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[1] Atmospheric CO2 concentrations have been obtained from the Atmospheric Infrared
Sounder (AIRS) radiance data within the European Centre for Medium-Range Weather
Forecasts data assimilation system. A subset of channels from the AIRS instrument on
board the NASA Aqua platform has been assimilated providing estimates of tropospheric
and stratospheric column-average CO2 mixing ratios. Although global estimates are
obtained, the information content of the tropospheric estimates at middle and high
latitudes is limited, and results are therefore only presented for the tropical region. First
results for February and August 2003 show considerable geographical variability
compared to the background with values ranging between 371 and 380 ppmv. These CO2

values are representative for a layer between the tropopause and about 600 hPa. The
monthly mean random error is about 1%. Careful error analysis has been carried out to
minimize any systematic errors. This study has demonstrated the feasibility of global CO2

estimation using AIRS data in a numerical weather prediction data assimilation system. In
the future the system will be improved to treat CO2 as a full three-dimensional
atmospheric variable, including transport. INDEX TERMS: 3337 Meteorology and Atmospheric

Dynamics: Numerical modeling and data assimilation; 0365 Atmospheric Composition and Structure:

Troposphere—composition and chemistry; 1610 Global Change: Atmosphere (0315, 0325); KEYWORDS:

AIRS, carbon dioxide, data assimilation
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1. Introduction

[2] The importance of accurate observations of atmo-
spheric CO2 for top-down estimates of carbon sources and
sinks has been recognized for almost a decade. In this
period various synthesis inversion studies have been carried
out using surface flask observations of CO2 concentrations
to estimate carbon sources and sinks at the Earth’s surface
[Enting et al., 1995; Fan et al., 1998; Rayner et al., 1999;
Bousquet et al., 1999a, 1999b; Kaminski et al., 1999; Peylin
et al., 2000; Gurney et al., 2002]. These flask measurements
are highly accurate but are limited to less than 100 sites
globally. This makes the inversion problem highly data
limited, especially in the tropics, where there are few
surface flask stations. For some years now there has been
a growing interest in the use of satellite data to improve
estimates of the spatial and temporal variability of atmo-
spheric CO2. In particular, the development of a new

generation high spectral resolution sounders that observe
the atmosphere in the infrared and/or the near-infrared
triggered several studies on the capabilities of these instru-
ments to provide information on atmospheric CO2. Rayner
and O’Brien [2001] showed that these satellite observations
have the potential to improve current CO2 inversions, if the
accuracy of their monthly mean values is better than
2.5 ppmv. Engelen et al. [2001a] performed a simulation
study to look at the capabilities of the Atmospheric Infrared
Sounder (AIRS), Chédin et al. [2003] did similar simula-
tions for the Infrared Atmospheric Sounding Interferometer
(IASI), and O’Brien and Rayner [2002] studied the near-
infrared option, which might be realized by the Orbiting
Carbon Observatory (OCO) mission. However, so far there
is only one study that has been performed with real satellite
data; Chédin et al. [2002] used data from the Tiros Oper-
ational Vertical Sounder (TOVS) to infer atmospheric CO2

concentrations in the tropics. Although the capabilities of
the TOVS instrument are limited with respect to CO2

[Engelen and Stephens, 2004], the results of Chédin et al.
[2002] are promising.
[3] Data from the AIRS instrument have been assimilated

operationally in the European Centre for Medium-Range
Weather Forecasts (ECMWF) four-dimensional variational
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(4D-Var) data assimilation system since October 2003.
Although the main purpose of this assimilation is to
improve the temperature, water vapor, and ozone fields as
well as the dynamics, efforts are being made to also extract
other information from the observed radiances. In particular,
column CO2 estimation has been implemented in the data
assimilation system as described in this paper. While having
more realistic CO2 concentrations in the forecast model
could, in principal, be beneficial for the short-term weather
forecast [Engelen et al., 2001b], this in itself was not the
main purpose of this research. The aim is to produce global
CO2 fields from the AIRS satellite data with accuracy high
enough for carbon flux inversions. It is therefore important
to have an accurate characterization of the CO2 estimates
including their errors.
[4] The main benefit of estimating CO2 mixing ratios

within a numerical weather prediction (NWP) data assimi-
lation system is that temperature and humidity, which also
affect the observed infrared radiances, are well constrained
by various other measurements and by the forecast model
itself. For example, ECMWF assimilates radiances from
three Advanced Microwave Sounding Unit A (AMSU-A)
instruments, three Special Sensor Microwave Imager (SSM/
I) instruments, two AMSU-B instruments, five geostation-
ary satellites, two High Resolution Infrared Radiation
Sounder (HIRS) instruments, and many radiosondes and
aircraft constraining both temperature and water vapor on
smaller vertical scales. These additional observational con-
straints on temperature and water vapor assist the extraction
of atmospheric CO2 from the AIRS observations within the
NWP system.
[5] In section 2 the AIRS data are briefly discussed.

Section 3 describes the setup of the CO2 data assimilation
system. Section 4 presents some first results and relevant
error statistics, and section 5 concludes with a summary.

2. AIRS Data

[6] The Atmospheric Infrared Sounder (AIRS) [Aumann
et al., 2003] was launched on board the NASA AQUA
satellite in May 2002. After an initial period of testing, data
were received operationally at ECMWF from October 2002
onward.
[7] AIRS is a grating spectrometer covering the 650–

2675 cm�1 infrared spectral domain at a resolution of
l/Dl = 1200, giving 2378 channels. Accompanied by an

AMSU-A instrument it flies onboard the Aqua satellite with
equator crossing times of 1:30 am and 1:30 pm. The AIRS
field of view (FOV) is 13.5 km at nadir with a 3 � 3 array
of AIRS footprints falling into one AMSU-A FOV (see
Figure 1).
[8] Because of bandwidth limits in the trans-Atlantic line

and other operational constraints, ECMWF receives only 324
of the total 2378 channels in near-real time and only 1 out of
every 9 AIRS FOVs within a AMSU-A FOV (solid black
circles in Figure 1). The channel selection is based on an
original selection of 281 channels by NOAA/NESDIS
appended with 43 extra channels in the two main CO2

absorption bands based on the work by Crevoisier et al.
[2003]. In this study the number of channels was further
reduced to avoid problems specific to certain spectral bands:
(1) channels in the short-wave band were excluded from the
analysis because our radiative transfer model currently does
not model solar radiation and the effects of nonlocal thermo-
dynamic equilibrium; (2) channels in the main water vapor
and ozone bands as well as channels sensitive to the surface
are excluded to minimize the effect of water vapor, ozone,
and the surface on the CO2 analysis; and (3) channels
sensitive to the upper stratosphere were also excluded from
the assimilation because the ECMWF model has large
temperature biases in the mesosphere of the polar winters.
This resulted in a set of 55 channels in the long-wave CO2

absorption band, of which about 31 channels are sensitive to
tropospheric CO2. The actual number used in the assimilation
depends on the cloud detection as described in section 3.

3. Setup of the Data Assimilation System

3.1. Four-Dimensional Variational Assimilation
(4D-Var)

[9] A 4D-Var data assimilation system is a practical
formulation of Bayesian estimation theory for the particular
case of a (near) linear problem with unbiased Gaussian
errors [Lorenc, 1986]. It seeks a model trajectory that is
statistically consistent with the information provided by the
observations yo available for the analysis time window
[t0, tn] and the information provided by an a priori model
state xb called the background state. This background state
is usually taken from a short-range forecast. The model
trajectory itself is completely defined by the initial state x0
at time t0 through the use of the dynamical and physical
forecast model.
[10] The analysis correction (dx(t0)) to the model initial

state is sought as a combination of the information from the
observations and the background using an objective cost
function with two terms [e.g., Courtier et al., 1994]:

J dx t0ð Þð Þ ¼ 1

2
dx t0ð ÞTB�1dx t0ð Þ

þ 1

2

Xn
i¼0

Hidx tið Þ � di½ �TR�1 Hidx tið Þ � di½ � ð1Þ

the background term and the observation term. The
observation departures (di) are the differences between the
observed radiances and the model simulated radiances

di ¼ yoi � Hi x
b tið Þ

� �
ð2Þ

Figure 1. Field-of-view configuration of the AMSU-A
and AIRS instruments on board the AQUA satellite. Solid
circles are AIRS field of views currently used in the
ECMWF CO2 data assimilation.
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where Hi is the full nonlinear observation operator in the
form of the Radiative Transfer for the TIROS Operational
Vertical Sounder (RTTOV) radiative transfer model.
RTTOV [Matricardi et al., 2004] is a fast radiative transfer
model using profile-dependent predictors to parameterize
the atmospheric optical depths. For the CO2 assimilation
experiments we applied the methods developed for RTIASI
[Matricardi, 2003] to include CO2 as a profile variable in
RTTOV. Hi, which appears in equation (1), is the tangent
linear observation operator that is part of the RTTOV
model. The background values at time ti, needed for the
calculation of the observation departures di, are evolved
according to the full nonlinear forecast model M:

xb tið Þ ¼ M xb t0ð Þ
� �

ð3Þ

The increments themselves are evolved through time
according to the tangent linear model M:

dx tið Þ ¼ Midx t0ð Þ ð4Þ

Finally, B and R are the background error covariance matrix
and the observation error covariance matrix, respectively.
[11] The cost function is then minimized with respect to

the increments of the initial state (dx(t0)). These increments
are added to the background state to obtain the analysis
x(t0):

x t0ð Þ ¼ xb þ dx t0ð Þ ð5Þ

[12] The advantage of a full data assimilation system is
that it seeks to combine all available observations in an
(near) optimal way. At ECMWF ground based and satellite
based data are used to constrain the relevant fields in the
forecast model. In addition to AIRS, satellite data from the
HIRS, AMSU-A, AMSU-B, SSM/I, Geostationary Opera-
tional Environmental Satellite (GOES), and Meteosat instru-
ments are assimilated. These data are thinned to reduce
spatial correlations of the measurement errors and they also
undergo a bias correction. This bias correction seeks to
remove biases in the observations and radiative transfer
modeling and depends for most instruments on air mass and
viewing angle [Harris and Kelly, 2001]. For most satellite
instruments these biases are calculated from the mean
differences between the analyses and the satellite observa-
tions close to radiosonde locations in order to minimize the
effect on the bias correction of forecast model bias. This
approach was chosen because the analysis is likely to be the
most accurate close to the radiosonde observations. For
AIRS a global mean bias correction is used for each
individual channel, because the air mass dependency is
relatively small. In order to avoid biases dependent on the
viewing angle of the instrument, we currently only use
the central 24 field of views (FOVs) out of the total of
30 FOVs.
[13] The 4D-Var data assimilation system currently

uses clear radiance data only. A detection algorithm was
developed specifically for AIRS [McNally and Watts, 2003].
This scheme detects which AIRS channels are affected by
clouds and removes those channels from the assimilation,
while keeping the channels that are not affected by clouds.

This allows use of AIRS data even where the view is
cloudy. If there is high cloud, only stratospheric information
will be assimilated, but, if there are low clouds only, a
significant amount of tropospheric information can be used.
Finally, some channels were removed from the analysis
either because of instrumental problems or because of
unaccounted errors in the observation operator. Main
example of the latter is the removal of the short-wave
4.2 mm band, which is affected by solar radiation not
modelled in the current version of RTTOV.

3.2. CO2 as a Column Variable

[14] Within the 4D-Var system, CO2 is currently estimated
as an independent column variable. This means that CO2 is
not a tracer variable in the transport model and is estimated
only at the observation locations. Background error corre-
lations between CO2 and the other assimilation variables
are neglected. In practice, this means that while the forecast
model variables (e.g., temperature and water vapor) appear
in the control vector (dx(t0)) as three-dimensional fields,
CO2 appears as a vector of column variables at the
observation locations. The link between the initial state
and the states at observation locations and times, as
represented by equations (3) and (4), is absent for CO2.
Another important difference between the CO2 variable and
the regular analysis variables (temperature, water vapor,
etc.) is that the background field of the regular variables is
based on a forecast that uses the previous analysis as its
initial state. For CO2, each analysis uses a climatological
background state of CO2. CO2 information is thus not
carried over from one analysis to the next.
[15] This methodology was used as a first step to imple-

ment CO2 in the data assimilation system making use of the
current operational architecture. It makes full use of the
accurate temperature and water vapor analysis fields con-
strained by all available observations, but there are also
some limitations. First, the individual CO2 estimates are not
constrained by the model transport during the 12-hour
assimilation window. During this 12-hour time span the
model transport is usually accurate and can help to advect
information from one place to another. Second, by assim-
ilating column CO2 values instead of full profiles a hard
constraint is applied to the analysis in the form of a fixed
profile shape. This removes some of the flexibility in the
adjustments and can lead to errors if the used profile shape
is far from the truth. This hard constraint also means that all
vertical levels are fully correlated and any adjustments in
the stratosphere will therefore also adjust the troposphere. In
case of many stratospheric radiance channels and only few
tropospheric radiance channels this leads to a dominant
stratospheric signal in the estimated CO2 column value.
[16] On the basis of first results (not shown here) indi-

cating that the column variable was indeed dominated by
the large amount of stratospheric AIRS channels, the
column variable was split into a tropospheric column and
a stratospheric column. These two columns act as indepen-
dent variables without any error correlation in the analysis.
The tropopause height that separates the two columns is
estimated from the background temperature profile using an
algorithm based on lapse rates, and varies with location.
This ensured that the tropospheric analysis results were not
dominated by the stratosphere. However, any potentially

D19309 ENGELEN ET AL.: CO2 DATA ASSIMILATION

3 of 9

D19309



useful correlations between stratospheric CO2 and tropo-
spheric CO2 are disregarded. A drawback is that the
tropospheric column is quite variable in the vertical.
Depending on the tropopause height and the cloud top
height, the column varies from shallow to deep allowing
respectively less or more channels to be used in the
tropospheric analysis. As shown in section 3.3, the number
of channels used in the analysis is an important determining
factor for the analysis error.

3.3. Analysis Error Estimation

[17] It is crucial to have an estimate of the individual
analysis errors to properly interpret the analysis results.
Initially, the analysis error (sa) within the 4D-Var system
was calculated from the background error (sb), the obser-
vation error covariance (R), and the CO2 Jacobians (H):

s2a ¼ s�2
b þHTR�1H

� ��1 ð6Þ

The errors in the temperature, water vapor, and ozone
profiles that enter the radiative transfer equation are taken
into account by inflating the observation error covariance
(R) based on the sensitivity of the radiative transfer to
perturbations defined by the respective background
covariance matrices. Although this is a simplification of
the real error model, it is sufficient for our purposes.
Besides, the CO2 analysis itself is part of a multivariate
minimization problem that takes into account all relevant
error sources.
[18] Within a variational assimilation system, equation (6)

requires separate calculations of the Jacobians H for
each observation, which amounts to significant extra
computer time. Because the analysis error is in first
approximation a function of the tropospheric temperature

lapse rate and the number of assimilated AIRS channels
peaking in the troposphere (determined by the tropo-
pause height and the cloud top height), a nonlinear
regression (artificial neural network [e.g., Rumelhart et
al., 1986]) was used to relate the analysis error to these
two variables. Analysis errors based on equation (6)
were calculated for data from 1 to 7 March 2003, on
which the neural network was trained. The network was
then tested with data from August, as shown in Figure 2.
The performance of the neural network is remarkably
good considering the little information given to the
network.

4. Results

[19] Some first results of the CO2 data assimilation
scheme are presented here to illustrate the capabilities of
the system. The tropospheric background values used in
the assimilation were zonal mean monthly averaged
mixing ratios based on surface flask observations from
the previous year [GLOBALVIEW-CO2, 2003]. These
averaged flask observations are based on maritime air
samples, and a constant value of 2 ppmv was added to
compensate for the annual trend. For the stratospheric
background a constant value of 375 ppmv was used. The
background error was set to 30 ppmv and was deliberately
taken large to minimize the contribution of the background
to the analysis in these preliminary experiments. Individual
analysis values at the observation locations were gridded
onto a 1� � 1� latitude-longitude grid for a whole month.
Within a grid box the data were averaged using a weighted
average with the analysis errors as weights. This 1� � 1�
grid was then smoothed with a 15� � 15� moving boxcar
average. The same boxcar smoothing was used by Chédin et
al. [2003] and is applied here to allow easier comparison
with their results. Each individual grid box needed to have
more than 10 observations within a month to be included in
the smoothing averaging. Therefore some geographical
areas have no data in the final monthly mean fields because
of consistent high cloud cover.

4.1. Quality of Analysis

[20] The information content of the CO2 estimates is
highly variable due to variations in temperature lapse rate
and cloudiness (see also section 3.3), and therefore the
contribution of the background to the analysis estimate
varies as well. The value of the analysis error relative to
the background error shows how much information is
gained from the observations and can be formally repre-
sented by the averaging kernel [Rodgers, 2000], which is
for a single scalar analysis variable defined as

A ¼ 1� s2a
s2b

ð7Þ

The averaging kernel varies between 0 and 1, where 0
means that we retrieve the background value back in the
analysis, while 1 means that we have an analysis
independent of the used background. With a constant
background error (as currently used), there is no funda-
mental difference between the averaging kernel and the

Figure 2. Scatter diagram of the estimated analysis error
using an artificial neural network versus the analysis error
estimated from Bayesian theory.
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analysis error itself, but when the background error varies
geographically, the averaging kernel is much easier to
interpret. Also, the absolute values of the averaging
kernel largely depend on the value of the background
error. We will therefore only use the relative values of the
averaging kernel, because our assumption of a very large
background error causes the averaging kernel to be
unrealistically close to one. Figure 3 shows the mean
averaging kernel for February 2003. It is immediately
clear that the information content of the analysis is
highest in the tropics, but degrades quickly at higher
latitudes. This is caused by the shallower troposphere
(lower tropopause) and the smaller temperature lapse rate
at higher latitudes. Also, tropical convective areas have a
much smaller mean averaging kernel value due to high
cloud top levels. However, in these cloudy tropical areas
there are still many occasions where the satellite
instrument sees clear areas or areas with low clouds,
even in the convective regions. Therefore it is still
possible to calculate monthly mean CO2 concentrations
for most of these areas. On the basis of Figure 3 we will

show only analysis results for the region between 30�S
and 30�N. CO2 is estimated outside this region, but the
results depend significantly on the assumed background
values.

4.2. Monthly Mean CO2 Distribution

[21] The CO2 analysis results are shown in Figure 4 for
February 2003 and in Figure 5 for August 2003. Figures 4
(left) and 5 (left) show the background values and Figures 4
(right) and 5 (right) show the actual analysis results. The
background field is not entirely zonal, because the individ-
ual observations are not homogeneously distributed over the
averaging grid and each individual background value was
interpolated in latitude from the GLOBALVIEW zonal
means.
[22] Both Figures 4 and 5 show that the analysis adds

structure to the zonal background field. Although the
main north-south gradient remains, meridional variability
is produced by the analysis. In the equatorial region the
analysis tends to have more CO2 in the convective areas,
especially in the west Pacific. Another feature can be
observed over the southern part of North America. A
careful analysis was done using AMSU-A data to see if
these features were caused by biases in the temperature
analysis. This seems indeed to be the case for the high
values over southern North America in February, where a
cold bias is observed in the temperature analysis field
compared to AMSU-A measurements. This could cause a
positive bias in the CO2 field. However, for the other
regions such a cold analysis bias is not present. Also,
plots of AIRS first-guess departures (the difference
between the observed brightness temperatures and the
model simulated brightness temperatures from the 6-hour
forecast) that drive the analysis show the same patterns as
the CO2 analysis field. These patterns are very dissimilar
from the AMSU-A first-guess departures and can there-
fore not be explained completely by errors in the tem-
perature forecast. To further illustrate the point, we have
plotted in Figure 6 the monthly mean CO2 increments
(analysis minus background) as a function of the obser-
vation departures for AIRS channels 193 and 213 (both
sensitive to midtropospheric CO2), AMSU-A channel 7

Figure 3. Averaging kernel averaged for February 2003
on a 1� � 1� grid.

Figure 4. (left) Background and (right) analysis of CO2 distribution averaged for February 2003.
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(sensitive to midtropospheric temperature), and AMSU-B
channel 4 (sensitive to tropospheric water vapor). Any
biases in the model temperature and water vapor fields
that are aliased in the CO2 results would show up as

correlations in the two AMSU plots. While there is a
significant correlation in the two AIRS plots, such corre-
lations are not shown in the AMSU plots. Although these
results are not conclusive, they indicate that the effect of

Figure 5. (left) Background and (right) analysis of CO2 distribution averaged for August 2003.

Figure 6. Monthly mean CO2 increments as a function of observation departures for AIRS channels
193 and 213, AMSU-A channel 7, and AMSU-B channel 4.
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model temperature and water vapor biases on the CO2

analysis is not large.
[23] The higher CO2 values on the west side of Africa

in February could be explained by biomass burning
effects. Similar patterns in the MOPITT carbon monoxide
observations can be observed over that area in February
2003 (see http://www.eos.ucar.edu/mopitt/data/index.html).
The high values in the western Pacific are probably more
surprising. One explanation could be that anthropogenic
emissions from southeast Asia are lifted up and trans-
ported to the western Pacific by the general circulation.
During this part of the year there is a circular wind
pattern in the middle troposphere bringing air east from
the southeast Asian coast and then south to the middle of
the Pacific. However, more careful analysis of the results
should be carried out before drawing firm conclusions.
For example, clouds are detected in our cloud detection
scheme within a small error margin. Therefore it is in
principle possible to have a systematic error in the lower
channels due to undetected clouds resulting in a CO2 bias
of a few parts per million by volume. Also, air-mass-
dependent errors in the radiative transfer (e.g., the spec-
troscopy) could cause systematic errors in the CO2

analysis results on regional scales.
[24] Comparison with the results of Chédin et al.

[2003] shows both similarities and dissimilarities. They
present results from their HIRS CO2 retrievals for March
and August for the years 1987–1991. Their results for
March 1990 show high CO2 values over northern Africa
and over the Pacific, similar to our February results. For
August, they find high values over India and Indonesia
like we do. However, their maximum spatial gradients
(12 ppmv) are larger than the maximum gradients in our
results (7 ppmv). It has to be kept in mind, though, that
the results are 13 years apart, so differences have to be
carefully interpreted.

4.3. Error Estimate

[25] To provide an indication of the error in the monthly
mean CO2 distribution, Figure 7 shows the individual
analysis errors averaged under different assumptions. The
minimum error (smin) is calculated assuming that the errors

of all individual estimates are completely uncorrelated
using

smin ¼
XN
i

1

s2i

 !�1=2

ð8Þ

which implies a
ffiffiffiffi
N

p
reduction of the individual errors

(si), where N is the number of observations within a grid
box. The maximum error (smax) is calculated assuming
that the errors of all individual estimates are correlated
using

smax ¼
1

N

XN
i

si ð9Þ

Both error estimates clearly depend on the number of
observations in the monthly average with cloudy areas
having larger errors. Neither error estimate includes
systematic errors, but their range gives a reasonable
estimate of the average random error. For the tropical
area the expected monthly average analysis error is
therefore between 1 and 6 ppmv, which is on the order of
1%.

4.4. Tropospheric Layer Definition

[26] As described by McNally and Watts [2003], the
cloud detection algorithm searches for channels that are
unaffected by clouds within the error margin of the
observations and radiative transfer modeling. Within the
algorithm the channels are ranked in vertical space by
assigning them a ‘‘trip’’ level that represents the height of
an opaque cloud needed to affect the specific channel by
more than 1%. The 1% number is somewhat arbitrary, but
is only used to rank the channels; it does not represent
any error threshold in the remaining channel radiances.
After the cloud detection the lowest trip level of the
remaining channels then approximates the lowest level of
the observation sensitivity. If there is a cloud, this
corresponds to the cloud top height; if there is no cloud,
it corresponds to the lowest level of the clear column

Figure 7. (left) Lower and (right) upper estimates of the error in the monthly averaged CO2 distribution
for February 2003.
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where the observation is still sensitive to CO2. The actual
error of undetected clouds in the observed brightness
temperatures is of the order of 0.2 K as shown by
McNally and Watts [2003].
[27] The thickness of the layer between this trip level and

the tropopause determines the part of the troposphere that is
represented by the measurement. Figure 8 shows the
monthly mean trip level for February 2003 (Figure 8, left)
as well as the monthly mean trip level when only cloud-free
FOVs are considered (Figure 8, right). Although it is
possible to have an estimate of CO2 in the convective areas,
the layer represented by this estimate is much shallower
than in areas with low clouds or no clouds at all. This could
in principle make results harder to interpret. When only
cloud-free FOVs are used, the thickness of the column if
more uniform as shown in Figure 8 (right). For comparison,
Figure 9 shows the CO2 analysis results for February 2003
using clear FOVs only. The CO2 values are slightly lower
than the values shown in Figure 5, especially over the
Indonesian area, but the geographical patterns remain very
similar. However, if the thickness of the representative layer
as well as the estimated analysis error are taken into
account, using all available data has the advantage of better
spatial and temporal cover. This could be a significant
benefit in surface flux inversion studies.

5. Summary

[28] Global estimates of CO2 concentrations have been
obtained from AIRS radiance data. A subset of channels
from the AIRS instrument on board the NASA Aqua
platform has been assimilated in the ECMWF data assim-
ilation system providing estimates of tropospheric and
stratospheric CO2 mixing ratios. Currently, CO2 is not
included as a tracer in the transport model, but treated as
a column variable estimated at the time and location of each
AIRS observation entering the system. This setup has
enabled first CO2 assimilation experiments, but has the
disadvantage that it lacks the transport constraint and the
adjustment flexibility in the vertical. The analysis errors
have been estimated using a artificial neural network that
relates the CO2 analysis error to the number of assimilated

channels sensitive to tropospheric CO2 and the tropospheric
temperature lapse rate based on earlier simulations that
estimated the analysis error using Bayesian theory.
[29] First results for February and August 2003 are

presented showing considerable geographical variability
compared to the background. Various quality checks were
carried out to exclude as many potential error sources as
possible. Careful analysis is needed to guarantee the validity
of results considering the small CO2 signal compared to
these various error sources. Although the results presented
in this paper have been quality checked, more error analysis
and validation will be carried out in the near future.
[30] The current results show CO2 values ranging be-

tween 373 ppmv and 380 ppmv in the tropics with an
estimated error of about 3 ppmv for the monthly average.
These values are representative for a layer between the
tropopause and about 650 hPa if only observations from
cloud-free field of views are used. The lower boundary of
the representative layer varies between 500 and 700 hPa,
when also observations are used where some channels have
been removed by the cloud detection algorithm.

Figure 8. Lowest level of CO2 sensitivity (left) using all data and (right) using cloud-free FOVs only
for February 2003.

Figure 9. CO2 analysis distribution averaged for February
2003 using clear field of views only.
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[31] This study has demonstrated the feasibility of global
CO2 estimation using AIRS data in an NWP data assimila-
tion system. In the future the system will be improved to
treat CO2 as a full three-dimensional atmospheric variable,
including transport.
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cially supported by the EC project COCO (EVG1-CT-2001-00056). The
authors wish to thank two anonymous reviewers for their very useful
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