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Abstract. Conventional 2D Convolutional Neural Networks (CNN) ex-
tract features from an input image by applying linear filters. These filters
compute the spatial coherence by weighting the photometric information
on a fixed neighborhood without taking into account the geometric in-
formation. We tackle the problem of improving the classical RGB CNN
methods by using the depth information provided by the RGB-D cam-
eras. State-of-the-art approaches use depth as an additional channel or
image (HHA) or pass from 2D CNN to 3D CNN. This paper proposes
a novel and generic procedure to articulate both photometric and geo-
metric information in CNN architecture. The depth data is represented
as a 2D offset to adapt spatial sampling locations. The new model pre-
sented is invariant to scale and rotation around the X and the Y axis of
the camera coordinate system. Moreover, when depth data is constant,
our model is equivalent to a regular CNN. Experiments of benchmarks
validate the effectiveness of our model.

1 Introduction

Recent researches [1, 2] prove that CNN has achieved significant progress in ap-
plications like classification, object detection, scene understanding, etc. However,
the performance of 2D CNN is limited by its regular receptive field (RF) and
focuses more on photometric information rather than geometry which is not di-
rectly available on RGB images. To overcome this issue, approaches such as [3, 4]
modify the size of the convolution grid to contain all possible variations. Region-
based CNN [5–7] and their successors manage to find the Region of Interests of
the object (RoI) and realize CNN on each RoI.

Recently, sensor technologies have achieved great progress in scene repre-
sentation. Sensors such as Kinect, high-resolution radar, or Lidar can provide
the depth map as supplementary information to RGB image. This provides the
possibility to reconstruct the 3D scene with the help of both complementary
modalities, which is seen as a possible improvement in CNN [8–12]. In the past
few years, a common approach is to take the depth map as an extra channel or
extra images (HHA). While these works have proved better performance with
additional depth information, variance to scale and rotation remains unsolved.
In the left of Fig. 1, we can see that for two parallel rails forming the vanishing
effect, the receptive fields have the same size and shape. To extract this feature
in conventional CNN, either a dataset containing all variations is required, or
the model should be complex enough to learn this feature.
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(a) Conventional convolution (b) Convolution adapted to the depth

Fig. 1: Illustration of Depth-Adapted Convolution Network. The receptive field
(RF) of conventional 2D CNN has a regular shape and fixed size, as shown in
the left image. While with the RGB-D image, the additional cognition on depth
provides the possibility to better understand RGB image. As shown in the right
figure, with the depth information on the rail, we can easily link the vanishing
effect with the RGB image. Inspired by this observation, we try to find a 3D
planar RF whose projection on image includes more spatial information than
fixed RF. In such a way, the modified 2D RF can enable progress in existing 2D
CNN.

To overcome this issue, in this paper, we propose an end-to-end network
named Depth-adapted CNN (Z-ACN). Z-ACN remains as an image convolution
(2D). Instead of using a fixed receptive field, we enable an additional 2D offset
to transform the shape. The new shape should be adapted to the geometry.
We assume that pixels on the same 3D plane tend to share the same class.
This 3D plane and depth variance have a high correlation. As illustrated in
Fig. 1, we display the projection of the 3D plane of the rail on the image plane
as the adapted 2D RF. It describes better the vanishing effect than a fixed
RF on the left. Note that the offset is computed from the depth image with
traditional computer vision algorithms that do not require gradient during back-
propagation. This helps us to improve the performance of 2D CNN without
complicating the model.

The main contributions of Z-ACN are summarized as follow :

– We propose a generic convolutional model that adapts the 2D grid to the
geometry which breaks the fixed form. This enables our model to be invariant
to scale and rotation.

– The grid transformation is produced by traditional computer vision algo-
rithms (without learning), which can be easily computed with minimal cost.

– Z-ACN can be easily integrated into any conventional CNN.
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2 Related Work

A classic image convolution is formulated as:

y(p) =
∑

pn∈R(p)

w(pn) · x(p+ pn). (1)

where w is the weight matrix. R(p) is the grid for point p. Physically it rep-
resents a local neighborhood on input feature map. R(p) defines the size, scale
and shape of RF. For a standard 3 × 3 filter (e.g. standard regular shape with
dilation ∆d), the R(p) is given by:

R(p) = a~u+ b~v (2)

where (~u,~v) is the pixel coordinate system of input feature map and (a, b) ∈
(∆d · {−1, 0, 1})2. With the same input variables, different CNNs have different
types of the weight matrix, grid (size, scale, shape) or pooling method.

2.1 Scale in 2D RGB Image Convolution

Due to the fixed size of RF, conventional image convolution has difficulties to
adapt to objects on different scales. To deal with this problem, one popular
approach is to use dilated convolution [13, 14]. By maintaining the kernel size
but enlarging the RF, dilated convolution proves its performance on large-scale
problems. Another direction is to use different scales in the network. Multi-scale
approach [4, 15, 16] and pyramid approach [17–19] enable progress with CNN by
considering different RF scales. But the size of these RFs is in general predefined.
Moreover, as the RF shape is always regular, these methods are not eligible to
deal with a non-standard object like rotated, cropped, or distorted.

2.2 2D Deformable Model

To learn maximum geometry information in a 2D image, researches start to in-
sert additional transformation parameters in networks. [20] proposes a spatial
transformer to align feature map. Deformable-CNN (DeformCNN) [21] learns a
dense spatial transformation to augment spatial sampling location, which breaks
the regular shape of RF. [22] adapts the DeformCNN to learn the unevenly dis-
tributed context features to improve the RoI location. Applications on videos like
[23, 24] take consecutive frames and use DeformCNN to align the input frames
to restore the video. Nevertheless, all these methods train the offset as extra
parameters during back-propagation. The objective of the deformable model is
to adapt the sampling locations of CNN. This means that if the geometry prop-
erties of the camera are known in advance, it should be possible to determine the
sampling position without training. One successful application is the spherical
CNNs [25–27]. These methods take advantage of the prior knowledge of image
distortion to inject it explicitly into the model. In this paper, we will present
how we extend this idea to another geometry property, the depth.
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2.3 CNN for 3D Representation

Rich information on geometry provides various methods to realize 3D convolu-
tion. The volumetric representation [28–30] feeds voxel data into 3D CNN. It
seems to be a trivial method to deal with 3D data. However, as data is often
sparse on the 3D scene, it may waste huge memory consumption for less use-
ful information. Different from the voxel representation, [31, 32] propose to use
directly the point cloud representation. Different 3D CNN methods are trying
to adapt to the irregularity of point cloud. [33] integrates a x-transformation
to leverage the spatially-local correlation of point cloud[34] introduces a spa-
tially deformable convolution based on kernel points to study the local geometry.
[35] learns the mapping from geometry relations to high-level relations between
points to get a shape awareness. [36] defines convolution as an SLP (Single-Layer
Perceptron) with a nonlinear activator.

Some reaches also try to reduce the model complexity. [37] adapts CRF (Con-
ditional Random Fields) to reduce the model parameters. Multi-view method
[38–41] reforms 3D CNN to become the combination of 2D CNNs. [38] profits
from Lidar to get bird-view and front-view information in addition to a tradi-
tional RGB image. [39] uses depth image to generate the 3D volumetric rep-
resentation after which projections on x,y,z planes are learned respectively by
2D CNN. 3D CNN achieves better results than RGB CNN but requires further
development on problems such as memory cost, data resolution, and computing
time.

2.4 RGB-D Representation

Different from voxel and point cloud, RGB-D can profit from its image-like
form and contain both photometric and geometry information. Early CNNs on
RGB-D images commonly follow 2 directions. One direction is to use a depth
map to create 3D point clouds where the spatial information is learned [42, 43].
This shares the same disadvantages on memory and computation cost. Another
direction is to realize two separate convolutions on both RGB image and depth
map and then apply a fusion in the network [10, 12]. Some works [2, 8, 9, 11]
encode depth map to HHA image which have the same dimension of RGB image.
This doubles the number of parameters and does not solve the problem of fixed
size and shape of RF.

Recent works begin to adapt depth information in the convolution of the
RGB image. Frustum methods [44, 45] compute 2D RoI on RGB image and back-
project them to 3D with the help of depth, which avoids the problem of regular
shape. However, a huge part of computation has been done with the point cloud,
which joins the disadvantages of 3D CNN. [46] analyzes the depth similarity to
adjust the weight for a conventional RF. [47] projects 3D convolution on the 2D
image which can adjust the size of RF to the depth. But for both methods, the
RF shape remains regular.

In this paper, we present a different vision to integrate depth information.
Inspired by the idea of deformable convolution [21], our method introduces an
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offset into the basic operations of CNN that breaks the limitation of the fixed
structure. Different from state-of-the-art methods that train the offset as a vari-
able in the network, our offset is computed directly from depth with traditional
computer vision algorithms. Thus, our model does not add extra parameters
needing to be learned. It can be easily integrated into any existing model by
replacing simply convolution by guided deformable convolution. The final con-
volutional network remains 2D but with further geometric information.

3 Depth-Adapted Convolution Network

A 2D convolutional grid adapted to the depth information is the prospective
topic in computer vision. Different from the conventional convolution Eq. 2, the
Z-ACN is presented as:

y(p) =
∑

pn∈R(p)

w(pn) · x(p+ pn +∆pn). (3)

The convolution may be operated on the irregular positions pn +∆pn as the
offset ∆pn may be fractional. To address the issue, we use the bilinear interpo-
lation which is the same as that proposed in [21].

The model requires 2 inputs: input feature map and depth map. The feature
map is denoted as x ∈ Rci×h×w, where ci is the number of input feature channel,
h and w are the height and weight of the input feature map. The depth map
is denoted as D ∈ Rh×w. D is used to adapt the spatial sampling locations
by computing the offset, denoted as ∆p ∈ Rcoff×h1×w1 , where h1 and w1 are
the height and weight of the output feature map and coff = 2 × N × N for a
N ×N filter. Different from DCNN, our offset does not require gradient during
back-propagation. The output feature map is denoted as y ∈ Rco×h1×w1 , where
co is the number of output feature channels.

In the following parts, we will explain how the Z-ACN works to compute the
2D offset from depth.

3.1 Back-projection on 3D Space

Without loss of generality, we suppose that the camera fits the pinhole model.
With RGB-D image, it is possible to back-project a 2D point p(u0, v0) to 3D
point, denoted as P0(X0, Y0, Z0). In p(u0, v0), instead of a fixed RF R(p), we
would like to propose a deformable RF by taking into account the geometric
information.

Let us note Pi = (Xi, Yi, Zi) the 3D points back-projected from R(p). i takes
value from 0 to N ×N where N ×N is the size of kernel. We extract the plane
π which passes through P0 and fits the best to all Pi :

~n = arg min
(n1,n2,n3)

∑
i

||n1(Xi −X0) + n2(Yi − Y0) + n3(Zi − Z0)||2 (4)

where ~n = (n1, n2, n3) is the normal of the plane π computed by singular value
decomposition.
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(a) Standard (b) Deformable (c) Depth data (d) Z-ACN

Fig. 2: Effect of offset on a 3 × 3 kernel. a) shows a standard 2D convolution with
dilation equals to 1. b) shows the offset computed from deformable convolution
[21]. c) is the available depth data. The represented figure shows a linear change
in depth value. From left to right, the scene becomes deeper. d) illustrates offset
computed by Z-ACN which is adapted to depth.

3.2 3D Planar Grid

For a 2D point p(u0, v0), we may consider a conventional 2D convolution on
image plane as realizing a planar convolution on a fronto-parallel plane on its
back-projection P0(X0, Y0, Z0) in 3D scene. By introducing the importance of
depth, Z-ACN replaces the fronto-parallel plane by the new-defined plane π that
is adapted to the depth. In other words, Z-ACN computes a new planar and
regular grid, denoted as R3D(P0). R3D(P0) is centered on P0 and its regular

shape is defined by an orthonormal basis (~x′, ~y′) on π. We fix ~x′ horizontal

(~x′ = (α, 0, β)). As ~x′ is on the plane π defined by its normal ~n = (n1, n2, n3),
we have :

~x′ · ~n = 0, ||~x′||2 = 1, ||~n||2 = 1 (5)

Analytically, we can compute the value for ~x and ~y = ~n× ~x′, such that:

~x′ =


n3√
1−n2

2

0

− n1√
1−n2

2

 , ~y′ =


− n1n2√

1−n2
2√

1− n22

− n2n3√
1−n2

2

 (6)

To conclude, R3D(P0) is defined as :

R3D(P0) = a~x′ + b~y′ (7)

with (a, b) ∈ (−ku, 0, ku) × (−kv, 0, kv) where (ku, kv) are scale factors. Their
values will be discussed in section 3.4.

The 3D grid on a depth-adapted plane guarantees Z-ACN to be a generic
model. In the case when the plane is front-parallel, Z-ACN performs in the same
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way as a conventional CNN. Indeed, we have ~n = (n1, n2, n3) = (0, 0, 1). From

Eq. 6, we have ~x′ = (1, 0, 0) and ~y′ = (0, 1, 0), which represent the regular shape
for 3D grid. Thus, the projection on the image plane performs the same as a
conventional or dilated convolution. Otherwise, being generic enables Z-ACN to
be invariant to scale and rotation.

3.3 Z-ACN

We denote R’(p) the projection of R3D(P0) on the image plane, which forms
the Z-ACN :

y(p) =
∑

pn∈R’(p)

w(p) · x(p+ pn).

=
∑

pn∈R(p)

w(p) · x(p+ pn +∆pn)
(8)

Different from the conventional grid R(p), the newly computed R’(p) breaks
the regular size and shape with the additional offset which contains more geom-
etry information.

3.4 Scale Factor

The scale factors (ku, kv) are designed to be constant to guarantee the equal sur-
face of 3D RF. In such a way, with the variance of depth, due to the perspective
effect, the projected 2D RF on image plane will have different sizes.

The value of scale factors can be chosen in function of user’s needs. In our
application, we want Z-ACN performs the same as a conventional 2D convolution
on a particular point p(u0, v0) whose associated plane in Eq. 4 is fronto-parallel
{Z|Z = Zp}. In other words :∑

pn∈R’(p)

w(pn) · x(p+ pn) =
∑

pn∈R(p)

w(pn) · x(p+ pn) (9)

By taking into account the dilation ∆d and the camera intrinsic parameters
(fu, fv) and by combing Eq. 2 and Eq. 7, we have:

ku = ∆d× Zp

fu

kv = ∆d× Zp

fv

(10)

For any point with a deeper depth value than Zp, the associated RF will be
smaller. Otherwise, the associated RF will be equal or larger, which approves
the fact of being adapted to scale.
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Fig. 3: The left figure shows the depth map. Instead of conventional 2D regular
RF, Z-ACN is a generic model that takes into account the geometry. Red points
on the right hand represent our RF for a 3 × 3 kernel. As shown in the image,
our model enables a modification on the convolution grid that describes better
the geometry in a 2D image, which helps to be invariant to rotation. With the
variation of depth, the surface convolution grid changes as well, which helps to
be invariant to scale.

3.5 Understand Z-ACN

Recent researches prove the performance of 2D CNN to understand the 3D scene.
However, due to the regular grid, 2D CNN is more suitable for rigid objects where
the deformation is minimal. To break this limit, there are 2 possibles ways. The
first one is to augment the size of the dataset to contain all possible variations [48,
49] while the second is to augment the complexity, thus the ability, of network
[1, 50, 51].

The latest advances in 3D sensors provide rich information about the geom-
etry of 3D objects. 3D data can have different representations such as voxel,
point cloud, and multi-view image. Studies [29, 38, 52] show the impact of differ-
ent representation on the performance. However, these approaches based on 3D
data suffer from high computation complexity.

RGB-D images seem to be the most accessible and light data that articulates
both 2D and 3D advantages. Z-ACN takes this particularity to include the depth
into the convolution by adjusting the 2D convolutional grid. This pattern is
integrated into Eq. 3. To get a better understanding of Z-ACN, Fig. 3 shows
the depth-adapted 2D grid of a given input neuron (the center). In the case of
conventional CNN, the shape of the grid is fixed as regular, which has difficulties
to deal with 3D information. With the Z-ACN, the grid is adjusted to geometry.
As shown in Fig. 3, the receptive field for a nearer point is larger than that of
a farther point. Receptive fields on the same plane also have different shapes
that are adapted to the camera-projection effect. These patterns increase 2D
CNN’s performance to adapt to potential transformation without complicating
the network nor augmenting the size of the dataset.
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4 Experiment Work

As a generic model, Z-ACN can apply to all applications such as classification,
segmentation, object detection, etc. In this paper, we evaluate our model on
the problem of semantic segmentation. For any given CNN, we follow the same
configuration on loss function and optimizer and replace the only convolution by
Z-ACN operation. The whole work is realized under the Pytorch framework. We
use the official deformable convolution from the torchvision package. The scale
factor in Eq. 10 is computed with the mean of the input depth map. We repeat
all experiments three times on an Nvidia 2080 Ti GPU and report the average
model performance.

Experiments are realized with the NYUv2 dataset [49]. We take 1,449 RGB-
D images with pixel-wise labels. We split them into 795 training images and 654
testing images. For labels, we follow respectively the 13-class settings and the
37-class settings. Note that Z-ACN works with RGB-D images, but the input
of CNN models remains RGB. The depth information is only introduced in
the guided deformable convolution. In other words, adapted CNN models only
extract features from the RGB image, which is the same as the initial CNN
model. Only the sample position is guided by the depth. To make difference
from classical RGB input and classical RGB-D or RGB + HHA input, we denote
RGB(D) as the input of Z-ACN.

4.1 Integrating Depth in RGB Convolution

As the Z-ACN is invariant to scale and rotation, in this section, we want to
show that Z-ACN should achieve better results than conventional convolution
in existing architecture. We choose U-Net [53] as our baseline. We train U-Net
with respectively RGB input, RGB-D input, and RGB(D) input. All models are
trained from scratch with the NYUv2 dataset following 13-class settings. We use
conventional cross-entropy as loss function, SGD optimizer with initial learning
rate 0.0001, momentum 0.99, and batch size 1.

We evaluate the performance by regarding common metrics: overall accuracy,
mean accuracy, mean intersection over union, and frequent weighted intersection
over union. Overall Accuracy (Acc) stands for the proportion of correctly pre-
dicted pixels in the whole image. Mean Accuracy (mAcc) further analyzes the
accuracy averaged over all the classes. Intersection over Union (IoU) studies the
proportion of overlap area between the predicted segmentation and the ground
truth divided by the area union and averaged over all the classes. Frequency
Weighted Intersection over Union (fwIoU) further analyzes the IoU weighted by
the total pixel ratio of each class.

Mathematically, suppose that we have si the number of pixels with the
ground truth class i. We can compute the total number of all pixels: s =

∑
i si.

nij denotes the number of pixels with ground truth class i and predicted as class
j, nc denotes the number of total classes. The model is evaluated by:

– Overall Acc: Acc =
∑

i
nii

s
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– Mean ACC: mAcc = 1
nc

∑
i
nii

s

– mean Intersection over Union: mIoU = 1
nc

∑
i

nii

si+
∑

j nji−nii

– Frequency Weighted Intersection over Union: fwIoU = 1
s

∑
i si

nii

si+
∑

j nji−nii

The results of our experiments are summarised in Table 1. We can observe
that the network with additional depth information achieves a better result
than the network with RGB only images. But the result with RGB(D) input
outperforms that with RGB-D input. Compared to RGB and RGB-D input, the
improvement with Z-ACN was +3.2% and +2.8% for the pixel-wise accuracy;
+3.9% and +5.1% for class accuracy; +4.6% and +3.2% for mean Intersection
of Union; and +2.8% and +2.1% for Frequent Weighted Intersection of Union.
Note that the number of parameters is the same to extract features from the
RGB image, which is also the case of Z-ACN. But for the network with RGB-
D input, it requires a slightly higher number of parameters due to the input
size. Nevertheless, it is still outperformed by our model. This result proves that
Z-ACN integrates depth information more effectively in the RGB CNN.

NYUv2 13 class RGB RGB-D RGB(D)

U-Net[53]

Acc (%) 52.4 52.8 55.6
mAcc (%) 40.4 39.2 44.3
mIoU (%) 27.2 28.6 31.8
fwIoU (%) 36.9 37.6 39.7

Table 1: Comparison with different inputs on U-Net on NYUv2 test set following
13-class setting. Networks are trained from scratch. We test respectively U-Net
with RGB input, with RGB-D input and with RGB(D) inputs. All evaluations
perform at 640 x 480 resolution. We show that Z-ACN attends better result than
other inputs.

4.2 Comparison with the State-of-the-art

As the Z-ACN is invariant to scale and rotation around the X and the Y axis
from the camera coordinate system, we want to show that Z-ACN should achieve
similar results with less learning parameters. In other words, our model should
enable a CNN model with fewer feature channels to have similar performance.
To the best of our knowledge, [47] is the latest research working in the same
direction with RGB-D images.

To prove this idea, we adopt a modified ResNet-18 [50] as our backbone.
We replace the conventional convolution by Z-ACN. We change the size of all
convolutional kernels to be 3 × 3. We reduce the number of feature channels
by 24. The input of our network is classical the RGB(D) image. We use the
skip-connected fully convolutional architecture [2]. This network is trained from
scratch. We train the new model with the NYUv2 dataset following 37-class
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settings for a complex scene analyzing. We randomly sample 20% rooms from
the training set as the validation set. The model is trained with the logarithm
loss function.

We compare Z-ACN with 3D representation such as PointNet[31], Conv3D
[37, 43] and 2D representation such as DeformCNN[21] and SurfConv [47]. Conv3D
and PointNet use the hole-filled dense depth map provided by the dataset to cre-
ate voxel input. For PointNet, the source code is used to uses RGB plus gravity-
aligned point cloud. The recommended configuration [31] is used to randomly
sample points. The sample number is set to be 25k. For Conv3D, the SSCNet
architecture [37] is used and is trained with flipped - TSDF and RGB. The reso-
lution is reduced to be 240×144×240 voxel grid. For DeformCNN, RGB images
and HHA images are chosen as input for a fair comparison. For SurfConv, we
compare with both the 1-level model and the recommended 4-level model [47]
(the 4-level model requires a resampling on the input image to be adapted to
the different levels of depth). For all the above-mentioned models, we follow the
same configuration and learning settings as discussed in [47]. Thus we compare
directly with the presented results.

NYUv2 37 class Input # of param mIoU (%) Acc (%)

PointNet[31] voxel + RGB 1675k 6.9 47.4

Conv3D [37, 43] voxel + RGB 241k 13.2 49.9

DeformCNN[21] HHA + RGB 101k 12.8 55.1

SurfConv1[47] HHA + RGB 65k 12.3 53.7

SurfConv4[47] HHA + RGB 65k 13.1 53.5

Z-ACN (ours) RGB(D) 65k 13.5 57.2

Table 2: Comparison with different models with NYUv2 test set following 37-
class settings. All results except ours are extracted from [47]. Our model is
trained from scratch with the same settings.

As shown in Table 2, Z-ACN achieves better results compared to all other
methods:

– Compared to PointNet, Z-ACN uses only 4% of its number of parameters
but achieves +7% on mIoU and + 10% on Acc.

– Compared to Conv3D, Z-ACN uses less than 30% of its number of parameters
to achieves close but better results on mIoU and +7% on Acc.

– Compared to DeformCNN which also adds offset to the convolution, Z-ACN
uses only 65% of its parameters as the offset in Z-ACN does not require gra-
dient during back-propagation. Z-ACN still achieves close but better results
on mIoU and +2% on Acc.

– Compared to SurfConv, with 1-level configuration (the same size of input
data) and the same model (FCN + ResNet-18), Z-ACN achieves +1% on
mIoU and + 4% on Acc. Compared to 4-level which resamples input data,
Z-ACN remains to be better in both mIoU and Acc.
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Fig. 4: Illustration of average improved percentage of per-class IoU. We compare
Z-ACN with SurfConv single-level, with the exact same CNN model. Models are
trained from scratch. On NYUv2, we improve 25/37 classes with 6.1% mean IoU
increment.

Fig. 4 illustrates the average improvement of per-class IoU between Z-ACN
and SurfConv1. As our model adapts convolution to a local plane, it should be
sensitive to depth differences. We can observe that Z-ACN achieves significantly
better results on objects with large sizes such as floor, bed, sofa, table, counter,
and ceiling. Recognizably, large-size objects can be easily distinguished from
other objects because commonly they don’t share the same 3D plane. This result
meets our expectations. Wall is also a large-size object, but as shown in Fig. 3,
there might be other objects such as pictures on the same plane which adds
ambiguities to our model.

Different from 3D representation, the Z-ACN remains a light-weight 2D CNN
which consumes significantly less memory. Z-ACN performs also better than
other state-of-the-art models with RGB-only input. The result validates the
effectiveness of integrating depth information in convolution by adapting the
sampling position.

4.3 Adapting to Existing Model

Previous results show that the memory requirement of our network is low but it
can still achieve better results compared to memory-consuming approaches. As
Z-ACN does not add extra learning parameters to the existing model, we can
take advantage of heavier models to further improve its performance.

We choose VGG-16 [51] as our CNN network which is widely used in the
NYUv2 dataset. We use Deeplab [1] with VGG-16 as the baseline. This model
requires 20520k parameters. A quantitative comparison between the initial model
and Z-ACN is summarized in Table 3. We use common metrics and configurations
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NYUv2 13 class Acc (%) mAcc (%) mIoU (%) fwIoU (%)

Baseline 63.9 49.0 36.7 48.6
Z-ACN 69.4 56.5 43.8 55.1

NYUv2 37 class Acc (%) mAcc (%) mIoU (%) fwIoU (%)

Baseline 70.0 34.3 25.7 54.9
Z-ACN 73.5 36.8 28.4 58.8

Table 3: Comparison between Deeplab with VGG-16 as encoder and Z-ACN
on NYUv2 test set following 13-class setting and 37-class setting. Networks are
trained from scratch. We show that our model attends better result than initial
model.

presented in Section 4.1. Both models are trained from scratch with the NYUv2
dataset following respectively 13-class settings and 37-class settings.

Table 3 illustrates that with more parameters, CNN can achieve better re-
sults. It also shows that our model Z-ACN can improve the performance of a
memory-consuming model as well, without adding extra parameters.

5 Conclusions

Z-ACN is a novel and generic model to include geometry data provided by RGB-
D images in 2D CNN. When the depth is unknown, e.g. RGB images, or when the
scene is planar and the image plane is parallel to this scene, Z-ACN performs in
the same way as dilated or conventional convolution which helps to be invariant
to scale. In other cases, it provides a novel method to adapt the receptive field
to the geometry, which is invariant to scale and rotation around the X and
the Y axis from the camera coordinate system. This design helps to improve
the performance of existing CNN to attend the same result by reducing the
computation cost, or to achieve better results without complicating the network
architecture nor adding extra training parameters.

We demonstrated the effectiveness of Z-ACN on semantic segmentation task.
Results are trained from scratch. In future works, we will figure out how to
adapt Z-ACN to existing pre-trained models and how to adapt the geometry in
the pooling layer. We will also try to extend the application to other popular
tasks like normal or depth estimation, instance segmentation, or even pass from
RGB-D image to 3D dataset.
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