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ABSTRACT
In this paper, we provide a rigorous characterization of consensus

solvability in synchronous directed dynamic networks controlled

by an arbitrary message adversary using point-set topology: We

extend the approach introduced by Alpern and Schneider in 1985

by introducing two novel topologies on the space of infinite execu-

tions: the process-view topology, induced by a distance function

that relies on the local view of a given process in an execution, and

the minimum topology, which is induced by a distance function

that focuses on the local view of the process that is the last to dis-

tinguish two executions. We establish some simple but powerful

topological results, which not only lead to a topological explanation

of bivalence arguments, but also provide necessary and sufficient

topological conditions on the admissible graph sequences of a mes-

sage adversary for solving consensus. In particular, we characterize

consensus solvability in terms of connectivity of the set of admissi-

ble graph sequences. For non-compact message adversaries, which

are not limit-closed in the sense that there is a convergent sequence

of graph sequences whose limit is not permitted, this requires the

exclusion of all “fair” and “unfair” limit sequences that coincide

with the forever bivalent runs constructed in bivalence proofs. For

both compact and non-compact message adversaries, we also pro-

vide tailored characterizations of consensus solvability, i.e., tight

conditions for impossibility and existence of algorithms, based on

the broadcastability of the connected components of the set of

admissible graph sequences.

CCS CONCEPTS
• Theory of computation→ Distributed algorithms;

KEYWORDS
Topological characterization; point-set topology; consensus; dy-

namic networks; message adversaries

∗
Thomas Nowak has been supported by the Université Paris-Saclay project DEPEC

MODE.

†
Kyrill Winkler has been supported by the Austrian Science Fund (FWF) under project

ADynNet (P28182) and RiSE/SHiNE (S11405).

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6217-7/19/07.

https://doi.org/10.1145/3293611.3331624

ACM Reference Format:
Thomas Nowak, Ulrich Schmid, and Kyrill Winkler. 2019. Topological Char-

acterization of Consensus under General Message Adversaries: Dedicated

to the 2018 Dijkstra Prize winners Bowen Alpern and Fred B. Schneider. In

2019 ACM Symposium on Principles of Distributed Computing (PODC ’19),
July 29-August 2, 2019, Toronto, ON, Canada. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3293611.3331624

1 INTRODUCTION
We provide a complete characterization of consensus solvability

in synchronous directed dynamic networks, controlled by a gen-

eral message adversary, using a novel approach based on point-set

topology as introduced by Alpern and Schneider [2]. Dynamic net-

works (see [14] for an overview) consist of a set of n fault-free

processes that execute in communication-closed lock-step rounds.

In every round, a directed communication graph (determined by

the message adversary) defines which messages are delivered and

which are lost. A message adversary (MA) [1] is thus just a set of

infinite sequences of communication graphs.

Assuming that every process starts with some input value, the

goal of a consensus algorithm is to irrevocably compute a common

output value at every process eventually. A natural question to

ask in this context is to describe the properties of the message

adversaries that make deterministic consensus solvable. Until now,

combinatorial methods were employed successfully to answer this

question for certain classes of message adversaries [8, 9, 22, 24], but,

to the best of our knowledge, there has been no success in finding a

characterization for the general message adversary notion outlined

above. Inspired by the 2018 Dijkstra Prize winning paper by Alpern

and Schneider [2], our approach is thus based on point set topology.

Related work. In their celebrated paper [22], Santoro and Wid-

mayer provided the first comprehensive characterization of consen-

sus solvability in synchronous distributed systems prone to com-

munication errors. Using bivalence arguments [10], they proved

that consensus is impossible if up to n − 1 messages may be lost

(by the same process) in each round. In [23], Schmid et al. showed

that consensus can even be solved when a quadratic number of

messages is lost per round, provided these losses do not isolate the

processes. These approaches were generalized by the HO model

by Charron-Bost and Schiper [7], which has been extended to also

cover corrupted communication in [4].

All the above communication failure models (without corrupted

messages) can also be expressed in terms of oblivious message ad-

versaries [8], whose sequences are determined by all combinations

https://doi.org/10.1145/3293611.3331624
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Figure 1: Comparison of the combinatorial topology approach and the point-set topology approach: The combinatorial topol-
ogy approach (left) studies sequences of increasingly refined spaces in which the objects of interest are simplices (correspond-
ing to configurations). The point-set topology approach (right) studies a single space in which the objects of interest are exe-
cutions (i.e., infinite sequences of configurations).

of a set of possible communication graphs. For example, for n = 2

processes (the lossy link scenario), the result of [22] implies that if

the message adversary may choose from the set of communication

graphs {←,↔,→} (where, e.g.,→ represents successful commu-

nication from process 1 to process 2), consensus is impossible.

The above results were substantially refined by Coulouma, Go-

dard and Peters in [8]. The authors identified a property of an

equivalence relation defined on the set of communication graphs,

which exactly captures consensus solvability in the oblivious set-

ting. A universal consensus algorithm was also given, which, e.g.,

allows to solve consensus when the set of possible graphs for n = 2

consists of {←,→}.

The situation is considerably more complex for non-oblivious

message adversaries, where the set of possible graphs may change

over time. In sharp contrast to oblivious message adversaries, it

need not be the case that the set of graph sequences is limit-closed,

i.e., the model does not need to be compact, cf. [15]. For example,

eventually stabilizing message adversaries like the vertex-stable
source component (VSSC) message adversaries described in [6, 24]

guarantee that some rounds with “good” communication graphs

(a VSSC, which allows a consensus algorithm to terminate) occur

eventually. However, limits of these sequences, in which the VSSC

would never appear, are of course not in the message adversary.

For the special case of n = 2, Fevat and Godard [9] provided a

complete characterization of consensus solvability for non-oblivious

message adversaries as well: Using a bivalence argument, they

showed that certain graph sequences (a “fair sequence” or a special

pair of “unfair sequences”) must not be in the message adversary

to render consensus solvable, and provided a universal algorithm

for this case. However, a complete characterization of consensus

solvability for arbitrary system sizes did not exist until now.

Regarding topological methods, one has to distinguish point-set

topology, as introduced in [2], and combinatorial topology, as used

for proving theorems characterizing solvable tasks in wait-free

asynchronous shared memory systems with process crashes
1
[13]

or under fair adversaries [15], for example. Combinatorial topology

1
Note that message adversaries do not fall into this category of models.

studies the topology of the reachable states of admissible executions,

captured by simplicial complexes as shown in Figure 1 (left), and

has been developed into a widely applicable tool for the analysis of

distributed systems [12].

By contrast, the primary objects of point-set topology are in-

finite executions, as shown in Figure 1 (right), where closed and

dense sets precisely characterize safety and liveness properties,

respectively. Apart from early work of one of the authors on char-

acterizing consensus solvability in standard compact models [19],

and a topological study of the strongly dependent decision problem

[5], which both use the classic common prefix metric [2], the only

distributed computing work we are aware of that utilizes point-set

topology is [16]. In this paper, Lubitch and Moran introduced a con-

struction for schedulers that lead to compact submodels of classic

non-compact distributed computing models (like up to t crash fail-

ures). Whereas this greatly simplifies impossibility proofs, it does

not lead to a precise characterization of solvability in non-compact

models, however. Note that, in a similar spirit, [15] allows to reason,

in the setting of combinatorial topology, about non-compact models

by considering equivalent affine tasks that are compact.

Main contributions. We provide a complete
2
characterization of

consensus solvability under compact and non-compact message

adversaries, for an arbitrary number of processes. Rather than uti-

lizing classic distributed computing techniques, we developed a

novel modeling and analysis approach based on point-set topology.

We had to add several new topological ideas to the setting of [2], as

detailed below, which at the end provided us with a very powerful

“toolbox” that, for example, allowed us to provide a topological

explanation of bivalence [10] and bipotence [17] proofs. As our

approach can be adapted to different distributed computing models,

we believe that it could be of independent interest.

(i) We define two new topologies on the execution space, which

allow to reason about sequences of local views of a certain process,

rather than about configuration sequences. If this process is a fixed

2
Lacking space did not allow us to also include the proofs, which can be found in the

full version [20] of our paper.



one (p), the resulting {p}-view topology is induced by a pseudo-

metric d {p }(α, β) based on the common prefix of p’s local views in
the executions α , β . Alternatively, this process can be the last one

to notice a difference between executions, which gives rise to the

minimum topology induced by the pseudo-semi-metric dmin(α, β) =
minp∈[n] d {p }(α, β).

(ii) Since the set of possible views is not necessarily finite, the

product topologies built on the execution space are not compact a
priori. Fortunately, the space of sequences of process-time graphs

[3], which are finite, comes to our rescue: Since the local transi-

tion function τ , which maps sequences of admissible process-time

graphs to the corresponding admissible executions Γ, is continuous,
the resulting product subspaces are compact.

(iii) We show that consensus can be modeled as a continuous

decision function ∆, which maps an admissible execution to its

unique decision value. In conjunction with the above results, this

allows us to prove that consensus is solvable if and only if all

the decision sets, i.e., the pre-images Γv = ∆−1[{v}] resp. PSv =
τ−1

[
∆−1[{v}]

]
for every decision value v , are separated in our

topologies. We also provide a universal consensus algorithm, which

relies on this separation. Moreover, we show that separability is

equivalent to broadcastability of the connected components (in the

sense that there is a process that is heard by all processes in every

sequence in a connected component).

(iv) Using some properties of the pseudo-metric d {p } , we provide
a topological definition of fair and unfair sequences [9]. They turn

out to be the limits of two infinite sequences of executions lying in

two different decision sets, which have distance 0, and happen to

coincide with the forever bivalent/bipotent executions constructed

in bivalence proofs. We show that a message adversary must not

include such fair and unfair sequences for consensus to be solvable.

(v) We use our generic results to give a complete characteriza-

tion of consensus solvability for both compact and non-compact

message adversaries. For the former (like [8, 22, 23]), we introduce

a simple ε-approximation of a decision set, which is equivalent to

the set of the (log 1

ε )-prefixes of the sequences contained therein.

We prove that consensus can be solved, using our universal algo-

rithm, if and only if the ε-approximations are broadcastable for

some ε . For non-compact message adversaries (like [6, 9, 24]), the

ε-approximation does not work, so one needs to apply our universal

algorithm based on the connected components directly.

Paper organization. In Section 2 and 3, we define the elements of

the spaces that are endowed with our new topologies in Section 4.

Section 5 introduces the consensus problem in topological terms

and provides our abstract characterization result (Theorem 5.5,

which also provides a universal algorithm). We refine our charac-

terization according to the properties of the minimum topology

(Theorem 5.11) and the process-view topology (Corollary 5.18). Sec-

tion 6 is devoted to the application of our generic results to compact

(Theorem 6.6) and non-compact (Theorem 6.7) message adversaries.

Some conclusions in Section 7 round off our paper.

2 SYSTEM MODEL
We consider deterministic algorithms for a synchronous directed

dynamic network consisting of n processes with unique identifiers

taken from [n] = {1, . . . ,n}.

A communication graph is any directed graphG = ([n], E), E ⊆
[n] × [n] with node set [n]. A message adversary (MA) is a set of

infinite sequences of communication graphs. Graph sequences in

this set are called admissible under the message adversary.

An algorithm A, an initial configuration C0
of A, and a graph

sequence G = (Gt )t ≥1 uniquely determine an execution in a round-

by-round fashion: During round t , every process p updates its pre-

vious local state Ct−1
p to its new state Ct

p in a deterministic way

according to A, based on the messages it received during round t .
Rounds advance synchronously in a send–receive–compute order.

Messages in round t are delivered according to communication

graph Gt
: Process q receives process p’s message in round t if and

only if (p,q) is an edge of Gt
.

An algorithm is defined by the local transition function and a

set of initial states for every process. Since we are only interested

in consensus algorithms, we stipulate that processes have an initial

state for every initial value v of the finite input domainVI . Note

carefully that we assume that a process running A does not know

n a priori, and cannot always infer n from the messages it receives

in an execution either. By contrast, the message adversary need not

be oblivious w.r.t. the algorithm, i.e., it may know A and choose

its graph sequences accordingly.

A configuration is a tuple (C1, . . . ,Cn ) of process states. When-

ever A is clear from the context, we denote its set of possible

configurations by C. Cω denotes the set of all infinite sequences of

configurations, Γ ⊆ Cω is the set of admissible executions resulting

from admissible graph sequences. Executions are represented by

Greek letters α, β, . . . .

3 PROCESS-TIME GRAPHS
We will consider process-time graphs [3], which are useful for rea-

soning about the causal past of a process in a given round, and

which will play a crucial role in our topological framework.

For every graph sequence G = (Gt )t ≥1 and every assignment of

initial values x ∈ Vn
I to the n processes, we inductively construct

the following sequence of process-time graphs PT t :

• The process-time graph PT 0
at time 0 contains the nodes

(p, 0, xp ) for all processes p ∈ [n], with input value xp ∈ VI ,
and no edges.

• The process-time graph PT 1
at time 1 contains the nodes

(p, 0, xp ) and (p, 1) for all processes p ∈ [n]. It contains an

edge from (p, 0, xp ) to (q, 1) if and only if (p,q) ∈ G1
.

• For t ≥ 2, the process-time graph PT t at time t contains
the nodes of PT t−1 and the nodes (p, t) for all processes
p ∈ [n]. It contains an edge from (p, t − 1) to (q, t) if and only
if (p,q) ∈ Gt

.

Figure 2 contains an example of a process-time graph at time 2.

Let PT t
be the set of all possible process-time graphs at time t ≥

0, which is finite for any t ≥ 0. Furthermore, let PTω = PT 0 ×

PT 1 × . . . be the set of all infinite sequences of possible process-

time graphs.
3

Given an input domainVI , every message adversary uniquely

corresponds to a subset PS of PTω
generated by the graph se-

quences admissible under the message adversary.

3
Please note that we slightly abuse the notation PTω here, which normally represents

PT × PT × . . . .



(1, 0, 1) (2, 0, 0) (3, 0, 1)

(1, 1) (2, 1) (3, 1)

(1, 2) (2, 2) (3, 2)

Figure 2: Example of a process-time graph PT 2 at time t = 2

with n = 3 processes and initial values x = (1, 0, 1). Process 1’s
view V{1}(PT

2) is highlighted in bold green.

Note that process-time graphs are independent of the particular
algorithm used, but do depend on the input values. For conciseness,

we will use the term process-time graphs for the elements of PTω

as well. We will denote elements of PTω
by Roman letters a,b, . . .

(or sometimes PT , PT ′, . . . ).

4 TOPOLOGICAL STRUCTURE
In this section, we will endow the various sets introduced in Sec-

tion 2 and 3 with suitable topologies. We first recall briefly the basic

topological notions that are needed for our exposition. For a more

thorough introduction, however, the reader is advised to refer to a

textbook [18].

A topology for a set X is a family T of subsets of X such that

∅ ∈ T , X ∈ T , and T contains all arbitrary unions as well as all

finite intersections of its members. We call X endowed with T ,

often written as (X ,T), a (topological) space and the members of

T open sets. The complement of an open set is called closed and

sets that are both open and closed, such as ∅ and X itself, are called

clopen. A metric onX is a function d : X ×X → R+ such that for all
x,y, z ∈ X we have d(x,y) = 0 if and only if x = y, d(x,y) = d(y, x),
and d(x, z) ≤ d(x,y) + d(y, z). The topology induced by a metric

d is the collection of sets U such that for each u ∈ U , there is an

ε-ball Bε (u) = {v | d(u,v) < ε} with ε > 0 and u ∈ Bε (u) ⊆ U .

A function from space X to space Y is continuous if the pre-

image of every open set in Y is open in X . Given a space (X ,T),
Y ⊆ X is called a subspace of X if Y is equipped with the subspace

topology {Y ∩U | U ∈ T }. Given A ⊆ X , the closure of A is the

intersection of all closed sets containing A. For a space X , if A ⊆ X ,

we call x a limit point of A if it belongs to the closure of A \ {x}. It
can be shown that the closure of A is the union of A with all limit

points of A. A space X is called compact if every union of open

sets that covers X contains a finite union of open sets that covers

X . Note that our topologies are also sequentially compact, which

ensures that every infinite sequence of elements has a convergent

subsequence.

In previous work on point-set topology [19], the set of configura-

tions C of some fixed algorithm A was endowed with the discrete

topology, induced by the discrete metric dmax(C,D) = 1 if C , D

and 0 otherwise (for configurations C,D ∈ C)4 Moreover, Cω was

endowed with the corresponding product topology
5
, which hap-

pens to be induced by the common prefix metric

dmax(α, β) = 2
− inf {t ≥0 |α t,β t } . (1)

Our generalization will focus on the local views of the processes,

which are obtained by suitable projection functions: For a tuple

x = (x1, . . . , xn ) and any ∅ , P = {p1, . . . ,pk } ⊆ [n], the P-
projection function is defined as πP (x) = (xp1 , . . . , xpk ) where

p1 ≤ · · · ≤ pk . Similarly, for any infinite sequence θ = (θ0, θ1, . . . )
and any t ≥ 0, the t-projection function is defined as π t (θ ) = θ t .

The views of a fixed non-empty subset of the processes in a

configuration can be defined as follows:

Definition 4.1 (Views). For any configuration C ∈ C, the view
of the processes in ∅ , P ⊆ [n] is VP (C) = πP (C). The set of all
possible P-views is defined as ViewsP = {VP (C) | C ∈ C}.

4.1 Process-View Topologies
We will now introduce a topology on the set C of configurations

that relies on the corresponding set of views ViewsP of a set of

processes P .

Definition 4.2 (P-view topology for configurations). Let P ⊆ [n]
be a nonempty set of processes. The P-view topology T CP on C is

defined as the topology induced by the subbasis {V −1P [V ] | V ⊆
ViewsP }, i.e., is the arbitrary union of finite intersections of the

elements V −1P [V ] for an arbitrary set V ⊆ ViewsP .

The topology T CP is induced by the pseudo-metric
6

dP (C,D) =

{
0 if VP (C) = VP (D)

1 else .

Note that the topology T CP is much coarser than the discrete

topology on C, as it does not distinguish the local states of processes

outside of P .
The corresponding product topology on the set Cω of sequences

of configurations, also denoted P-view topology, can be defined

as follows: The P-view topology T C
ω

P on Cω is defined as the

topology induced by the subbasis {(π t )−1[U ] | t ≥ 0,U ∈ T CP },
i.e., is an arbitrary union of finite intersections of the elements

(π t )−1[U ], whereU is an arbitrary open set in T CP .

We will show that the P-view topology is induced by the follow-

ing pseudo-metric on Cω :

dP (α, β) = 2
− inf {t ≥0 |VP (α t ),VP (β t )} .

We call this the P-pseudo-metric on Cω . Figure 3 shows an example

for different sets P .
It follows immediately from the definition that, if α, β ∈ Cω

satisfy dP (α, β) < 2
−t
, then the processes in P have the same view

of the first t configurations in α and β . Moreover, the P-pseudo-
metric satisfies the following properties:

4
The notation dmax stems from the fact that it is equal to the maximum of the P -
pseudo-metrics defined in the next subsection.

5
The product topology on a product Πι∈IXι of topological spaces is defined as the

coarsest topology such that all projections πi : Πι∈IXι → Xi are continuous.
6
A pseudo-metric has the same properties as a metric, except that it lacks definiteness,

i.e., we can have d (x , y) = 0 for x , y .
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Figure 3: Comparison of the P-view,minimum, and common
prefix topologies. The first three configurations of each of
the two executions α and β with three processes and two dif-
ferent possible local states (dark blue and light yellow) are
depicted. We have dmax(α, β) = d {3}(α, β) = 1, d {2}(α, β) = 1/2,
and dmin(α, β) = d {1}(α, β) = 1/4.

Theorem 4.3 Properties of P-pseudo-metric. The P-pseudo-
metric dP (α, β) on Cω satisfies

dP (α, β) = dP (β,α) (symmetry),

dP (α,γ ) ≤ dP (α, β) + dP (β,γ ) (triangle inequality),

dP (α, β) ≤ dQ (α, β) (monotonicity for P ⊆ Q),

d[n](α, β) = dmax(α, β) (common prefix metric).

Despite of the lack of definiteness, most properties of metric

spaces, including compactness, hold also in pseudo-metric spaces

[11].What is obviously lost is the uniqueness of the limit of a conver-

gent sequence of executions, however: if αk → α̂ and dP (α̂, ˆβ) = 0,

then αk → ˆβ as well.

Theorem 4.4 P-view topology induced by P-pseudo-metric.
The P-view topology T C

ω

P on Cω is induced by the P-pseudo-metric.

We could use exactly the same machinery as above for endowing

the set G of communication graphs and the set Gω of sequences

of graph sequences, like C and Cω , with an analogous P-view
topology. It turns out, however, that this does not lead to a transi-

tion function that is continuous w.r.t. the P-pseudo-metric for all

algorithms.

Fortunately, however, the P-view projection function VP (·) is
also meaningful for any process-time graph PT t : It just represents
the causal past of the processes in P at the end of round t , i.e., the
sub-graph induced by all process-time nodes (q, t ′) that have a path
to node (p, t) for some p ∈ P in the process-time graph PT t .

Moreover, we can define a P-view topology on PTω
, analogous

to that on Cω . The same is true for the proof of the correspondence

Theorem 4.4, which hence also holds here.

In sharp contrast to the set of configurations C, however, the set

of process-time graphs PT t
is finite for any time t sinceVn

I × G
t

is finite. Tychonoff’s theorem
7
hence implies compactness of the

P-view topology on PTω
, which is not necessarily the case for Cω .

7
Tychonoff’s theorem states that any product of compact spaces is compact (with

respect to the product topology).

Since the algorithms take decisions based on local states only,

we can define the transition function τ : PTω → Cω that provides

Ct = τ (PT t ) for every t ≥ 0, i.e., maps process-time graphs to the

corresponding configurations. The following Lemma 4.5 shows that

τ is continuous w.r.t. the P-pseudo-metric.

Lemma 4.5 Continuity of τ w.r.t. dP . Let P ⊆ [n]. The tran-
sition function τ : PTω → Cω is continuous when both PTω and
Cω are endowed with dP .

Since the image of a compact space under a continuous func-

tion is compact, it hence follows that the set τ [PTω ] ⊆ Cω of

admissible executions is a compact subspace of (Cω ,T C
ω

P ).

The common structure of PTω
and its image under the transi-

tion function τ , implied by the continuity of τ , allows us to reason

in either of these spaces. We will usually reason in PTω
or in its

subspace PS . Note also that any sequence a ∈ PTω
orγ ∈ τ [PTω ]

can also be identified by specifying a vector x ∈ Vn
I of input values

and a graph sequence G ∈ Gω that leads to a and hence γ .

4.2 Minimum Topology
For our characterization of consensus solvability, we endow the

set Cω of configuration sequences and the set of process-time

graphs PTω
with a slightly different but related topology, induced

by the distance function

dmin(α, β) = min

p∈[n]
d {p }(α, β), (2)

which reflects the common prefix length of the process p that is the

last one to distinguish its q-view in α and β .
Note carefully, however, that dmin only satisfies symmetry and

nonnegativity but not the triangle inequality, i.e., is only a pseudo-
semi-metric: There may be sequences with d {p }(α, β) = 0 and

d {q }(β,γ ) = 0 but d {q }(α,γ ) > 0 for all q ∈ [n]. Hence, the topol-

ogy T C
ω

min
on Cω induced by dmin lacks many of the properties of

(pseudo-)metric spaces, but will turn out to be already sufficient for

the characterization of the possibility/impossibility of consensus

(see Theorem 5.4). Alternatively, however, one can also consider

all individual pseudo-metric spaces induced by d {p } , p ∈ [n], sepa-
rately and compute the minimum afterwards.

Pseudo-semi-metrics induce a topology just like (pseudo)-metrics.

In fact, a much more general result holds:

Lemma 4.6 Pseudo-semi-metrics induce topologies. Let X be
a nonempty set and d : X × X → R be a function. Define T ⊆ 2

X

by settingU ∈ T if and only if for all x ∈ U there exists some ε > 0

such that
Bε (x) = {y ∈ X | d(x,y) < ε} ⊆ U .

Then T is a topology on X .

Denote by T C
min

the topology on the set C of configurations

induced by

dmin(C,D) = min

p∈[n]
d {p }(C,D) .

Then the functiondmin defined on C
ω
induces the product topology

T C
ω

min
, where every copy of C is endowed with T C

min
:

Lemma 4.7 Pseudo-semi-metric for product topologies. LetX
be a nonempty set and let d : X × X → {0, 1} be a function. Then



the product topology of Xω , where every copy of X is endowed by the
topology Tω induced by d , is induced by

dω : Xω × Xω → R , dω (α, β) = 2
− inf {t ≥0 |d (α t ,β t )>0} .

Specializing to X = C and d = dmin, we get:

Lemma 4.8 Minimum topology in terms of process-view

topologies. We have

dω (α, β) = min

p∈[n]
d {p }(α, β) = dmin(α, β)

for all α, β ∈ Cω .

Like for T PT
ω

P , we get from Tychonoff’s theorem and the finite-

ness, and hence compactness, of every PT t
that (PTω ,T PT

ω

min
)

is compact.

We finally show that the function τ : PTω → Cω is continuous

also for the distance dmin.

Lemma 4.9 Continuity of τ w.r.t. dmin. The local transition
function τ : PTω → Cω is continuous when PTω and Cω are
endowed with dmin.

Like for the P-view topologies, the continuity of τ also implies

the compactness of τ [PTω ] in the minimum-topology.

5 CONSENSUS
In this section, wewill develop a topological condition for consensus

under message adversaries. Unlike in [19], where the admissible

graph sequences needed to be compact in the space induced by the

common prefix metric, this is usually not the case here: The set of

admissible graph sequences need not be limit-closed in general, see

Section 6.2.

We will consider the consensus problem, which is defined as

follows:

Definition 5.1 (Consensus). Every process p ∈ [n] has an input

value xp ∈ VI , taken from a finite input domainVI , which is set

in the initial state, and an output value yp ∈ VO ∪ {⊥}, with a

finite output domainVO ⊇ VI , initially yp = ⊥. In every admissi-

ble execution, a correct consensus algorithms A must ensure the

following properties:

(T) Eventually, every p must decide, i.e., change to yp , ⊥,
exactly once (termination).

(A) If p and q have decided, then yp = yq (agreement).

(V) If xp = v for all p ∈ [n], then v is the only possible decision

value (validity).

Note that our framework can be easily adapted to different va-

lidity conditions, like strong validity, where every decision value

must satisfy yp = xq for some q ∈ [n].
If we endow the setVO with the discrete topology, it turns out

that consensus can be described by a continuous map from the set

of admissible executions, endowed with any P-view topology or

the minimum topology, toVO .

Lemma 5.2 Continuity of consensus. Let Γ ⊆ Cω be the set
of admissible executions of some consensus algorithm A. Define the
map ∆ : Γ → VI such that ∆(γ ) is the common decision value of
algorithm A in γ . Then, ∆ is continuous, both with respect to any
P-view topology and the minimum topology.

In the following definition, we introduce the sets of process-time

graphs and executions that lead to a given decision value:

Definition 5.3 (Decision sets). For every output value v ∈ VO ,
let PS(v) = τ−1[∆−1[{v}]] ⊆ PS and Γ(v) = ∆−1[{v}] be the set of
admissible process-time graph sequences and admissible executions

that lead to a common decision value v , respectively.

We need a fewmore basic topological terms: A set in a topological

space is clopen, if it is both closed and open. A topological space is

disconnected, if it contains a nontrivial clopen set, which means that

it it can be partitioned into two disjoint open sets. It is connected, if
it is not disconnected.

With these preparations, we can already provide a topological

consensus impossibility result:

Theorem 5.4 Consensus impossibility. If an algorithm solves
consensus, then all of its decision sets Γ(v) = ∆−1[{v}], v ∈ VO , and
PS(v) = τ−1[∆−1[{v}]] are clopen in the subspace topology of Γ and
PS , respectively, both w.r.t. any dP and dmin.

In particular, consensus is impossible if the set Γ of admissible
executions or the set PS of admissible process-time graphs is connected.

5.1 Characterization in the Minimum Topology
We call a process-time graph zv , for v ∈ VO , v-valent, if it starts
from an initial configuration where all processes p ∈ [n] have
the same input value xp (zv ) = v . Let PSzv denote the connected

component of PS that contains the v-valent zv ∈ PS . In the min-

imum topology T PT
ω

min
, we get the following characterization of

consensus solvability:

Theorem 5.5 Consensus characterization. Consensus is solv-
able with amessage adversary generating the set of admissible process-
time graph sequences PS if and only if there exists a partition of PS
into sets PS(v),v ∈ VO such that the following holds:

(1) Every PS(v) is open in PS with respect to the minimum topol-
ogy.

(2) Every admissible v-valent zv ∈ PS satisfies zv ∈ PS(v).

Proof. (⇒): Define PS(v) = (∆ ◦ τ )−1[{v}] ⊆ PS using the

functions τ and ∆ defined by an algorithm that solves consensus.

This is clearly a partition of PS by the termination and validity

property of consensus. The validity condition of the algorithm also

implies property (2). It thus remains to show openness of the PS(v),
which follows from the continuity of ∆ ◦ τ : PS → VO , as every
singleton {v} is open (and closed) in the discrete topology.

(⇐): We construct an algorithm as follows. Each process’s state

contains a variable V whose value is equal to the projection of

process-time graphs onto its own view. State updates happen in

such a way that process p’s variable at the end of round t in the

execution with process-time graph a is equal to V = π{p }(a
t ). Pro-

cess p decides valuev in round t if the ball of radius ε = 2
−t

around

the set of sequences of process-time graphs π−1
{p }[{V }] compatible

with its locally recorded view V is contained in PS(v), i.e., if{
b ∈ PS | π{p }(b

t ) = V
}
⊆ PS(v) .

We first show termination of the resulting algorithm. Let a ∈ PS
and let v ∈ VO such that a ∈ PS(v). Since PS(v) is open w.r.t. dmin,



there exists some ε > 0 such that{
b ∈ PS | dmin(b,a) < ε

}
⊆ PS(v) .

Let t ≥ 0 such that 2
−t ≤ ε . We hence have{

b ∈ PS | dmin(b,a) < 2
−t } ⊆ {

b ∈ PS | dmin(b,a) < ε
}
⊆ PS(v) .

By Lemma 4.8, we have{
b ∈ PS | d {p }(b,a) < 2

−t } ⊆ {
b ∈ PS | dmin(b,a) < 2

−t }
⊆ PS(v)

for every process p ∈ [n]. By the definition of the distance d {p } , we
have{
b ∈ PS | d {p }(b,a) < 2

−t } = {
b ∈ PS | π{p }(b

t ) = π{p }(a
t )
}
.

Since, by construction, process p’s variable V at the end of round t
is equal to π{p }(a

t ), this shows that process p decides in or before

round t .
To show agreement, assume by contradiction that there exists

some a ∈ PS such that process p1 decides v1 in round t1 and pro-

cess p2 decides v2 in round t2 in execution τ (a) with q1 , q2. By
the definition of the algorithm, we have{

b ∈ PS | π{p1 }(b
t1 ) = π{p1 }(a

t1 )
}
⊆ PS(v1)

and {
b ∈ PS | π{p2 }(b

t2 ) = π{p2 }(a
t2 )

}
⊆ PS(v2) .

In particular, a ∈ PS(v1) and a ∈ PS(v2), a contradiction to the fact

that the PS(v) form a partition of PS .
Validity is an immediate consequence of property (2). □

This characterization gives rise to the following meta-procedure

for determining whether consensus is solvable and constructing an

algorithm if it is, which will be instantiated for some examples in

Section 6. It requires knowledge of the connected components of

the space PS with respect to the minimum topology:

(1) Initially, start with an empty set PS(v) for every value v ∈
VO .

(2) Add to PS(v) every connected component PSzv of every

v-valent zv ∈ PS .
(3) Add every remaining connected component of PS to an ar-

bitrarily chosen set PS(v) (i.e., decide on default value v).
(4) If the sets PS(v) are pairwise disjoint, then consensus is

solvable. In this case, the sets PS(v) determine a consen-

sus algorithm via the universal construction in the proof

of Theorem 5.5. If the PS(v) are not pairwise disjoint, then
consensus is not solvable.

In particular, this meta-procedure gives rise to the following

succinct characterization of consensus solvability.

Corollary 5.6. Consensus is solvable with a message adversary
MA generating the set of admissible process-time graph sequences
PS if and only if none of its connected components with respect to
the minimum topology contains zv and zw , v,w , v ∈ VO that are
v-valent andw-valent, respectively.

We will now develop another characterization of consensus solv-

ability, with rests on broadcastability of the PSzv .

Definition 5.7 (Diameter of a set). For A ⊆ PTω
and P ′ de-

noting either P ⊆ [n] or min, define A’s diameter as dP ′(A) =
sup{dP ′(a,b) | a,b ∈ A}.

Definition 5.8 (Broadcastability). We call a subset A ⊆ PS of

admissible process-time graphs broadcastable by the broadcasterp ∈
[n], if for every a ∈ A there is some round T (a) < ∞ where every

process q ∈ [n] knows p′s input value xp (a) in a, i.e., (p, 0, xp (a)) is

in V{q }(a
T (a)).

We will now prove the essential fact that connected broadcastable
sets have a diameter strictly smaller than 1:

Theorem 5.9 Diameter of broadcastable connected sets.

If a connected set A ⊆ PS of admissible process-time graph sequences
is broadcastable by some process p, then dmin(A) ≤ d {p }(A) ≤ 1/2,
i.e., p’s input value xp (a) is the same for all a ∈ A.

Corollary 5.10 follows immediately from Theorem 5.9:

Corollary 5.10 Diameter of broadcastable PSzv . If PSzv
for a v-valent zv ∈ PS is broadcastable for p, then dmin(PSzv ) ≤
d {p }(PSzv ) ≤ 1/2 since p’s input value xp (a) = v is the same for all
a ∈ PSzv .

We can now prove the following necessary and sufficient condi-

tion for solving consensus based on broadcastability:

Theorem 5.11 Consensus characterization via broadcasta-

bility. Amessage adversary allows to solve consensus if and only if it
guarantees that the connected components of the set PS of admissible
processes-time graphs are broadcastable for some process.

5.2 Characterization in the P-View Topologies
It is possible to shed some additional light on the consensus char-

acterization given in Theorem 5.5, by exploiting the fact that dP
(unlike dmin) is a pseudo-metric: Since most of the convenient prop-

erties of metric spaces, including sequential compactness, also hold

in pseudo-metric spaces, we can further explore the border of the

decision sets PS(v). It will turn out in Corollary 5.18 that consen-

sus is impossible if and only if certain limit points in the P-view

topology T PT
ω

P are admissible.

For a given consensus algorithm, we again consider the set of all

admissible process-time graph sequences PS resp. the correspond-

ing set of admissible executions Γ. We endow PS with the subspace

topology generated by PTω ∩ PS resp. Γ with the subspace topol-

ogy
8
generated by Cω ∩ Γ, both in the P-view topology. Recall that

PS and Γ are not closed in general, hence not compact, even though

PTω
resp. τ (PTω ) are compact.

Definition 5.12 (Distance of sets). ForA,B ⊆ PTω
, let dP (A,B) =

inf{dP (a,b) | a ∈ A, b ∈ B}.

In [19, Theorem 4.3], the following theorem has been proved:

Theorem 5.13 Compact set distance condition. Let A ⊆
PTω be closed and B ⊆ PTω be compact with respect to the [n]-
view topology. If A ∩ B = ∅, then d[n](A,B) > 0.

8
Whenever we state a topological property w.r.t. the subspace topology, we will refer

to Γ (resp. PS ), otherwise to Cω (resp. PTω ).



We prove the following result, which also holds when A, B are

not closed/compact. Note that it also implies Theorem 5.13 as a

simple corollary for any P-view topology: Corollary 5.15 shows

that it also holds in the minimum topology.

Theorem 5.14 General set distance condition. Let P ⊆ [n]
with P , ∅. LetA,B be arbitrary subsets of PTω . Then, dP (A,B) = 0

if and only if there are infinite sequences (ak ) ∈ Aω and (bk ) ∈ Bω of
process-time graphs as well as â, ˆb ∈ PTω with ak → â and bk → ˆb

with respect to the P-view topology and dP (â, ˆb) = 0.

The representation dmin = minp∈[n] d {p } from (2) allows us to

extend this result from the P-topologies to the minimum topology:

Corollary 5.15. Let P ⊆ [n] with P , ∅. Let A,B be arbitrary
subsets of PTω . Then, dmin(A,B) = 0 if and only if there are infinite
sequences (ak ) ∈ Aω and (bk ) ∈ Bω of process-time graph sequences
as well as â, ˆb ∈ PTω with ak → â and bk → ˆb with respect to the
minimum topology and dmin(â, ˆb) = 0.

The above Theorem 5.14 allows us to distinguish 3 main cases

that cause dP (A,B) = 0: (i) If â ∈ A ∩ B , ∅, one can choose the

sequences defined by ak = bk = â = ˆb, k ≥ 1. (ii) If A ∩ B = ∅

and â = ˆb, there is a “fair sequence” as the common limit. (iii) If

A ∩ B = ∅ and â , ˆb, there is a pair of “unfair sequences” acting
as limits, which have distance 0 (and are hence also common w.r.t.

the pseudo-metric dP ). We note, however, that due to the non-

uniqueness of the limits in our pseudo-metric, (iii) are actually two

instances of (ii). We kept the distinction for compatibility with the

existing results [9, 21] for n = 2.

Definition 5.16 (Fair and unfair process-time graph sequences).
Consider two process-time graph sequences r , r ′ ∈ PTω

of some

consensus algorithm with partitions PS(v), v ∈ VO , in the P ′-
topology with P ′ = {p}, p ∈ [n], or P ′ = min:

• r is called fair, if for some v,w , v ∈ VO there are conver-

gent sequences (ak ) ∈ PS(v) and (bk ) ∈ PS(w) with ak → r

and bk → r with respect to T PT
ω

P ′ .

• r , r ′ are called a pair of unfair sequences, if for some v,w ,
v ∈ VO there are convergent sequences (ak ) ∈ PS(v) with
ak → r and (bk ) ∈ PS(w) with bk → r ′ and dP ′(r , r

′) = 0

with respect to T PT
ω

P ′ .

An illustration is shown in Figure 5.

The above findings go nicely with the alternative characteriza-

tion of consensus solvability given in Corollary 5.18, which results

from applying the following Lemma 5.17 from [18] to Theorem 5.5.

Lemma 5.17 Separation lemma [18, Lemma 23.12]. If Y is a
subspace of X , a separation of Y is a pair of disjoint nonempty sets
A and B whose union is Y , neither of which contains a limit point
of the other. The space Y is connected if and only if there exists no
separation of Y .

Corollary 5.18 Separation-based characterization. Con-
sensus is solvable with a message adversary MA generating the set of
admissible process-time graph sequences PS if and only if there exists
a partition of PS into sets PS(v),v ∈ VO such that the following
holds:

(1) No PS(v) contains a limit point of any other PS(w) w.r.t. the
minimum topology in PTω .

(2) Every v-valent admissible sequence zv satisfies zv ∈ PS(v).

We hence immediately obtain:

Corollary 5.19 Fair/unfair consensus impossibility. The set
of admissible process-time graphs PS of a consensus algorithm A
with partitions PS(v), v ∈ VO , does not contain any fair process-
time graph sequence r or any pair r , r ′ of unfair process-time graph
sequences.

6 APPLICATIONS
In this section, we will apply our various topological characteriza-

tions of consensus solvability to particular classes of examples. We

start in Section 6.1 with the broad class of message adversaries that

have been shown, or can be shown, to make consensus impossible

by means of bivalence proofs. We the proceed with a complete

characterization of consensus solvability the class of compact mes-

sage adversaries in Section 6.2. A characterization for the class of

non-compact message adversaries will be provided in Section 6.3.

6.1 Bivalence-based Impossibilities
Our topological results shed some new light on the now standard

technique of bivalence-based impossibility proofs introduced in the

celebrated FLP paper [10], which have been generalized in [17] and

used in many different contexts: Our results reveal that the forever

bivalent executions constructed inductively in bivalence proofs

such as [22, 23] and [6, 24] are just the common limit of two infinite

sequence of executions α0,α1, . . . all contained in, say, Γ(0) and
β0, β1, . . . all contained in Γ(1) that have a common limit αk → α̂

and βk → ˆβ in some {p}-view topology with d {p }(α̂, ˆβ) = 0.

More specifically, what is common to these proofs is that one

shows that, for any consensus algorithm, there is an admissible

forever bivalent run. This is usually done inductively, by showing

that there is a bivalent initial configuration and that, given a bivalent

configuration Ct−1
at the end of round t − 1, there is a 1-round

extension leading to a bivalent configurationCt
at the end of round

t . By definition, bivalence ofCt
means that there are two admissible

executions αt with decision value 0 and βt with decision value 1

starting out from Ct
, i.e., having a common prefix that leads to Ct

.

Consequently, their distance, in any {p}-view topology, satisfies

d {p }(αt , βt ) < 2
−t
. Note that this is also true for the more general

concept of a bipotent configuration Ct
, as introduced in [17].

By construction, the (t−1)-prefix of αt and αt−1 are the same, for

all t , which implies that they converge to a limit α̂ (and analogously

for
ˆβ), see Figure 5 for an illustration. Therefore, these executions

match Definition 5.16, and Corollary 5.19 implies that the stipulated

consensus algorithm cannot be correct. Concrete examples are the

lossy link impossibility [22], i.e., the impossibility of consensus un-

der an oblivious message adversary for n = 2 that may choose any

graph out of the set {←,↔,→}, and the impossibility of solving

consensus with vertex-stable source components with insufficient

stability interval [6, 24]. In the case of the oblivious lossy link mes-

sage adversary using the reduced set {←,→} considered in [8],

consensus is solvable and there is no forever bivalent run. Indeed,

there exists a consensus algorithm, such that all configurations

reached after the first round are already univalent.



6.2 Compact Message Adversaries
In this section, we consider message adversaries (like oblivious ones

[8, 22]) that are limit-closed, in the sense that every convergent

sequence of process-time graphs a0,a1, . . . with ai ∈ PS for every

i has a limit â ∈ PS . An illustration is shown in Fig. 4, where the

blue dots represent the ai ’s and × the limit point â at the boundary.

PSz0

PSz′
0

PSz1

PSz′
1

Figure 4: Examples of two connected components of the de-
cision sets PS(0) = PSz0 ∪ PSz′

0

and PS(1) = PSz1 ∪ PSz′
1

for a
compact message adversary. They are closed in PTω , hence
contain all their limit points (marked by ×) and have a dis-
tance > 0 by Theorem 5.13.

In this case, the set of admissible process-time graph sequences

PS is closed and hence a compact subspace both in any P-view
topology and in the minimum topology. Moreover, we obtain:

Corollary 6.1 Decision sets for compact MAs are compact.

For every correct consensus algorithm for a compact message adver-
sary and every v ∈ VO , PS(v) is closed in PS and compact, and
d {p }(PS(v), PS(w)) > 0 for any v,w , v ∈ VO and p ∈ [n], and
hence also dmin(PS(v), PS(w)) > 0.

Moreover, there are only finitely many different connected com-
ponents PSx , x ∈ PS , which are all compact, and for every x,y
with PSx , PSy , it holds that d {p }(PSx , PSy ) > 0 and hence also
dmin(PSx , PSy ) > 0.

We now make the abstract characterization of Theorem 5.5

and our meta-procedure more operational, by introducing the ε-
approximation of the connected component PSz that contains a

process-time graph z ∈ PS , typically for some ε = 2
−t
, t ≥ 0. It

is constructed iteratively, using finitely many iterations (since the

number of different possible t-prefixes satisfies |PT t | < ∞) of the

following algorithm:

Definition 6.2 (ε-approximations). Let z ∈ PS be an admissible

process-time graph. In the minimum topology, we iteratively define

PSεz , for ε > 0, as follows: PSεz [0] = {z}; for ℓ > 0, PSεz [ℓ] =⋃
a∈PS εz [ℓ−1](Bε (a) ∩ PS); and PS

ε
z = PSεz [m] wherem < ∞ is such

that PSεz [m] = PSεz [m+1]. Forv ∈ VO , the ε-approximation PSε (v)
is defined as PSε (v) =

⋃
zv ∈PS PS

ε
zv , where every zv denotes a v-

valent process-time graph.

Lemma 6.3 Properties of ε-approximation. For every ε > 0,
every v,w ∈ VO , every z ∈ PS , v-valent zv , and everyw-valent zw ,
the ε-approximations have the following properties:

(i) For a compact message adversary, there are only finitely many
different PSεz , z ∈ PS .

(ii) For every 0 < ε ′ ≤ ε , it holds that PSε
′

zv ⊆ PSεzv .
(iii) PSεzv ∩ PS

ε
zw , ∅ implies PSεzv = PSεzw .

(iv) PSz ⊆ PSεz .

We now show that PSεx and PSεy for sequences x and y with

PSx , PSy have a distance > 0, provided ε is sufficiently small:

Lemma 6.4 Separation of ε-approximations for compactMAs.

For a compact message adversary that allows to solve consensus, let
x ∈ PS andy ∈ PS be such that PSx , PSy . Then, there is some ε > 0

such that, for any 0 < ε ′ ≤ ε , it holds that dmin(PS
ε ′
x , PS

ε ′
y ) > 0.

We immediately get the following corollary, which allows us to

reformulate Theorem 5.11 as given in Theorem 6.6.

Corollary 6.5 Matching ε-approximation. For a compact mes-
sage adversary, if ε > 0 is chosen in accordance with Lemma 6.4, then
PSεz = PSz for every z ∈ PS .

Theorem 6.6 Consensus characterization for compactMAs.

A compact message adversary allows to solve consensus if and only
if there is some ε > 0 such that every v-valent PSεzv , v ∈ VO , is
broadcastable for some process.

Note carefully that if consensus is solvable, then, for every 0 <

ε ′ ≤ ε , the universal algorithm from Theorem 5.5 with PS(v) =

PSε
′

(v)∪PS \
⋃
w,v ∈VO PSε

′

(w) for some arbitrary valuev ∈ VO ,

and PS(w) = PSε
′

(w) for the remainingw ∈ VO , can be used.

We conclude this section with noting that checking the broad-

castability of PSεzv can be done by checking broadcastability only

in finite prefixes. More specifically, like the decision function ∆ of

consensus, the function T (a) that gives the round by which every

process in a ∈ PS has (p, 0, xp (a)) of the broadcaster p in its view

is locally constant for a sufficiently small neighborhood, namely,

B
2
−T (a) (a), and hence continuous. Since PSzv = PSεzv is compact,

T (a) is in fact uniformly continuous and hence attains its maxi-

mum T̂ in PSεzv . It hence suffices to check broadcastability in the

t-prefixes of PSεzv for t = max{⌊log
2
(1/ε)⌋, T̂ } in Theorem 6.6.

6.3 Non-compact Message Adversaries
In this section, we finally consider message adversaries that are

not limit-closed, like the ones of [9, 21, 24]. Unfortunately, we

cannot use the ε-approximations according to Definition 6.2 for

non-compact message adversaries. Even if ε is made arbitrarily

small, Lemma 6.4 does not hold. An illustration is shown in Fig. 5.

Hence, adding a ball Bε (a) in the iterative construction of PSεz ,
where dmin(a, r ) < ε for some forbidden limit sequence r , inevitably
lets the construction grow into some PSεz′ where z

′
has a different

valence than z. Whereas this could be avoided by adapting ε when
coming close to r , the resulting approximation does not provide

any advantage over directly using the connected components.

Actually, this is in accordance with the existing solutions for non-

compact message adversaries we are aware of, albeit they typically

use their complement, namely, excluded sequences. For example,

the binary consensus algorithms for n = 2 given in [9, 21] assume

that the algorithm knows a fair or a pair of unfair sequences a priori,

which effectively partition the sequence space into two connected

components.
9
The (D + 1)-VSRC message adversary of [24] even

excludes all sequences without a root component that is vertex-

stable for at least D + 1 rounds, where D is the dynamic diameter

9
Note that there are uncountably many choices for separating PS (0) and PS (1) here.
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PSz1

PSz′
0 PSz′
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Figure 5: Examples of two connected components of the de-
cision sets PS(0) = PSz0 ∪ PSz′

0

and PS(1) = PSz1 ∪ PSz′
1

for
a non-compact message adversary. They are not closed in
PTω and may have distance 0; common limit points (like
for PSz0 and PSz1 , marked by ×) must hence be excluded by
Corollary 5.18.

that ensures broadcastability by all root members, which renders

the remaining connected components broadcastable.

We restate the following necessary and sufficient condition for

solving consensus with a non-compact message adversary from

Theorem 5.11:

Theorem 6.7 Consensus characterization for non-compact

MAs. A non-compact message adversary allows to solve consensus if
and only if every v-valent PSzv , v ∈ VO , is broadcastable for some
process.

Wewill finally prove that the set of to be excluded limit sequences

for any decision set PS(v) is compact for a message adversary that

allows to solve consensus:

Lemma 6.8 Compactness of excluded seqences. Let PS(v),
v ∈ VO , be any decision set of a correct consensus algorithm for
an arbitrary message adversary, PS(v) be its closure in PTω and
Int(PS)(v) its interior. Then, P̂S(v) = PS(v) − Int(PS)(v), which is
the set of to be excluded limit points, is compact.

7 CONCLUSIONS
We provided a complete topological characterization of the solv-

ability of consensus in synchronous directed dynamic networks of

arbitrary size controlled by a general message adversary: Consen-

sus can only be solved when the space of admissible process-time

graph sequences can be partitioned into at least two non-empty sets

that are both closed and open in specific topologies. This requires

exclusion of certain fair and unfair limit sequences, which limit

broadcastability and happen to coincide with the forever bivalent

executions constructed in bivalence and bipotence proofs.

Part of our future work will be devoted to a generalization of

our topological framework to other distributed computing models

and, most importantly, to other decision problems. Another very

interesting area of future research is to study the homology of non-

compact message adversaries, i.e., the topological structure of the

space of admissible executions using combinatorial topology.
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