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Chapter 10

Optimal Control

Jean-Pierre Corriou
LRGP-CNRS-ENSIC, Lorraine University
1, rue Grandville BP 20451
54001 Nancy Cedex
France
e-mail: jean-pierre.corriou@univ-lorraine.fr

10.1 Introduction

Frequently, the engineer in charge of a process is faced with optimization pro-
blems. In fact, this may cover relatively different ideas, such as parameter
identification or process optimization.

It is known that the reactive feed flow rate profile for a fed-batch reactor
and the temperature or pressure profile to be followed for a batch reactor, will
have an influence on the yield, the selectivity or the product quality. To op-
timize production, one must then seek a time profile and perform a dynamic
optimization with respect to the manipulated variables, while respecting the
constraints of the system such as the bounds on temperature and temperature
rise rate, the constraints related to the possible runaway of the reactor. Simi-
larly,to optimize the conversion in a tubular reactor, one can seek the optimal
temperature profile along the reactor. In the latter case, it is a spatial opti-
mization very close to the dynamic optimization where the time is replaced
by the abscissa along the reactor. The profile thus determined is calculated
in open loop and will be applied as the set point in closed loop, which may
lead to deviations between the effective result and the desired result. The di-
rect closed-loop calculation of the profile in the nonlinear case is not studied
here; on the contrary, the linear case is treated in linear quadratic control and
Gaussian linear quadratic control.

In a continuous process, problems of dynamic optimization can also be
considered with respect to the process changes from the nominal regime. For
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example, the quality of the raw petroleum feeding the refineries changes very
often. The economic optimization realized off-line imposes set point variations
on the distillation columns. An objective can be to find the optimal profile to
be followed during the change from one set of set points to another set.

In all cases, a dynamic model sufficiently representative of the behaviour of
the process is necessary, nevertheless of a reasonable complexity with respect
to the difficulty of the mathematician and numerical task of solving.

Among the criteria to be optimized, can be found the reaction yield or the
selectivity, and also the end-time taken to reach a given yield, or any technical-
economic criterion which simultaneously takes into account technical objectives,
production or investment costs.

Optimal control is the formulation of the dynamic optimization methods in
the framework of a control problem.

10.2 Problem Statement

The optimal control problem is first set in continuous time. The studied system
is assumed to be nonlinear.

The fixed aim in this problem is the determination of the control u(t) mini-
mizing a criterion J(u) while verifying initial and final conditions and respect-
ing constraints. The optimal control thus denoted by u∗(t) makes the state x(t)
follow a trajectory x∗(t) which must belong to the set of admissible trajectories.

The formulation of the optimal control problem is the following:
Consider a system described in state space by the set of differential equations

ẋ(t) = f(x(t),u(t)) ; t0 ≤ t ≤ tf (10.1)

with x being a state vector of dimension n and u a control vector of dimension
m. The system is subjected to initial and final conditions, called terminal (or
at the boundaries)

k(x(t0), t0) = 0 ; l(x(tf ), tf ) = 0 (10.2)

Moreover, the system can be subjected to instantaneous inequality constraints

p(x(t),u(t), t) ≤ 0 ∀t (10.3)

or integral constraints (depending only on t0 and tf )

∫ tf

t0

q(x(t),u(t), t)dt ≤ 0 (10.4)

The question is to find the set of the admissible controls u(t) which minimize
a technical or economic performance criterion J(u)

J(u) = G(x(t0), t0,x(tf ), tf ) +

∫ tf

t0

F (x(t),u(t), t) dt (10.5)
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G is called the algebraic part of the criterion. F is a functional. Frequently,
the initial instant is taken as t0 = 0.

In this very general form, this problem makes use of the equality constraints
corresponding to the state differential equations, the terminal equality con-
straints, possibly instantaneous or integral inequality constraints, and m inde-
pendent functions, which are the controls u(t). The term G(x(t0), t0,x(tf ), tf )
represents a contribution of the terminal conditions to the criterion whereas
the integral term of Eq. (10.5) represents a time-accumulation contribution.

Several methods allow us to solve this type of problem: variational meth-
ods [Kirk, 1970], Pontryagin maximum principle [Pontryaguine et al., 1974],
Bellman dynamic programming [Bellman, 1957]. The books cited here [Borne
et al., 1990, Boudarel et al., 1969, Bryson, 1999, Bryson and Ho, 1975, Feld-
baum, 1973, Pun, 1972, Ray and Szekely, 1973] propose compared approaches.

10.3 Optimal Control

10.3.1 Variational Methods

The basis of optimal control lies in variational calculus which provides the
fundamental principles in a mathematical framework [Corriou, 2004, 2012]. The
way to obtain the solution of the optimal control problem will be presented by
first studying the variation of the criterion, then by three progressively more
complete methods in continuous-time, i.e. Euler conditions, Hamilton-Jacobi
theory and Pontryagin maximum principle. Finally, in discrete time, Bellman
optimality principle will be presented.

The variables are divided in two types: state variables xi (1 ≤ i ≤ n)
and control variables uj (1 ≤ j ≤ m), so that the optimal control problem is
formulated as:
Given a criterion

J(u) = G(x(t0),u(t0),x(tf ),u(tf )) +

∫ tf

t0

F (x(t),u(t), t)dt (10.6)

determine the optimal control trajectory u∗(t) that minimizes J(u)

u∗(t) = arg
{

min
u

J(u)
}

(10.7)

the state and control variables being subjected to the constraints

Model : φi = ẋi − fi(x,u, t) = 0 i = 1, . . . , n (10.8)

Initial conditions : kj(x(t0),u(t0), t0) = 0 j = 1, . . . , n0 (10.9)

Final conditions : lj(x(tf ),u(tf ), tf ) = 0 j = n0+1, . . . , n0+n1 ≤ 2n+2
(10.10)

In the criterion (10.6), the first term G is called the algebraic part and
the second term is called the integral part. F is the functional. Note that
the ordinary differential equations (10.8) represent the dynamic model of the
process. Initial and final conditions, resp. (10.9) and (10.10) are algebraic
equations.
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10.3.2 Variation of the Criterion

Three general ideas, but different, will be evoked to describe the criterion vari-
ation.

• In the most general case, the criterion variation is equal to

δJ =

∫ tf

t0

{[

(

∂F

∂x

)T

−ψ(t)T ∂f
∂x

]

δx+

[

(

∂F

∂u

)T

−ψ(t)T ∂f
∂u

]

δu

}

dt

+F (xf ,uf , tf ) δtf − F (x0,u0, t0) δt0

+

[(

∂G

∂t0

)

δt0 +

(

∂G

∂x0

)

δx0 +

(

∂G

∂u0

)

δu0

]

+

[(

∂G

∂tf

)

δtf +

(

∂G

∂xf

)

δxf +

(

∂G

∂uf

)

δuf

]

+ψ(tf )
T δxf −ψ(t0)T δx0 −

∫ tf

t0
ψ̇(t)T δx dt

(10.11)

• If, according to Hamilton-Jacobi theory (Sect. 10.3.5), we furthermore intro-
duce the Hamiltonian H equal to

H(x,u,ψ, t) = −F (x,u, t) +ψ(t)T f(x,u, t) (10.12)

the criterion (10.6) becomes

J(u) = G(x(t0),u(t0),x(tf ),u(tf )) +

∫ tf

t0

[

ψ(t)T f(x,u, t)−H(x,u,ψ, t)
]

dt

(10.13)
or

J(u) = G(x(t0),u(t0),x(tf ),u(tf )) +

∫ tf

t0

[

ψ(t)T ẋ(t)−H(x,u,ψ, t)
]

dt

(10.14)
Using the integration by parts, the variation of the criterion becomes

δJ =

∫ tf

t0

{

−
[

(

∂H

∂x

)T

+ ψ̇(t)T

]

δx−
[

(

∂H

∂u

)T
]

δu

}

dt

+

[(

∂G

∂t0

)

+H(x0,u0,ψ0, t0)

]

δt0 +

[(

∂G

∂x0

)

−ψ(t0)T
]

δx0 +

(

∂G

∂u0

)

δu0

+

[(

∂G

∂tf

)

−H(xf ,uf ,ψf , tf )

]

δtf +

[(

∂G

∂xf

)

+ψ(tf )
T

]

δxf +

(

∂G

∂uf

)

δuf

(10.15)
This equation, giving the variation of the criterion, is necessary for understand-
ing the origin of Hamilton-Jacobi equations (Sect. 10.3.5).



Encyclopedia 5

10.3.3 Euler Conditions

According to the performance index, the augmented function F a is defined

F a(x, ẋ,u, t) = F (x,u, t) +
n
∑

i=1

λi φi (10.16)

Notice that the function G does not intervene in this augmented function, as
G depends only on the terminal conditions. G would only intervene in F a if
the terminal conditions were varying.

The variables are the control vector u(t), the state vector x(t) and the
Euler-Lagrange multipliers λ. Euler conditions give

∂F a

∂uj
− d

dt

∂F a

∂u̇j
= 0 j = 1, . . . ,m

∂F a

∂xi
− d

dt

∂F a

∂ẋi
= 0 i = 1, . . . , n

∂F a

∂λi
− d

dt

∂F a

∂λ̇i
= 0 i = 1, . . . , n

(10.17)

The third group of this system of equations corresponds to the constraints φi =
0 that define the dynamic model, thus corresponds to a system of differential
equations with respect to the state derivatives ẋ. The first group is a system
of algebraic equations. The second group is a system of differential equations
with respect to λ̇.

If inequality constraints of the type (10.3) or (10.4) are present, the Valen-
tine’s method should be used to modify F a consequently.

On the other hand, the terminal conditions (10.9) and (10.10), which are
transversality and discontinuity conditions, as well as the conditions relative to
the second variations will have to be verified.

The transversality equations (refer to eq. (10.15)) are:
At initial time t0

[

−∂G
∂t0

+
(

F a − λT ẋ
)

0

]

δt0 +

[

− ∂G

∂x0

+ λ(t0)

]T

δx0 = 0

with:

(

∂k

∂t

)

0

δt0 +

(

∂k

∂x

)

0

δx0 = 0

(10.18)

At final time tf
[

∂G

∂tf
+
(

F a − λT ẋ
)

f

]

δtf +

[

∂G

∂xf

+ λ(tf )

]T

δxf = 0

with:

(

∂l

∂t

)

f

δtf +

(

∂l

∂x

)

f

δxf = 0

(10.19)

For a fixed final time, which is a frequently met condition, from Eq. (10.19),
the following condition results

λ(tf ) = − ∂G

∂xf

(10.20)
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It must be underlined that, as such, Euler conditions provide only first-order
conditions, which is not sufficient for an optimality problem. To determine the
nature of the extremum, second-order conditions must be studied.

10.3.4 Weierstrass Condition and Hamiltonian

Maximization

To complete the study of the extremum provided Euler conditions, it is neces-
sary to make use of more adavanced concepts and the use of Hamilton that will
be presented later in section 10.3.5.

Cosnidering the augmented function

F a(x, ẋ,u, t) = F (x,u, t) + λT [ẋ− f (x,u, t)] (10.21)

the Weierstrass condition relative to second variations is applied to in the neigh-
bourhood of the optimum noted x∗ obtained for the optimal control u∗, thus

F a(x∗, ẋ,u, t)− F a(x∗, ẋ∗,u∗, t)− (ẋ− ẋ∗)T
(

∂F a

∂ẋ

)

∗

≥ 0 (10.22)

By clarifying these terms and using the constraints

ẋ = f (x∗,u, t)
ẋ∗ = f (x∗,u∗, t)

(10.23)

the Weierstrass condition is simplified as

F (x∗,u, t)− F (x∗,u∗, t)− λT (f(x∗,u, t)− f (x∗,u∗, t)) ≥ 0 ⇐⇒
[

λ
T
f (x∗,u∗, t)− F (x∗,u∗, t)

]

−
[

λ
T
f(x∗,u, t)− F (x∗,u, t)

]

≥ 0

(10.24)
in which the expression of the Hamiltonian (setting λ = ψ) can be recognized
as

H(x∗,u,λ, t) = −F (x∗,u, t) + λT f (x∗,u, t) (10.25)

It results the fundamental conclusion that the optimal control maximizes the
Hamiltonian while respecting the constraints

H(x∗,u∗,λ, t) ≥ H(x∗,u,λ, t) (10.26)

which will be generalized as Pontryagin’s maximum principle.
Legendre-Clebsch condition for small variations would have allowed us to

obtain the stationarity condition at the optimal trajectory, in the absence of
constraints, as

(

∂H

∂u

)

∗

= 0 (10.27)

and
(

∂2H

∂u2

)

∗

≤ 0 (10.28)
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10.3.5 Hamilton-Jacobi Conditions and Equation

The Hamiltonian is deduced from the criterion (10.6) and from constraints
(10.8); it is equal to

H(x(t),u(t),ψ(t), t) = −F (x(t),u(t), t) +ψT (t)f(x(t),u(t), t) (10.29)

Other authors use the definition of the Hamiltonian with an opposite sign before
the functional, i.e.

H(x(t),u(t),ψ(t), t) = F (x(t),u(t), t) +ψT (t)f (x(t),u(t), t)

which changes nothing, as long as we remain at the level of first-order condi-
tions. However, the sign changes in condition (10.20).

The variation of the criterion has been expressed with respect to the Hamil-
tonian through Eq. (10.15). The canonical system of Hamilton conditions
results as

ẋ = Hψ
ψ̇ = −Hx

(10.30)

which are equivalent to Euler conditions, to which the following equation must
be added

Ht = −Ft (10.31)

The second equation of (10.30) is, in fact, a system of equations called the
costate equations, and ψ is called the costate or the vector of adjoint variables.

The derivative of the Hamiltonian is equal to

dH

dt
= HT

x ẋ+HT
u u̇+HT

ψ ψ̇ +Ht = HT
u u̇+Ht (10.32)

If u(t) is an optimal control, one deduces

Ḣ = Ht (10.33)

Generally, the concerned physical system is time-invariant so that time does
not intervene explicitly in f and also in the functional F , so that Eq. (10.33)
becomes

Ḣ = 0 (10.34)

In this case, the Hamiltonian is constant along the optimal trajectory.

The transversality conditions (refer to eq. (10.15)) are:

At initial time t0

[

∂G

∂t0
+H(t0)

]

δt0 +

[

∂G

∂x0

−ψ(t0)
]T

δx0 +
∂G

∂u0
δu0 = 0

with:

(

∂k

∂t

)

0

δt0 +

(

∂k

∂x

)

0

δx0 = 0

(10.35)
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At final time tf

[

∂G

∂tf
−H(tf )

]

δtf +

[

∂G

∂xf

+ψ(tf )

]T

δxf +
∂G

∂uf
δuf = 0

with:

(

∂l

∂t

)

f

δtf +

(

∂l

∂x

)

f

δxf = 0

(10.36)

It is possible to calculate the variation δJ associated with the variation δt
and with the trajectory change of δx, the extremity xf being fixed, for the
time-dependent criterion J defined by

J (x∗, t) = G(x∗(tf ), tf ) +

∫ tf

t

F (x∗,u∗, τ)dτ (10.37)

Note that

J (x∗, t0) = J(u∗) (10.38)

The variation of the criterion can be expressed with respect to the Hamiltonian

δJ (x∗, t) = J (x∗ + δx(t), t+ δt)− J (x∗, t)

= H(x∗,u∗,ψ, t) δt−ψT (t) δx(t) (10.39)

The optimal control corresponds to a maximum of the Hamiltonian. Frequently,
the control vector is bounded in a domain U defined by umin and umax. In this
case, the condition that the Hamiltonian is maximum can be expressed in two
different ways:

• When a constraint ui is reached, the function H defined by Eq. (10.29)
must be a maximum.

• When the control belongs strictly to the inner feasible domain U defined
by umin and umax, not reaching the bounds, the derivative of function H
defined by Eq. (10.29) with respect to u is zero

∂H

∂u
= 0 (10.40)

This equation provides an implicit equation that allows us to express the opti-
mal control with respect only to variables x,ψ, t: u∗ = u∗(x,ψ, t), hence the
new expression of the criterion

δJ (x∗, t) = H(x∗,u∗(x,ψ, t),ψ, t)δt−ψT (t) δx(t)
= Jtδt+ J T

x δx
(10.41)

thus by identification

Jt = H(x∗,u∗(x,ψ, t),ψ, t)

Jx = −ψ(t)
(10.42)
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This equation shows that the optimal value of the Hamiltonian is equal to
the derivative of criterion (10.37) with respect to time. The Hamilton-Jacobi
equation results

Jt −H(x∗,u∗(x,−Jx, t),−Jx, t) = 0 (10.43)

with boundary condition

J (x∗

f , tf ) = G(x∗(tf ), tf ) (10.44)

The Hamilton-Jacobi equation is a first-order partial derivative equation with
respect to the sought function J . Its solving is, in general, analytically impossi-
ble for a nonlinear system. In the case of a linear system such as Eq.(10.89), its
solving is possible and leads to a Riccati differential equation (10.106). Thus, it
is possible to calculate the optimal control law by state feedback. Recall that
the Hamilton-Jacobi Eq.(10.43) in discrete form corresponds to the Bellman
optimality principle in dynamic programming (Sect. 10.4).

Case with constraints on control and state variables

Assume that general constraints of the form

g(x(t), u(t), t) = 0 (10.45)

are to be respected in the considered problem. In that case, the augmented
Hamiltonian is to be considered

H(x(t), u(t), ψ(t), t) = −F (x(t), u(t), t)+ψT (t)f(x(t), u(t), t)+µT g(x(t), u(t), t)
(10.46)

where µ is a vector of additional Lagrange multipliers. The Hamiltonian deri-
vative yields

∂H

∂u
= −∂F

∂u
+ ψT (t)

∂f

∂u
+ µT

∂g

∂u
= 0 (10.47)

together with equation (10.30) as

ψ̇ = −Hx = Fx − ψT (t) fx − µT gx (10.48)

Particular cases of (10.45) are those where the constraints g depend only
on the states or where a constraint on the state is valid only for a specific time
t1, such as

g(x(t1), t1) = 0 (10.49)

called interior-point constraints [Bryson and Ho, 1975]. In that latter case, the
state is continuous, but the Hamiltonian H and the adjoint variables ψ are no
more continuous. Noting t−1 and t+1 the times just before and after t1, given
the criterion J , they must verify the following relations

ψT (t+1 ) =
∂J

∂x(t1)
; H(t+1 ) = − ∂J

∂t1
(10.50)
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and

ψT (t+1 ) = ψT (t−1 )− νT
∂g

∂x(t1)
; H(t+1 ) = H(t−1 ) + νT

∂g

∂t1
(10.51)

where ν are Lagrange multipliers such that constraints (10.49) are satisfied.

Case with terminal constraints

A case frequently encountered in dynamic optimization is the one where ter-
minal constraints are imposed

lj(x(tf ),u(tf ), tf ) = 0 (10.52)

The transversality equation (10.36) becomes

[

∂G

∂tf
−H(tf ) +

∂lT

∂tf
ν

]

δtf +

[

∂G

∂xf
+ψ(tf ) +

∂lT

∂xf
ν

]T

δxf +
∂G

∂uf
δuf = 0

(10.53)
where ν is a vector of Lagrange parameters. If the final time is fixed, the first
term of equation (10.53) disappears. If the component xi(tf ) is fixed at final
time, that component disappears in equation (10.53).

10.3.6 Maximum Principle

In many articles, authors refer to the Minimum Principle, which simply results
from the definition of the HamiltonianH with an opposite sign of the functional.
Comparing to definition (10.29), they define their Hamiltonian as

H(x(t),u(t),ψ(t), t) = F (x(t),u(t), t) +ψT (t)f (x(t),u(t), t) (10.54)

With that definition, the optimal control u∗ minimizes the Hamiltonian. Fur-
thermore, the so-called Minimum Principle presented in many articles is no
more than Hamilton-Jacobi exposed in the previous section.

In the present section, the presentation follows the original publication by
[Pontryaguine et al., 1974] and completes Hamilton-Jacobi theory. Now, ex-
amine briefly the Maximum Principle [Pontryaguine et al., 1974] about process
optimal control. Pontryagin emphasizes several points:

• An important difference with respect to variational methods is that it is not
necessary to consider two close controls in the admissible control domain.

• The control variables ui are physical, thus they are constrained, e.g. |u1| ≤
umax, and they belong to a domain U . The admissible controls are piecewise
continuous, that is, they are continuous nearly everywhere, except at some
instants where they can undergo first-order discontinuities (jump from one
value to another).

• Very frequently, the optimal control is composed by piecewise continuous
functions: the control jumps from one summit of the polyhedron defined
by U to another. These cases of control occupying only extreme positions
cannot be solved by classical methods.
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The process is described by a system of differential equations

ẋi(t) = f i(x(t),u(t)) i = 1, . . . , n (10.55)

An admissible control u is sought that transfers the system from point x0 in
the phase space to point xf and minimizes the criterion

J = G(x0, t0,xf , tf ) +

∫ tf

t0

F (x(t),u(t)) dt (10.56)

To the n coordinates xi in the phase space, we add the coordinate x0 defined
by

x0 = G(x0, t0,x(t), t) +

∫ t

t0

F (x(τ),u(τ)) dτ (10.57)

so that if x = xf then x0(tf ) = J . This notation is that of Pontryaguine et al.
[1974]. The superscript corresponds to the rank i of the coordinate while the
subscripts (0 and 1) or (0 and f), according to the authors, are reserved for
the terminal conditions. The derivative of x0 is equal to

dx0

dt
= GTxf +Gt + F (x(t),u(t)) (10.58)

If time intervenes explicitly in the terminal conditions (10.2), or if it is not first
fixed, we add the coordinate xn+1 to the state [Boudarel et al., 1969], such that

xn+1 = t
ẋn+1 = 1

(10.59)

The complete system of differential equations would then have dimension n+2.
In the following, in order not to make the notations cumbersome, we will only
consider stationary problems of dimension n+ 1 in the form

ẋi = f i(x(t),u(t)) i = 0, . . . , n (10.60)

by deducing f0 from Eq. (10.57) by derivation (extended notation f).
In the phase space of dimension n+ 1, we define the initial point x0 and a

straight line π parallel to the axis x0 (i.e. the criterion), passing through the
final point xf . The optimal control is, among the admissible controls such that
the solution x(t), having as the initial condition x0, intersects the line π, the
one which minimizes the coordinate x0 at the intersection point with π.

The costate variables ψ are introduced such that

ψ̇ = −fTx ψ ⇐⇒ ψ̇i = −
n
∑

j=0

∂f j(x(t),u(t))

∂xi
ψj i = 0, . . . , n (10.61)

This system admits a unique solution ψ composed of piecewise continuous
functions, corresponding to the control u and presenting the same discontinuity
points.
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In this setting, the Hamiltonian is equal to the scalar product of functions
ψ and f

H(ψ,x,u) = ψT f =

n
∑

i=0

ψi f
i i = 0, . . . , n (10.62)

The systems can be written again in the Hamilton canonical form

dxi

dt
=
∂H

∂ψi
i = 0, . . . , n

dψi
dt

= −∂H
∂xi

i = 0, . . . , n

(10.63)

When the solutions x and ψ are fixed, the Hamiltonian depends only on the
admissible control u, hence the notation

M(ψ,x) = sup
u∈U

H(ψ,x,u) (10.64)

in order to mean that M is the maximum of H at fixed x and ψ, or further

H(ψ∗,x∗,u∗) ≥ H(ψ∗,x∗,u∗ + δu) ∀ δu (10.65)

We consider the admissible controls, defined on [t0, tf ], to be responding to
the previous definition: the trajectory x(t) issued from x0 at t0 intersects the
straight line π at tf . According to Pontryaguine et al. [1974], the first theorem
of the Maximum Principle is expressed as:
So that the control u(t) and the trajectory x(t) is optimal, it is necessary that
the continuous and nonzero vector, ψ(t) = [ψ0(t), ψ1(t), . . . , ψn(t)] satisfying
Hamilton canonical system (10.63), is such that:
1. The Hamiltonian H [ψ(t),x(t),u(t)] reaches its maximum at point u = u(t)
∀t ∈ [t0, tf ], thus

H [ψ(t),x(t),u(t)] = M[ψ(t),x(t)] (10.66)

2. At the end-time tf , the relations

ψ0(tf ) ≤ 0 ; M[ψ(tf ),x(tf )] = 0 (10.67)

are satisfied.
With Eq. (10.63) and condition (10.66) being verified, the time functions

ψ0(t) and M[ψ(t),x(t)] are constant. In this case, the relation (10.67) is veri-
fied at any instant t included between t0 and tf .

10.3.7 Singular Arcs

In optimal control problems, it often occurs for some time intervals that the
Maximum Principle does not give an explicit relation between the control and
the state and costate variable: this is a singular optimal control problem which
yields singular arcs.

Following Lamnabhi-Lagarrigue [1987], an extremal control has a singular
arc [a, b] in [t0, tf ] if and only if Hu(ψ

∗,x∗,u∗) = 0 and Huu(ψ
∗,x∗,u∗) = 0,

for all t ∈ [a, b] and whatever ψ∗ satisfies the Maximum Principle.
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On the arcs corresponding to control constraints, it gives: Hu 6= 0. Thus,
a transversality condition must be verified at the junctions between the arcs.
[Stengel, 1994] notes that, if a smooth transition of u is possible for some
problems, in some cases, it is necessary to perform a Dirac impulse on the
control to link the arcs.

Among problem of singular arcs, a frequently encountered case is the one
where the Hamiltonian is linear with respect to the control u

H(x(t),ψ(t),u(t)) = α(x(t),ψ(t), t)u(t) (10.68)

In that case, the condition
∂H

∂u
= 0 (10.69)

depends on the sign of α and does not allow us to determine the control with
respect to the state and the adjoint vector. To maximize H(u), it results

u(t) =







umin if: α < 0
non defined if: α = 0

umax if: α > 0
(10.70)

The case where α = 0 on a given time interval [t1, t2] corresponds to a singular
arc. It must then be imposed that the time derivatives of ∂H/∂u be zero along
the singular arc. For a unique control u, the generalized Legendre-Clebsch
conditions, also called Kelley conditions, which must be verified are

(−1)i
∂

∂u

(

d2i

dt2i
∂H

∂u

)

≥ 0 , i = 0, 1, . . . (10.71)

so that the singular arc be optimal.

10.3.8 Numerical Issues

In general, the dynamic optimization problem results in a set of two systems
of first-order ordinary differential equations

ẋ = ẋ(x,ψ, t) with: x(t0) = x0

ψ̇ = ψ̇(x,ψ, t) with: ψ(tf ) = ψf
(10.72)

where t0 and tf are initial and final time respectively. Thus, it is a two-point
boundary-value problem. A criterion J is to be minimized with respect to a
control vector. In general, in particular for nonlinear problems, there is no
analytical solution.

The following general strategy is used to solve the two-point boundary-
value problem (10.72): an initial vector x(t) or ψ(t) or ψ(t0) or u(t) is chosen,
then by an iterative procedure, the vectors are updated until all equations are
respected, including in particular the initial and final conditions.

Different numerical techniques can be used to find the optimal control such
as boundary condition iteration, multiple shooting, quasi-linearization, invari-
ant embedding, control vector iteration, control vector parameterization [Goh
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and Teo, 1988, Teo et al., 1991], collocation on finite elements or control and
state parameterization [Biegler, 1984], iterative dynamic programming [Banga
and Carrasco, 1998, Bojkov and Luus, 1996, Carrasco and Banga, 1997, Luus,
1996, Luus and Hennessy, 1999, Mekarapiruk and Luus, 1997]. For more details,
refer to [Bryson, 1999, Corriou, 2004, 2012].

10.4 Dynamic Programming

In Euler, Hamilton-Jacobi and Pontryagin approaches, the system is defined
in continuous time. In the dynamic programming approach by Bellman, the
system is defined in discrete time.

10.4.1 Classical Dynamic Programming

Dynamic programming [Bellman, 1957, Bellman and Dreyfus, 1962] has found
many applications in chemical engineering [Aris, 1961, Roberts, 1964], in par-
ticular for economic optimization problems in refineries, and was frequently
developed in the 1960s. Among typical examples, are the optimization of dis-
continuous reactors or reactors in series, catalyst replacement or regeneration,
the optimization of the counter-current extraction process [Aris et al., 1960],
the optimal temperature profile of a tubular chemical reactor [Aris, 1960], the
optimization of a cracking reaction [Roberts and Laspe, 1961].
Optimality Principle [Bellman, 1957]:

A policy is optimal if and only if, whatever the initial state and the initial
decision, the decisions remaining to be taken constitute an optimal policy with
respect to the state resulting from the first decision.

Because of the principle of continuity, the optimal final value of the criterion
is entirely determined by the initial condition and the number of stages. In fact,
it is possible to start from any stage, even from the last one. For this reason,
Kaufmann and Cruon [1965] express the optimality principle in the following
manner:
A policy is optimal if, at a given time, whatever the previous decisions, the
decisions remaining to be taken constitute an optimal policy with respect to the
result of the previous decisions,
or further,
Any sub-policy (from xi to xj) extracted from an optimal policy (from x0 to
xN ) is itself optimal from xi to xj .

At first, dynamic programming is discussed in the absence of constraints,
which could be terminal constraints, constraints at any time (amplitude con-
straints) on the state x or on the control u, or inequality constraints. Moreover,
we assume the absence of discontinuities.

In fact, as this is a numerical and not analytical solution, these particular
cases previously mentioned would pose no problem and could be automatically
considered.

In continuous form, the problem is the following:
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Consider the state equation

ẋ = f(x, u) with: x(0) = x0 (10.73)

and the performance index to be minimized

J(u) =

∫ tf

0

r(x, u)dt (10.74)

where r represents an income or revenue.
In discrete form, the problem becomes:

Consider the state equation

xn+1 = xn + f(xn, un)∆t (10.75)

with ∆t = tn+1 − tn. The control un brings the system from the state xn to
the state xn+1 and results in an elementary income r(xn, un) (integrating, in
fact, the control period ∆t, which will be omitted in the following).

According to the performance index in the integral form, define the perfor-
mance index or total income at instant N (depending on the initial state x0

and the policy UN−1
0 followed from 0 to N − 1, bringing from the state x0 to

the state xN ) as the sum of the elementary incomes r(xi, ui)

J0 =

N−1
∑

i=0

r(xi, ui) (10.76)

The values of the initial and final states are known

x(t0) = x0 ; x(tN ) = xN (10.77)

If the initial instant is n, note the performance index Jn.
The problem is to find the optimal policy U∗,N−1

0 constituted by the suc-
cession of controls u∗i (i = 0, . . . , N − 1) minimizing the performance index J0.
The optimal performance index J∗(x0, 0) is defined as

J∗(x0, 0) = min
ui

J0 = min
ui

N−1
∑

i=0

r(xi, ui) (10.78)

This performance index bears on the totality of the N stages and depends on
the starting point x0. In fact, the optimality principle can be applied from any
instant n, to which corresponds the optimal performance index J∗(xn, n)

From the optimality principle, the following recurrent algorithm of search
of the optimal policy is derived

J∗(xn, n) = min
un

[r(xn, un) + J∗(xn + f(xn, un), n+ 1)] (10.79)

which allows us to calculate the series J∗(xn, n), J
∗(xn−1, n− 1), . . . , J∗(x0, 0)

from the final state xN .
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If the final state is free, choose J∗(xN , N) = 0. In the case where it is
constrained, the last input u∗N−1 is calculated so as to satisfy the constraint.

The algorithm (10.79) could be written as

J∗(xn, n) = minun
[r(xn, un) + minun+1

[r(xn+1, un+1) + J∗(xn+2, n+ 2)]]

= minun
[r(xn, un) + minun+1

[r(xn+1, un+1) + . . . ]]
(10.80)

However, a difficulty resides frequently in the formulation of a given problem
in an adequate form for the solution by means of dynamic programming and,
with the actual progress of numerical calculation and nonlinear constrained
optimization methods, the latter are nowadays more employed. A variant of
dynamic programming [Luus, 1990] called iterative dynamic programming can
often provide good results with a lighter computational effort [Luus, 1993, 1994,
Luus and Bojkov, 1994].

10.4.2 Hamilton-Jacobi-Bellman Equation

Given the initial state x0 at time t0, considering the state x and the control u,
the optimal trajectory corresponds to the couple (x, u) such that

J∗(x0, t0) = min
u(t)

J(x0, u, t0) (10.81)

thus the optimal criterion does not depend on the control u.
In an interval [t, t + ∆t], the Bellman optimality principle as given in the

recurrent Eq. (10.79) can be formulated as

J∗(x(t), t) = min
u(t)

{

∫ t+∆t

t

r(x, u, τ)dτ + J∗(x(t+∆t), t+∆t)

}

(10.82)

This can be expressed in continuous form as a Taylor series expansion in the
neighbourhood of the state x(t) and time t

J∗(x(t), t) = min
u(t)















r(x, u, t)∆t+ J∗(x(t), t) +
∂J∗

∂t
∆t+

(

∂J∗

∂x

)T

f(x, u, t)∆t+ 0(∆t)















(10.83)

Taking the limit when ∆t→ 0 results in the Hamilton-Jacobi-Bellman equation

−∂J
∗

∂t
= min

u(t)

{

r(x, u, t) +

(

∂J∗

∂x

)T

f(x, u, t)

}

(10.84)

As the optimal criterion does not depend on control u, it yields J∗(x(tf ), tf ) =
W (x(tf )), which gives the boundary condition for the Hamilton-Jacobi-Bellman
Eq. (10.84)

J∗(x, tf ) =W (x) , ∀x (10.85)
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The solution of Eq. (10.84) is the optimal control law

u∗ = g(
∂J∗

∂x
,x, t) (10.86)

which, when introduced into Eq. (10.84) gives

−∂J
∗

∂t
= r(x, g, t) +

(

∂J∗

∂x

)T

f(x, g, t) (10.87)

whose solution is J∗(x, t) subject to the boundary condition (10.85). Equation
(10.87) should be compared to the Hamilton-Jacobi Eq. (10.43). Then, the
gradient ∂J∗/∂x should be calculated and returned in (10.86), which gives the
optimal state-feedback control law

u∗ = g(
∂J∗

∂x
,x, t) = h(x, t) (10.88)

This corresponds to a closed-loop optimal control law given as a state feedback.

10.5 Linear Quadratic Control

Among the numerous publications concerning linear optimal control, are, in
particular, the books by Anderson and Moore [1971, 1990], Athans and Falb
[1966], Bryson and Ho [1975], Grimble and Johnson [1988a,b], Kirk [1970],
Kwakernaak and Sivan [1972], Lewis [1986], and more recently, in robust control
Maciejowski [1989]. Furthermore, among reference papers, cite Kalman [1960,
1963], Kalman and Bucy [1961]. Even, [Pannocchia et al., 2005] proposed
constrained linear quadratic control to replace the classical PID control for
which they see no advantage. Linear quadratic control is presented here in the
previously discussed general framework of optimal control (see [Corriou, 2004]
for more description with detailed examples).

10.5.1 Continuous-Time Linear Quadratic Control

In continuous time, the system is represented in the state space by the deter-
ministic linear model

{

ẋ(t) = Ax(t) +Bu(t)
y(t) = C x(t)

(10.89)

where u is the control vector of dimension nu, x the state vector of dimension
n and y the output vector of dimension ny. A, B, C, are matrices of respective
sizes n× n, n× nu, ny × n.

The control u must minimize the classical quadratic criterion

J = 0.5xT (tf )Qf x(tf ) + 0.5

∫ tf

t0

[xT (t)Qx(t) + uT (t)Ru(t)]dt (10.90)
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where matrices Qf , Q, are symmetrical semipositive definite, whereas R is
symmetrical positive definite. This criterion tends to bring the state x towards
0. The first part of the criterion represents the performance whereas the second
part is the energy spent to bring the state toward zero. Several cases can be
distinguished with respect to the criterion according to whether the final time
tf is fixed or free and the final state is fixed or free [Bryson and Ho, 1975, Kirk,
1970].

Other criteria have been derived from the original criterion by replacing the
state x by z with z = Mx, where z represents a linear combination of the
states, e.g. a measurement, or the output if M = C. The problem is then
the regulation of z. It is possible to incorporate the tracking of a reference
trajectory zr =Mxr by replacing the state x with the tracking error (zr−z).

Thus, the most general criterion can be considered, which takes into account
the different previous cases

J = 0.5 (zr − z)T (tf )Qf (z
r − z)(tf )

+0.5

∫ tf

t0

[(zr − z)T (t)Q (zr − z)(t) + uT (t)Ru(t)]dt
(10.91)

or

J = 0.5 (xr − x)T (tf )MT QfM (xr − x)(tf )

+0.5

∫ tf

t0

[(xr − x)T (t)MT QM (xr − x)(t) + uT (t)Ru(t)]dt
(10.92)

The matricesQf ,Q,R must have dimensions adapted to the retained criterion.
According to the techniques of variational calculation applied to optimal

control, in particular Hamilton-Jacobi method, introduce the Hamiltonian as
in Eq. (10.29)

H = −0.5[(xr−x)T (t)MT QM (xr−x)(t)+uT (t)Ru(t)]+ψ(t)T [Ax+Bu]
(10.93)

The Hamilton canonical Eqs. (10.30) provide, besides the state Eq. (10.89),
the derivative of the costate vector

−∂H
∂x

= ψ̇(t) = −MT QM(xr − x)−AT ψ (10.94)

with the final transversality condition (assuming that the state xf is free, that
is, not constrained)

ψ(tf ) =M
T QfM (xr − x)f (10.95)

Moreover, in the absence of constraints, the condition of maximization of the
Hamiltonian with respect to u gives

∂H

∂u
= 0 = −Ru+BT ψ (10.96)

hence the optimal control

u(t) = R−1BT ψ(t) (10.97)
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Moreover, it can be noticed that Huu = −R, which is thus symmetric
negative, so that the Hamiltonian is maximum at the optimal control.

Gathering all these results, the system to be solved becomes a two-point
boundary-value problem

[

ẋ(t)

ψ̇(t)

]

=

[

A BR−1BT

MT QM −AT

] [

x(t)
ψ(t)

]

−
[

0 0

MT QM 0

] [

xr(t)
0

]

x(t0) = x0

ψ(tf ) =M
T QfM (xr − x)f

(10.98)

Regulation Case: xr = 0

A classical approach consists of introducing the transition matrix corresponding
to the previous differential system, which can be partitioned such that

[

x(τ)
ψ(τ)

]

=

[

Φxx(τ, t) Φxψ(τ, t)
Φψx(τ, t) Φψψ(τ, t)

] [

x(t)
ψ(t)

]

, τ ∈ [t, tf ] (10.99)

This equation can be used at the final instant τ = tf (where ψ(tf ) is known)
thus

x(tf ) = Φxx(tf , t)x(t) +Φxψ(tf , t)ψ(t)

ψ(tf ) = Φψx(tf , t)x(t) +Φψψ(tf , t)ψ(t)
(10.100)

hence

ψ(t) = −[Φψψ(tf , t) +M
T QfMΦxψ(tf , t)]

−1

[Φψx(tf , t) +M
T QfMΦxx(tf , t)]x(t)

(10.101)

a relation which can be denoted by

ψ(t) = −MT S(t)M x(t) = −P c(t)x(t) (10.102)

both to express the proportionality and to verify the terminal condition (at tf ),
M being any constant matrix. The subscript c of P c means that we are treating
the control problem (to be compared with P f later used for Kalman filtering).
The relation (10.102) is also called a backward sweep solution [Bryson, 1999].

This relation joined to the optimal control expression gives

u∗(t) = −R−1BT MT S(t)M x(t) = −R−1BT P c(t)x(t) (10.103)

which shows that this is a state feedback control. By setting M = I, we find
the classical formula which equals P c(t) and S(t)

u∗(t) = −R−1BT S(t)x(t) (10.104)

In fact, the matrix P c(t) can be calculated directly. Use the relation

ψ(t) = −P c(t)x(t) (10.105)
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inside the system (10.98). The continuous differential Riccati equation results

Ṗ c(t) = −P c(t)A−AT P c(t) + P c(t)BR
−1BT P c(t)−MT QM

with: P c(tf ) =M
T QfM

(10.106)
where the matrix P c(t) is symmetrical semipositive definite. Knowing the
solution of this differential equation, the optimal control law can be calculated

u∗(t) = −R−1BT P c(t)x(t) = −Kc(t)x(t) (10.107)

Notice that the differential Riccati equation (10.106), being known by its final
condition, can be integrated backwards to deduce P c(t0), which will allow us
to exploit the optimal control law in relation to the differential system (10.89).

If the horizon tf is infinite, the control law is

u∗(t) = −R−1BT P c x(t) (10.108)

where the matrix P c is the solution of the algebraic Riccati equation

P cA+AT P c − P cBR
−1BT P c +M

T QM = 0 (10.109)

which is the steady-state form of the differential Riccati Eq. (10.106). In this
case, the condition P c(tf ) =M

T QfM disappears. Noting P c,∞ the solution
of the algebraic Riccati equation, the constant gain results

Kc,∞ = R−1BT P c,∞ (10.110)

hence the constant state-variable feedback

u(t) = −Kc,∞ x(t) (10.111)

so that the plant dynamics is

ẋ(t) = (A−BKc,∞)x(t) (10.112)

Noting
√
Q (”square root” of Q) the matrix such that Q =

√
Q
T√
Q, the

stabilization of the system is guaranteed if the pair (
√
Q,A) is observable and

the pair (Q,A) is stabilizable, Riccati eq. (10.109) possesses a unique solution
and the closed loop plant (A −BKc,∞) is asymptotically stable. Compared
to the variable gain Kc(t), the constant gain Kc,∞ is sub-optimal, but when
tf becomes large the gain Kc(t) tends toward Kc,∞.

Different methods have been published to solve Eq. (10.109), which poses
serious numerical problems. A solution can be to integrate backward the dif-
ferential Riccati equation (10.106) until a stationary solution is obtained. An-
other solution, which is numerically robust and is based on a Schur decompo-
sition method, is proposed by Arnold and Laub [1984], Laub [1979].

A matrixA of dimension (2n×2n) is called Hamiltonian if J−1AT J = −A
or J = −A−T J A, where J is equal to:

[

0 I

I 0

]

. An important property
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[Laub, 1979] of Hamiltonian matrices is that if λ is an eigenvalue of a Hamil-
tonian matrix, −λ is also an eigenvalue with the same multiplicity.

Consider the Hamiltonian matrix H

H =

[

A −BR−1BT

−MT QM −AT

]

(10.113)

whose eigenvalues and eigenvectors are sought. Order the matrix U of the
eigenvectors of the Hamiltonian matrix of dimension 2n×2n in such a way that
the first n columns are the eigenvectors corresponding to the stable eigenvalues
(negative real or complex with a negative real part), in the form

U =

[

U11 U12

U21 U22

]

(10.114)

where the blocks U ij have dimension n × n. The solution to the algebraic
Riccati equation (10.109) is then

P c = U21U
−1
11 (10.115)

Note that the stationary solution to this problem can also be obtained by
iterative methods [Arnold and Laub, 1984].

The stable eigenvalues of the Hamiltonian matrix H are the poles of the
optimal closed loop system

ẋ(t) = (A−BKc)x(t) (10.116)

Tracking Case: xr 6= 0

In the presence of the tracking term xr, the differential system (10.98) is not
homogeneous anymore, and it is necessary to add a term to (10.99), as

[

x(τ)
ψ(τ)

]

=

[

Φxx(τ, t) Φxψ(τ, t)
Φψx(τ, t) Φψψ(τ, t)

] [

x(t)
ψ(t)

]

+

[

gx(τ, t)
gψ(τ, t)

]

(10.117)

In the same manner as previously, at the final instant τ = tf , we obtain

x(tf ) = Φxx(tf , t)x(t) +Φxψ(tf , t)ψ(t) + gx(tf , t)

ψ(tf ) = Φψx(tf , t)x(t) +Φψψ(tf , t)ψ(t) + gψ(tf , t)
(10.118)

hence

ψ(t) = −[Φψψ(tf , t) +M
T QfM Φxψ(tf , t)]

−1

{

[Φψx(tf , t) +M
T QfMΦxx(tf , t)]x(t)+

MT QfM(gx(tf , t)− xr,f ) + gψ(tf , t)
}

(10.119)

giving an expression in the form

ψ(t) = −P c(t)x(t) + s(t) (10.120)
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By introducing this expression in (10.94), we again get the differential Riccati
Eq. (10.106) whose matrix P c is a solution, with the same terminal condition.
Moreover, we obtain the differential equation giving the vector s

ṡ(t) = [P c(t)BR
−1BT −AT ] s(t)−MT QM xr

with: s(tf ) =M
T QfM xrf

(10.121)

This equation is often termed feedforward. Like the differential Riccati Eq.
(10.106), it must be integrated backward in time, so that both equations must
be integrated off-line before implementing the control and require the know-
ledge of the future reference trajectory, thus posing a problem for actual on-line
implementation, which will lead to the sub-optimal solutions to avoid this dif-
ficulty [Lewis, 1986]. Knowing the solutions of this differential equation and of
the differential Riccati Eq. (10.106), the optimal control law can be calculated
and applied

u∗(t) = −R−1BT P c(t)x(t) +R
−1BT s(t) = ufb(t) + uff (t) (10.122)

In this form, ufb(t) represents a state feedback control (term in x(t)), as the
gain Kc depends at each instant on the solution of the Riccati equation, and
uff (t) represents a feedforward control (term in s(t)). This structure is vis-
ible in Fig. 10.3. The practical use of the linear quadratic regulator is thus
decomposed into two parts, according to a hierarchical manner, first off-line
calculation of the optimal gain, then actual control using feedback.

Feedforward
uff

✲
ufb

❥ B ✲ ❥✲
✁
✄

A

✻
C

Gain
−Kc

✲

M ✲
z

y

u

x x

Processxr

zr

✲

✲

✲

❄ ✲✲

✲

Figure 10.1: Structure of linear quadratic control

In the same manner as in regulation, when the horizon is infinite, P c is
solution of the algebraic Riccati equation (10.109) and s is solution of the
algebraic equation

s = [P cBR
−1BT −AT ]−1MT QM xr (10.123)

This solution is frequently adopted in actual practice.
Lin [1994] recommends choosing, as a first approach, diagonal criterion

weighting matrices with their diagonal terms equal to

qi = 1/(zi)
2
max , ri = 1/(ui)

2
max (10.124)
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in order to realize a compromise between the input variations and the perfor-
mance with respect to the output, while Anderson and Moore [1990] propose
taking

qi = 1/

∫

∞

0

z2i dt , ri = 1/

∫

∞

0

u2i dt (10.125)

It frequently happens, as in the simple linear example previously treated, that
some components of the control vector are bounded

|ui| ≤ ui,max (10.126)

In this case, the optimal control is equal to

u∗ = sat(R−1BT ψ) (10.127)

defining the saturation function by

sat(ui) =

{

ui if: |ui| ≤ ui,max

ui,max if: |ui| ≥ ui,max
(10.128)
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Figure 10.2: Linear quadratic control of chemical reactor (criterion weighting:
Q = 0.1 I ; R = I). Top: input u1 and output y1 (concentration of A).
Bottom: input u2 and output y2 (reactor temperature)

A continuous perfectly stirred chemical reactor [Corriou, 2004] is modelled
with four states (x1, concentration of A, x2, reactor temperature, x3, jacket
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temperature, x4, liquid volume), two manipulated inputs corresponding to valve
positions that allow to control the inlet temperature in the jacket Tj,in and the
feed concentration CA,f respectively, two controlled outputs, the concentration
of A and the reactor temperature respectively. The nonlinear model of the
reactor is:

ẋ1 =
Ff
x4

(CA,f − x1)− k x1

ẋ2 =
Ff
x4

(Tf − x2)−
∆H k x1
ρCp

− UA(x2 − x3)

ρCp x4

ẋ3 =
Fj
Vj

(Tj,in − x2) +
UA(x2 − x3)

ρj Cpj Vj
ẋ4 = Ff − Fsp +Kr (Vsp − x4)y1 = x1
y2 = x2

(10.129)

with:

k = k0 exp

(

− Ea
Rx2

)

; CA,f = u2 CA,f ; Tj,in = u1 Thot + (1− u1)Tcold

(10.130)
where Tcold and Thot are the temperatures of two cold and hot heat exchangers
assumed constant. The volume x4 is controlled independently by a proportional
controller. Both manipulated inputs are bounded in the interval [0, 1].

The physical parameters of the chemical reactor are given in Table 10.1.
The linearized model of the chemical reactor calculated at initial time and

maintained constant during the study is given in the state space by

A =









−0.0010 −0.0254 0 −0.2052
0 −0.0036 0.0040 0.0048
0 −0.4571 −0.0429 0
0 0 0 −0.05









B =









0 0.78
0 0
40 0
0 0









C =

[

1 0 0 0
0 1 0 0

]

D =

[

0 0
0 0

]

(10.131)
The form (10.92) of the quadratic criterion is here used with M = C. The
linearized model is used to calculate the control law in terms of deviation va-
riables which is then applied to the plant model which provides the values of
the theoretical states. Due to the exothermic chemical reaction, this reactor
exhibits a strongly nonlinear behavior. The matrix Q is identity I and ma-
trix R is 10I giving more importance to robustness. This avoids too frequent
variations of the manipulated inputs. The set point changes are decoupled.
At t = 1000s when the concentration set point variation occurs, the input u2
used to control the inlet temperature in the jacket saturates due to the large
exothermicity whereas at t = 2000s, when the temperature set point variation
occurs, the input u1 controlling the inlet concentration in the reactor saturates.
This demonstrates the large coupling between concentration and temperature
due to the reaction exothermicity. In spite of these limitations, the LQ control
law allows to perfectly control this nonlinear plant which is very representative
of the behavior of an actual perfectly stirred chemical reactor.
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Table 10.1: Initial variables and main parameters of the CSTR

Flow rate of the feed Ff = Fsp = 3× 10−4 m3.s−1

Concentration of reactant A in the feed CA,f = 3900 mol.m−3

Temperature of the feed Tf = 295 K
Volume of reactor V (t = 0) = Vsp = 1.5 m3

Kinetic constant k0 = 2× 108.s−1

Activation energy E = 7× 104 J.mol−1

Heat of reaction ∆H = −7× 104 J.mol−1

Density of reactor contents ρ = 1000 kg.m−3

Heat capacity of reactor contents Cp = 3000 J.kg−1.K−1

Temperature of the cold heat exchanger Tc = 280 K
Temperature of hot heat exchanger Th = 360 K
Flow rate of the heat-conducting fluid Fj = 5× 10−2 m3.s−1

Volume of jacket Vj = 0.1 m3

Heat transfer coefficient between the jacket
and the reactor contents U = 900 W.m−2.K−1

Heat-exchange area A = 20 m2

Density of the heat-conducting fluid ρj = 1000 kg.m−3

Heat capacity of the heat-conducting fluid Cpj = 4200 J.kg−1.K−1

Proportional gain of the level controller Kr = 0.05 s−1

10.5.2 Linear Quadratic Gaussian Control

In linear quadratic control, such as was previously discussed, the states are
assumed to be perfectly known. In fact, this is seldom the case. Indeed, often
the states have no physical reality and, if they have one, frequently they are
not measurable or unmeasured. Thus, it is necessary to estimate the states in
order to use their estimation in the control model.

In continuous time, the system is represented in the state space by the
stochastic linear model

{

ẋ(t) = Ax(t) +Bu(t) +w(t)
y(t) = C x(t) + v(t)

(10.132)

where w(t) and v(t) are uncorrelated Gaussian white noises, respectively of
state and measurement (or output), of the respective covariance matrices

E
{

wwT
}

=W ≥ 0 , E
{

vvT
}

= V > 0 (10.133)

Denote by x̂ the state estimation, so that the state reconstruction error is
e(t) = x− x̂. An optimal complete observer such as

˙̂x = Ax̂(t) +Bu(t) +Kf (t)[y(t)−C x̂(t)] (10.134)

minimizes the covariance matrix of the state reconstruction error, thus

E
{

(x− x̂)Pw(x− x̂)T
}

(10.135)
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where Pw is a weighting matrix (possibly, the identity matrix).
Kalman and Bucy [1961] solved this problem and showed that the estimator

gain matrix Kf is equal to

Kf (t) = P f (t)C
T V −1 (10.136)

where P f (t) is the solution of the continuous differential Riccati equation

Ṗ f (t) = AP f (t) + P f (t)A
T − P f (t)C

T V −1C P f (t) +W

with: P f (t0) = P 0

(10.137)

Moreover, the initial estimator condition is

x̂(t0) = x̂0 (10.138)

The Kalman-Bucy filter thus calculated is the best state estimator or ob-
server in the sense of linear least squares. It must be noticed that the de-
termination of the Kalman filter is a dual problem of the linear quadratic
optimal control problem: to go from the control problem to the estimation
one, it suffices to make the following correspondences: A → AT , B → CT ,
MTQM → W , R → V , P c → P f ; on the one hand, the control Riccati
equation progresses backwards with respect to time, on the other hand, the
estimation Riccati equation progresses forwards with respect to time. This
latter remark obliges us to carefully manipulate all time-depending functions
of the solutions of the Riccati equations [Kwakernaak and Sivan, 1972]: P c(t)
(control problem) is equal to P f (t0 + tf − t) (estimation problem), where t0 is
the initial time of the estimation problem and tf the final time of the control
problem.

When the estimation horizon becomes very large, in general the solution of
the Riccati Eq. (10.137) tends towards a steady-state value, corresponding to
the solution of the following algebraic Riccati equation

AP f + P f A
T − P f C

T V −1C P f +W = 0 (10.139)

giving the steady-state gain matrix of the estimator

Kf = P f C
T V −1 (10.140)

Kwakernaak and Sivan [1972] detail the conditions of convergence. For reasons
of duality, the solving of the algebraic Riccati equation (10.139) is completely
similar to that of Eq. (10.109).

Consider the general case of tracking. The control law similar to (10.122)
is now based on the state estimation

u∗(t) = −R−1BT P c(t) x̂(t) +R
−1BT s(t) = −Kcx̂(t) + uff (t) (10.141)

The system state equation can be written as

ẋ(t) = Ax(t)−BKc(t) x̂(t) +Buff (t) +w(t) (10.142)
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Figure 10.3: Structure of linear quadratic Gaussian control

so that the complete scheme of the Kalman filter and state feedback optimal
control (Fig. ??) is written as

[

ẋ
˙̂x

]

=

[

A −BKc

Kf C A−Kf C −BKc

] [

x

x̂

]

+

[

Buff (t) +w
Buff (t) +Kf v

]

(10.143)
which can be transformed by use of the estimation error e(t) = x(t)− x̂(t)
[

ẋ

ė

]

=

[

A−BKc BKc

0 A−Kf C

] [

x

e

]

+

[

Buff (t) +w
w −Kf v

]

(10.144)

The closed-loop eigenvalues are the union of the eigenvalues of the state feed-
back optimal control scheme and the eigenvalues of Kalman filter. Thus, it is
possible to separately determine the observer and the state feedback optimal
control law, which constitutes the separation principle of linear quadratic Gaus-
sian control. This property that we have just verified for a complete observer
is also verified for a reduced observer.

It is useful to notice that the Kalman filter gain is proportional to P (which
will vary, but must be initialized) and inversely proportional to the measure-
ment covariance matrix V . Thus, if V is low, the filter gain will be very large,
as the confidence in the measurement will be large; the risk of low robustness
is then high. The Kalman filter can strongly deteriorate the stability margins
[Doyle, 1978]. The characteristic matrices of the Kalman filter can also be
considered as tuning parameters. It is also possible to introduce an integrator
per input-output channel in order to effectively realize the set point tracking;
the modelled system represents, in this case, the group of the process plus the
integrators. It is possible to add an output feedback [Lin, 1994] according to
Fig. 10.4, which improves the robustness of regulation and tracking.

[Lewis, 1992] discusses in detail the problem of the linear quadratic regulator
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Figure 10.4: Structure of linear quadratic Gaussian control with added output
feedback

with output feedback set as
u = −K y (10.145)

which is more difficult to solve than the classical state feedback, but presents
much pratical interest. The problem results in a Lyapunov equation that can
be solved.

In several applications, LQG revealed that it was sensitive to system uncer-
tainty, so that new approaches were necessary. An important development in
LQG control is the consideration of robustness so as to satisfy frequency crite-
ria concerning the sensitivity and complementary sensitivity functions, or gain
and phase margins. Actually, the stability margins of LQG control may re-
veal themselves to be insufficient. LQG/LTR (Loop Transfer Recovery) means
use of the LQG design together with a robust control design [Athans, 1986,
Kwakernaak, 1993, Lewis, 1992, Maciejowski, 1989, Stein and Athans, 1987],
thus it guarantees closed-loop robustness, both as performance and stability
robustness. However, the increase of robustness by use of LQG/LTR results
unavoidably in a decrease of performance which can be handled by special
optimization techniques [Apkarian and Noll, 2006].
Linear Quadratic Gaussian Control of a Chemical Reactor

The same chemical reactor as for linear quadratic control is used to evaluate
linear quadratic Gaussian control. The same set points are imposed. In this
case, the theoretical states describe the behavior of the plant but noisy measure-
ments are used as process outputs. The standard deviations of concentration
and temperature are equal to 2 and 0.5, respectively.

The same control law as for LQ control is used, but it here takes into account
the estimated states which themselves depend on the noisy measurements. Two
types of Kalman estimators have been used to estimate the states. The linear
Kalman filter based on the constant linear model of the plant, calculated at
initial time, resulted in deviations of the outputs with respect to the set points.
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Figure 10.5: Linear quadratic Gaussian control of chemical reactor (criterion
weighting: Q = 0.02 I ; R = I). Top: input u1 and output y1 (concentration
of A). Bottom: input u2 and output y2 (reactor temperature)

To avoid these deviations and better estimate the states, an extended Kalman
filter was used. It is based on the linearized model of the process which is
no more constant, being updated at each sampling period equal to 10s, and
takes better into account the strong nonlinearity of the process due to a large
exothermicity. The matrix Q is identity I and matrix R is augmented as 50I
to avoid too large moves of the manipulated inputs. The Kalman matrices are
W = 0.001I, V = 0.05I and P = I, except the last diagonal term equal
to 0.1 for this latter. On Figure 10.5, it is clear that the inputs still show
relatively large variations, in particular u2, but if R is still augmented, the
performance is degraded and larger deviations between the controlled outputs
and the set points, especially temperature, are observed. An output feedback
such as (10.145) could be used, but it was not implemented here to demonstrate
the potential of LQG control. Globally, in spite of a strongly nonlinear process,
LQG control is very satisfactory.

10.5.3 Discrete-Time Linear Quadratic Control

In discrete time, the system is represented in the state space by the determin-
istic linear model

{

xk+1 = F xk +Guk
yk =H xk

(10.146)
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The sought control must minimize a quadratic criterion similar to Eq.
(10.91) thus

J = 0.5 [zrN − zN ]T QN [zrN − zN ]

+0.5
N−1
∑

k=0

{

[zrk − zk]T Q [zrk − zk] + uTk Ruk
}

= 0.5 [xrN − xN ]T MT QNM [xrN − xN ]

+0.5

N−1
∑

k=0

{

[xrk − xk]T MT QM [xrk − xk] + uTk Ruk
}

(10.147)

where the matrices QN , Q are semipositive definite and R is positive definite.
Furthermore z = Mx represents measurements or outputs. It would be pos-
sible to use variational methods to deduce from them the optimal control law
[Borne et al., 1990, Lewis, 1986], which would provide a system perfectly sim-
ilar to Eq. (10.98). However, variational methods are a priori designed in the
framework of continuous variables, thus for continuous time; on the other hand,
dynamic programming is perfectly adapted to the discrete case. Thus, we will
sketch out the reasoning in this framework. For more details, it is possible, for
example, to refer to Dorato and Levis [1971], Foulard et al. [1987].

The system is considered at any instant i included in the interval [0, N ],
assuming that the policy preceding that instant, thus the sequence of the
{uk, k ∈ [i+ 1, N ]}, is optimal (the final instant N is the starting point for
performing the procedure of dynamic programming). In these conditions, the
criterion of interest is in the form

Ji = 0.5 [zrN − zN ]T QN [zrN − zN ]

+0.5

N−1
∑

k=i

{

[zrk − zk]T Q [zrk − zk] + uTk Ruk
}

= 0.5 [xrN − xN ]T MT QNM [xrN − xN ] +

N−1
∑

k=i

Lk(xk,uk)

(10.148)

with the revenue function Lk defined by

Lk(xk,uk) = 0.5
{

[xrk − xk]T MT QM [xrk − xk] + uTk Ruk
}

(10.149)

According to Bellman optimality principle, the optimal value J∗

i of the criterion
can be expressed in a recurrent form

J∗

i = min
u

{

0.5[xri − xi]T MT QM [xri − xi] + uTi Rui + J∗

i+1

}

(10.150)

The final state is assumed to be free. It is necessary to know the expression of
J∗

i+1 with respect to the state to be able to perform the minimization. Reason-
ing by recurrence, suppose that it is in quadratic form

J∗

i+1 = 0.5
{

xTi+1 Si+1 xi+1 + 2 gi+1 xi+1 + hi+1

}

(10.151)
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hence

J∗

i+1 = 0.5
{

[F xi +Gui]
T Si+1 [F xi +Gui]

+2 gi+1 [F xi +Gui] + hi+1

}
(10.152)

We deduce

J∗

i = 0.5 minui

{

[xri − xi]T MT QM [xri − xi] + uTi Rui
+[F xi +Gui]

T Si+1 [F xi +Gui]

+2 gi+1 [F xi +Gui] + hi+1

}

(10.153)

We search the minimum with respect to ui thus

Ru∗

i +G
T Si+1[F xi +Gu

∗

i ] +G
T gi+1 = 0 (10.154)

or
u∗

i = −[R+GT Si+1G]−1 [GT Si+1 F xi +G
T gi+1] (10.155)

provided that the matrix [R+GT Si+1G] is invertible. Notice that the optimal
control is in the form

u∗

i = −Ki xi + ki gi+1 (10.156)

revealing the state feedback with the gain matrixKi and feedforward with the
gain ki. Thus, we set

Ki = [R+GT Si+1G]−1GT Si+1 F ; SN =MT QNM

ki = −[R+GT Si+1G]−1GT
(10.157)

It is then possible to verify that J∗

i is effectively in quadratic form; thus we
find

Si =MT QM + F T Si+1 (F −GKi)

gi = −MT Qzri + (F T −GKi)
T gi+1 ; gN =MQN z

r
N

(10.158)

The group of Eqs. (10.156), (10.157), (10.158) allows us to determine the inputs
u. When not all states are known, of course it is necessary to use a discrete
Kalman filter which will work with the optimal control law according to the
same separation principle as in the continuous case.

It can be shown that Eq. (10.158) is equivalent to the discrete differential
Riccati equation

Si = (F −GKi)
T Si+1 (F −GKi) +K

T
i RKi +M

T QM (10.159)

here presented in Joseph form and better adapted to numerical calculation.
Let us apply the Hamilton-Jacobi principle to the discrete-time optimal

regulator. If the control law u∗

i and the corresponding states x∗

i are optimal,
according to the Hamilton-Jacobi principle, there exists a costate vector ψ∗

i
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such that u∗

i is the value of the control ui which maximizes the Hamiltonian
function Ha

Ha= −Li(x∗

i ,ui) +ψ
∗T
i+1 xi+1

= −Li(x∗

i ,ui) +ψ
∗T
i+1 [F xi +Gui]

= −0.5
{

[xri − xi]T MT QM [xri − xi] + uTi Rui
}

+ψ∗T
i+1 [F xi +Gui]

(10.160)
The Hamilton-Jacobi conditions give

ψ∗

i = −∂Ha

∂x∗

i

=MT QM [x∗

i−xri ]−F T ψi+1 with: ψN =MT QM [x∗

N−xrN ]

(10.161)
and the control which maximizes the Hamiltonian function Ha is such that

dHa

dui
= 0 =⇒ −Rui +GT ψi+1 = 0 =⇒ u∗

i = R
−1GT ψi+1 (10.162)

hence

xi+1 = F xi +Gui = F xi +GR
−1GT ψi+1 (10.163)

Introduce the matrix H such that
[

xi
ψi

]

= H
[

xi+1

ψi+1

]

or :

[

xi+1

ψi+1

]

= H−1

[

xi
ψi

]

(10.164)

Assume xri = 0 for the regulation case. The two conditions (10.161) and
(10.162) can be grouped as

ψ∗

i =M
T QM x∗

i − F T ψi+1

xi+1 = F xi +GR
−1GT ψi+1

(10.165)

from which we deduce the matrix H

H =

[

F−1 −F−1GR−1GT

MT QM F−1 −F T −MT QM F−1GR−1GT

]

(10.166)

In the case where a steady-state gain K∞ is satisfactory, which can be
realized when the horizon N is large, the gain matrix can be obtained after
solving the algebraic Riccati equation

S = F T [S − SG (GT SG+R)−1GT S]F +MQM (10.167)

whose solution (corresponding to discrete time) is obtained in a parallel manner
to the continuous case, by first considering the matrix H. Its inverse is the
symplectic matrix H

−1 equal to

H
−1 =

[

F +GR−1GT F−T MT QM −GR−1GT F−T

F−T MT QM −F−T

]

(10.168)
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A matrix A is symplectic, when, given the matrix J =

[

0 I

−I 0

]

, the matrix

A verifies AT J A = J . If λ is an eigenvalue of a symplectic matrix A, 1/λ is
also an eigenvalue of A; λ is thus also an eigenvalue of A−1 [Laub, 1979].

We seek the eigenvalues and associated eigenvectors of H−1. Then, we form
the matrix U of the eigenvectors so that the first n columns correspond to the
stable eigenvalues (inside the unit circle), in the form

U =

[

U11 U12

U21 U22

]

(10.169)

where the blocks U ij have dimension n×n. The solution of the discrete Riccati
algebraic equation (10.167) is then

S∞ = U21U
−1
11 (10.170)

giving the steady-state matrix.
For the tracking problem, in parallel to the stationary solution for the gain

matrixK, the stationary solution for the feedforward gain is deduced from Eq.
(10.158) and is given by

gi = [I − (F T −GK∞)T ]−1 [−MT Qzri ] (10.171)

The use of stationary gains provides a sub-optimal solution but is more
robust than using the optimal gains coming from Eqs. (10.157) and (10.158).

The discrete linear quadratic Gaussian control is derived from the previously
described discrete linear quadratic control by coupling a discrete linear Kalman
filter in order to estimate the states.

Remark

Recall the operating conditions of quadratic control. In general, it is assumed
that the pair (A,B) in continuous time, or (F ,G) in discrete time, is con-
trollable. Moreover, when the horizon is infinite and when we are looking
for steady-state solutions of the Riccati equation, the condition that the pair
(A,

√
Q) in continuous time, or (F ,

√
Q) in discrete time, is observable (the

notation H =
√
Q means that Q =HT H) must be added.
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