligation Vj ∈ Π = {V1, . . . , Vl}, Vj = ∪i
k=1(V

k
j ).

Construction 4. Let (X , C) be an instance of RX3C with X = {x1, . . . , x3q} and C =
{c1, . . . , c3q}. Let λ ≥ 2 be an integer. We construct G = (V,E) a graph and Π its
obligations as follows:

• If λ is even: we duplicate Construction 2 λ
2

times and merge the copies.

• If λ is odd:

– We follow Construction 3.
– We duplicate Construction 2 λ−3

2
times. We merge the λ−3

2
copies with the

graph of the previous step.

Note that G is a collection of paths, with 66q stable λ-balanced obligations.
Since Construction 4 obviously does not affect the solutions, we can state the following

theorem.

Theorem 2. Determining if a solution exists for the IDO problem is NP -complete, even
if the graph is a collection of paths and the obligations are stable and λ-balanced with
λ ≥ 2 a constant integer.

We can extend Theorem 2 to paths with stable and λ-balanced obligations with λ ≥ 2
a constant integer. To do so, we introduce a new gadget: The neutral connector.

Definition 1. A neutral connector for IDO is a graph that connects two connected com-
ponents such that a solution exists for IDO in the reconnected graph if and only if there
is a solution in each component.

Construction 5. We construct a graph Gneutral = (Vneutral, Eneutral) and its obligations
Πneutral as follows:

• We add a path Q1, . . . , Q3λ.

10



• We add three obligations V1, V2 and V3.

• We add Q1, Q3, Q3λ−3 in V1, Q2, Q3λ−1 in V2 and Q4, Q3λ−2, Q3λ in V3.

• For each vertex Qi ∈ {Q5, . . . , Q3λ−4}:

– If i (mod 3) = 0, we add Qi in V1.
– If i (mod 3) = 2, we add Qi in V2.
– If i (mod 3) = 1, we add Qi in V3.

Note that Gneutral is a path, with three stable λ-balanced obligations. See an illustra-
tion on Figure 6 and Figure 7.

Q1

Q2

Q3

Q4

Q5

Q6

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Figure 6: A neutral connector following Construction 5 with λ = 2 on the left and λ = 3
on the right.
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Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

Q13

Q14

Q15

Figure 7: A neutral connector following Construction 5 with λ = 5.

We will show that all the paths following Construction 5 is a neutral connector for the
IDO problem.

Lemma 5. Let λ ≥ 2 be an integer. The path Gneutral from Construction 5 is a neutral
connector for the IDO problem, with λ-balanced stable obligations.

Proof. Let Gneutral be a graph from Construction 5, with its obligations Πneutral. We show
that there is only one solution for the IDO problem.

Suppose that the obligation V1 is in a solution. All the other obligations cannot be in
that solution because of conflicts from edges. There is no solution to dominate the vertex
Q3λ−1, even if the path is connected to another graph by its vertices Q1 and Q3λ. The
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argument is exactly the same for the obligation V3. There is no solution to dominate the
vertex Q2.

Suppose that the obligation V2 is in a solution. The solution is independent and
dominates all the vertices of Gneutral. The vertices Q1 and Q3λ are not in the solution.
If the path is connected to another graph by its vertices Q1 and Q3λ, a solution exists
in the global graph if and only if there is simultaneously a solution in the two subgraphs
respectively connected to the vertices Q1 and Q3λ.

Thus, Gneutral is a neutral connector for IDO.

To get a path with stable and λ-balanced obligations, with λ ≥ 2 an integer constant,
we connect all disjoint paths of the graph got after Construction 4. While there are
over one path, we take two disjoint paths Pi and Pj. Let vi and vj respectively be one
extremity of Pi and Pj. Let Gneutral be a new neutral connector following Construction
5. We connect vi to Q1 of Gneutral and vj to Q3λ of Gneutral. Since the connectors are
neutrals, we can connect the components in any order. There is only one constraint. The
components must be connected by the extremities of their paths.

Now, we can state the following theorem.

Theorem 3. Determining if a solution exists for the IDO problem is NP -complete, even
if the graph is a path and the obligations are stable and λ-balanced, with λ ≥ 2 an integer
constant.

In addition, the IDO problem is NP -complete even if the graph has a low or high
density of edges. We can add independent vertices or complete graphs with singleton
obligations. Thus we do not give the proof.

We show now that the IDO problem is NP -complete even in a graph of diameter 3
with stable and λ-balanced obligations, with λ ≥ 2 an integer constant.

Construction 6. Let (X , C) be an instance of RX3C with X = {x1, . . . , x3q} and C =
{c1, . . . , c3q}. Let λ ≥ 2 be an integer. We construct G = (V,E) a graph and Π its
obligations as follows:

• We follow Construction 4.

• We add a neutral connector following Construction 5 with obligations of size λ.

• We add λ new vertices and their obligation Λ = {v1, . . . , vλ}.

• We add an edge between {v1, . . . , vλ} and all the vertices of the other obligations
except Q3 of the neutral connector.

Note that G is a graph of diameter 3, with 68q stable λ-balanced obligations. See an
illustration on Figure 8.
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ΛG′

Q1

Q2

Q3

Q4

Q5

Q6

Figure 8: A graph following Construction 6 with λ = 2, and G′ the rest of the graph.

Theorem 4. Determining if a solution exists for the IDO problem is NP -complete, even
if the graph is of diameter 3 and the obligations are stable and λ-balanced, with λ ≥ 2 an
integer constant.

Proof. Each vertex of V \(Q3 ∪Λ) has a distance 1 to vertices of Λ. Each vertex of Λ has
a distance 2 to other vertices of Λ. The vertex Q3 has a distance 2 to all the vertices of
Λ. Thus, the graph has a diameter 3.

The vertices {v1, . . . , vλ} cannot be in a solution. If there are in a solution, the vertex
Q3 of the neutral connector cannot be dominated. However, the others vertices of the
graph always dominate the vertices {v1, . . . , vλ}. Since the new vertices do not affect the
solution in the collection of paths following Construction 4, the proof does not differ.

Since the IDO problem is NP -complete even in the very restricted case where the
graph is a path, and the obligations are stable λ-balanced with λ ≥ 2, we will study the
difficulty of the problem according to the size and the number of obligations.

4 IDO with balanced obligations

In this section, we show that the IDO problem is NP -complete even if the number of
obligations is proportionally low or high. As in the previous section, we will do a reduction
from the RX3C problem. Firstly, we propose another construction to solve the RX3C
problem with an instance of IDO. This construction, easier than the earlier one of Section
3, will be useful later to prove the next results.

Construction 7. Let (X , C) be a instance of RX3C with X = {x1, . . . , x3q} et C =
{c1, . . . , c3q}. We construct a graph G = (V,E) and its obligations Π as follows:

• For each xi ∈ X, we add the vertex xi.

• For each ci ∈ C, we add the vertex zi.

• For each ci ̸= cj ∈ C, if ci and cj share at least one element then we add the edge
(ZiZj).
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• For each ci = {xj, xk, xl} ∈ C, we add the edges (zixj), (zixk) and (zixl).

• We add the vertices y1, y2 and y3, and the edge (y1y2).

• We add the obligations {x1, . . . , x3q, y1} and {y2, y3}.

• Each other vertex is in an obligation of size one.

Note that G is a graph, with 6q + 3 vertices and 3q + 2 stable obligations. See an
illustration on Figure 9.

The instance of IDO following Construction 7 only uses stable obligations. They are
not balanced.

z1

z2 z3 z4 z5

z6

x1 x2 x3 x4 x5 x6 y1

y2

y3

Figure 9: Illustration of Construction 7 for the instance (X , C) of RX3C with
X = {1, . . . , 6} and C = {{1, 2, 3}, {2, 3, 4}, {1, 2, 6}, {1, 5, 6}, {3, 4, 5}, {4, 5, 6}}.

Lemma 6. Let (X , C) be an instance of RX3C. A solution exists if and only if there is a
solution for the IDO problem following Construction 7 from (X , C).

Proof. Suppose that there is a solution S for the instance (X , C) of RX3C , with X =
{x1, . . . , x3q} and C = {c1, . . . , c3q}. Let us construct S ′ a solution for the instance (G,Π)
following Construction 7. For each ci ∈ S, we put zi ∈ S ′. All of the Z-vertices and
x-vertices are dominated by an independent subset of the graph. Finally, we put the
vertices y2 and y3 in S ′. Thus S ′ is independent, dominates all the vertices of the graph,
and respects the obligations. Thus, S ′ is a solution for IDO.

Suppose that there is a solution S of IDO for the instance (G,Π) from Construction
7. Let us construct S ′ a solution for the instance (X , C) of RX3C . Vertex y3 can only
be dominated by itself. Thus obligation {y2, y3} is in S and then no x-vertex can be
in S, so they are dominated by the Z-vertices. Since S is independent, each x-vertex
is dominated by exactly one Z-vertex. For each zi ∈ S, we put ci ∈ S ′. Thus, S ′ is a
solution for RX3C .
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We can now change Construction 7 to get the property required on the obligations.
Let us start with

√
N stable and

√
N -balanced obligations, with N the number of vertices

of the graph.

Construction 8. Let (X , C) be an instance of RX3C with X = {x1, . . . , x3q} and C =
{c1, . . . , c3q}. We construct a graph G = (V,E) and its obligations Π as follows:

• We add the vertices, the edges and the obligations following Construction 7.

• We add the new vertices y4 . . . , y3q+3 to the obligation which contains {y2, y3}.

• We add the vertex y′1 to the obligation which contains y1 and the edge (y′1y2).

• For each zi ∈ V , we add the new vertices z1i , . . . , z
3q+1
i in the obligation which

contains zi.

• For each zi ̸= zj ∈ V , we add the edges (z1i zj), . . . , (z
3q+1
i zj) if and only if (zizj) ∈ E.

Note that G has 9q²+12q+4 vertices and 3q+2 stables 3q+2-balanced obligations.

Theorem 5. Determining if there is a solution for the IDO problem is NP -complete even
if there are

√
N stable and

√
N-balanced obligations, with N the number of vertices of the

graph.

Proof. Note that G has N = 9q²+12q+4 vertices, and the 3q+2 =
√
N obligations are all

independent and all of size 3q+2 =
√
N . Since the transformation of Construction 7 does

not affect the existence of a solution, the proof of Lemma 6 is still valid for Construction
8.

With Construction 8 we have constructed an instance of the IDO problem with
√
N

stable and
√
N -balanced obligations. Now we propose a generalization for the number

of balanced obligations within two changes. One for less obligations than
√
N , and the

other for more obligations than
√
N .

Firstly let us see the case of more balanced obligations. We take Construction 8 and
add a new stable obligation with the same number of vertices than the others obligations.
This new obligation has no edge. Then this instance newly defined has strictly more
than

√
N balanced obligations. We can add a lot of stable obligations like above without

affecting the solution in the instance’s part following Construction 8. After that, the
instance has N

3q+2
stable (3q + 2)-balanced obligations with N the number of vertices. N

is arbitrary bigger than the size of the obligations. However, the ratio cannot leads to N
stable and balanced obligations unless P = NP . When there are as many obligations as
vertices, we have a formulation of the classical independent dominant problem which has
always a solution dominating all the vertices. This construction leads to the following
theorem.
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Theorem 6. Determining if there is a solution for the IDO problem is NP -complete even
if there are at least

√
N (and less than N) stable and balanced obligations, with N the

number of vertices of the graph.

Now let us see the case of balanced obligations with more than
√
N vertices in each

obligation. We take Construction 8 and add a new vertex in each obligation. The new
vertex in the same obligation than y3 (respectively y1) is stable (respectively connect
to y2). The new z′1, . . . , z

′
3q vertices in the same obligations than the zi-vertices have

the same edges than the vertices in their obligations. For example, if there is the edge
(z1z2) then there are the edges (z′1z2) and (z1z

′
2). Then this instance newly defined has

strictly more than
√
N vertices in each balanced obligation. We can add a lot of vertices

in each obligation like above without affect the solution in the instance’s part following
Construction 8. After that, the instance has (3q + 2) stable ( N

3q+2
)-balanced obligations

with N the number of vertices. N is arbitrary bigger than the number of the obligations.
This construction leads to the following theorem.

Theorem 7. Determining if there is a solution for the IDO problem is NP -complete even
if there are at most

√
N stable and balanced obligations, with N the number of vertices of

the graph.

Note that when the number of obligations is independent of N , the IDO problem
admits a polynomial algorithm to decide if there is a solution. An algorithm can try all
combinations of obligations in polynomial time regarding the number of vertices of the
graph (O(2#o) with #o the number of obligations).

5 Maximizing the number of dominated vertices

Since determining if there is a solution for the IDO problem is NP -complete, even if the
instance is a path with stable and λ-balanced obligations (with λ ≥ 2 a constant integer)
or whether the stable and balanced obligations are numerous, we relax the constraint of
dominating each vertex. We introduce the Partially Independent Dominant with Obli-
gation problem (PIDO). Like the IDO problem, an instance of the PIDO problem is a
graph and its obligations. The aim of the PIDO problem is to determine the maximal
number of vertices that an independent subset respecting the obligations can dominate.
We consider the decision version of the PIDO problem. The existence of a solution for
an instance depends on the number of vertices to dominate. Since there are instances of
the PIDO problem admitting no solution no matter the number of vertices to dominate,
because of non stable obligations, we will only consider instances with stable obligations.
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Partially Independent Dominant with Obligation (PIDO)
Given: A graph G = (V,E), an obligation-set Π = {V1, . . . , Vl}.
Objective: A set of vertices V ′ ∈ V such that:

• ∀v1, v2 ∈ V ′, (v1, v2) /∈ E: V ′ is a stable of G;
• ∀Vi ∈ Π ∀xj, xk ∈ Vi, xj ∈ V ′ =⇒ xk ∈ V ′: V ′ respects the

obligations.
Measure: |V ′ ∪ N(V ′)|: the number of vertices of G dominated by V ′.

In this section, we show that determining if there is a solution for the PIDO problem
which dominates at least 3

√
N − 2 vertices (with N the number of vertices of the graph)

is NP -complete even if the graph is a collection of paths and the obligations are stable.
Unlike the previous sections, we will do a reduction from the IDO problem. We will also
show that there is always a solution which dominates at least 2

√
N − 1 vertices if the

obligations are stable. We propose a polynomial algorithm to construct such a solution.
The first step of the proof of NP -completeness is to construct the gadget that will

allows us to limit the potential domination.

Construction 9. Let Y be an integer. We construct GY = (VY , EY ) a graph and ΠY its
obligations as follows:

• We add the vertices Y 1
1 , . . . , Y

1
Y , . . ., Y Y

1 , . . . , Y Y
Y .

• We add the obligations {Y 1
1 , . . . , Y

Y
1 }, . . ., {Y 1

Y , . . . , Y
Y
Y }.

• For each 1 ≤ i ̸= j ≤ Y , we add the edge (Y j
i Y

i
j ).

• We delete the vertices Y 1
1 , Y

2
2 , . . . , Y

Y−1
Y−1 , Y

Y
Y .

Note that GY is a collection of paths with Y 2 − Y vertices and Y stable obligations
of size Y − 1. See an illustration on Figure 10.

Y 3
1

Y 2
1

Y 4
1

Y 1
2

Y 3
2 Y 4

2

Y 1
3 Y 2

3

Y 4
3

Y 1
4

Y 3
4

Y 2
4

Figure 10: Illustration of Construction 9 for Y = 4.
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Lemma 7. Regardless of the value of Y ≥ 2, it is impossible to dominate more than
2Y − 2 vertices in the instance (GY ,ΠY ) of PIDO following Construction 9.

Proof. Let (GY ,ΠY ) be an instance of PIDO, with Y ≥ 2 an integer, following Con-
struction 9. Since a solution must respect the obligations, let us consider any obligation
Vi ∈ ΠY . Let Vi = {Y 1

i , . . . , Y
Y
i }. Suppose {Y 1

i , . . . , Y
Y
i } ⊆ S, with S any solution.

Because of the structure of the previous construction, there is an edge between Vi and all
the other obligations. Thus, no more vertex can be added to S which has Y − 1 vertices.
These vertices share an edge with Y − 1 unique other vertices. So, S dominates exactly
2Y − 2 vertices.

We can note that it is always possible to dominate at least 2Y − 2 vertices.

We can use the graph following Construction 9, to limit the number of vertices which
can be dominated. We will consider an instance of IDO, adding this gadget with a well-
chosen parameter Y .

Construction 10. Let (G,Π) be an instance of IDO with G = (V,E) a path of n vertices
and Π = {V1, . . . , Vl} its stable obligations. We construct a graph G′ = (V ′, E ′) and its
obligations Π′ as follows:

• Let (GY ,ΠY ) be an instance of IDO following Construction 9 with Y = |V | = n.

• G′ = G ∪GY , Π′ = Π ∪ ΠY .

Note that G′ is a collection of paths with n² vertices, and stable obligations.

Theorem 8. Determining if there is a solution for the PIDO problem which can dominate
at least 3

√
N − 2 vertices (with N the number of vertices of the graph) is NP -complete

even if the graph is a collection of paths and the obligations are stable.

Proof. The problem is clearly in NP .
Suppose that there is a solution S for the instance (G,Π) of IDO, with stable obli-

gations and G = (V,E) a path. Let us construct S ′ a solution for the instance (G′,Π′)
of PIDO following Construction 10. We can simply take the vertices of S and add one
Y -obligation to dominate at least 3

√
N − 2 vertices.

Suppose that there is a solution S for the instance (G′,Π′) of PIDO following Con-
struction 10. Let us construct S ′ a solution for the instance (G,Π) of IDO. Since the GY

part of G′ can only dominates 2
√
N − 2 vertices, S ′ must dominate all the vertices of the

other part G. Thus there is a solution for the IDO problem in G.

We have shown that determining if there is a solution for the PIDO problem which can
dominate at least 3

√
N − 2 vertices (with N the number of vertices of the graph) is NP -

complete even if the graph is a collection of paths and the obligations are stable. On the
other side, we can investigate the polynomial threshold. We show that if the obligations
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are stable, there is always a solution which dominates at least 2
√
N − 1 vertices, with

N the number of vertices of the graph. Moreover, such a solution can be constructed in
polynomial time.

Firstly, let us consider the following greedy algorithm for the PIDO problem:

1. We create an empty solution S.

2. While there are obligations, do:

(a) Add the biggest obligation in S.
(b) Delete this obligation, the vertices which share an edge with at least one of its

vertices, and the obligations of these vertices.

3. Return S.

Note that S has at least one obligation, dominates at least one vertex of every obliga-
tion, respects the obligations and is independent. Since the number of obligation strictly
decrease at each step of the loop, the algorithm is finite. As there are at most n obliga-
tions, with n the number of vertices of the graph, the algorithm is polynomial.

Lemma 8. Let (G,Π) be an instance of PIDO with stables obligations and N the number
of vertices of the graph. There is always a solution which can dominate 2

√
N −1 vertices.

The greedy polynomial algorithm described above can construct this solution.

Proof. Let (G,Π) be an instance of PIDO, with stable obligations and n the number of
vertices of the graph. Let #o be the number of obligations and |o|max the size of the
biggest obligation. The greedy algorithm described above creates a stable set of vertices,
respecting obligations and dominating at least #o + |o|max − 1 vertices. We also have
the inequality #o × |o|max ≥ n. Because of the inequality, we have either #o ≥

√
n

or |o|max ≥
√
n. We can use the argument below, in both cases. Let us suppose that

|o|max ≥
√
n. We can rewrite this inequality to |o|max =

√
n+x, with x a positive integer.

Suppose that #o+ |o|max < 2
√
n:

#o+ |o|max < 2
√
n (1)

#o+
√
n+ x < 2

√
n (2)

#o <
√
n− x (3)

Here, we have a contradiction between #o × |o|max ≤ (
√
n − x)(

√
n + x) ≤ n − x² and

#o×|o|max ≥ n. Thus we have #o+ |o|max ≥ 2
√
n, and so #o+ |o|max−1 ≥ 2

√
n−1.

We can note that the proof of Lemma 8 shows that there is a solution for every instance
of the PIDO problem which dominates at least 2

√
N − 1 vertices. The earlier greedy

polynomial algorithm gives this solution. However, we show that there are instances in
which it is impossible to dominate more vertices.
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Construction 11. Let Y be an integer. We construct G = (V,E) a graph and Π its
obligations as follows:

• We add the vertices v11, . . . , v
1
Y , . . ., vY1 , . . . , vYY .

• We add the obligations {v11, . . . , vY1 }, . . ., {v1Y , . . . , vYY }.

• For each 1 ≤ i ̸= j ≤ Y , we add the edge (vji v
i
j).

Note that G is a collection of paths, with stable and Y -balanced obligations. See an
illustration on Figure 11.

v11

v31

v21

v41

v12

v32

v22

v42

v13

v33

v23

v43

v14

v34

v24

v44

Figure 11: Illustration of Construction 11 with Y = 4.

Lemma 9. Regardless of the value of Y ≥ 2, it is impossible to dominate more than
2
√
N − 1 vertices in the instance (G,Π) of PIDO following Construction 11.

Proof. Let (G,Π) be an instance of PIDO, with n the number of vertices of the graph,
following Construction 11. Since each obligation shares exactly one edge with each other
obligation, only one obligation can be in a solution. Since each obligation has

√
n vertices

and there are
√
n obligations, the solution has exactly 2

√
n− 1 vertices, regardless of the

chosen obligation.

We have shown that there is always a solution which dominates 2
√
N − 1 vertices

(with N the number of vertices of the graph) for the PIDO problem if the obligations
are stable. We have also shown that there are instances in which no more than 2

√
N − 1

vertices can be dominated. So, we can conclude this section by the following theorem.

Theorem 9. Let (G,Π) be an instance of PIDO with stable obligations and N be the
number of vertices of the graph. There is a polynomial algorithm which gives a solution
dominating at least 2

√
N − 1 vertices. Moreover, there is no solution which dominates

more than 2
√
N − 1 vertices in an infinite number of instances.
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6 Conclusion

In this paper, we have shown that determining if there is a solution for the IDO problem
is NP -complete, even if the graph is a path and the obligations are stable and λ-balanced
(with λ ≥ 2), or if the graph has a diameter 3 and the obligations are stable and λ-
balanced (with λ ≥ 2). However, determining if there is a solution for the IDO problem is
clearly polynomial for graphs with diameter 1. The case of diameter 2 is still to be studied.
We have also shown that determining if there is a solution for the IDO problem is NP -
complete, even if there are less or more than

√
N stable obligations balanced. However,

determining if there is a solution for the IDO problem can be solve in pseudo-polynomial
time if the number of obligations is constant. The existence of a fully polynomial time
algorithm for a small number of obligations is still to be studied. Finally, we proved that
the IDO problem stays NP -complete when we remove the constraint of dominating each
vertex, even if we want to dominate only at least 3

√
N − 2 vertices (with N the number

of vertices of the graph). However, we proved that there is always a solution which can
dominate 2

√
N−1 vertices if obligations are stable. We have also given a fully polynomial

time algorithm to get this solution. Hence the order of magnitude is tight. However, a
reduction of the gap polynomial and NP -complete cases is still open.
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