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REVISITING THE NESBIT AND MCGINNIS OPTIMISATION 

MODEL OF THE GOLF SWING HUB PATH 

Benjamin O’Brien, Brett Juhas, Marta Bieńkiewicz, Christophe Bourdin 

Aix-Marseille Univ, CNRS, ISM, Marseille, France 

BACKGROUND: This article details the development of adopting the Nesbit and 1 
McGinnis model of the golf swing1 as a starting point for studying golf 2 
performance optimisation. The model was selected as it presents an opportunity 3 
to examine how non-naïve participants can learn and improve their swing 4 
mechanics, which could prove valuable in studying human learning in sports, 5 
rehabilitation, and re-education. METHODS: Kinematic data was acquired in 6 
laboratory and real-world environments using the motion capture systems 7 
Qualysis and CodaMotion CX-Sport, respectively. In the early stages of 8 
developing the model in MATLAB, we identified limitations in the Nesbit and 9 
McGinnis methodology, including the filtering techniques applied to swing 10 
vectors and the selection of swing variables and the solutions to their boundary 11 
conditions solutions during the downswing. By addressing these issues, our goal 12 
was to revise the model and make it more robust and capable of optimising the 13 
impact velocities from a wider variety of subjects with varying swing mechanics. 14 
RESULTS: By increasing the cutoff frequency used to filter the swing vectors 15 
and expanding the swing variable polynomial equations, we found it was possible 16 
for all participants to increase their club head velocity at impact while respecting 17 
their unique kinematic limitations. The manner of the kinematic changes and the 18 
percent of velocity improvement are participant dependent. CONCLUSIONS: 19 
Our study showed that the observed and optimised hub paths differed among 20 
participants, which suggests participants might also differ in their approaches and 21 
capacities to adopt the latter. 22 
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BACKGROUND: 24 

A major research focus in the field of sports sciences is improving sport performance, 25 

which traditionally involves multidisciplinary knowledge, from sociology to 26 



psychology, biomechanics, and also neurosciences. Because of the specialty of skills 27 

required for improvement, the scientific questions are numerous and quite challenging, 28 

especially when concerning the golf swing, which is considered the most difficult motor 29 

skill in sports.2 This characterisation is due to the complex mechanics and conditions 30 

required to perform the gesture successfully and consistently. A significant amount of 31 

research has been devoted to studying and revealing the biomechanical complexities of 32 

the golf swing, including studies on the role of ground-reaction forces,3 X-factor,4 5 and 33 

the crunch-factor.6 A first step towards improving golf swing mechanics is to identify 34 

variables that are easily controllable by golfers and then determine the optimised 35 

trajectory of such variables. 36 

In general, an increase in club head speed will increase the overall energy 37 

transferred to the ball at impact, which will theoretically result in a greater distance the 38 

ball travels.7 8 9 To understand and potentially optimise club head speed, there are 39 

several golf swing models, including kinematic10 and forward dynamic.11 Recent work 40 

suggests that the nature of the club head path is non-circular12 13 and derived from the 41 

path of the hands (hub path) located at the club grip.  42 

Nesbit and McGinnis developed a forward kinematic model1 and found that, 43 

while constraining the maximum force and torque outputs, participants could 44 

manipulate the hub path to increase club head velocity. Nesbit identified the hub radius, 45 

hub path, and club head path14 as a collection of kinematic variables that golfers can 46 

manipulate in unique ways to improve form. Figure 1 offers a two-dimensional 47 

representation of these variables during the downswing as projected onto a swing plane, 48 

where the hub radius can be inferred as the distance between the “Hub Rotation Center” 49 

and the “Hub Position.” We selected the Nesbit and McGinnis club and optimisation 50 

model as a starting point for our own development, as we believed its design, which 51 



accounts for three kinematic variables, might, in theory, increase the likelihood of non-52 

naïve participants being capable of manipulating them in ways that would optimise 53 

impact velocity and subsequently ball distance. 54 

However, while developing the Nesbit and McGinnis club and optimisation 55 

models in MATLAB (The MathWorks, Inc.), several issues emerged that concerned the 56 

approach, design, and use of the model. First, while it was expected that the club head 57 

and hub path signals were to be filtered, given the significant speed of the downswing, it 58 

was equally necessary to have confidence in the impact velocity calculation so as to 59 

assess the degree of optimisation. Second, in order to calculate changes to the hub 60 

length and angular path, a centre point of rotation is necessary, yet its position depends 61 

on the golfer and their swing style. Finally, the kinematic response of these swing 62 

variables are modelled as time-dependent polynomial equations, however, multiple 63 

questions emerged regarding their selection and solving for their boundary conditions 64 

during the downswing. 65 

For this study we wanted to first collect kinematic and kinetic data from a pool 66 

of golfers with diverse swing styles and experiences. As discussed, there are many 67 

factors that contribute to the success of a golf swing, some of which are quite 68 

idiosyncratic. By developing an optimisation model that is robust enough to 69 

accommodate these features, we might be able to study how experts of a de facto 70 

complex motor task are capable of training and maintaining their swing form or 71 

possibly wish to learn and improve their mechanics. Experienced and high-level athletes 72 

often cite the relationship between their environment and their performance, so we 73 

wanted to first collect data in laboratory, which we could then use to develop our model 74 

so that it could accommodate the measurement of participants performing swings in the 75 

real world – on the driving range. By doing so, we believed we could better test the 76 



robustness of our club and optimisation models. After collecting our dataset, our goal 77 

was to develop an optimisation routine that uses the Nesbit and McGinnis1 model of the 78 

golf swing as a starting point. By making these changes we hypothesise that our model 79 

can enhance the findings reported in the Nesbit and McGinnis1 by optimising the impact 80 

velocity for swings produced on the driving range. 81 

METHODS: 82 

Participants and data collection 83 

Four golfers (all male) were analysed for this study, and their details are given in Table 84 

1. All participants used the same club (driver of length = 1.105 m; mass = 0.394 kg; 85 

club cg = 0.669; Icg = 0.079 kg.m2). All participants were instructed to complete a 86 

minimum of six swings that demonstrated their typical swing, which were recorded 87 

using a motion capture system and stored based personal feedback. To test the 88 

robustness of our model development, it was important that the golfers felt the 89 

measured trials represented their swing idiosyncrasies on average. Participant data was 90 

collected in two separate sessions, using different technical setups. However, like the 91 

study conducted by Nesbit and McGinnis,1 the markers used to locate club head and hub 92 

paths were similarly positioned along the long axis of the club shaft for both sessions. 93 

Our first goal was to collect golf swing kinematic data in a laboratory setting for 94 

preliminary use in developing our model. Our decision to begin data collection in the 95 

laboratory was both to follow the precedent set in Nesbit and McGinnis1 and validate 96 

any revisions to the model. Participant 1 was recorded at 300 Hz with an 11-camera 97 

motion tracking protocol using passive markers (Qualisys). Using the Qualisys marker 98 

placement protocol,15 60 markers (size: 19 mm; weight: 2.5 g) were placed on the body 99 

of Participant 1, and six were placed on the golf club. Participant 1 hit foam balls into a 100 



net in a competitive manner, where distance and accuracy are equally significant. 101 

Because we would require a more streamlined experimental setup to measure 102 

participant kinematics in real-world environments, this first step helped us identify 103 

which kinematic features were important and necessary to adapt the Nesbit and 104 

McGinnis swing optimisation model.  105 

Following our collection and use of Participant 1 data in our initial model 106 

development (see: Adaptations to Nesbit and McGinnis optimisation model), 107 

Participant 2 was measured in the same laboratory setting. However, only two makers 108 

were placed on his clavicle and hand, respectfully, and three markers were placed on the 109 

golf club. This decision was based on our experience collecting Participant 1 swing 110 

data, which made clear to us that a full body capture was not necessary, as a majority of 111 

the marker measurements were either redundant or inapplicable to our model. In 112 

addition, a significant amount of time was spent placing markers on Participant 1 to 113 

ensure measurement accuracy, and, given our previous experiences recording the 114 

movements of highly-skilled athletes, we wanted to do our best to reduce our 115 

experimental setup time. Thus, for Participant 2 we were able to reduce the number of 116 

markers used, which allowed us to reduce setup time and maintain confidence in our 117 

measurements. Another important difference between the participants was that 118 

Participant 2 hit Titleist PRO V1X balls into net in a similarly competitive manner. This 119 

allowed us to study any differences dependent on ball materiality and modify our model 120 

and its method for detecting ball impact. 121 

A final round of data collection took place on a golf course driving range (Golf 122 

Salette, Marseille, FR). By recording in a real-world environment, we wanted to ensure 123 

the highest ecological validity, while preserving the highest spatio-temporal accuracy of 124 

the data. In addition, by measuring and optimising highly skilled golfers performing in 125 



their natural environment, our research distinguishes itself from the study by Nesbit and 126 

McGinnis,1 where kinematic data was only collected in a laboratory. An important goal 127 

for our study was to take the laboratory conditions “outside,” which would allow us to 128 

measure participant data in a real-world environment and thus, provide a more accurate 129 

measurement of participant swing idiosyncrasies. Although the use of different motion 130 

capture systems is unorthodox, in order to test the robustness of our model, we opted for 131 

a more flexible approach in obtaining kinematic and kinetic data. Thus, our choice of 132 

motion capture system was based on environmental constraints: Laboratory Participants 133 

1-2 were measured with wireless passive markers and multiple cameras (Qualysis), 134 

whereas Participants 3-4, who performed on a driving range, were measured with the 135 

CodaMotion CX-Sport active marker motion tracking system and scanner with outdoor 136 

lighting exposure (sampling rate 200 Hz). CodaMotion CX-Sport 3-D motion scanner 137 

was placed 2.5 m from the golf ball (1.2 m above), and four markers were placed on the 138 

golf club, which were connected and powered by a CodaMotion “drive box” (weight: 139 

15 g) fastened below the handgrip. 140 

Participants verbally informed us which trial best represented their swing, which 141 

was then used for analysis. This process of selection is consistent with previous 142 

studies.12 14 16 Like the Nesbit and McGinnis optimisation model, our analysis focuses 143 

on the downswing, which is the phase of the full swing that requires the golfer to exert 144 

the most energy to accelerate the club along the swing path.  145 

Adaptations to Nesbit and McGinnis optimisation model 146 

First, the model constrains the entire motion of the club onto one plane,1 10 17 and, as 147 

such, it is necessary to project 3D captured data onto a best-fit swing plane. However, 148 

due to the complexity and speed of the golf swing motion, which can create camera and 149 

scanner blind spots that hide sensor locations, some data could go unrecorded. In rare 150 



instances we used a third-order polynomial fit to estimate any missing data and create a 151 

continuous signal during the downswing motion. If there were more than three 152 

continuous sample points missing from the data, the swing was rejected for further 153 

study. This decision was based on our efforts to boost the fidelity of the observed 154 

swings, which, by doing so, would allow us to optimise swings that more closely 155 

reflected the swing idiosyncrasies of each participant. This step became necessary when 156 

applying the selected filtering techniques. The corrected continuous data were then 157 

projected onto the swing plane.10 158 

The best-fit swing planes were calculated for each participant using the club and 159 

hub kinematic data. Because of the high concentration of recorded points that occur 160 

early in the swing, we decided to reconstruct the club head path by using the cumulative 161 

sum of the distance along the path to produce spline-fits for all three-dimensions. The 162 

data points along each corrected path are equidistant in a 3-dimensional space, which 163 

puts an equal weight on each point when applying a Principal Component Analysis 164 

(PCA) to calculate the best-fit plane. To check the validity of our method, a Root Mean 165 

Square Error (RMSE) was used to compare the observed Participant 1 club head data 166 

with their reconstructed swing path, which found a 27% reduction in residual errors 167 

between the observed swing path and the best-fit plane. Supplementary Figure 1 168 

compares Participant 1 observed and reconstructed swing paths and Supplementary 169 

Figure 2 illustrates the sizeable decrease in residual errors near impact for the 170 

reconstructed swing. For a comprehensive swing analysis, we similarly reconstructed 171 

the hub path motion, and, with the club head reconstruction, included it in the PCA. 172 

Subsequently, an orthogonal projection of the observed data onto the swing plane is 173 

applied (Figure 2). 174 



We required an accurate centre point for which the hub rotates to determine the 175 

hub angle and path. The radial distance from the hub to its centre of rotation is not 176 

constant, varying over time throughout the swing, and golfers with higher skill levels 177 

have demonstrated a reduction in the hub radius as the club approaches impact with the 178 

ball.13 14 After reviewing the data from Participants 1-2, the initial clavicle marker 179 

position served as a feasible centre point of rotation and a good representation of the 180 

hub motion centre point. However, we did not measure the clavicle position for 181 

Participants 3-4, as the inclusion of an additional marker would have greatly reduced 182 

the sampling rate of our motion capture, which, in turn, would have affected the 183 

accuracy of club head speed measurements. To address this absence, a regression model 184 

was developed using the kinematic data of Participant 2, who had a height similar to 185 

Participants 3-4, which was then used to estimate the clavicle initial position for the 186 

remaining participants. To confirm the validity of this approach, multiple simulations 187 

were performed on Participants 1-2 data, where their clavicle markers were moved 188 

around 3 cm from its origin. RMSE calculations were then conducted which found there 189 

was little to no effect on the calculation of impact velocity. 190 

Confidence in the observed club head velocity was required if our goal was to 191 

maximise it. We identified the sampling rate and the type of ball as significant factors 192 

that contribute to adequately measure the impact velocity. Following an empirical 193 

process of experimentation, we found that the data acquisition sampling rate cannot be 194 

lower than 200 Hz given the speed and limited duration of the downswing 195 

(approximately 250 milliseconds). Second, comparing the data of Participant 1 (foam 196 

ball) with Participants 2-4 (standard golf ball), we observed that the former did not have 197 

a large spike in the data at impact, which was expected due to club head-ball ball impact 198 

and momentum transfer (Figure 3). The presence of such a dramatic change in velocity 199 



at impact necessitated a modified filtering technique to maintain this large velocity delta 200 

and retain the peak impact velocity. Thus, we decided to apply filtering to swing vectors 201 

up to the impact point. 202 

Although club head and hub position data recorded from both acquisition 203 

systems appeared smooth and continuous, minor perturbations were amplified after 204 

calculating the first and second derivatives in order to get velocity and acceleration 205 

signals. Nesbit and McGinnis1 smoothed three-dimensional marker triad paths with a 206 

Butterworth low-pass filter at 6 Hz. Coleman and Rankin9 used a fourth-order 207 

Butterworth reverse filter with a cutoff frequency of 10 Hz for the body landmarks and 208 

20 Hz for the club grip, bottom of the club shaft, club head centre and ball. Table 2 209 

illustrates the significant effects of changing the filter cutoff frequency on impact 210 

velocity by comparing participant observed impact velocities with a fourth-order 211 

Butterworth filter with cutoff frequencies at 6, 10, 15, and 20 Hz. For our model, we 212 

decided on a fourth-order Butterworth with a cutoff frequency 20 Hz, as it did not 213 

substantially dilute the true impact velocity. 214 

Nesbit and McGinnis1 modelled the downswing time-histories of the three 215 

kinematic variables as polynomial equations. During swing optimisation the torque, 216 

force, power, and work are simulated by using these polynomial models, such that their 217 

coefficients can be modified in ways that satisfy the conditions for peak force, torque, 218 

and power outputs. They selected fourth-order polynomials to model the angular 219 

positions of the hub (1) and club head (2) and a sixth-order polynomial for the hub 220 

radius (3). 221 

However, when participant data were applied to this modelling, several issues 222 

became apparent, which required model alterations to ensure the robustness needed to 223 

provide adequate results for our entire pool of participants analysed. 224 



 𝜃 𝑡 = 𝐶! + 𝐶!𝑡 + 𝐶!𝑡! + 𝐶!𝑡!  + 𝐶!𝑡!      (1) 225 
 𝛾 𝑡 = 𝐶! + 𝐶! 𝑡 + 𝐶!𝑡! + 𝐶!𝑡!  + 𝐶!𝑡!       (2) 226 
 𝑅 𝜃 = 𝑘! + 𝑘!𝜃 +  𝑘!𝜃! +  𝑘!𝜃! +  𝑘!𝜃! + 𝑘!𝜃! + 𝑘!𝜃!  (3) 227 
 228 
First, ahead of optimisation, it was of interest to attempt to perfectly match the observed 229 

hub and club path with a modelled polynomial fit. While the polynomial orders appear 230 

to be selected because of how well they fit the time histories of the kinematic variables, 231 

no reason is given. After observing the poor fit of using a fourth-order polynomial 232 

equation on Participant 1 the club path data, a Normalized Root Mean Standard 233 

Deviation (NRMSD) analysis was applied to calculate the error between each variable 234 

and its polynomial approximation. Table 3 shows NRMSD for club head and hub paths 235 

fitted to fourth- and fifth-order polynomial equations for Participants 1-4. These 236 

observations led us to expand the order of all polynomials by one, as defined in 237 

Equations (4)-(6). 238 

 𝜃 𝑡 = 𝐶! + 𝐶!𝑡 + 𝐶!𝑡! + 𝐶!𝑡!  + 𝐶!𝑡! + 𝐶!𝑡!    (4) 239 
 𝛾 𝑡 = 𝐶! + 𝐶! 𝑡 + 𝐶!𝑡! + 𝐶!𝑡!  + 𝐶!"𝑡! + 𝐶!!𝑡!    (5) 240 
 𝑅 𝜃 = 𝑘! + 𝑘!𝜃 +  𝑘!𝜃! +  𝑘!𝜃! +  𝑘!𝜃! + 𝑘!𝜃! + 𝑘!𝜃! + 𝑘!𝜃! (6) 241 
 242 

Second, Nesbit and McGinnis assume that at the start of the downswing (time t = 0 243 

seconds), the hub and club head velocities are 0, where 𝜃 0 =  𝜃! and 𝛾 0 =  𝛾!. 244 

However, we observed that this was not the case for some participants, who appeared to 245 

move their hands and wrists as they transition from their backswing to their downswing. 246 

Instead of making this assumption, we actually assign these variables to the observed 247 

values, which, by doing so, reduce the overall disruption to the participants primary 248 

swing characteristics. Thus, when we solve the boundary conditions for our set of 249 

expanded polynomials, instead of simply setting 𝜃! and 𝛾! equal zero, the initial 250 

velocity for each participant is set as the downswing begins. Although this added a level 251 

of complexity when solving for the boundary conditions for the polynomial equations, it 252 

yielded a more valid process. By expanding to the fifth-order polynomial equation and 253 



applying the observed initial club and hub velocities, the final club head impact velocity 254 

of the modelled swing improved dramatically. When seeding the polynomial 255 

expressions using the observed swing data, the final impact velocity error (modelled vs. 256 

observed) improved from 6.96% to 0.18%. 257 

To solve, we required the first and second derivatives of the angular position of 258 

the hub θ (4), which yielded the hub angular velocity 𝜃 (7) and acceleration 𝜃 (8), 259 

respectfully. 260 

 𝜃 𝑡 = 𝐶! + 2𝐶!𝑡 + 3𝐶!𝑡! + 4𝐶!𝑡! + 5𝐶!𝑡!     (7) 261 
 𝜃 𝑡 = 2𝐶! + 6𝐶!𝑡 +  12𝐶!𝑡! + 20𝐶!𝑡!      (8) 262 
 263 
Substituting our boundary conditions into (4), (7)-(8) yielded the expressions for 264 

constants 𝐶! though 𝐶! per    265 

  𝐶! = 𝜃!          (9) 266 
 𝐶! = 𝜃!          (10) 267 
 𝐶! =

!!
!

         (11) 268 

 𝐶! =
!!!!! !"!!!!!!!!!!"!!!!!!!!!

!!!!!!!
!
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!       (12) 269 
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!!!!!!!
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!       (14) 272 

 273 
Third, while (4) and (5) are functions of time t seconds, (6) is a function of hub angle θ 274 

where the constants 𝑘! − 𝑘! are determined by several radial coordinates 𝑅! − 𝑅! 275 

evenly spaced from the downswing starting angle to ending angle. However, this 276 

approach created problems with our analysis of participant data. In particular, given the 277 

steep initial descent of the hub radial length curve may produce issues during 278 

optimisation. Figure 4 (Left) illustrates this steepness, whereas Figure 4 (Right) shows 279 

the hub radius as a function of time. It was observed that the poor fit early in the hub 280 

angle polynomial was amplified when transformed into the time domain. Prior to our 281 

decision to expand the order of the polynomials, we wanted to assess the accuracy of 282 



our poly-fit by conducting RMSE calculations, where the hub radius was expressed as 283 

both a function of the hub path and time. Using Participant 1 data, we found that by 284 

expressing the hub radius as function of time, we improved the poly-fit error from 285 

5.55% to 0.59%. Supplementary Figure 3 illustrates our process of experimenting 286 

with different polynomial orders and their effect on fit. Following this we chose to 287 

express our hub radius as a seventh-order polynomial function of time (15). 288 

 289 
 𝑅 𝑡 = 𝑘! + 𝑘!𝑡 +  𝑘!𝑡! +  𝑘!𝑡! +  𝑘!𝑡! + 𝑘!𝑡! + 𝑘!𝑡! + 𝑘!𝑡!  (15) 290 
 291 

As a last step we wanted to compare our optimisation results with the Nesbit and 292 

McGinnis optimisation model, and used Participant 1 data for our comparison. As 293 

previously discussed, Nesbit and McGinnis used a Butterworth low-pass filter with a 6 294 

Hz cutoff frequency, however, Supplementary Figure 4 illustrates how such a low 295 

frequency creates artefacts in the data, which can lead to incongruences between peak 296 

and impact velocities. Like our model, we decided to similarly filter with a 20 Hz cutoff 297 

frequency to have an accurate comparison between model optimisations. However, we 298 

did not employ our method of filtering up to the impact point, which, in turn, yielded 299 

different kinematic and kinetic values (see Table 4). 300 

 301 

Results 302 

The kinematic and kinetic quantities for each participant during their observed 303 

downswings are provided in Table 4. The results of maximising impact velocity for all 304 

participants are given in Table 5. For Tables 4-5, Participant #1a refers to the Nesbit 305 

and McGinnis optimisation method, whereas Participant #1b shows the results of our 306 

optimisation model. The results for all kinetic quantities are the maximum values 307 

occurring during the downswing and are given as a percentage of the observed swing 308 



maximum value. Using our optimisation model: Figure 5 compares Participant 1 309 

observed and optimised hub and club path trajectories; Figure 6 compares Participant 1 310 

observed and optimised force, torque, power, and work responses; and Figure 7 311 

compares the observed and optimised hub path for Participants 1-4. 312 

 313 

Discussion and Implications 314 

Swing and optimisation observations 315 
The four participants presented diverse swing kinematic and kinetic characteristics (see 316 

Table 4). The range of the kinematic and kinetic quantities among the participants was 317 

considerable and quantitatively emphasised the difference in their swing mechanics and 318 

club trajectories. Thus, like the study by Nesbit and McGinnis,1 we similarly captured a 319 

diverse set of swing styles from a mechanics point of view. 320 

While we did not have the opportunity to have the same participants test in both 321 

experimental settings, we believe inter-participant variability associated with the 322 

performance of such a familiar, yet difficult, task might have yielded vastly different 323 

observed and optimised swings. In turn, this might give the impression that swings 324 

performed in a particular experimental setting might lend themselves to greater 325 

possibilities of improvement. This of course was not our goal, and one way we see our 326 

study as distinguishing itself from Nesbit and McGinnis,1 was our goal to measure and 327 

analyse swings performed in the real world. This was done by not only collecting 328 

kinematic data associated with swings taken on an actual driving range with real balls, 329 

but also developing a method for filtering the data in a way that preserved swing 330 

idiosyncrasies. As we noted, we observed a significant difference concerning the use of 331 

foam balls (Participant 1) versus actual golf balls (Participants 2-4). Thus the data 332 

collected from Participants 1-2 served our development of the model rather than a mode 333 

for which to compare against Participants 3-4. 334 



Despite these diversities, all of our participant optimisations exhibited very 335 

similar force, power, and work profiles. However we saw large differences in the torque 336 

response, which was observed during most of optimisations. Additional optimisation 337 

analysis could be conducted that further constrains each profile to better match the 338 

swing observations. Nesbit and McGinnis only constrained the torque based on the peak 339 

value, and our model similarly satisfied this constraint. 340 

More generally, we adhered to Nesbit’s constraints on applied forces, torque, 341 

and power, but slightly deviated from their approach when optimising the hub path. To 342 

reduce disruptions to the participant natural swing, we constrained the starting and 343 

ending point of the hub path, while Nesbit and McGinnis only constrain the end point to 344 

maintain proper impact with the ball. This starting point boundary condition creates 345 

slightly obscure initial hub motion during the downswing. Although it presented minor 346 

issues, to our mind, allowing for an unconstrained start point remedies slight disruptions 347 

in the hub motion. 348 

During our analysis of the swing model, it was always of interest to use the 349 

modelled swing to try to best replicate the observed kinematic data. This would be used 350 

as a check to test the model’s validity during formulation. The data-matching capability 351 

in the model was highly desired and used as a target for all incremental changes made to 352 

the original Nesbit model.14 Adhering to this goal required a certain level of 353 

controllability in model’s polynomial equations, which were a bit lacking originally. 354 

Changing the order of the equations, accounting for non-zero initial conditions, and 355 

applying the observed initial and final hub and club angles led to similar replications of 356 

the original data and large improvements in the peak impact velocity during 357 

optimisation. These changes more than likely lead to our model showing a greater club 358 

head velocity optimisation (109.37%) when compared to our implementation of the 359 



Nesbit and McGinnis model (105.76%). When compared side-by-side, the remaining 360 

results are similar, which suggests Participant 1 has the capacity to optimise club head 361 

velocity at impact, and the potential for optimisation is greater when adjustments 362 

recommended by our model are made.    363 

When implementing such an optimised swing in practice as a teaching 364 

technique, it was believed to be advantageous to start with the natural swing kinematics 365 

of the participant, and gradually make incremental changes towards the optimisation 366 

target swing. This would potentially reduce any adverse effects of abrupt disruption in 367 

the participant’s natural swing mechanics during training. 368 

 369 

Practice implications 370 
In general, to improve and optimise golf swing mechanics, golf instructors and trainers 371 

teach to the physical and psychological constraints of their pupils. However, the use of 372 

motion capture systems that can visualise and make more palpable complex kinematic 373 

variables only serves to inform golfers of a knowledge of results. This approach appears 374 

insufficient given the complexity of activities involved in the swing. 375 

 Unfortunately we were unable to complete a follow-up test to examine whether 376 

participants were able to use information based on hub radius, hub path, and club head 377 

path optimisations to manipulate their movements. But given the complexity and 378 

oftentimes subtlety of movement optimisations, which together span a short duration, 379 

we imagine it might be quite difficult for them. In this case, participants would be asked 380 

to not only complete a task in a way that was unnatural or counter-intuitive to their 381 

previous trainings, but also to use a vocabulary of swing parameters that was most 382 

likely un-familiar. One possible solution to convey this abstract information might be to 383 

develop a method of augmented reality that uses artificial feedback – visual, auditory, 384 

haptic, or multimodal.  385 



As a primary focus for improvement in golf is kinematics, Keogh and Hume18 386 

theorised that different visual feedback strategies based on errors of performance might 387 

help movement development. A similar approach might prove to be particularly useful 388 

when comparing observed swings to those developed by an optimisation model. The 389 

assumed difference between them might then be delivered to users via sensory cues. 390 

Sigrist et al.19 reviewed numerous studies that examined the effects of visual, auditory, 391 

haptic, or multimodal information on motor learning, some of which found significant 392 

results. As there continues to be scientific evidence that the use of augmented realties 393 

can influence human movement, their use for performance optimisation presents a 394 

potentially exciting area for development.  395 

However, the development and use of a performance optimisation tool should 396 

consider the inter-individual differences in speed in which humans master a new motor 397 

skill. A study by Wu et al.20 demonstrated a link between movement-to-movement 398 

variability and motor learning in novice participants. The experiential exploration of 399 

different movement parameters allows humans to fine-tune newly acquired actions and 400 

account for motor predispositions. 401 

This of course differs among individuals, given the intrinsic properties of their 402 

motor system, which raises two, among many, questions. The first concerns whether the 403 

repetition of an optimised movement path is the best approach for improvement, as it 404 

does not provide a natural avenue for movement variability exploration, which is more 405 

inline with environmental demands and the empirical constraints of the individual. 406 

Several studies have shown strength and conditioning exercises have a positive effect 407 

on the swing mechanics,21 22 which, by broadening the types of movement, reduces the 408 

possibilities of overuse and strain. 409 



Secondly, if an optimisation model is used for training, a suitable window of 410 

variability in terms of deviation from the optimal path cannot be standardised due to the 411 

unique demands of each golfer. Not only does the amount of time to learn a new motor 412 

skill differ among people, but also the threshold in which movements are perceived as 413 

different. Coupling this point with the previous, it becomes clear that the use of such an 414 

optimisation tool requires the attention of a golf trainer or instructor to advise and assess 415 

golfer progress. 416 

 417 

Conclusion 418 

The objective of this study was to adopt the Nesbit and McGinnis model of the golf 419 

swing as a point of departure for which to study golf performance optimisation. Our 420 

primary goal of development was to maximise club head velocity at impact. It was also 421 

of interest to observe how factors such as material and environment might affect the 422 

data collected for our study. By analysing these factors, we might develop the 423 

robustness of our model, which could improve future work examining how humans can 424 

learn and improve complex motor tasks like the golf swing. 425 

Similarly to the results reported in Nesbit and McGinnis,1 we found there was 426 

potential for participant to increase their impact velocity while respecting their 427 

kinematic limits. Moreover, as we hypothesised, our modifications to the model made it 428 

possible to collect and use swing data from a group of participants with diverse swing 429 

styles in a variety of measurement and performance environments. In review, these 430 

modifications included improved filtering of swing data around impact point, increasing 431 

the order of the polynomial equations used to model the three swing parameters, and 432 

setting and solving the boundary coefficients to observed swings. 433 



Like Nesbit and McGinnis,1 our results continue to stress the idiosyncratic swing 434 

behaviours of each golfer and how they affect club head velocity at impact. We showed 435 

that the observed and optimised hub paths differed among participants, and we might 436 

assume participants might similarly differ in their capacities of adopting the latter. For 437 

this reason the development of a sensory guidance tool might aid their learning process.  438 

 439 
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TABLES 521 

Table 1. Participant data. 522 
Participant Age Height Weight Handicap Experience (yrs) Round per Year 

1 45 175 73 10 20 25 

2 33 185 79 18 19 8 

3 49 182 72 15 35 22 

4 23 186 72 2 11 42 
 523 

Table 2. Participant impact velocities (m/s) and percentage of error (%) from the 524 
observed impact velocity: observed, fourth-order Butterworth filter with cutoff 525 
frequencies at 6, 10, 15, 20 Hz. 526 

Participant 
 

Units 
 

Unfiltered 
(m/s) 

6 Hz 
(m/s) 

10 Hz 
(m/s) 

15 Hz 
(m/s) 

20 Hz 
(m/s) 

Participant #1 
 

Impact velocity 44.63 35.67 42.77 44.32 44.57 

Error % 0.00% -20.08% -4.17% -0.69% -0.13% 

Participant #2 
 

Impact velocity 36.68 32.93 35.94 36.57 36.68 

Error % 0.00% -10.22% -2.02% -0.30% 0.00% 

Participant #3 
 

Impact velocity 46.29 38.39 44.01 45.96 46.28 

Error % 0.00% -17.07% -4.93% -0.71% -0.02% 

Participant #4 
 

Impact velocity 54.53 42.11 50.76 53.93 54.43 

Error % 0.00% -22.78% -6.91% -1.10% -0.18% 

 527 

Table 3. NRMSD for club head and hub paths fitted to fourth- and fifth-order 528 
polynomial equations for Participants 1-4. 529 
Participant Swing 

variable 
Unit Fourth-order  

polynomial 
Fifth-order  
polynomial 

 
 

Participant #1 

 
Club head path 

Position 5.52% 0.46% 
Velocity 10.31% 1.18% 

Acceleration 25.87% 6.34% 
 

Hub path 
Position 5.82% 5.07% 
Velocity 17.96% 12.82% 

Acceleration 24.59% 19.04% 
 
 

Participant #2 

 
Club head path 

Position 12.02% 4.77% 
Velocity 27.11% 9.80% 

Acceleration 30.12% 14.79% 
 

Hub path 
Position 3.73% 0.80% 
Velocity 9.62% 4.16% 

Acceleration 14.27% 11.45% 
 
 

 
Club head path 

Position 5.06% 1.26% 
Velocity 10.90% 4.70% 



Participant #3 Acceleration 21.70% 16.93% 
 

Hub path 
Position 4.04% 5.77% 
Velocity 14.68% 14.56% 

Acceleration 27.88% 25.62% 
 
 

Participant #4 

 
Club head path 

Position 2.94% 0.61% 
Velocity 5.93% 2.98% 

Acceleration 17.30% 16.16% 
 

Hub path 
Position 7.28% 3.01% 
Velocity 21.34% 9.20% 

Acceleration 31.80% 17.81% 
 530 

Table 4: Participant data observed during downswing – all values are time of maximum. 531 
Data Type 

 
Units 

 
Participant 

#1a 
Participant 

#1b 
Participant 

#2 
Participant 

#3 
Participant 

#4 

Club Head Vel m/s 44.00 44.53 36.79 45.28 54.67 

Swing Torque N.m 44.66 47.5 20.35 51.61 68.03 

Mag of Force N 446.56 467.85 313.59 413.67 585.62 

Total Work N.m 392.42 395.16 243.65 372.93 589.78 

Linear Work N.m 235.21 234.5 170.9 241.27 376.56 
Angular Work N.m 157.21 160.66 72.75 131.66 213.22 
Total Power N.m/s 4174.72 4211.09 2167.68 4987.92 7676.41 
Linear Power N.m/s 2503.78 2474.8 1614.16 3063.52 4964.34 

Angular Power N.m/s 1746.75 1879.62 640.58 1929.95 3075.74 
 532 

Table 5: Optimisation data for all participants. 533 

Data Type 
 

Participant 
#1a  

Percent (%) 

Participant  
#1b 

Percent (%) 

Participant  
#2 

Percent (%) 

Participant  
#3 

Percent (%) 

Participant  
#4 

Percent (%) 

Club Head Vel 105.76 109.37 105.63 108.30 107.70 

Swing Torque 99.84 93.18 99.77 96.51 99.98 

Mag of Force 95.52 92.53 92.96 93.14 97.00 

Total Work 123.72 105.36 106.84 120.55 123.77 

Linear Work 125.79 128.14 119.71 126.75 134.07 
Angular Work 120.62 72.10 76.60 109.20 105.59 
Total Power 83.86 81.46 83.68 86.26 89.63 
Linear Power 99.99 99.88 99.84 99.80 99.47 

Angular Power 94.26 98.12 56.97 93.47 91.06 

 534 

 535 

 536 



FIGURES 537 

 538 

Figure 1. Illustration of the hub radius, hub path, and club head path during the 539 
downswing as projected onto a 2-dimensional swing plane. 540 
 541 

542 
Figure 2. Participant 1 original (blue) and projected (green) club head and hub paths 543 
projected onto swing plan. The two plots show different 3D orientation views of the 544 
same swing data. 545 
 546 

 547 



548 
Figure 3. Club head raw resultant velocity comparison, during impact, for Participant 1 549 
hitting a foam ball (left) and Participant 2 (right) hitting a real standard golf ball. 550 
 551 

 552 
Figure 4: Participant 1 hub radius as a function of hub angular position (Left) and the 553 
corresponding hub radius as a function of time (Right) showing amplified errors 554 
transformed into the time domain. 555 
 556 



 557 
Figure 5. Participant 1 observed and optimised hub and club head trajectories. 558 
 559 

 560 
Figure 6. Participant 1 observed and optimised force, torque, power, and work 561 
responses. 562 
 563 



 564 
Figure 7. Participants 1-4 observed and optimised hub paths. 565 
 566 

SUPPLEMENTARY FIGURES 567 

	568 
Supplementary	Figure	1: Comparison between Participant 1 original club head path 569 
(Left) and reconstruction with equidistance spline-fit points (Right). 570 
 571 



 572 
Supplementary Figure 2: RMSE comparison between Participant 1 original club head 573 
path and swing plane (Left) and reconstruction and swing plane (Right). 574 
 575 

 576 
Supplementary Figure 3: Comparison between Participant 1 observed original hub 577 
radius length, expressed in time, and polynomial equations with different orders 578 
 579 



 580 
Supplementary Figure 4: Participant 1 club head path and the effects of filtering with 581 
low frequencies 582 
 583 


