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Chapter 12

Nonlinear Control

Jean-Pierre Corriou
LRGP-CNRS-ENSIC, Lorraine University
1, rue Grandville BP 20451
54001 Nancy Cedex
France
e-mail: jean-pierre.corriou@univ-lorraine.fr

12.1 Introduction

Nonlinear behavior is the general rule in physics and nature. Linear models,
obtained by linearization or identification, are in general crude approximations
of nonlinear behaviors of plants in the neighbourhood of an operating point.
However, in many cases such as startup, shutdown, or important transient
regimes, study of batch and fed-batch processes, a linear model is insufficient
to correctly reproduce the reality, and the resulting linear controller cannot
guarantee stability and performance. Yet, because of the difficulty to cope with
nonlinear control, linear models and linear controllers are by far dominant.

Nevertheless, efficient methods exist that can be used with nonlinear models
provided the end-users are willing to carry out some effort.

Among existing theories, can be found backstepping, sliding mode control,
[Khalil, 1996, Krstić et al., 1995, Slotine and Li, 1991], flatness based control
[Fliess et al., 1995, 1997], and methods based on Lyapunov stability, nonlinear
model predictive control [Alamir, 2006, Allgöwer and Zheng, 2000, Rawlings
et al., 1994]. These methods are powerful and would deserve a long develop-
ment.

In this chapter, a particular method of nonlinear control, often called non-
linear geometric control [Isidori, 1989, 1995, Jurdjevic, 1997, Khalil, 1996] will
be presented and discussed. It is based on differential geometry but can be un-
derstood in simpler words. Differential geometry is devoted in particular to the
theory of differential equations in relation with geometry, surfaces, manifolds.
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12.2 Some mathematical notions useful in non-

linear control

The theory of linear control was developed long before nonlinear control and
some tools available in linear control can be adapted to nonlinear control with-
out performing the usual linear approximation of dynamics by calculation of
the Jacobian. Several textbooks are devoted to nonlinear systems, analysis and
control, among which [Fossard and Normand-Cyrot, 1993, Isidori, 1989, 1995,
Nijmeijer and VanderSchaft, 1990, Slotine and Li, 1991, Vidyasagar, 1993].

The important first point about nonlinear geometric control is that it can
be used for systems that are affine with respect to the manipulated input, i.e.
that can be described like the following single-input single-output plant as

{

ẋ = f(x) + g(x)u
y = h(x)

(12.1)

where x is the state vector of dimension n, u the control input and y the
controlled output. This might seem a severe restriction, but in chemical engi-
neering, most systems are of the form (12.1). This is because the manipulated
input is in general a flow rate, a position of valve, which appears linearly in
nonlinear models. f(x) and g(x) are respectively called vector fields of the
dynamics and the control. They are assumed smooth mappings and h(x) is a
smooth function.

The parallel between the system (12.1) and the linear state-space model
{

ẋ = Ax+B u
y = C x

(12.2)

is obvious. The notions of linear control that will be developed and applied to
nonlinear control can be found in [Corriou, 2004, Isidori, 1995]. The presenta-
tion will here deal only with nonlinear systems and control related notions.

12.2.1 Notions of differential geometry

The derivative of a function λ(x) in the direction of the field f (directional
derivative) is called the Lie derivative and is defined by

Lfλ(x) =

n
∑

i=1

∂λ

∂xi

fi(x) =<
∂λ

∂x
,f (x) > (12.3)

It plays a very important role in nonlinear control. Indeed, for the system
(12.1)

dy

dt
=

n
∑

i=1

∂h

∂xi

dxi

dt

=
n
∑

i=1

∂h

∂xi

(fi(x) + gi(x)u)

= Lfh(x) + Lgh(x)u

(12.4)
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thus the time derivative of the output is simply expressed with respect to the
Lie derivatives. The Lie derivative Lfλ(x) is the derivative of λ along the
integral curves of the vector field f . The integral curves are the curves of the
solution x(t) passing by x◦ for the state-space system

ẋ(t) = f (x(t)) ; x(0) = x◦

Consider successive differentiations, such as the differentiation of λ in the
direction of f , then in the direction of g, i.e.

LgLfλ(x) =
∂Lfλ

∂x
g(x) (12.5)

or further, to differentiate λ, k times in the direction of f

Lk
fλ(x) =

∂Lk−1
f λ

∂x
f(x) with: L0

fλ(x) = λ(x) (12.6)

The Lie bracket is defined by

[f , g](x) =
∂g

∂x
f (x)−

∂f

∂x
g(x) (12.7)

where ∂f/∂x is the Jacobian matrix of f equal to (same for ∂g/∂x, the Jaco-
bian matrix of g)

Df (x) =
∂f

∂x
=













∂f1
∂x1

. . .
∂f1
∂xn

...
...

∂fn
∂x1

. . .
∂fn
∂xn













(12.8)

The operation on the Lie bracket of g by iterating on f can be repeated
and the following notation is adopted

adkfg(x) = [f , adk−1
f g](x) for k > 1 with: ad0fg(x) = g(x) (12.9)

The Lie bracket is a bilinear, skew-symmetric mapping and satisfies the Jacobi
identity

[f , [g,p]] + [g, [p,f ]] + [p, [f , g]] = 0 (12.10)

where f , g, p are vector fields.

12.2.2 Relative degree of a monovariable nonlinear sys-

tem

For a linear transfer function

G(s) =
N(s)

D(s)
=

b0 + b1 s+ · · ·+ bm sm

a0 + a1 s+ · · ·+ an sn
(12.11)
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that has no common poles and zeros, the roots of the denominator are called
the poles, the roots of the numerator the transmission zeros and the difference
n−m is the relative degree of the transfer function.

Considering the single-input single-output nonlinear system (12.1), the rel-
ative degree, or relative order, or characteristic index, stems from the following
definition [Hirschorn, 1979]:
the relative degree of the nonlinear system (12.1) over a domain U is the small-
est integer r for which

LgL
r−1
f h(x) 6= 0 for all x in U (12.12)

For the linear system (12.2), it would yield

LgL
r−1
f h(x) = CAr−1B 6= 0 (12.13)

and is consistent with the definition of the relative degree for linear systems.
Thus, the nonlinear system (12.1) possesses a relative degree r equal to

r = 1 if Lgh(x) 6= 0
r = 2 if Lgh(x) = 0 and LgLfh(x) 6= 0
r = 3 if Lgh(x) = LgLfh(x) = 0 and LgL

2
fh(x) 6= 0

. . .

(12.14)

Using this definition, the relative degree r can be obtained from the successive
time derivatives of the output y as

dy

dt
= Lfh(x) + Lgh(x)u

= Lfh(x) if 1 < r
...

dky

dtk
= Lk

fh(x) + LgL
k−1
f h(x)u

= Lk
fh(x) if k < r

dry

dtr
= Lr

fh(x) + LgL
r−1
f h(x)u as LgL

r−1
f h(x) 6= 0

(12.15)

Thus, the relative degree is the smallest degree of differentiation of the output
y which depends explicitly on the input u. This can be a convenient way to
find the relative degree of a single-input single-output system.

It may happen that, for example, the first Lie derivative Lgh(x) of the
sequence LgL

k−1
f h(x) is zero at a given point. In that case, according to Isidori

[1995], the relative degree cannot be defined strictly at x◦, but will be defined
in the neighbourhood U (notion of dense open subset). This will be accepted
in the following.

If it happens that

LgL
k
fh(x) = 0 for all k , for all x in U (12.16)

the relative degree cannot be defined in the neighbourhood of x◦ and the output
is not affected by the input u.
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It can be shown [Isidori, 1995] that the matrix











Dh(x)
DLfh(x)
...
DLr−1

f h(x)











[

g(x) adfg(x) . . . adr−1
f g(x)

]

(12.17)

has rank r. This implies that the row vectorsDh(x), DLfh(x), . . . , DLr−1
f h(x)

are linearly independent. Thus, the r functions h(x), Lfh(x), . . . , L
r−1
f h(x)

can form a new set of coordinates in the neighbourhood of point x◦.

12.2.3 Frobenius Theorem

The Frobenius theorem gives a necessary and sufficient condition of integrability
of a system of first-order partial differential equations whose right member
depends only on variables or unknowns but not on partial derivatives of the
unknowns. It is also called a Pfaff system.

It will be presented according to [Isidori, 1995].

a) First, let us consider d smooth vector fields f i(x), defined on Ω◦, which span
a distribution ∆, denoted by

∆ = span{f1(x), . . . ,fd(x)} (12.18)

To define a distribution, consider smooth vector fields f1(x), . . . ,fd(x) that
span at a point x of U a vector space dependent on x that can be denoted
by ∆(x). The mapping assigning this vector space to any point x is called a
smooth distribution.

In the same neighbourhood Ω◦, the codistribution W of dimension n− d is
spanned by n− d covector fields, w1, . . . ,wn−d, such that

< wj(x),f i(x) >= 0 ∀ 1 ≤ i ≤ d , 1 ≤ j ≤ n− d (12.19)

Due to that property, the codistribution is denoted as: W = ∆⊥, and wj is
the solution of the equation

wj(x)F (x) = 0 (12.20)

where F (x) is the matrix of dimension n× d, of rank d, equal to

F (x) =
[

f1(x) . . . fd(x)
]

(12.21)

The row vectors wj form a basis of the space of the solutions of Eq.(12.20).

b) We look for solutions such that

wj =
∂λj

∂x
(12.22)
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correspond to smooth functions λj , i.e. we look for n − d independent solu-
tions (the row vectors ∂λ1/∂x, . . . , ∂λn−d/∂x are independent) of the following
differential equation

∂λj

∂x
F (x) =

∂λj

∂x

[

f1(x) . . . fd(x)
]

= 0 (12.23)

c) We search the condition of existence of n−d independent solutions of differen-
tial Eq.(12.23), which amounts to seeking the integrability of the distribution
∆: a distribution of dimension d, defined on an open domain U of Rn, is com-
pletely integrable if, for any point x◦ of U , there exist n− d smooth functions,
taking real values, defined on a neighbourhood of x◦, such that

span{
∂λ1

∂x
, . . . ,

∂λn−d

∂x
} = ∆⊥ (12.24)

The condition of existence is produced by the Frobenius theorem.

d) Frobenius theorem: a distribution is nonsingular if and only if it is involutive.
A distribution ∆ is defined as involutive if the Lie bracket of any couple of vector
fields belonging to ∆ belongs to ∆

f1 and f2 ∈ ∆ =⇒ [f1,f2] ∈ ∆ ⇐⇒

[f i,f j ](x) =

m
∑

k=1

αijkfk(x) ∀i, j

In the case where F is reduced to only a vector field f1 (d = 1), Eq.(12.23)
can be geometrically interpreted as:

− the gradient of λ is orthogonal to f1.
− the vector f1 is tangent to the surface λ = constant passing by this point.
− the integral curve of f1 passing by this point is entirely on the surface

λ = constant.

12.2.4 Coordinates transformation

The objective of the change of coordinates is to present the system in a simpler
form in the new coordinates.

A function Φ of Rn in R
n, defined in a domain U , is called a diffeomorphism

if it is smooth and if its inverse Φ−1 exists and is smooth. If the domain U
is the whole space, the diffeomorphism is global; otherwise, it is local. The
diffeomorphism is thus a nonlinear coordinate change possessing the previous
properties.

Consider a function Φ defined in a domain U of Rn. Φ(x) defines a local
diffeomorphism on a sub-domain Ω◦ of Ω, if and only if the Jacobian matrix
∂Φ/∂x is nonsingular at x◦ belonging to Ω,

A diffeomorphism allows us to transform a nonlinear system into another
nonlinear system defined with regard to new states.
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Given the single-input single-output nonlinear system (12.1) of relative de-
gree r at x◦, set the r first functions

φ1(x) = h(x)
φ2(x) = Lfh(x)

...
φr(x) = Lr−1

f h(x)

(12.25)

If r < n, it is possible to find n− r functions φr+1(x), . . . , φn(x) such that the
mapping

Φ(x) =







φ1(x)
...
φn(x)






(12.26)

has its Jacobian matrix nonsingular and thus constitutes a possible coordinate
change at x◦.

The value taken by the additional functions φr+1(x), . . . , φn(x) at x
◦ is not

important and these functions can be chosen such that

< Dφi(x), g(x) >= Lgφi(x) = 0 for all r+1 ≤ i ≤ n for all x in Ω (12.27)

The demonstration makes use of the Frobenius theorem [Isidori, 1995].

12.2.5 Normal Form

Given the vector z = Φ(x), making use of the r first new coordinates zi defined
by zi = y(i−1) = φi(x), (i = 1, . . . , r), defined according to the relations (12.25),
the nonlinear system (12.1) can be described as

dz1
dt

=
∂φ1

∂x

dx

dt
=

∂h

∂x

dx

dt
= Lfh(x(t)) = φ2(x(t)) = z2(t)

...

dzr−1

dt
=

∂φr−1

∂x

dx

dt
=

∂Lr−2
f h

∂x

dx

dt
= Lr−1

f h(x(t)) = φr(x(t)) = zr(t)

dzr
dt

=
∂φr

∂x

dx

dt
=

∂Lr−1
f h

∂x

dx

dt
= Lr

fh(x(t)) + LgL
r−1
f h(x(t))u(t)

(12.28)
The expression of żr(t) must be transformed with respect to z(t) by using

the inverse relation x(t) = Φ−1(z(t)), yielding

dzr
dt

= Lr
fh(Φ

−1(z(t))) + LgL
r−1
f h(Φ−1(z(t)))u(t)

= b(z(t)) + a(z(t))u(t)
(12.29)

by setting

a(z(t)) = LgL
r−1
f h(Φ−1(z(t))) ; b(z(t)) = Lr

fh(Φ
−1(z(t))) (12.30)
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and by noticing that, by definition of the relative degree, a(z◦) 6= 0 at z◦ =
Φ(x◦).

The coordinates zi, r < i ≤ n, can be chosen according to Eq.(12.27) so
that Lgφi(x) = 0, which gives

dzi
dt

=
∂φi

∂x

dx

dt
=

∂φi

∂x
(f (x(t)) + g(x(t))u(t)) ; r < i ≤ n

= Lfφi(x(t)) + Lgφi(x(t))u(t)) = Lfφi(x(t))
= Lfφi(Φ

−1(z(t)))

(12.31)

Set
qi(z(t)) = Lfφi(Φ

−1(z(t))) ; r < i ≤ n (12.32)

Taking into account the previous equations, the normal form [Isidori, 1995,
Kang and Krener, 2006] results

ż1 = z2
...

żr−1 = zr
żr = b(z) + a(z)u(t)
żr+1 = qr+1(z)
żn = qn(z)

(12.33)

to which the equation of the output must be added

y = h(x) = z1 (12.34)

This result can be symbolized in a block diagram (Fig. 12.1) using the chain
of r integrators necessary to go from the control input to the output.

b(z) + a(z)u ✲
∫

✲ ✲
∫

✲✲

żi = qi(z)

r < i ≤ n

u żr zr z2 z1 = y

✻✻

✛

✻ ♣ ♣ ♣ ♣

✛✛
♣♣
♣♣

✻✻

zn♣ ♣ ♣ ♣zr+1

Figure 12.1: Description of the normal form

The condition Lgφi(x) = 0, fundamental for seeking the functions φi, r <
i ≤ n, can be difficult to fulfill, as it corresponds to the solving of a system of
n − r partial differential equations. To define a coordinate change, it can be
sufficient to find these functions so that the matrix Φ is simply nonsingular.
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12.2.6 Controllability and Observability

Consider the nonlinear system

ẋ = f (x) + g(x)u (12.35)

defined in a domain U .
The system (12.35) is controllable if, given two arbitrary states x0 and x1,

there exists an admissible input u(t) such that the system can be steered from
the state x0 to the desired state x1 in finite time T .

The controllability of this nonlinear system can be studied by proceeding
to a linearization of the system

ż =
∂f

∂x
z + g(x) v (12.36)

and by studying the controllability matrix, in a way similar (except that it deals
with distributions, see (12.54)) to the controllability of linear systems where it
is defined as the rank of the controllability matrix

C = [B AB . . . An−2 B An−1 B] (12.37)

which should be of rank n, given the model of the linear state-space system

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(12.38)

with the state x of dimension n.
However, this approach is not always satisfying; actually, a nonlinear system

can be controllable whereas its linear approximation is not. It is necessary to
introduce the notion of reachability [Isidori, 1995, Nijmeijer and VanderSchaft,
1990], a weaker form of controllability.

For observability that also requires complex topological notions, both pre-
vious books are recommended. Observability can be defined in an approximate
manner by:
In parallel to the definition of controllability, if, given two different initial con-
ditions x1(0) and x2(0), there exists a control input u(t) defined in [0, T ] such
that the corresponding outputs y1(x, u, t) and y2(x, u, t) are not totally similar
in [0, T ], the system is observable. It means that, given the measurable input
and output, it is possible to determine the state. The input u(t) distinguishes
the initial conditions x1(0) and x2(0) in [0, T ]. If u(t) distinguishes any pair
(x1,x2) in [0, T ], the input u(t) is universal.

12.2.7 Principle of Feedback Linearization

The objective is to design a control law that is a function of the states so that,
to the resulting linearized system, efficient methods of linear control can be
then applied. To perform this linearization, two types of feedback can be used,
state feedback or output feedback, corresponding to input-state or input-output
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linearization respectively. The states are assumed to be known. In the case
where all the states are not known, it is necessary to couple a state estimator,
called an observer (for linear systems, the linear Kalman filter is an optimal
observer) to the control system. When the state feedback control law depends
only on the values of the states x and the external input v, it is a static state
feedback. If the control law corresponds to the output of a dynamic system,
itself depending on the states x and on the external input v, it is a dynamic
state feedback.

Consider the single-input single-output nonlinear system affine with respect
to the input

ẋ = f (x) + g(x)u (12.39)

defined in a neighbourhood U of x◦ and such that: f (x◦) = 0. The problem
of feedback linearization is to find smooth functions p and q with q(x◦) 6= 0,
and a diffeomorphism Φ with Φ(x◦) = 0 such that by defining:

− an external input v = p(x) + q(x)u,
− the transformed variables z = Φ(x),

the resulting system is linear under the form

ż = Az +B v (12.40)

where the pair (A,B) is controllable. The new state z is called a linearizing
state and the control law is a linearizing control law.

✲v ❥
+

−

✲

✻

1
q(x)

✲u ẋ = f(x) + g(x)u ✲x Φ(x) ✲z

✛p(x)

Figure 12.2: Linearizing feedback

Given the state x, the control law (Fig. 12.2) is

u(t) =
−p(x)

q(x)
+

v

q(x)
= α(x) + β(x) v (12.41)

12.2.8 Exact Input-State Linearization for a System of

Relative Degree Equal to n

The input-state linearization is often called exact linearization [Isidori, 1995].
First, consider the system (12.39) possessing a relative degree r = n, thus equal
to the dimension of the state vector, at a point x◦.
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In this case, the coordinate change necessary to obtain the normal form
(section 12.2.5) is

Φ(x) =







φ1(x)
...
φn(x)






=







h(x)
...
Ln−1
f h(x)






(12.42)

and the resulting normal form is

ż1 = z2
...

żn−1 = zn
żn = b(z) + a(z)u(t)

(12.43)

with a(z◦) 6= 0 because of the definition of the relative degree.

✲
∫

✲ ✲v = żn zn z3 ∫

✲
∫

✲z2 z1 = y

Figure 12.3: Exactly linearized system by static state feedback

The state feedback control law can be chosen as

u(t) = −
b(z)

a(z)
+

v

a(z)
(12.44)

hence the resulting closed-loop system (Fig. 12.2 with its chain of integrators)

ż1 = z2
...

żn−1 = zn
żn = v

(12.45)

that is a linear and controllable system expressed in the Brunovsky canonical
form [Brunovsky, 1970]

ż =



















0 1 0 . . . 0

0 0 1
. . .

...
...

. . .
. . . 0

...
. . . 1

0 . . . . . . 0



















z +

















0
...
...
0
1

















v (12.46)

To obtain the control law (12.44), a coordinate change and a state feedback
taken into any order, thus exchangeable, are used. If the state feedback is first
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used and then the coordinate change, the following control law results

u(t) = −
b(Φ(x))

a(Φ(x))
+

v

a(Φ(x))

=
−Ln

fh(x) + v

LgL
n−1
f h(x)

(12.47)

often used under this form that corresponds to the same controllable linear
system (12.45). This control law is called linearizing state feedback and the
coordinates Φ are the linearizing coordinates.

Two remarks [Isidori, 1995] are particularly important:

− It was assumed that x◦ is a stationary point for the system (12.1), meaning
that f (x◦) = 0 and h(x◦) = 0, hence

φ1(x
◦) = h(x◦) = 0

φi(x
◦) =

∂Li−2
f h

∂x
f(x◦) = 0 , 1 < i ≤ n

(12.48)

or z◦ = 0. It is always possible to come back to h(x◦) = 0 by an appropriate
translation.

− It is possible to perform a pole placement or to satisfy an optimality crite-
rion, by imposing a feedback (Fig. 12.4) as

v2 = K z , with the gain vector: K = [c0 . . . cn−1] (12.49)

equivalent to

v2 = c0h(x) + c1Lfh(x) + · · ·+ cn−1L
n−1
f h(x) (12.50)

which is a nonlinear state feedback with respect to x. The state feedback
control law becomes, in this case,

u(t) =
−Ln

fh(x) + żn

LgL
n−1
f h(x)

=

−Ln
fh(x)−

n−1
∑

i=0

ciL
i
fh(x) + v

LgL
n−1
f h(x)

(12.51)

and appears as an extension of (12.47). The external input v can be chosen
in many different ways. For example, it could be equal to the set point yref .
When v = 0, this corresponds to the local asymptotic equilibrium z = 0
which is preserved.
By expressing the transfer function Y (s)/V (s), the characteristic polyno-
mial associated to (12.51) then equal to

c0 + c1 s+ · · ·+ cn−1 s
n−1 + sn (12.52)

whose coefficients can be chosen so as to realize the adequate pole placement.
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Figure 12.4: Nonlinear control with pole placement for a system of relative
degree equal to n (exact input-state linearization)

By simply considering the system (12.39) a priori defined without output,
Isidori [1995] shows that the exact input-state linearization is possible in a
neighbourhood U of x◦ if and only if there exists a scalar function λ(x) such
that the system with the “output” redefined

ẋ = f (x) + g(x)u
y = λ(x)

(12.53)

has a relative degree equal to n at x◦. Referring to (12.46) and Figure 12.2,
the function λ(x) is equal to z1(x).

The following general theorem [Hunt et al., 1983, Su, 1982] is particularly
important:
Theorem:
the system (12.39) is exactly linearizable in state space (input-state lineariza-
tion) in a neighbourhood U of x◦ if and only if the following conditions are
satisfied:

1. The vector fields {g(x◦), adfg(x
◦), . . . , adn−1

f g(x◦)} are linearly indepen-
dent.

2. The distribution span{g, adfg, . . . , ad
n−2
f g} is involutive in U .

Condition 1 can be written as “the following matrix

[g(x◦), adfg(x
◦), . . . , adn−1

f g(x◦)] (12.54)

has rank n”. It is a controllability condition of the nonlinear system. This
matrix must be invertible. For linear state-space systems, this matrix is the
controllability matrix

[B,AB, . . . ,An−1B]

To realize the exact input-state linearization, it must be proceeded to the
following stages:

• Build the vector fields g(x◦), adfg(x
◦), . . . , adn−1

f g(x◦).
• Check if the conditions of controllability and involutivity are verified.
• If these conditions are verified, find the function λ(x) from the equations
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Lgλ(x
◦) = LgLfλ(x

◦) = · · · = LgL
n−2
f λ(x◦) = 0

LgL
n−1
f λ(x◦) 6= 0

It is often mentioned that finding this function λ(x) is a difficult task [Slotine
and Li, 1991].

• Calculate the coordinate change

Φ(x) = [λ(x), Lfλ(x), . . . , L
n−1
f λ(x)] (12.55)

12.2.9 Input-Output Linearization of a System with

Relative Degree r Lower than or Equal to n

Two cases are distinguished:

• [Isidori, 1995] notes that the nonlinear system affine with respect to the
input

{

ẋ = f(x) + g(x)u
y = h(x)

(12.56)

having a relative degree r < n can satisfy the conditions of Hunt-Su-Meyer
theorem. However, in this case, it was shown that there exists a different
“output”λ such that the system has a relative degree equal to n. Thus, the
newly defined system satisfies the previous theorem; by using a feedback
u = α(x) + β(x) v and a coordinate change Φ(x), it is transformed into a
controllable linear system, but the real output, in general, is not linear with
respect to the new one

y = h(Φ−1(z)) (12.57)

• If the output y is fixed by y = h(x) and if the system possesses a relative
degree r lower than or equal to n, by using the coordinate change Φ(x) as in
(12.28), it is possible to transform the system into the normal form (12.33)
and to set v = żr so that the system is simply expressed in the transformed
coordinates in Byrnes-Isidori canonical form

ż1 = z2
...

żr−1 = zr
żr = v = b(z) + a(z)u(t)
żr+1 = qr+1(z)
żn = qn(z)
y = z1

(12.58)

with
b(z) = Lr

fh(x) , a(z) = LgL
r−1
f h(x) (12.59)

The control law is deduced

u(t) = −
b(z)

a(z)
+

v

a(z)

=
−Lr

fh(x) + v

LgL
r−1
f h(x)

(12.60)
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The resulting system is only partially linear, but the output is influenced
by the external input v only through a chain of r integrators (Fig. 12.1)
related to the new states z1, . . . , zr

y(r) = Lr
fh(x) + LgL

r−1
f h(x)u = v (12.61)

The new states zr+1, . . . , zn which constitute the nonlinear part of the sys-
tem do not influence the output y.

Following the second case of this description of input-output linearization,
the control law (12.60) can be used for many single-input single-output
nonlinear plants affine with respect to the input, for which the relative
degree is lower than n.

12.2.10 Zero Dynamics

For a linear system having a strictly proper transfer function (12.11), i.e. the
degree of the numerator is strictly lower than that of the denominator, when
positive zeros are present, the system is called non-minimum phase. It must
be recalled that positive zeros becomes unstable poles for the inverse of the
transfer function that can constitute the ideal controller. Note that, for this
reason, positive zeros are considered apart in internal model control [Morari
and Zafiriou, 1989].

For a single-input single-output system, the zero dynamics amounts to find
an input u and initial conditions x0 such that y(t) = 0, ∀t. This implies that
not only y = 0, but also its derivatives y(i) = 0, i = 0, . . . , r. The dynamics of
the system corresponding to these conditions is called zero dynamics.

In the case of a linear time-invariant system of relative degree r = n, the nu-
merator of the system transfer function is reduced to a constant, the transfer
function has no zeros and the system does not have zero dynamics. Conse-
quently, when r < n, the study of zero dynamics is important.

Similarly, for a nonlinear system, to study the zero dynamics, only the
case where the relative degree r is lower than n is considered. The vector is
represented in normal form (12.33) by separating the linear part of dimension
r and the nonlinear part of dimension n− r as

ξ =











z1
z2
...
zr











=











y
ẏ
...
y(r−1)











; η =







zr+1

...
zn






(12.62)

so that the system can be rewritten as

ż1 = z2
...

żr−1 = zr
żr = b(ξ,η) + a(ξ,η)u(t)
η̇ = q(ξ,η)

(12.63)
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where ξ and η constitute the normal coordinates or normal states.
The dynamics of the nonlinear system is thus decomposed into an external

input-output part and an internal unobservable part. Whereas the external
part is simple to design, there remains the problem of the internal stability
corresponding to the last (n− r) equations: η̇ = q(ξ,η).

Considering x◦ as an equilibrium point of the system, it results f(x◦) = 0
and it is possible to choose h(x◦) = 0. In the normal coordinates (ξ,η), it can
be assumed that the point (0, 0) is the equilibrium point, hence b(0, 0) = 0 and
q(0, 0) = 0.

The aim is to make the output zero for all t in the neighbourhood of t = 0.
In the normal form, this would amount to imposing

z1 = · · · = zr = 0 ⇐⇒ ż1 = · · · = żr = 0 ⇐⇒ ξ = 0 for all t (12.64)

as, moreover, the output is imposed y = z1 = 0. The input u results such that

0 = b(0,η) + a(0,η)u(t) (12.65)

with a(0,η) 6= 0 still in the neighbourhood of t = 0. Moreover, the variable η

is such that
η̇ = q(0,η) , with: η(0) = η◦ (12.66)

which is an autonomous system of differential equations whose solution is the
variable η(t). It yields the unique input that imposes a zero output in the
neighbourhood of t = 0

u(t) = −
b(0,η(t))

a(0,η(t))
(12.67)

The dynamics of Eq.(12.66), which results from the condition of zero output,
is called zero dynamics or unforced zero dynamics, it describes the internal
behaviour of the system. The zero dynamics is the dynamics of the inverse of
the system.

The search of the zero output could have been realized in the original state
space, by setting

y(t) = ẏ(t) = · · · = y(r−1)(t) = y(r)(t) = 0 for all t (12.68)

or further, in the neighbourhood of x◦

h(x) = Lfh(x) = · · · = Lr−1
f h(x) = 0

Lr
fh(x) + LgL

r−1
f h(x)u(t) = 0

(12.69)

The case of tracking a reference output yref is deducted by translation from
the previous case of a zero output. In the neighbourhood of t = 0, the output
is imposed

y(t) = yref(t) (12.70)

giving in the new coordinates

zi(t) = y
(i−1)

ref
(t) , 1 ≤ i ≤ r (12.71)
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By analogy with the previous case, we set

ξref =











z1
z2
...
zr











=













yref
y
(1)

ref
...

y
(r−1)

ref













(12.72)

The equation that imposes the control results

y
(r)

ref
(t) = b(ξref(t),η(t)) + a(ξref(t),η(t))u(t) (12.73)

where η is the solution of the following autonomous differential system

η̇(t) = q(ξref(t),η(t)) , with: η(0) = η◦ (12.74)

From (12.73), results the equation of the unique control imposing on the output
to exactly track the reference

u(t) =
y
(r)

ref
(t)− b(ξref(t),η(t))

a(ξref(t),η(t))
(12.75)

The system of differential Eqs. (12.74) coupled with Eq.(12.75), yields the
forced zero dynamics or dynamics of the inverse of the system (12.56), corres-
ponding to a control such that the output exactly tracks the reference. η is the
state of the dynamics of the inverse, ξref its control input and u its output.

12.2.11 Asymptotic Stability

Consider the system under its normal form

ż1 = z2
...

żr−1 = zr
żr = b(ξ,η) + a(ξ,η)u(t)
η̇ = q(ξ,η)

(12.76)

assuming as previously that (ξ,η) = (0, 0) is an equilibrium point. In parallel
to the state feedback (12.51), consider the external input

v = −Kz , with the gain vector: K = [c0 . . . cr−1] (12.77)

so that the state feedback becomes

u(t) =

−b(ξ,η)−
r−1
∑

i=0

cizi+1

a(ξ,η)

=

−Lr
fh(x)−

r−1
∑

i=0

ciL
i
fh(x)

LgL
r−1
f h(x)

(12.78)
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giving the closed-loop system

ξ̇ = Aξ
η̇ = q(ξ,η)

(12.79)

where A is a companion controllability matrix equal to

















0 1 0 . . . 0
...

. . . 1
...

...
. . . 0

0 . . . 0 1
−c0 −c1 . . . . . . −cr−1

















(12.80)

which has the characteristic polynomial

c0 + c1 s+ · · ·+ cr−1 s
r−1 + sr (12.81)

If, first the coefficients are chosen so that the roots of this polynomial have
a negative real part and, secondly the zero dynamics corresponding to η̇ =
q(0,η) is asymptotically locally stable, then the state feedback (12.78) sta-
bilizes asymptotically locally the system (12.79) in the neighbourhood of the
equilibrium (ξ,η) = (0, 0).

The role and the importance of zero dynamics thus clearly appear at this
level. If the linear approximation of the system possesses uncontrollable modes,
the latter necessarily correspond to eigenvalues of the linear approximation Q
of the zero dynamics. The linear approximation of the system is given by

ż1 = z2
...

żr−1 = zr
żr = b(ξ,η) + a(ξ,η)u(t) ≈ Rξ + S η +K u
η̇ = q(ξ,η) ≈ P ξ +Qη

(12.82)

with the partial derivative matrices considered at (ξ,η) = (0, 0)

R =

[

∂b

∂ξ

]

, S =

[

∂b

∂η

]

, P =

[

∂q

∂ξ

]

, Q =

[

∂q

∂η

]

(12.83)

Note that it is not necessary that the linear approximation be asymptotically
stable for the nonlinear system to be stable.
As already realized for a system of relative degree n with the state feedback
(12.51), an external input v (Fig. 12.5) can be taken into account as

u(t) =

−Lr
fh(x)−

r−1
∑

i=0

ciL
i
fh(x) + v

LgL
r−1
f h(x)

(12.84)
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Figure 12.5: Nonlinear control with pole placement for a system of relative
degree r ≤ n

so that the system (12.76) is transformed into

ξ̇ = Aξ +B v
η̇ = q(ξ,η)

(12.85)

with: B = [0 . . . 0 1]T . Provided that the zero dynamics is stable, the stability
will depend on the characteristic polynomial

c0 + c1 s+ · · ·+ cr−1 s
r−1 + sr (12.86)

whose coefficients can be imposed so as to achieve the desired pole placement.
By analogy with linear systems, a nonlinear system is called minimum-phase

if its unforced zero dynamics is asymptotically locally stable at (0, 0).

12.2.12 Tracking of a Reference Trajectory

To make the output y = z1 converge asymptotically towards a reference trajec-
tory yref, it suffices to gather the elements of both previous sections, the forced
zero dynamics with reference trajectory and the asymptotic stability.

For the system in its normal form (12.76), consider the state feedback

u(t) =

−b(ξ,η) + y
(r)

ref
−

r−1
∑

i=0

ci(zi+1 − y
(i)

ref
)

a(ξ,η)

=

−Lr
fh(x) + y

(r)

ref
−

r−1
∑

i=0

ci(L
i
fh(x)− y

(i)

ref
)

LgL
r−1
f h(x)

(12.87)

The error defined by
e(t) = y(t)− yref(t) (12.88)

is the solution of the following differential equation

e(r) + cr−1 e
(r) + · · ·+ c1 e

(1) + c0 e = 0 (12.89)
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whose parallel with the characteristic polynomial (12.86) is obvious. By choo-
sing adequately the coefficients ci according to a pole placement strategy, the
exponential convergence of the error towards 0 when t → ∞ can be guaran-
teed. In the same manner as in the previous section, it is necessary that the
zero dynamics (here forced) corresponding to

η̇ = q(ξref,η) , with: ηref(0) = 0 (12.90)

is stable (where ηref(t) is the solution of this differential system) with the
vector

ξref = [yref(t), y
(1)

ref
(t), . . . , y

(r−1)

ref
(t)]T (12.91)

Isidori [1995] studied the particular case where the reference yref is defined
as a linear reference model. In the case where an external input is taken into
account, the state feedback (12.87) becomes

u(t) =

v − Lr
fh(x) + y

(r)

ref
−

r−1
∑

i=0

ci(L
i
fh(x)− y

(i)

ref
)

LgL
r−1
f h(x)

(12.92)

Two single-input single-output applications of nonlinear geometric control
performed in simulation with reference trajectories for realistic models are dis-
cussed in [Corriou, 2004]. The first one concerns a realistic continuous stirred
tank reactor where a chemical reaction takes place. The second one concerns a
fed-batch biological reactor. These reactors present different relative degrees.
For each of them, an extended Kalman filter is used to estimate the states. An
example of pilot application to a copolymerization reactor preceded by a study
of dynamic optimization in order to obtain the optimal profile temperature is
given by Gentric et al. [1999].

12.2.13 Decoupling with Respect to a Disturbance

We assume that a modelable disturbance d acts in an affine manner on the
system thus reformulated

{

ẋ = f(x) + g(x)u +w(x) d
y = h(x)

(12.93)

The aim is to define an input u by static state feedback such that the output
y does not depend (is decoupled) on the disturbance d, at least theoretically.
Considering z1 = y, the derivative of the output can be expressed with the
normal coordinates following (12.28)

ż1 = Lfh(x(t)) + Lgh(x(t))u(t) + Lwh(x(t)) d(t) (12.94)

Using the relative degree r of the system gives Lgh = 0 , if r > 1, and it can
be imposed that Lwh = 0 so that the disturbance has no influence. For the
following coordinates, a similar condition is used

LwL
i−1
f h = 0 , 1 ≤ i ≤ r (12.95)
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hence the system in the normal form including the influence of the disturbance
from rank r + 1

ż1 = z2
...

żr−1 = zr
żr = Lr

fh(x(t)) + LgL
r−1
f h(x(t))u(t) = b(ξ,η) + a(ξ,η)u

η̇ = q(ξ,η) + r(ξ,η) d

(12.96)

with, moreover y = z1. Clearly from the normal form (12.96), it follows that
the input defined by the static state feedback

u =
−b(ξ,η) + v

a(ξ,η)
(12.97)

which gives
żr = v (12.98)

perfectly decouples the output y = z1 from the disturbance d.
But the decoupling condition is contained in the system of equations (12.95)

which can be expressed as

< Li−1
f h,w >= 0 , 1 ≤ i ≤ r ⇐⇒

w(x) belongs to the codistribution ∆⊥ in the neighbourhood of x◦

(12.99)
where the distribution ∆ is equal to

∆ = span{Dh,DLfh, . . . , DLr−1
f h} (12.100)

The previous decoupling has been realized by state feedback. In some cases,
the disturbance can be measured, therefore it is attractive to consider a feed-
forward term in the control law, now formulated as

u(t) = α(x) + β(x) v + γ(x) d (12.101)

hence the closed-loop system equations

ẋ = f(x) + g(x)[α(x) + β(x) v] + [w(x) + g(x)γ(x)] d
y = h(x)

(12.102)

The parallel to the decoupling by state feedback can be noticed. It suffices that

< Li−1
f h,w + gγ >= 0 , 1 ≤ i ≤ r ⇐⇒

[w(x) + g(x)γ(x)] belongs to the codistribution ∆⊥ in the neighbourhood of x◦

(12.103)
This condition can be simplified by expressing the Lie bracket

< Li−1
f h,w + gγ > = Lw+gγL

i−1
f h(x)

= LwL
i−1
f h(x) + LgL

i−1
f h(x)γ(x) = 0 , 1 ≤ i ≤ r

(12.104)
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yielding the expression of the function γ

γ(x) = −
LwL

r−1
f h(x)

LgL
r−1
f h(x)

(12.105)

which must be reinjected in control law (12.101).

12.2.14 Case of Nonminimum-Phase Systems

As previously described, the nonlinear control law (12.60) consisted essentially
in inverting the nonlinear model of the system in a close way to the ideal
controller of a linear system. However, for a linear system, the positive zeros
become unstable poles and must be discarded from the effective controller like
in internal model control. Rigorously and similarly, the nonlinear control law
(12.60) cannot be applied to nonminimum-phase systems, as they are not in-
vertible. Nevertheless, it is possible [Slotine and Li, 1991] to apply to them a
control law that gives a small tracking error or to redefine the output so that
the modified zero dynamics is stable. It requires that the perfect tracking of
the newly defined output also leads to a good tracking of the actual controlled
output. Some rare examples of control laws for unstable systems are avail-
able in the literature where [Kravaris and Daoutidis, 1990] study the case of
second-order non-minimum phase systems or [Engell and Klatt, 1993] study an
unstable CSTR. Clearly, nonlinear geometric control is not well adapted for
these cases.

12.2.15 Globally Linearizing Control

This linearizing control of an input-output type proposed [Kravaris, 1988,
Kravaris and Chung, 1987, Kravaris and Kantor, 1990a,b, Kravaris and Soroush,
1990] is based on the same concepts of differential geometry as those previously
developed and can be considered as an extremely close variant. The control
law applied to a minimum-phase system of relative degree r is

u =
v − Lr

fh(x)− β1L
r−1
f h(x)− · · · − βr−1Lfh(x)− βrh(x)

LgL
r−1
f h(x)

(12.106)

This is exactly Eq.(12.78) where the ci’s are replaced by βi’s. It gives the
following input-output linear dynamics

y(r) + β1 y
(r−1) + · · ·+ βr−1 y

(1) + βr y = v (12.107)

To guarantee a zero asymptotic error and improve robustness, i.e. in the pres-
ence of modelling errors and step disturbances (for a PI), the external input
can be supplied by the following controller

v(t) =

∫ t

0

c(t− τ)
[

yref(τ) − y(τ)
]

dτ (12.108)



Encyclopedia 23

where the function c(t), for example, can be chosen as the inverse of a given
transfer function. Frequently, v will be a PI controller (Fig. 12.6), e.g.

v(t) = Kc

[

yref(t)− y(t) +
1

τi

∫ t

0

(yref(τ)− y(τ)) dτ

]

(12.109)

In this case, the system stability is conditioned by the roots of the characteristic
polynomial

sr+1 + β1 s
r + · · ·+ βr−1 s

2 + (βr +Kc) s+
Kc

τI
= 0 (12.110)

where the roles of the nonlinear part and linear PI can be weighted in the
choice of the parameters in the term (βr+Kc). This control has been tried out
and extended under different forms such as combination with a feedforward
controller [Daoutidis and Kravaris, 1989] to take into account disturbances,
combination of a Smith predictor and a state observer to take into account time
delays [Kravaris and Wright, 1989], with modified application to nonminimum-
phase second-order systems [Kravaris and Daoutidis, 1990], application to a
polymerization reactor [Soroush and Kravaris, 1992], with a robustness study
[Kravaris and Palanki, 1988].

✲ ❥✲ PI
controller

✲ Nonlinear control law ✲ Process ✲

✻ x

u yvyref

✻

+

−

Figure 12.6: Globally Linearizing Control with PI controller

12.2.16 Generic model control

Generic model control [Lee, 1993] proposed by Lee and Sullivan [1988] has not
been formulated by using the concepts of differential geometry. For a multi-
input multi-output plant, it uses a different and general nonlinear model

{

ẋ = f(x,u,d, t)
y = h(x)

(12.111)

where the input does not appear any more in a linear way. It uses the expression
of the derivative of the output as

ẏ =
∂h

∂x
f(x,u,d, t) = Hx f(x,u,d, t) (12.112)

This derivative is compared to a reference that is an arbitrary function r∗ so
that ẏ∗ = r∗ and

ẏ∗ = K1(y
∗ − y) +K2

∫

(y∗ − y)dt (12.113)
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where K1 and K2 are constant matrices. After posing the control problem
in an optimization setting, finally, using an approximate model f̃ and h̃, the
problem is set as a system of equations

H̃x f̃(x,u,d, t)−K1(y
∗ − y)−K2

∫

(y∗ − y)dt = 0 (12.114)

that [Lee and Sullivan, 1988] solve for a few cases.
Even if the system is not affine with respect to the input, it can be conside-

red in the framework of nonlinear geometric control. [Lee and Sullivan, 1988]
mention that when the relative degree is 1, an explicit solution is found. In-
deed, it is based on a realization of the inverse of the model. For this reason, its
applicability is limited [Henson and Seborg, 1990a], as it is reserved to systems
of relative degree equal to 1.

Some authors [Bequette, 1991, Henson and Seborg, 1989, 1990b] compare
globally linearizing control (GLC) and generic model control (GMC) to nonli-
near control developed by differential geometry, as has been discussed by Isidori
[1995]. GLC differs by nonlinear control only by the expression of the external
input. GMC is much more different but presents some similarities.

12.3 Multivariable Nonlinear Control

Geometric nonlinear control up to now was presented for single-input single-
output systems but it can be extended to multi-input multi-output systems. It
will be presented only for square systems, i.e. with same number of inputs and
outputs. Detailed demonstrations can be found, in particular, in the textbook
by [Isidori, 1995] and only the main points will be cited here.

Multivariable nonlinear systems, affine with respect to the inputs, are mo-
delled as

ẋ = f(x) +

m
∑

i=1

gi(x)ui

yi = hi(x) , i = 1, . . . ,m

(12.115)

with

u =







u1

...
um






; y =







y1
...
ym






(12.116)

where f(x), gi(x), hi(x) are smooth vector fields. In a more compact form, the
system is modelled by

ẋ = f(x) + g(x)u
y = h(x)

(12.117)

12.3.1 Relative Degree

The concepts of nonlinear geometric control for multivariable systems are an
extension of the single-input single-output case. However, some of them are
specific. In the multivariable case, the notion of relative degree is extended as
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− The vector of relative degrees [r1, . . . rm]T defined in a neighbourhood of
x◦ by

LgjL
k
fhi(x) = 0 , ∀j = 1, . . . ,m , ∀k < ri − 1 , ∀i = 1, . . . ,m

(12.118)
− The matrix A(x) defined by

A(x) =







Lg1L
r1−1
f h1(x) . . . LgmLr1−1

f h1(x)
...

...

Lg1L
rm−1
f hm(x) . . . LgmLrm−1

f hm(x)






(12.119)

must be nonsingular at x◦.

Given an output of subscript i, the vector of the Lie derivatives verifies
[

Lg1L
k
fhi(x) . . . LgmLk

fhi(x)
]

= 0 ∀k < ri − 1
[

Lg1L
ri−1
f hi(x) . . . LgmLri−1

f hi(x)
]

6= 0
(12.120)

where ri is the number of times that the output yi(t) must be differentiated to
make at least one component of the vector u(t) appear. There exists at least
one couple (uj, yi) having ri as the relative degree.

Consider a system having [r1, . . . rm]T as the vector of relative degrees. The
vectors

[

Dh1(x
◦), DLfh1(x

◦), . . . , DLr1−1
f h1(x

◦)
]

...
[

Dhm(x◦), DLfhm(x◦), . . . , DLrm−1
f hm(x◦)

]

(12.121)

are linearly independent.

12.3.2 Coordinate Change

The proposed coordinate change for a multivariable system is exactly analogous
to the single-input single-output case. Consider a system of relative degree
vector [r1, . . . rm]T . Let the coordinate change

∀ 1 ≤ i ≤ m

φi
1(x) = hi(x)

φi
2(x) = Lfhi(x)

...

φi
ri
(x) = Lri−1

f hi(x)

(12.122)

The total relative degree is denoted by r = r1 + · · ·+ rm.
If r < n, it is possible to find (n−r) additional functions φr+1(x), . . . , φn(x)

such that the mapping

Φ(x) =
[

φ1
1(x), . . . , φ

1
r1
(x), . . . , φm

1 (x), . . . , φm
rm

(x), φr+1(x), . . . , φn(x)
]T

(12.123)
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has its Jacobian matrix nonsingular at x◦ and is a potential coordinate change
in a neighbourhood U of x◦.

Moreover, if the distribution

G = span {g1, . . . , gm} (12.124)

is involutive in U , the additional functions: φr+1(x), . . . , φm(x) can be chosen
such that

Lgjφi(x) = 0 , r + 1 ≤ i ≤ n , 1 ≤ j ≤ m (12.125)

The condition of nonsingularity of matrixA(x) can be extended to a system
having more inputs than outputs. It becomes a rank condition: the rank of the
matrix must be equal to the number of its rows, and, furthermore, the system
must have more inputs than outputs, which is usual.

12.3.3 Normal Form

The coordinate change gives for φ1
i (similarly for others φj

i )

φ̇1
1 = φ1

2(x)
...

φ̇1
r1−1 = φ1

r1
(x)

φ̇1
r1−1 = Lr1

f h1(x) +

m
∑

j=1

LgjL
r1−1
f h1(x)uj(t)

(12.126)

The normal coordinates are given by

ξ = [ξ1, . . . , ξm] with: ξi =







ξi1
...
ξiri






=







φi
1(x)

...
φi
ri
(x)






, i = 1, . . . ,m

η =







η1
...
ηn−r






=







φr+1(x)
...
φn(x)







(12.127)
which gives the normal form

ξ̇i1 = ξi2
...

ξ̇iri−1 = ξiri

ξ̇iri = bi(ξ,η) +
m
∑

j=1

aij(ξ,η)uj

η̇ = q(ξ,η) + p(ξ,η)u
y = ξi1

(12.128)
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with

aij(ξ,η) = LgjL
ri−1
f hi(Φ

−1(ξ,η)) , i, j = 1, . . . ,m

bi(ξ,η) = Lri
f hi(Φ

−1(ξ,η)) , i = 1, . . . ,m
(12.129)

where aij are the coefficients of matrix A(x).

12.3.4 Zero Dynamics

The zero dynamics is defined in the same way as for single-input single-output
systems (section 12.2.10). The inputs and the initial conditions are sought so
that the outputs are identically zero in a neighbourhood U of x◦, implying
ξ = 0. The unique control vector results

u(t) = −A−1(0,η(t)) b(0,η(t)) (12.130)

and the zero dynamics or unforced dynamics is solution of the differential equa-
tions

η̇(t) = q(ξ,η)− p(ξ,η)A−1(ξ,η) b(ξ,η) , η(0) = η◦ (12.131)

The control (12.130) can also be expressed in the original state space as

u∗(x) = −A−1(x) b(x) (12.132)

The change from the unforced dynamics to the forced dynamics would be re-
alized in the same manner as for single-input single-output systems.

12.3.5 Exact Linearization by State Feedback and Diffeo-

morphism

Let the system
ẋ = f(x) + g(x)u (12.133)

without considering the outputs.
The distributions are defined as

G0 = span {g1, . . . , gm}
G1 = span {g1, . . . , gm, adfg1, . . . , adfgm}

...

Gi = span
{

adkfg1, . . . , ad
k
fgm ; 0 ≤ k ≤ i

}

; i = 0, . . . , n− 1

(12.134)
The matrix g(x◦) is assumed of rank m. The exact linearization is possible

if and only if:

− The distribution Gi , (i = 0, . . . , n − 1) has a constant dimension in the
neighbourhood of x◦.

− The distribution Gn−1 has a dimension equal to n.
− The distribution Gi , (i = 0, . . . , n− 2) is involutive.
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It is necessary to check:

− the non-singularity of matrix A(x) (Eq. 12.119).
− the total relative degree r must be equal to n.
− as for single-input single-output systems, the outputs yi are given by the

solutions λi(x) , (j = 1, . . . ,m) of the equations

LgjL
k
fλi(x) = 0 , 0 ≤ k ≤ ri − 2 , j = 1, . . . ,m (12.135)

Refering to (12.119) and (12.129), the linearizing state feedback is

u = A−1(x) (−b(x) + v) (12.136)

and the linearizing normal coordinates are

ξik(x) = Lk−1
f hi(x) , 1 ≤ k ≤ ri , i = 1, . . . ,m (12.137)

12.3.6 Nonlinear Control Perfectly Decoupled by Static

State Feedback

The decoupling for the system (12.117) will be perfectly realized when any
output yi (1 ≤ i ≤ m) is influenced only by the corresponding input vi. This
problem has a solution only if the decoupling matrix A(x) is nonsingular at
x◦, i.e. if the system possesses a vector of relative degrees.

The static state feedback is given by (12.136). To perform the decoupling,
it suffices to consider the system in its normal form (12.128) and to propose
the following control law

u = −A−1(ξ,η) b(ξ,η) +A−1(ξ,η)v) (12.138)

which transforms the system into

ξ̇i1 = ξi2
...

ξ̇iri−1 = ξiri

ξ̇iri = bi(ξ,η) +

m
∑

j=1

aij(ξ,η)uj

= Lri
f hi(Φ

−1(ξ,η)) +
m
∑

j=1

LgjL
ri−1
f hi(Φ

−1(ξ,η))uj

= vi
η̇ = q(ξ,η) + p(ξ,η)u
y = ξi1

(12.139)

as we could write




ξ̇1r1
. . .

ξ̇mrm



 = b(ξ,η) +A(ξ,η)u = v (12.140)
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from Eq. (12.129), giving the coefficients aij , the control law (12.138) and the
normal form.

Two cases can take place:

− the total relative degree r is lower than n. In that case, there exists an
unobservable part in the system, influenced by the inputs and the states,
but not affecting the outputs.

− the total relative degree r is equal to n. Then, the system can be decoupled
into m chains, each one composed of ri integrators. The system is thus
transformed into a completely linear and controllable system.

Evidently, it must be verified that the decoupling matrix A(x) is nonsingular
at x◦.

In the same way as for single-input single-output systems, pole placements
can be performed by adding state feedbacks as

vi = −ci0ξ
i
1 − · · · − ciri−1ξ

i
ri

(12.141)

The different items treated for single-input single-output systems, i.e. asymp-
totic stability of the zero dynamics, disturbance rejection, reference model
tracking, are studied in a very similar manner [Isidori, 1995].

Examples of application of multivariable nonlinear geometric control to
plants are not many in the literature [Kravaris and Soroush, 1990, Soroush and
Kravaris, 1992, 1993]. Among them, [To et al., 1995] describe nonlinear control
of a simulated industrial evaporator by means of different techniques, including
input-output linearization, Su-Hunt-Meyer transformation and generic model
control. The process model possesses three states, two manipulated inputs and
two controlled outputs.

12.3.7 Obtaining a Relative Degree by Dynamic Exten-

sion

It happens that some multivariable systems possess no relative degree vector.
In this case, no static state feedback can change this result, as the relative
degree property is independent of it.

Suppose that the nonlinear system (12.117) possesses no total relative de-
gree, as the rank of matrix A(x) is smaller than m, number of inputs and
outputs, for this square system. To obtain the relative degree, a dynamic part
is added [Isidori, 1995] between the old inputs u and the new inputs v, modelled
by

u = α(x, ζ) + β(x, ζ)v

ζ̇ = γ(x, ζ) + δ(x, ζ)v
(12.142)

A simple type of dynamics used is the interposition of integrators between an
input vi and the input ui (Fig. 12.7). In the case of two integrators, it is
modelled by

ui = ζ1
ζ̇1 = ζ2
ζ̇2 = vi

(12.143)
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✲
∫

✲ ✲vi = ζ̇k ζk ζ2 ∫

✲ui = ζ1

Figure 12.7: Dynamic extension

The modified system will be

ẋ = f(x) + g(x)α(x, ζ) + g(x)β(x, ζ)v

ζ̇ = γ(x, (ζ) + δ(x, ζ)v
y = h(x)

(12.144)

The dynamic extension [Isidori, 1995] is performed according to an iterative
procedure increasing the rank of matrix A(x, ζ) corresponding to the modified
system until it is equal to m. This specific algorithm contains a procedure of
identification of the inputs on which it is necessary to act. Thus, if the relative
degree is obtained by dynamic extension and if the total relative degree of
the extended system is equal to n, it is possible to assure that the original
system can be transformed into a completely linear and controllable system by
a dynamic state feedback and a coordinate change.

Such cases are rare in the literature. Soroush and Kravaris [1994] describe a
continuous polymerization reactor where conversion and temperature are con-
trolled by manipulating two coordinated flow rates and two coordinated heat
inputs. According to this model, the characteristic matrix of the system is sin-
gular. The authors use a dynamic input-output linearizing state feedback by
redefining the second input simply using the rate of change, i.e. the derivative,
of monomer flow rate instead of the original monomer flow rate. This amounts
to adding an integrator.

12.3.8 Nonlinear Adaptive Control

Frequently, the process model is uncertain or time-varying. Adaptive control
was first developed for linear systems and the subject of many books [Aström,
1983, Aström and Wittenmark, 1989, Sastry and Bodson, 1989, Tao, 2003], in
particular for generalized predictive control [Bitmead et al., 1990]. In most
cases, the identification deals with parameters of the discrete-time models, of-
ten transfer functions, without physical signification [Goodwin and Sin, 1984,
Haykin, 1991, Landau, 1990, Watanabe, 1992], posing serious problems of ro-
bustness [Ioannou and Sun, 1996]. However, it may occur that on-line identi-
fication of physical parameters influencing the model is necessary [Gustafsson
and Waller, 1992, Seborg et al., 1986, Sung et al., 1998].

It has been extended to the nonlinear systems and nonlinear adaptive con-
trol is described in dedicated books [Krstić et al., 1995, Sastry and Bodson,
1989] and papers such as [Kosanovich et al., 1995, Wang et al., 1997, 1995].

A short description of a chemical process example is given in the following.
The used technique is inspired from procedures of recursive identification pre-
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sented by Sastry and Bodson [1989]. Wang et al. [1995] studied a batch styrene
polymerization reactor. At the beginning of reaction, the extent of polymeri-
zation is still low and the viscosity of the reactor contents is close to that of
the solvent. When the monomer conversion increases, the viscosity strongly
increases because of the gel effect, and the heat transfer coefficient decreases
significantly because the stirring progressively moves from a turbulent regime
to a laminar one, creating reactor runaway hazard. The nonlinear model [Wang
et al., 1995] describes these phenomena, which have been taken into account in
the identification and nonlinear geometric control by using an augmented state
vector. Besides the traditional states, which are concentrations and tempera-
tures, the gel effect coefficient and the heat transfer coefficient are estimated
during the reaction.

12.4 Nonlinear Multivariable Control of a Che-

mical Reactor

A continuous perfectly stirred chemical reactor [Corriou, 2004] is modelled with
four states (x1, concentration of A, x2, reactor temperature, x3, jacket tem-
perature, x4, liquid volume), two manipulated inputs corresponding to valve
positions that allow to control the inlet temperature in the jacket Tj,in and the
feed concentration CA,f respectively, two controlled outputs, the concentration
of A and the reactor temperature respectively. The nonlinear model of the
reactor is:

ẋ1 =
Ff

x4
(CA,f − x1)− k x1

ẋ2 =
Ff

x4
(Tf − x2)−

∆H k x1

ρCp

−
UA(x2 − x3)

ρCp x4

ẋ3 =
Fj

Vj

(Tj,in − x2) +
UA(x2 − x3)

ρj Cpj Vj

ẋ4 = Ff − Fsp +Kr (Vsp − x4)
y1 = x1

y2 = x2

(12.145)

with:

k = k0 exp

(

−
Ea

Rx2

)

; CA,f = u1 CA,0 ; Tj,in = u2 Thot + (1− u2)Tcold

(12.146)
where Tcold and Thot are the temperatures of two cold and hot heat exchangers
assumed constant. The volume x4 is controlled independently by a proportional
controller. Both manipulated inputs are bounded in the interval [0, 1].

The physical parameters of the chemical reactor are given in Table 12.1.

The nonlinear state-space model (12.145) is affine with respect to the inputs.
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Table 12.1: Initial variables and main parameters of the CSTR

Flow rate of the feed Ff = Fsp = 3× 10−3 m3.s−1

Concentration of reactant A before the feed CA,0 = 3900 mol.m−3

Temperature of the feed Tf = 295 K
Volume of reactor V (t = 0) = Vsp = 1.5 m3

Kinetic constant k0 = 2× 107.s−1

Activation energy E = 7× 104 J.mol−1

Heat of reaction ∆H = −7× 104 J.mol−1

Density of reactor contents ρ = 1000 kg.m−3

Heat capacity of reactor contents Cp = 3000 J.kg−1.K−1

Temperature of the cold heat exchanger Tc = 280 K
Temperature of hot heat exchanger Th = 360 K
Flow rate of the heat-conducting fluid Fj = 5× 10−2 m3.s−1

Volume of jacket Vj = 0.1 m3

Heat transfer coefficient between the jacket
and the reactor contents U = 900 W.m−2.K−1

Heat-exchange area A = 20 m2

Density of the heat-conducting fluid ρj = 1000 kg.m−3

Heat capacity of the heat-conducting fluid Cpj = 4200 J.kg−1.K−1

Proportional gain of the level controller Kr = 0.05 s−1

It is a square system that can be written as (12.147) exactly as

ẋ = f (x) +
2

∑

i=1

gi(x)ui

yi = hi(x) , i = 1, . . . , 2

(12.147)

with the vector fields

f(x) =



















−
Ff

x4
x1 − k x1

Ff

x4
(Tf − x2)−

∆H k x1

ρCp

−
UA(x2 − x3)

ρCp x4

Fj

Vj

(Tcold − x2) +
UA(x2 − x3)

ρj Cpj Vj

Ff − Fsp +Kr (Vsp − x4)



















g1(x) =











Ff

x4
CA,f

0
0
0











; g2(x) =













0
0

Fj

Vj

(Thot − Tcold)

0













(12.148)

First, the relative degree of this system is to be determined. For that,
the following Lie derivatives are calculated, beginning by considering the first
output.
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− The Lie derivative of h1(x) in the direction of the vector field f

Lfh1(x) =
∑

i

∂h1

∂xi

fi(x) = f1(x) (12.149)

− Then Lg1Lfh1 is calculated

Lg1Lfh1 = Lg1f1 =
∑

i

∂f1
∂xi

g1,i =
∂f1
∂x1

g1,1 6= 0 (12.150)

− Then Lg2Lfh1 is calculated

Lg2Lfh1 = Lg2f1 =
∑

i

∂f1
∂xi

g2,i =
∂f1
∂x3

g2,3 = 0 (12.151)

thus the vector

[Lg1Lfh1 , Lg2Lfh1] 6= 0 (12.152)

hence r1 = 2.
Now, the second output is concerned.
− The Lie derivative of h2(x) in the direction of the vector field f

Lfh2(x) =
∑

i

∂h2

∂xi

fi(x) = f2(x) (12.153)

− Then Lg1Lfh2 is calculated

Lg1Lfh2 = Lg1f2 =
∑

i

∂f2
∂xi

g1,i =
∂f2
∂x1

g1,1 6= 0 (12.154)

− Then Lg2Lfh2 is calculated

Lg2Lfh2 = Lg2f2 =
∑

i

∂f2
∂xi

g2,i =
∂f2
∂x3

g2,3 6= 0 (12.155)

This implies that

[Lg1Lfh2 , Lg2Lfh2] 6= 0 (12.156)

hence r2 = 2.
The matrix A(Φ(x)) is then equal to

A(Φ(x)) =

[

Lg1Lfh1 Lg2Lfh1

Lg1Lfh2 Lg2Lfh2

]

=







∂f1
∂x1

g1,1 0

∂f2
∂x1

g1,1
∂f2
∂x3

g2,3






(12.157)

which is nonsingular for most x in the physical domain. The total relative
degree is r = r1 + r2 = 4. Note that r = n, dimension of the system.
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The proposed change of coordinates is

[

φ1
1(x) = h1(x) = x1 φ2

1(x) = h2(x) = x2

φ1
2(x) = Lfh1(x) = f1 φ2

2(x) = Lfh2(x) = f2

]

(12.158)

giving

Φ(x) = [φ1
1 , φ1

2 , φ2
1 , φ2

2] (12.159)

must have its Jacobian matrix non singular. It can be verified as this Jacobian
matrix is equal to





















1
∂f1
∂x1

0
∂f2
∂x1

0
∂f1
∂x2

1
∂f2
∂x2

0 0 0
∂f2
∂x3

0
∂f1
∂x4

0
∂f2
∂x4





















(12.160)

where the present partial derivatives are not zero.

The normal coordinates result

ξ1 =

[

x1

Lfh1 = f1

]

; ξ2 =

[

x2

Lfh2 = f2

]

(12.161)

and η has a null dimension. The normal form is then

φ̇1
1(x) = φ1

2(x)

φ̇1
2(x) =

∑

i

∂f1
∂xi

ẋi =
∂f1
∂x1

(f1 + g11u1) +
∂f1
∂x2

f2 +
∂f1
∂x4

f4

φ̇2
2(x) = φ2

2(x)

φ̇2
2(x) =

∑

i

∂f2
∂xi

ẋi =
∂f2
∂x1

(f1 + g11u1) +
∂f2
∂x2

f2 +
∂f2
∂x3

(f3 + g23u2) +
∂f2
∂x4

f4

(12.162)
Clearly, it gives

[

φ̇1
2(x)

φ̇2
2(x)

]

=







∂f1
∂x1

f1 +
∂f1
∂x2

f2 +
∂f1
∂x4

f4

∂f2
∂x1

f1 +
∂f2
∂x2

f2 +
∂f2
∂x3

f3 +
∂f2
∂x4

f4






+A(Φ(x))

[

u1

u2

]

=

[

L2
fh1

L2
fh2

]

+A(Φ(x))

[

u1

u2

]

= b(Φ(x)) +A(Φ(x))u
(12.163)

where the fact that f1 does not depend on x3 is used. It results in agreement
with Eq.(12.140) that the control vector law is equal to

u = A−1(x)(−b+ v) (12.164)
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where v is the external input vector which can be chosen according to pole
placement for example or according to a PI vector. Taking into account refe-
rence trajectories, the multivariable control law becomes

u = A−1(ξref (t))
[

y
(2)
ref (t)− b(ξref (t))

]

(12.165)

Note that this control law does not depend on η.
Numerical application:
A pole placement has been performed on each manipulated input to set the
corresponding external input as a discretized PI controller under the velocity
form

vk+1 = vk +Kc

[

(yref
k+1 − yk+1)− (yref

k − yk)
]

+
Kc

τI

Ts

2

[

(yref
k+1 − yk+1) + (yref

k − yk)
] (12.166)

where k is the sampling instant (sampling period Ts = 5s), yref the reference
trajectory, Kc the proportional gain, τI the integral time constant. To perform
the pole placement [Corriou, 2004], the control law (12.165) was modified by
taking the vector b as

b =

[

L2
fh1 + c1 Lfh1 + c2 (y1 − yref1 )

L2
fh2 + c1 Lfh2 + c2 (y2 − yref2 )

]

(12.167)

Approximating the discretized PI controller as a continuous one results approx-
imately in the following input-output dynamics

y
(r)
i + c1 y

(r−1)
i + c2 yi = vi (12.168)

with a relative degree r = 2. This is only approximate as the control law
(12.165) is indeed multivariable and the previous equation would only be valid
for a SISO system. Taking into account the continuous PI controller, the cor-
responding characteristic equation for each input-output couple is

s3 + c1 s
2 + (c2 +Kc)s+

Kc

τI
= 0 (12.169)

The parameters were chosen to satisfy the ITAE criterion as Kc = 2.12 10−4,
τI = 6.84s, c1 = 0.055, c2 = 1.91 10−3.

Recall that both manipulated inputs are constrained in the domain [0, 1].
By applying the modified control law (12.165), it appeared that the manipula-
ted input u1 corresponding mainly to the concentration control rapidly reached
its constraint and remained at this value. Nonlinear geometric control is not
designed for handling the constraints, opposite to model predictive control, so
that, in actual problems, some adaptations must be considered. When looking
numerically at the elements a′ of matrix A−1, the element a′11 is very large, a′12
is zero, a′21 is small, a′22 is medium. The multiplication of a′11 by b results in
a large numerical value, explaining that the contraint for u1 is hit. Physically,
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this is due to the strong influence of temperature on the concentration in partic-
ular because of the Arrhenius term in the kinetic constant and also the heat of
reaction. This is not the case for u2 for which the nonlinear control law (12.165)
can be implemented with only the introduction of ci’s. Thus, a modification of
u1 is performed by maintaining the term b1 of (12.167), but changing the factor
a′11 in a way close to an anti-windup to avoid saturation. This resulted in the
controlled concentration of Figure 12.8. The control of temperature where cou-
pling intervenes posed little problem. The manipulated inputs (Figure 12.9)
are not saturated, although the input u1 changes abruptly after t = 2000s
when a concentration set point variation is imposed. The nonlinear control law
(12.165) perfectly decoupled the output y1 from the influence of u2 but the
output y2 is influenced by both manipulated inputs. This coupling is hardly
visible on Figure 12.9 only because of the values of the respective elements a′21
and a′22 where a′22 is much larger than a′21. The previous study was performed
in simulation and all the states were assumed to be known. With little addi-
tional difficulty, it would be possible to estimate the states using a nonlinear
observer such as the extended Kalman filter [Corriou, 2004] or another one,
assuming that the reactor temperature and the concentration are measured.
Then the estimated states are used in the nonlinear control law. Furthermore,
a robustness study taking into account the unavoidable uncertainty of some
physical parameters would be useful.

In conclusion, the nonlinear multivariable control of the chemical reactor
is possible but some adaptations were necessary because of the physical con-
straints of the manipulated inputs. Compared to model predictive control,
the multivariable nonlinear geometric control appears more difficult to imple-
ment, but shows real efficiency. For SISO plants, nonlinear geometric control
is generally easier to use.
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mande. Masson, Paris, 1993.

C. Gentric, F. Pla, M.A. Latifi, and J.P. Corriou. Optimization and non-linear
control of a batch emulsion polymerization reactor. Chem. Eng. J., 75:31–46,
1999.

G.C. Goodwin and K.S. Sin. Adaptive Filtering, Prediction and Control. Pren-
tice Hall, Englewood Cliffs, 1984.

T.K. Gustafsson and K.V. Waller. Nonlinear and adaptive control of pH. Ind.
Eng. Chem. Research, 31:2681, 1992.

S. Haykin. Adaptive Filter Theory. Prentice Hall, Englewood Cliffs, 3rd edition,
1991.

M.A. Henson and D.E. Seborg. A unified differential geometric approach to
nonlinear process control. San Francisco, 1989. AIChE Annual Meeting.

M.A. Henson and D.E. Seborg. A critique of differential geometric control
strategies for process control. USSR, 1990a. 11th IFAC World Congress.

M.A. Henson and D.E. Seborg. Input-output linearization of general nonlinear
processes. AIChEJ., 36(11):1753–1757, 1990b.

R.M. Hirschorn. Invertibility of nonlinear control systems. SIAM. J. Control
Optim., 17:289–295, 1979.

L.R. Hunt, R. Su, and G. Meyer. Global transformations of nonlinear systems.
IEEE Trans. Automat. Control, 28:24–31, 1983.

P. A. Ioannou and J. Sun. Robust Adaptive Control. Prentice Hall, Upper
Saddle River, 1996.



Encyclopedia 39

A. Isidori. Nonlinear Control Systems: An Introduction. Springer-Verlag, New
York, 2nd edition, 1989.

A. Isidori. Nonlinear Control Systems. Springer-Verlag, New York, 3rd edition,
1995.

V. Jurdjevic. Geometric Control Theory. Number 51 in Cambridge Studies in
Advanced Mathematics. Cambridge University Press, 1997.

W. Kang and A. J. Krener. Chaos in automatic control, control engineering,
chapter Normal forms of nonlinear control systems. Taylor and Francis, New
York, 2006.

H.K. Khalil. Nonlinear Systems. Prentice Hall, 1996.

K.A. Kosanovich, M.J. Piovosa, V. Rokhlenko, and A. Guez. Nonlinear adap-
tive control with parameter estimation of a CSTR. J. Proc. Cont., 5(3):
137–148, 1995.

C. Kravaris. Input-output linearization : a nonlinear analog of placing poles at
process zeros. AIChE J., 34(11):1803–1812, 1988.

C. Kravaris and C.B. Chung. Nonlinear state feedback synthesis by global
input/output linearization. AIChE J., 33(4):592–603, 1987.

C. Kravaris and P. Daoutidis. Nonlinear state feedback control of second-order
non-minimum phase nonlinear systems. Comp. Chem. Eng., 14:439–449,
1990.

C. Kravaris and J.C. Kantor. Geometric methods for nonlinear process control.
1. background. Ind. Eng. Chem. Res., 29:2295–2310, 1990a.

C. Kravaris and J.C. Kantor. Geometric methods for nonlinear process control.
2. controller synthesis. Ind. Eng. Chem. Res., 29:2310–2323, 1990b.

C. Kravaris and S. Palanki. Robust nonlinear state feedback under structured
uncertainty. AIChE J., 34(7):1119–1127, 1988.

C. Kravaris and M. Soroush. Synthesis of multivariable nonlinear controllers
by input/output linearization. AIChE J., 36(2):249–264, 1990.

C. Kravaris and R.A. Wright. Deadtime compensation for nonlinear processes.
AIChE J., 35(9):1535–1542, 1989.
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